CN102947917A - 通过加工引发的单轴向应变控制介电薄膜内的铁电性 - Google Patents

通过加工引发的单轴向应变控制介电薄膜内的铁电性 Download PDF

Info

Publication number
CN102947917A
CN102947917A CN2011800164932A CN201180016493A CN102947917A CN 102947917 A CN102947917 A CN 102947917A CN 2011800164932 A CN2011800164932 A CN 2011800164932A CN 201180016493 A CN201180016493 A CN 201180016493A CN 102947917 A CN102947917 A CN 102947917A
Authority
CN
China
Prior art keywords
ferroelectricity
dielectric layer
stress
layer
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800164932A
Other languages
English (en)
Other versions
CN102947917B (zh
Inventor
C·A·杜伯尔蒂欧
M·M·弗兰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN102947917A publication Critical patent/CN102947917A/zh
Application granted granted Critical
Publication of CN102947917B publication Critical patent/CN102947917B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及通过加工引发的单轴向应变控制介电薄膜内的铁电性。一种控制集成电路设备部件铁电特性的方法,包括在衬底上成形铁电性可控的介电层;并且紧靠铁电性可控的介电层成形应力施加结构,从而通过应力施加结构在铁电性可控的介电层内引发基本单轴向的应变;其中铁电性可控的介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。

Description

通过加工引发的单轴向应变控制介电薄膜内的铁电性
技术领域
本发明主要涉及半导体器件,并且尤其涉及通过其中加工引发的应变控制介电薄膜内的铁电性。
背景技术
集成铁电性材料在微电子领域具有很多当前或未来潜在的用途,包括例如铁电性场效应晶体管(FET)存储器、铁电性金属-绝缘体-金属(MIM)电容存储器以及超低功率/电压的互补金属氧化物半导体(CMOS)逻辑电路等。
目前由于要求很多(例如远高于室温的铁电迁移温度(Tc)、高剩余极化强度、良好的保持性、低疲劳等),因此只有很少几种很好的用于此类应用的备选铁电性材料。一种这样的值得生产的材料是锆钛酸铅(Pb[ZrxTi1-x]O3,0<x<1或者通过其化学式写为PZT)。PZT是一种具有钙钛矿型晶体结构的陶瓷材料,其表现出明显的铁电性,即在存在电场时产生自发电极化强度(电偶极子)。但是,在微电子应用中使用PZT的一个缺点是向生产线内引入了铅(Pb),这会造成环境问题。而且,PZT会在极化切换和累积切换循环中表现出很可观的损耗。
另一种这样的铁电性材料是SrBi2Ta2O9或SBT。SBT的一种相关缺点(除了SBT的组成具有三种金属离子的复杂性以外)涉及加工控制问题,例如高加工温度。其他可能的铁电性备选材料对于某些应用来说具有过低的迁移温度Tc或者过低的自发或剩余极化强度Pr。例如,BaTiO3具有的Tc约为120℃,这对于室温下的应用来说过于接近室温。
因此,另一些方法关注的是通过引入双轴向应变来显著提高和/或调节铁电性材料的Tc或Pr。铁电性薄膜内的双轴向应变迄今为止已经通过铁电性材料在具有低晶格失配的衬底(例如氧化物)上的相干外延而实验性地实现。例如,BaTiO3薄膜内(通过钪酸盐衬底例如DyScO3或GdScO3上的相干外延实现)的双轴向应变能够得到比散装BaTiO3单晶体高出近500℃的铁电迁移温度Tc和高出至少250%的剩余极化强度Pr。在此情况下,应变是双轴向和压缩性的。另外,双轴向应变也可以通过外延在其他的铁电性材料例如PbTiO3或BiFeO3中实现。还有另一些方法关注的是通过引入双轴向应变而在通常的非铁电性材料中引发铁电性。例如,SrTiO3薄膜内(通过钪酸盐衬底例如DyScO3或GdScO3上的相干外延实现)的双轴向应变能够得到室温下的铁电性。
但是,铁电性材料通过外延的双轴向应变具有其自身的局限性。例如,硅上直接外延要求将分子束外延(MBE)沉积用于高质量外延。在此,应变无法调节,并且一旦达到临界厚度应变就会弛豫。因此,只能在有限的厚度范围内获得可调的铁电性质。而且,铁电性氧化物例如BaTiO3在Si上的直接外延会因为相对于硅导带为负或者非常小的带偏移而导致很高的漏电流。
发明内容
在一个示范性实施例中,一种控制集成电路设备部件铁电特性的方法包括在衬底上成形铁电性可控的介电层;并且紧靠铁电性可控的介电层成形应力施加结构,从而通过应力施加结构在铁电性可控的介电层内引发基本单轴向的应变,其中铁电性可控的介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
在另一个实施例中,一种铁电性场效应晶体管(FET)器件包括设置在栅电极和衬底之间的铁电性可控栅极介电层;以及紧靠铁电性可控介电层成形的应力施加结构,从而通过应力施加结构在铁电性可控的介电层内引发基本单轴向的应变,其中铁电性可控的栅极介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
在又一个实施例中,一种铁电性金属-绝缘体-金属(MIM)电容器包括成形在衬底上的下电极层;电容器介电层,包括成形在下电极上的铁电性可控介电层;成形在铁电性可控介电层上的上电极层;以及紧靠铁电性可控介电层成形的应力施加结构,从而在铁电性可控的介电层内引发基本单轴向的应变;其中铁电性可控的栅极介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
附图说明
参照示范性附图,其中相同的元件在各附图中被标记为相同:
图1是根据本发明实施例具有栅极介电层的FET的截面图,栅极介电层通过应变工程设计而铁电性可控;
图2示出了成形的外延源极和漏极区域,在图1中FET的铁电性可控栅极介电层上提供了基本单轴向的应变;
图3示出了根据本发明实施例在具有栅极介电层的FET上成形的压缩性氮化物应力层,栅极介电层通过应变工程设计而铁电性可控;
图4示出了根据本发明的另一个实施例在具有栅极介电层的FET上成形的拉伸性氮化物应力层,栅极介电层通过应变工程设计而铁电性可控;以及
图5(a)到5(d)是示出了根据本发明的另一个实施例成形具有介电层的MIM电容器的一系列截面图,介电层通过应变工程设计而铁电性可控。
具体实施方式
本文中公开了用于通过加工引发的薄膜应变来控制介电薄膜内铁电性的方法和结构。某些示范性实施例被用于引发铁电性,其中在无应变时通常无铁电性的材料例如SrTiO3或CaMnO3在有应变时就变得有铁电性。另一些示范性实施例调节介电薄膜现有的铁电性,其中调节铁电性材料在其加工状态下的性质(Tc、Pr),由此拓宽可用于微电子应用的可行材料(例如BaTiO3)的频谱以及提高现有铁电性器件(例如基于PZT的器件)的性能。
在本文介绍的实施例中,首先沉积在硅或其他类型半导体衬底(例如绝缘体上硅(SOI)、Ge、III/V等)上的铁电性可控材料例如通常无铁电性的材料或铁电性材料通过CMOS型技术基本单轴向地应变。如本文中所用的“基本单轴向”描述了沿表面的一个方向例如x方向或y方向引发的应变。这就与例如沿其表面在两个方向(x-y)上引发应变的双轴向应变薄膜形成了对比。但是应该理解,“基本单轴向”也可以描述主要是沿一条轴线(例如x轴)的应变,同时沿另外的轴线也有少量的、“微量的”或者非零的应变分量。另外,如本文中所述的“CMOS型”技术可以包括例如靠近硅沟道区域的源极/漏极锗化硅(SiGe)区域、氮化物内衬区域及其组合。
在任何情况下,都不需要外延介电薄膜,并且压缩性和拉伸性(单轴向)应变(利用氮化硅)均可实现,而且能够调节应变水平,由此显著地调节Tc和Pr。在铁电性氧化物内实施加工引发的应变由此可以通过芯片技术中常见的目前用于提高晶体管沟道迁移率的集成方案实现。通过加工引发的应变调节铁电性的介电薄膜的实用实施例包括但不限于FET和MIM电容器。
首先参照图1,示出了成形在衬底102例如硅或SOI内的FET100的截面图。成形在浅沟槽隔离(STI)区域104之间的晶体管包括图案化的栅电极106、邻接栅电极106的侧壁隔板108以及栅电极106和衬底102之间的栅极介电层110。在此,用于栅极介电层110的常规材料(例如二氧化硅)被包含铁电性可控层的介电叠层代替。同样地,铁电性可控层可以是例如铁电性材料层或者是在向其施加外部应力后才表现出铁电性质的通常无铁电性的材料层。栅极介电层110内包含的铁电性可控层的非限制性示例包括BaTiO3、PZT、SBT、SrTiO3(STO)、Ba1-xSrxTiO3(BST)、PbTiO3、CaMnO3和BiFeO3
在散装SrTiO3的情况下,氧旋转是形成无极性的反铁畸变基态的原因。铁电畸变和反铁畸变两者可以在适当的应变下共存,并且这些不稳定状态之间耦合的改变能够使其通往新的基态(即铁电体)。因此,没有明显的根本理由说明为什么(导致单轴向应变或者可能导致更复杂应变分布的)单轴向应力不会导致这种强相关复合氧化物的基态改变。
尽管图1中所示的栅极介电层110被示出为有图案化的栅电极以使隔板108也靠接栅极介电层110的侧壁,但是应该意识到栅极介电层110也可以相对于栅电极110单独图案化以使(例如)隔板108位于栅极介电层110的顶部。除了铁电性可控层以外,介电层110还可以在铁电性可控层和衬底102之间包括一个或多个缓冲层。而且,图1中示出的介电层110还可以包括设置在铁电性可控层以及栅电极110和/或衬底102之间的一个或多个附加介电层。
正如图1中还可以注意到的那样,源极和漏极区域112已经例如通过蚀刻被去除以为不同半导体材料例如锗化硅(SiGe)或掺杂碳的硅(Si:C)的外延生长让路。图2中示出了外延材料114。因此,单轴向的压缩性或拉伸性应变不仅会在栅极介电层110下方晶体管的沟道区域内引发,而且也会在栅极介电层110自身内引发。例如,在外延材料114是SiGe之处,引发的单轴向应变是压缩性的。可选地,如果外延材料114是Si:C,那么引发的单轴向应变就是拉伸性的。因此,栅极介电层110上外延引发的应力就引发和/或调节了栅极介电层110的铁电性质。在更进一步设想的实施例中,源极和漏极区域112可以通过使用注入硅内的掺杂剂来设置嵌入式的应力施加半导体材料。
除了外延的源极/漏极应力施加半导体材料以外或作为其替代,其他的单轴向应力/应变技术也可以被用于引发/调节介电层的铁电性质。如图3所示,FET 100的衬底102被掺有合适的掺杂材料以形成源极和漏极区域116(以及栅极以下的源极/漏极扩展区域)。也就是说,在图3的实施例中,并未从源极/漏极半导体材料中生成应力。相反,氮化物内衬118(例如氮化硅)被成形在FET 100上。在图示的示例中,氮化物层118是压缩性氮化物层,原因在于它在衬底102的沟道区域和栅极介电层110两者上提供了单轴向的压缩应力。除了如上所述引发/调节栅极介电层110的铁电性质以外,压缩性氮化物层118还被用于提高PMOS FET器件内的载流子迁移率。
作为比较,图4示出了具有拉伸性氮化物内衬120的FET 100,该拉伸性氮化物内衬120在衬底102的沟道区域和栅极介电层110上生成单轴向的拉伸应力。除了如上所述引发/调节栅极介电层110的铁电性质以外,拉伸性氮化物层120还被用于提高NMOS FET器件内的载流子迁移率。
现主要参照图5(a)到5(d),根据本发明的另一个实施例示出了成形具有铁电性可控介电层的MIM电容器的一系列截面图。在图5(a)中,衬底502具有依次成形在其上作为叠层的下电极层504、包括铁电性可控层的电容器介电层506和上电极层508。与FET实施例中的情况一样,铁电性可控层包括铁电性材料层或者是在向其施加外部应力后才表现出铁电性质的通常无铁电性的材料层。任意合适的导电材料均可被用于下电极层504和上电极层508,包括例如铂、铱、钌、钛、氮化钛、钽、氮化钽、氧化钇、氧化钌、铜、钨或其化合物。
类似于FET的实施例,MIM电容器中的电容器介电层506除了铁电性可控层以外还可以包括设置在铁电性可控层以及下电极层504和上电极层508之间的一个或多个缓冲层和/或一个或多个附加介电层。
在图5(b)中,下电极层504、铁电性可控层506和上电极层508被蚀刻为所需形状,然后如图5(c)所示在得到的电容器叠层上成形氮化物应力层510。氮化物应力层510可以如箭头所示被制成为有拉伸性或压缩性。结果即可因单轴向的应力/应变来引发/调节MIM电容器的铁电性质。最后,在图5(d)中,绝缘层(例如二氧化硅)512被成形在承受应力的铁电性MIM电容器上用于后续的器件加工。
尽管已经参照一个或多个优选实施例介绍了本发明,但是本领域技术人员应该理解可以进行各种修改并且可以用等价物替代其中的元素而并不背离本发明的保护范围。另外,可以根据本发明的教导做出很多修改以适合特定情况或材料而并不背离其实质的保护范围。因此,意图在于本发明并不局限于作为设计用于实现本发明的最佳模式而公开的特定实施例,而且本发明应该包括落入所附权利要求保护范围内的所有实施例。

Claims (25)

1.一种控制集成电路设备部件铁电特性的方法,所述方法包括:
在衬底上成形铁电性可控的介电层;并且
紧靠铁电性可控的介电层成形应力施加结构,从而通过应力施加结构在铁电性可控的介电层内引发基本单轴向的应变;
其中铁电性可控的介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
2.如权利要求1所述的方法,其中所述铁电性可控的介电层包括以下的一种或多种材料:BaTiO3、Pb[ZrxTi1-x]O3(PZT)、SrBi2Ta2O9(SBT)、SrTiO3(STO)、Ba1-xSrxTiO3(BST)、PbTiO3、CaMnO3和BiFeO3
3.如权利要求1所述的方法,其中所述应力施加结构包括相对于衬底不同的半导体材料。
4.如权利要求1所述的方法,其中所述应力施加结构包括成形在铁电性可控介电层上的氮化物层。
5.如权利要求4所述的方法,其中所述氮化物层是压缩性氮化物层。
6.如权利要求4所述的方法,其中所述氮化物层是拉伸性氮化物层。
7.如权利要求1所述的方法,其中所述铁电性可控介电层被包括在场效应晶体管(FET)的栅极介电层内。
8.如权利要求7所述的方法,其中所述衬底是硅衬底并且成形应力施加结构包括生长锗化硅的源极和漏极区域从而在铁电性可控介电层内引发压缩性单轴向应变。
9.如权利要求7所述的方法,其中所述衬底是硅衬底并且成形应力施加结构包括生长掺杂碳的硅源极和漏极区域从而在铁电性可控介电层内引发拉伸性单轴向应变。
10.如权利要求7所述的方法,其中成形应力施加结构包括在FET上成形压缩性氮化物层。
11.如权利要求7所述的方法,其中成形应力施加结构包括在FET上成形拉伸性氮化物层。
12.如权利要求7所述的方法,其中所述栅极介电层进一步包括一个或多个附加介电层。
13.如权利要求1所述的方法,其中所述铁电性可控介电层包括金属-绝缘体-金属(MIM)电容器的介电层。
14.一种铁电性场效应晶体管(FET)器件,包括:
设置在栅电极和衬底之间的铁电性可控栅极介电层;以及
紧靠铁电性可控介电层成形的应力施加结构,从而通过应力施加结构在铁电性可控介电层内引发基本单轴向的应变;
其中铁电性可控的栅极介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
15.如权利要求14所述的器件,其中所述铁电性可控的栅极介电层包括以下的一种或多种材料:BaTiO3、Pb[ZrxTi1-x]O3(PZT)、SrBi2Ta2O9(SBT)、SrTiO3(STO)、Ba1-xSrxTiO3(BST)、PbTiO3、CaMnO3和BiFeO3
16.如权利要求14所述的器件,其中所述衬底是硅衬底并且所述应力施加结构包括外延生长的锗化硅源极和漏极区域,其在铁电性可控介电层内引发压缩性单轴向应变。
17.如权利要求14所述的器件,其中所述衬底是硅衬底并且所述应力施加结构包括外延生长的掺杂碳的硅源极和漏极区域,其在铁电性可控介电层内引发拉伸性单轴向应变。
18.如权利要求14所述的器件,其中应力施加结构包括在FET上成形的压缩性氮化物层。
19.如权利要求14所述的器件,其中应力施加结构包括在FET上成形的拉伸性氮化物层。
20.如权利要求14所述的器件,其中所述栅极介电层进一步包括一个或多个附加介电层。
21.一种铁电性金属-绝缘体-金属(MIM)电容器,包括:
成形在衬底上的下电极层;
电容器介电层,包括成形在下电极上的铁电性可控介电层;
成形在铁电性可控介电层上的上电极层;以及
紧靠铁电性可控介电层成形的应力施加结构,从而在铁电性可控的介电层内引发基本单轴向的应变;
其中铁电性可控的栅极介电层包括以下中的一个或多个:铁电性氧化物层以及在没有施加应力时不会表现出铁电性质的通常无铁电性的材料层。
22.如权利要求21所述的器件,其中所述铁电性可控的栅极介电层包括以下的一种或多种材料:BaTiO3、Pb[ZrxTi1-x]O3(PZT)、SrBi2Ta2O9(SBT)、SrTiO3(STO)、Ba1-xSrxTiO3(BST)、PbTiO3、CaMnO3和BiFeO3
23.如权利要求21所述的器件,其中所述应力施加结构包括在MIM电容器上成形的压缩性氮化物层。
24.如权利要求21所述的器件,其中所述应力施加结构包括在MIM电容器上成形的拉伸性氮化物层。
25.如权利要求21所述的器件,其中所述电容器介电层进一步包括一个或多个附加介电层。
CN201180016493.2A 2010-04-02 2011-03-15 通过加工引发的单轴向应变控制介电薄膜内的铁电性 Expired - Fee Related CN102947917B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/753,270 2010-04-02
US12/753,270 US8389300B2 (en) 2010-04-02 2010-04-02 Controlling ferroelectricity in dielectric films by process induced uniaxial strain
PCT/US2011/028422 WO2011123238A1 (en) 2010-04-02 2011-03-15 Controlling ferroelectricity in dielectric films by process induced uniaxial strain

Publications (2)

Publication Number Publication Date
CN102947917A true CN102947917A (zh) 2013-02-27
CN102947917B CN102947917B (zh) 2015-11-25

Family

ID=44708626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180016493.2A Expired - Fee Related CN102947917B (zh) 2010-04-02 2011-03-15 通过加工引发的单轴向应变控制介电薄膜内的铁电性

Country Status (6)

Country Link
US (2) US8389300B2 (zh)
JP (1) JP5902147B2 (zh)
CN (1) CN102947917B (zh)
DE (1) DE112011101181B4 (zh)
GB (1) GB2492697B (zh)
WO (1) WO2011123238A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389300B2 (en) * 2010-04-02 2013-03-05 Centre National De La Recherche Scientifique Controlling ferroelectricity in dielectric films by process induced uniaxial strain
GB2502971B (en) 2012-06-11 2017-10-04 Knowles (Uk) Ltd A capacitive structure
KR20140115798A (ko) * 2013-03-22 2014-10-01 인텔렉추얼디스커버리 주식회사 상변화 메모리 소자 및 이의 제조방법
JP6109018B2 (ja) * 2013-09-05 2017-04-05 三菱電機株式会社 半導体装置およびその製造方法
GB2524721B (en) * 2014-02-21 2016-02-24 Syfer Technology Ltd Dielectric material and capacitor comprising the dielectric material
US11004867B2 (en) 2018-06-28 2021-05-11 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded ferroelectric memory in high-k first technology
DE102018212736B4 (de) * 2018-07-31 2022-05-12 Christian-Albrechts-Universität Zu Kiel Ferroelektrische Halbleitervorrichtung mit einer einen Mischkristall aufweisenden ferroelektrischen Speicherschicht und Verfahren zu deren Herstellung
CN109980013A (zh) * 2019-03-04 2019-07-05 上海华力集成电路制造有限公司 一种FinFET及其制备方法
KR20200133842A (ko) 2019-05-13 2020-12-01 삼성전자주식회사 강유전체를 포함하는 강유전성 반도체 소자 및 그 제조 방법
CA3139386A1 (en) * 2019-05-26 2020-12-03 Maria Helena SOUSA SOARES DE OLIVEIRA BRAGA A one-electrode cell and series of two or more cells as a device
KR102274881B1 (ko) * 2019-07-05 2021-07-07 주식회사 키 파운드리 비휘발성 메모리 소자
KR20210017091A (ko) 2019-08-06 2021-02-17 에스케이하이닉스 주식회사 강유전 유도층을 포함하는 강유전 메모리 장치
US20220157966A1 (en) * 2020-11-13 2022-05-19 Sandisk Technologies Llc Ferroelectric field effect transistors having enhanced memory window and methods of making the same
US20230063076A1 (en) * 2021-08-24 2023-03-02 Seoul National University R&Db Foundation Content addressable memory device and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416173A (zh) * 2001-11-01 2003-05-07 富士通株式会社 铁电电容器和半导体器件
CN1669123A (zh) * 2002-07-15 2005-09-14 因芬尼昂技术股份公司 具应力吸收半导体层之半导体组件及其制造方法
US20070080383A1 (en) * 2005-10-06 2007-04-12 Kabushiki Kaisha Toshiba Semiconductor device
CN1985374A (zh) * 2004-06-24 2007-06-20 国际商业机器公司 改进的应变硅cmos器件和方法
US20080258180A1 (en) * 2006-01-09 2008-10-23 International Business Machines Corporation Cross-section hourglass shaped channel region for charge carrier mobility modification

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741627A (en) * 1971-12-01 1973-06-26 Atomic Energy Commission Strain biased ferroelectric electro-optics
US3740118A (en) * 1971-12-01 1973-06-19 Atomic Energy Commission Self strain biased ferroelectricelectrooptics
US5146299A (en) * 1990-03-02 1992-09-08 Westinghouse Electric Corp. Ferroelectric thin film material, method of deposition, and devices using same
JP3106255B2 (ja) 1991-08-16 2000-11-06 ローム株式会社 強誘電体デバイス
KR0141160B1 (ko) * 1995-03-22 1998-06-01 김광호 강유전체 메모리 장치 및 그 제조방법
US5830270A (en) 1996-08-05 1998-11-03 Lockheed Martin Energy Systems, Inc. CaTiO3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class
US6010744A (en) 1997-12-23 2000-01-04 Advanced Technology Materials, Inc. Method for nucleation controlled chemical vapor deposition of metal oxide ferroelectric thin films
US6713799B2 (en) * 2002-04-26 2004-03-30 Matsushita Electric Industrial Co., Ltd. Electrodes for ferroelectric components
JP3791614B2 (ja) 2002-10-24 2006-06-28 セイコーエプソン株式会社 強誘電体膜、強誘電体メモリ装置、圧電素子、半導体素子、圧電アクチュエータ、液体噴射ヘッド及びプリンタ
US7130212B2 (en) 2003-11-26 2006-10-31 International Business Machines Corporation Field effect device with a channel with a switchable conductivity
US7229662B2 (en) 2003-12-16 2007-06-12 National University Of Singapore Heterolayered ferroelectric thin films and methods of forming same
TW200538838A (en) 2004-02-11 2005-12-01 Koninkl Philips Electronics Nv Electronic paint structure with thermal addressing layer
JP4800627B2 (ja) * 2004-03-24 2011-10-26 セイコーエプソン株式会社 強誘電体メモリ素子
TWI463526B (zh) 2004-06-24 2014-12-01 Ibm 改良具應力矽之cmos元件的方法及以該方法製備而成的元件
US7449738B2 (en) 2004-10-29 2008-11-11 Wisconsin Alumni Research Foundation Strain-engineered ferroelectric thin films
US7432553B2 (en) * 2005-01-19 2008-10-07 International Business Machines Corporation Structure and method to optimize strain in CMOSFETs
US20080121932A1 (en) * 2006-09-18 2008-05-29 Pushkar Ranade Active regions with compatible dielectric layers
US7586158B2 (en) * 2005-07-07 2009-09-08 Infineon Technologies Ag Piezoelectric stress liner for bulk and SOI
US7422950B2 (en) * 2005-12-14 2008-09-09 Intel Corporation Strained silicon MOS device with box layer between the source and drain regions
US7629603B2 (en) 2006-06-09 2009-12-08 Intel Corporation Strain-inducing semiconductor regions
US7541239B2 (en) * 2006-06-30 2009-06-02 Intel Corporation Selective spacer formation on transistors of different classes on the same device
US7768050B2 (en) 2006-07-07 2010-08-03 The Trustees Of The University Of Pennsylvania Ferroelectric thin films
JP4483849B2 (ja) 2006-10-04 2010-06-16 Tdk株式会社 強誘電体薄膜
JP5211560B2 (ja) * 2007-06-25 2013-06-12 富士通セミコンダクター株式会社 半導体装置の製造方法および半導体装置
US7709359B2 (en) * 2007-09-05 2010-05-04 Qimonda Ag Integrated circuit with dielectric layer
US8263466B2 (en) 2007-10-17 2012-09-11 Acorn Technologies, Inc. Channel strain induced by strained metal in FET source or drain
US7867786B2 (en) 2007-12-18 2011-01-11 Intel Corporation Ferroelectric layer with domains stabilized by strain
US7961493B2 (en) * 2008-06-06 2011-06-14 International Business Machines Corporation Programmable device
JP2010010382A (ja) * 2008-06-26 2010-01-14 Toshiba Corp 半導体装置およびその製造方法
US8159855B2 (en) * 2009-01-30 2012-04-17 International Business Machines Corporation Switchable element
US8389300B2 (en) * 2010-04-02 2013-03-05 Centre National De La Recherche Scientifique Controlling ferroelectricity in dielectric films by process induced uniaxial strain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416173A (zh) * 2001-11-01 2003-05-07 富士通株式会社 铁电电容器和半导体器件
CN1669123A (zh) * 2002-07-15 2005-09-14 因芬尼昂技术股份公司 具应力吸收半导体层之半导体组件及其制造方法
CN1985374A (zh) * 2004-06-24 2007-06-20 国际商业机器公司 改进的应变硅cmos器件和方法
US20070080383A1 (en) * 2005-10-06 2007-04-12 Kabushiki Kaisha Toshiba Semiconductor device
US20080258180A1 (en) * 2006-01-09 2008-10-23 International Business Machines Corporation Cross-section hourglass shaped channel region for charge carrier mobility modification

Also Published As

Publication number Publication date
DE112011101181T5 (de) 2013-01-10
WO2011123238A1 (en) 2011-10-06
CN102947917B (zh) 2015-11-25
GB2492697B (en) 2014-03-19
US20110241091A1 (en) 2011-10-06
GB2492697A (en) 2013-01-09
US20120286340A1 (en) 2012-11-15
US8890112B2 (en) 2014-11-18
US8389300B2 (en) 2013-03-05
JP2013524511A (ja) 2013-06-17
DE112011101181B4 (de) 2020-10-08
GB201218702D0 (en) 2012-11-28
JP5902147B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
CN102947917B (zh) 通过加工引发的单轴向应变控制介电薄膜内的铁电性
US9041082B2 (en) Engineering multiple threshold voltages in an integrated circuit
US9318315B2 (en) Complex circuit element and capacitor utilizing CMOS compatible antiferroelectric high-k materials
US7170110B2 (en) Semiconductor device and method for fabricating the same
CN111295735A (zh) 具有织构化铱底电极的基于氧化铪和氧化锆的铁电器件
DE102012100869B4 (de) Zusammendrückende polykristalline Siliziumschicht und Herstellungsverfahren dafür
US20150214322A1 (en) Semiconductor device with ferooelectric hafnium oxide and method for forming semiconductor device
EP1831930B1 (en) Semiconductor device with a superparaelectric gate insulator
US7342276B2 (en) Method and apparatus utilizing monocrystalline insulator
WO2008050271A2 (en) Ferroelectric varactor with improved tuning range
KR20210138997A (ko) 커패시터, 커패시터 제어 방법, 및 이를 포함하는 트랜지스터
US20050023622A1 (en) Semiconductor device and method
US20220293766A1 (en) Semiconducting Ferroelectric Device
Shin et al. Characteristics of MoS2 monolayer non-volatile memory field effect transistors affected by the ferroelectric properties of BiFeO3 thin films with Pt and SrRuO3 bottom electrodes grown on glass substrates
DE102014212483A1 (de) Komplexes Schaltungselement und Kondensator mit CMOS-kompatiblen antiferroelektrischen High-k-Materialien
JP6217260B2 (ja) 半導体装置、及び半導体装置の製造方法
US11257950B2 (en) Semiconductor structure and manufacturing method for the semiconductor structure
KR100389894B1 (ko) 씨.비.엔을 이용한 금속-강유전체-반도체 트랜지스터
KR20220131121A (ko) 반도체 소자 및 그 제조방법
Xiao Growth, Characterization and Applications of Multifunctional Ferroelectric Thin Films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20210315

CF01 Termination of patent right due to non-payment of annual fee