CN102812538B - 用以促进接合的重调节半导体表面的方法 - Google Patents

用以促进接合的重调节半导体表面的方法 Download PDF

Info

Publication number
CN102812538B
CN102812538B CN201180007647.1A CN201180007647A CN102812538B CN 102812538 B CN102812538 B CN 102812538B CN 201180007647 A CN201180007647 A CN 201180007647A CN 102812538 B CN102812538 B CN 102812538B
Authority
CN
China
Prior art keywords
coating
oxide
oxide skin
assembly
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180007647.1A
Other languages
English (en)
Other versions
CN102812538A (zh
Inventor
P.阿鲁纳萨拉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstaq Inc
Original Assignee
Microstaq Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstaq Inc filed Critical Microstaq Inc
Publication of CN102812538A publication Critical patent/CN102812538A/zh
Application granted granted Critical
Publication of CN102812538B publication Critical patent/CN102812538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00611Processes for the planarisation of structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0118Processes for the planarization of structures
    • B81C2201/0121Processes for the planarization of structures involving addition of material followed by removal of parts of said material, i.e. subtractive planarization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Weting (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Formation Of Insulating Films (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

促进诸如硅晶片的半导体组件的接合的非磨蚀方法,这些半导体组件在接合界面表面上具有微结构缺陷。在优选的方法中,微结构缺陷通过以下方式去除:在该接合界面表面上形成氧化物层至低于该缺陷的水平的深度,且然后,去除该氧化物层以暴露出用于接合的满意表面,由此增加生产线的产率且降低制造设施中的废品起因。

Description

用以促进接合的重调节半导体表面的方法
技术领域
本发明总体上涉及阀及半导体机电装置,更具体地,涉及由诸如硅的半导体材料的层接合在一起而形成的微机械组件。
背景技术
微机电系统(MEMS)是实体小且其特征或余隙(clearance)的尺寸在微米范围或更小的等级系统(亦即小于约10微米)。这些系统具有电气和机械组件。“微加工(micro machining)”一词通常意指生产微机电系统装置的三维构造和运动部件。微机电系统初始使用修改过的集成电路(即电脑芯片)制造技术(例如化学蚀刻)和材料(例如硅半导体材料),以微加工这些非常小的机械装置。现今可使用许多更微细加工的技术和材料。本申请可能用到“微机电系统装置”一词,其意指包括特征或余隙的尺寸在微米范围或更小(亦即小于约10微米)的微加工组件的装置。应注意的是,如果微机电系统装置内包括有微加工组件以外的组件,则这些其他组件可为微加工组件或标准尺寸(亦即较大)组件。类似地,本申请可能用到“微阀”一词,其意指具有特征或余隙的尺寸在微米范围或更小(亦即小于约10微米)的阀,且依据定义,该阀至少局部由微加工而形成。本申请可能用到“微阀装置”一词,其意指包括有微阀的装置,且该装置可包括其他组件。应注意的是,如果微阀装置内包括有微阀以外的组件,则这些其他组件可为微加工组件或标准尺寸(亦即较大)组件。
许多微机电系统装置可由某材料的多个层(或板)制成;在将多个层组合成已完成的微机电装置以前,该材料可被微加工以形成微机电装置的组件。例如可使用合适的微机电系统制造技术来制造该微机电系统装置,该制造技术例如美国专利US6,761,420;美国专利US7,367,359;Klassen,E.H.等人(1995)所著“Silicon Fusion Bonding and Deep Reactive Ion Etching:A NewTechnology for Microstructures(硅融合接合和深反应性离子蚀刻:用于微构造的新技术),Proc.Transducers 95 Stockholm Sweden,第556-559页;和Petersen,K.E.等人(1991年6月)所著“Surface Micromachined StructuresFabricated with Silicon Fusion Bonding(以硅融合接合而制造的表面微加工构造)”,Proc.Transducers 91,第397-399页所公开的制造技术,现将这些公开内容作为参考引用于此。
发明内容
本发明涉及促进诸如硅晶片的半导体组件接合的方法,而这些半导体组件具有由于暴露至湿式或干式化学微加工处理以产生结构于半导体材料上或中所造成的在接合界面表面上的微结构缺陷。许多接合工艺要求基板接合界面表面实质地无缺陷,以便促进该表面以高度可靠的接合强度来接合至另一基板的表面。融合接合是特别容易由于不良的表面品质而接合失败的方法。已受到多方面的微加工处理的半导体晶片可具备具有由于这些微加工工艺所造成的微结构缺陷的接合界面表面。在新颖的方法中,在界面表面中具有这些缺陷且此外可能必须抛弃为废品的晶片可使用非磨蚀处理而予以重调节(recondition),以去除这些缺陷。一方法中该非磨蚀处理的实例包括在接合界面表面上形成氧化物层(诸如二氧化硅层)至低于缺陷的水平的深度,且然后,去除该氧化物或二氧化硅层以暴露出令人满意的用于接合的表面,由此增加生产线的产率及降低在制造设施中的废品起因。
当本领域的技术人员按照附图而阅读时,本发明的各个方面将从下文优选实施例的详细说明而变得明显易懂。
附图说明
图1是MEMS装置组件的非按比例的横截面视图,该MEMS装置组件由半导体材料所形成且在其接合界面表面中具有微结构缺陷。
图2是示出用以重调节接合界面表面以去除表面缺陷及促进该表面与另一表面的接合的方法的流程图。
图3是与图1相似的视图,显示依据图2所示的方法的生长于接合界面表面上至低于表面缺陷的深度的氧化物层。
图4是与图1及图3相似的视图,显示氧化物层及表面缺陷被去除。
具体实施方式
现请参阅附图,在图1中示出第一组件的一部分,总体上以10表示。组件10由诸如单晶硅的半导体材料或其他合适的半导体材料形成。组件10包含接合界面表面12。第二组件(未显示)将在复合装置的制造期间被接合至组件10的接合界面表面12。例如,该组件10可为多层MEMS装置的基板或层,或将被接合至较大基板的表面安装组件。
微结构缺陷14存在于接合界面表面12上。微结构缺陷在本申请中被界定为延伸至接合界面表面中的表面凹坑或刮痕的表面缺陷。微结构缺陷将典型地在大约2微米或更小深度的量级;注意的是,可依据这里所述的非磨蚀方法处理的缺陷的深度可根据各种因素而变化,例如构成组件10的特定材料,组件10的厚度及组件10的所需厚度,以及废弃部件对整修组件10的接合界面表面12的经济状况;因而,微结构缺陷的定义并不受限于该深度的精确数值。例如,可产生此微结构缺陷14的各种方法包括在组件10的处理期间的接合界面表面12的刮伤,或由于当产生微机械特征16于组件10的半导体材料上或中的同时,暴露接合界面表面12至湿式或干式化学微加工工艺的结果。
许多接合工艺要求的是,接合界面表面应实质地无缺陷而以高度可靠的接合强度来促进接合界面表面12对另一组件的接合界面表面的接合。融合接合特别容易由于不良的表面品质而接合失败的工艺。例如,若在接合界面表面12中的微结构缺陷14在一般无特征的半导体晶片上时,则可使用熟知的磨蚀方法,亦即,诸如通过切割、研磨或抛光该接合界面表面12而从晶片机械性地去除材料的方法来予以重调节,以从接合界面表面12均匀地去除材料至低于微结构缺陷14的深度。一种这样的磨蚀方法是公开于“FusionBonding of Rough Surfaces With Polishing Technique for SiliconMicromachining(用于硅微加工的具有研磨技术的粗糙表面融合接合)”,C.Gui等人,Microsystem Technologies(1997),第122至128页(版权1997Springer-Verlag)中公开的化学机械抛光(CMP),将其公开的内容通过引用结合于此。然而,取代使用常规的磨蚀方法以使组件10平滑化,或取代选择性地抛弃该组件10,发明人考虑的是可使用本发明的非磨蚀方法来去除微结构缺陷13(亦即,使用除了机械去除外的从组件10去除材料的方法)。当组件10已被微加工而产生结构16于组件10中时,其中诸如接合界面表面12的抛光的去除缺陷的磨蚀方法将损坏这些微加工结构16,此时下文所叙述的本发明的方法特别有用。例如,这些磨蚀方法可由于使这些微加工结构16机械性地过应力而损坏这些微加工结构16。
现请参阅图2,将叙述对接合界面表面12进行表面修整的非磨蚀方法。优选的方法可更广义地描述为包括步骤101,其中氧化物层18(显示于图3中)形成于接合界面表面12上。氧化物层18可为通过使组件10的半导体材料氧化所形成的任何合适的氧化物形成的层(例如,二氧化硅层)。该氧化物层18将穿透至半导体材料内,以形成氧化物/半导体界面20于该接合界面表面12的原始水平的下面。该氧化物层18可以比穿透至半导体材料内的深度更厚,使得氧化物层18的外部表面22可在接合界面表面12的原始水平的上面。
在步骤102中,氧化物层18被去除而暴露出新的接合界面表面12'。若氧化物/半导体界面20足够地低于微结构缺陷14的深度时,则将去除该微结构缺陷14。这完成了该方法的基本步骤。
然而,优选地,该方法包括接合界面表面12的清洁步骤100(在步骤101之前)。清洁该接合界面表面12协助确保氧化物层18可均匀地生长于接合界面表面12上。
该方法亦可被考虑为包括预备评估步骤99,在步骤100之前,其中检查接合界面表面12,识别微结构缺陷14,以及做出宁可重整组件10也不抛弃组件10的决定。
该方法亦可被考虑为包含再评估步骤103,其中检查该新的接合界面表面12'以验证该接合界面表面12'实质地无缺陷。如果不是,则可重复步骤100、101、及102,而生长及去除额外的氧化物层,直至接合界面表面12'实质地无缺陷为止。
一旦所重整的接合界面表面12'实质地无缺陷,则该表面12'优选地在步骤104中予以清洁,以完全地去除来自先前的氧化物层去除步骤102的残屑。
使用以完成图2中所示方法的这些工艺可依据各种因素而变化。通常可将它们分成两类:执行于相对高的温度的表面重调节方法(针对不具有会在这些相对高的温度处损坏的特性的半导体组件10,例如镀覆、接合、或附着至该组件的金属、或聚合物涂层),以及执行于相对低的温度的表面重调节方法。
现将在图2中所示的这些步骤上详细叙述用以于相对高的温度处重调节组件10的接合界面表面12的非磨蚀处理。注意的是,若制成组件10的半导体材料是硅时,则硅的热氧化常在大约800°C与1200°C之间的温度处执行,而产生所谓高温氧化物层(HTO)。可使用水蒸气(蒸汽)或分子氧作为氧化剂;因此,称为湿或干氧化。
依据此高温方法,步骤100包括使用标准晶片清洁方法,例如(未限制)“SCl/SC2",来清洁具有微结构缺陷14的接合界面表面12。SC1是标准清洁溶液#1的缩写;SC2是标准清洁溶液#2的缩写。它们的名称源自大约1970年在RCA实验室所发展的原始晶片清洁法。此工艺包括使用“标准”溶液SC1及SC2以清洁晶片的清洁步骤顺序。SC1由氢氧化铵(NH4OH)、过氧化氢(H2O2)、及DI水(去离子H2O)的混合液所构成。用于SC1混合液的一合适的浓度比例是1:4:20(NH4OH:H2O2:H2O),虽然亦可使用其他的比例。SC2由氢氯酸(HCl)、过氧化氢(H2O2)、及DI水(H2O)的混合液所构成。用于SC2混合液的典型的浓度比例是1:1:5(HCI:H2O2:H2O)(亦即,1份HCl,1份H2O2,配5份H2O)。SC1及SC2被使用以从将被清洁的这些组件去除不同类型的污染。在RCA顺序中,SC2溶液的使用常在SC1溶液的使用后。
步骤101包含安置组件10于湿/干式热氧化室,且生长氧化物层18至亚微米厚度到大约2微米厚度之间的任何厚度。在氧化工艺的期间,表面损坏(微结构缺陷14)由氧化物生长工艺消耗掉。
步骤102包括:一旦获得所需的氧化物厚度时,从炉(热氧化室)移开该组件10;以及使用诸如湿氧化物剥离法的合适的方法来去除氧化物层18。根据形成半导体组件10的材料,此合适的材料可包括施加诸如稀释的氢氟酸、缓冲氧化物蚀刻剂、汽化氢氟酸、或氧化物去除化学剂的合适的氧化物去除剂。
步骤103包括检查接合界面表面12以决定微结构缺陷14是否由步骤101中的氧化物生长工艺所完全消耗。若表面损坏(诸如,微结构缺陷14的残留部分)仍存在时,则必须重复步骤100、101及102;然而,大的表面损坏可意指的是,不论步骤100、101、及102的重复次数,组件10均无法被经济地抢救。例如,在某些应用中,相信针对成本的考虑,此工序的使用可被限制于直至2微米深度的微结构缺陷;然而,如果需要,可以预期较大的缺陷予以去除。
步骤104包括以例如上述“SC1/SC2"的标准晶片清洁方法来清洁重调节的组件10。然后,可进一步视需要地处理该组件10。例如,接合界面表面12可接合至另一组件的接合界面表面;如果需要,可在接合之前将接合界面表面12暴露成所需的接合界面表面的化学性质,以促进所需的接合工艺。
如上述地,可选择性地使用非磨蚀的低温方法以重调节半导体组件10的接合界面表面12;现将再在图2中所示这些步骤上详细叙述该工艺。
步骤100包括使用例如(未限制)“SC1/SC2"的标准晶片清洁法以先清洁具有微结构缺陷14的组件10的接合界面表面12。若适当时(例如,若氧化物存在于或被怀疑在接合界面表面12上时),则步骤100可包括第二随后的子步骤,将组件10暴露至合适的氧化物去除剂。例如,若组件10由硅形成时,则步骤100的第二子步骤可包括将组件10暴露至汽化氢氟酸或稀释的缓冲氧化物蚀刻剂。然后,步骤100可进一步包括分别地在去离子水中清洗组件10及干燥该组件10的第三及第四子步骤。
在步骤101中,组件10暴露至合适的氧化剂以生长氧化物层18于接合界面表面12上。例如,若组件10由硅制成时,则该组件10的接合界面表面12可暴露至硝酸(例如,可在正常室温至硝酸汽化温度的温度范围)(且因此,硝酸可以以蒸气或液体的形式),以促进硅氧化物单层在接合界面表面12上的生长。注意的是,通过此低温法,硅氧化物层是单层且不会生长为相对较厚(微米范围)的二氧化硅层。一旦所暴露至硝酸的硅的区域形成硅氧化物单层时,则氧化工艺停止。针对非硅的半导体材料,可使用合适的氧化剂。
步骤102提供用以暴露氧化的组件10至合适的氧化物去除剂。实际地,此可需要预备的子步骤。例如,若氧化的组件10是硅半导体时,则作为这些预备的子步骤的一部分,可在去离子水中清洗氧化的组件10,干燥氧化的组件10,且然后,暴露氧化的组件10至汽化氢氟酸或稀释的缓冲氧化物蚀刻剂,以去除氧化硅单层。针对非硅的组件10,可使用合适的氧化物去除剂。
步骤103是要决定微结构缺陷14是否已被去除的检查步骤。再次地,此可能实际需要预备的子步骤,例如在去离子水中清洁氧化的组件10以及干燥氧化的组件10,且然后,针对表面损坏而检查接合界面表面12。若观察到任何的微结构缺陷14(或其他的表面损坏)时,则可视需要地重复至此点的工艺,以完全地去除微结构缺陷14或其他的表面损坏。注意的是,相较于高温方法,在低温工艺中所获得的硅氧化物单层18的相对小的厚度(相较于可在上述高温处理中所产生的二氧化硅型氧化物层18的厚度)一般会需要更多重复的氧化物层18的形成和去除。去除硅氧化物单层18可重暴露硅层,且氧化和去除工艺将通常重复若平次(根据微结构缺陷14的尺寸),直至去除微结构缺陷14为止。可无需再执行清洁步骤100,且取代地,可视需要地直接跳跃(如图2上的虚线流程路径所指示的)成重复步骤101及103,直至去除表面损坏(微结构缺陷14)为止。
一旦已去除微结构缺陷14(且组件10仍可用)时,则下一步骤是步骤104,以诸如(未限制)“SC1/SC2"的标准晶片清洁方法来清洁重调节的组件10。然后,可视需要进一步地处理该组件10。例如,可将接合界面表面12接合至另一组件的接合界面表面;如果需要,可在接合之前将接合界面表面12暴露成所需的接合界面表面的化学性质,以促进所需的接合处理。
注意的是,虽然在去除足够材料以排除微结构缺陷14之前需执行若干次的氧化物形成和去除的步骤,但用以重调节半导体组件10的接合界面表面12的低温方法可使用专用于此工艺的湿式罐而高度地自动化。
可想象的是,可使用混合的表面重调节非磨蚀方法。例如,在相对深的微结构缺陷14的情况中,可使用执行于相对高温的表面重调节方法(如上述)以形成且然后去除一或更多个相对厚的氧化物层18。然后,可使用执行于相对低温的表面重调节方法(如上述),以形成且然后去除一或更多个相对薄的氧化物层18,由此协助避免去除比去除微结构缺陷14所需的更多的材料。
本发明的操作的原理及模式已在其优选实施例的中被解释及描述。然而,必须了解的是,本发明可实施于如所特定解释及描述的之外,而不会背离其精神或范围。

Claims (18)

1.一种对具有微结构缺陷的半导体装置的表面进行重调节的方法,包括:
a)识别表面中的微结构缺陷;以及
b)使用非磨蚀方法以从该表面去除材料至低于该微结构缺陷的最大深度的深度,该步骤b)包括以下的子步骤:
b1)在低于该微结构缺陷的该深度的表面上生长氧化物层;以及
b2)使用湿式氧化物剥离法去除该氧化物层以显露出实质不具有微结构缺陷的表面。
2.如权利要求1所述的方法,其中该氧化物层在800℃与1200℃之间的温度生长。
3.如权利要求1所述的方法,其中该氧化物层在低于800℃的温度生长。
4.如权利要求1所述的方法,进一步包括使用非磨蚀方法以从该表面去除材料至小于该微结构缺陷的最大深度的深度的中间步骤x),该中间步骤x)在步骤a)之后且在步骤b)之前。
5.如权利要求4所述的方法,其中该步骤x)的该非磨蚀方法是与步骤b)的该非磨蚀方法不同的方法。
6.如权利要求5所述的方法,其中该步骤x)的该非磨蚀方法是在相对高的温度执行的表面重调节方法,以及该步骤b)的该非磨蚀方法是在相对低的温度执行的表面重调节方法。
7.如权利要求1所述的方法,在步骤a)之后且在步骤b)之前进一步包括清洁该表面的中间步骤y)。
8.如权利要求1所述的方法,其中步骤b1)包括暴露该表面至合适的氧化剂,以在该表面上生长氧化物层。
9.如权利要求8所述的方法,其中该半导体装置由硅制成,且该步骤b1)包括暴露该表面至硝酸。
10.如权利要求1所述的方法,其中步骤b2)包括暴露该表面至合适的氧化物去除剂。
11.如权利要求10所述的方法,其中该半导体装置由硅制成,且该步骤b2)包括暴露该氧化物层至汽化氢氟酸。
12.如权利要求10所述的方法,其中该半导体装置由硅制成,且步骤b2)包括暴露该氧化物层至稀释的缓冲氧化物蚀刻剂,以去除该氧化物层。
13.如权利要求10所述的方法,其中该半导体装置由硅制成,且步骤b2)包括暴露该氧化物层至稀释氢氟酸,以去除该氧化物层。
14.如权利要求8所述的方法,其中步骤b1)包括放置该半导体装置于在该表面上生长氧化物层的湿式/干式热氧化室中。
15.如权利要求14所述的方法,其中该氧化物层生长到达约2微米的深度。
16.如权利要求15所述的方法,其中该湿式氧化物剥离法包括使用稀释氢氟酸作为氧化物去除蚀刻剂。
17.如权利要求1所述的方法,其中该氧化物层由二氧化硅组成。
18.如权利要求1所述的方法,其中该氧化物层是氧化硅单层。
CN201180007647.1A 2010-01-28 2011-01-26 用以促进接合的重调节半导体表面的方法 Active CN102812538B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29933410P 2010-01-28 2010-01-28
US61/299,334 2010-01-28
PCT/US2011/022565 WO2011094302A2 (en) 2010-01-28 2011-01-26 Process for reconditioning semiconductor surface to facilitate bonding

Publications (2)

Publication Number Publication Date
CN102812538A CN102812538A (zh) 2012-12-05
CN102812538B true CN102812538B (zh) 2015-05-13

Family

ID=44320091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180007647.1A Active CN102812538B (zh) 2010-01-28 2011-01-26 用以促进接合的重调节半导体表面的方法

Country Status (4)

Country Link
US (1) US8956884B2 (zh)
CN (1) CN102812538B (zh)
TW (1) TWI527100B (zh)
WO (1) WO2011094302A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000862T5 (de) 2007-03-30 2010-03-11 Microstaq, Inc., Austin Vorgesteuertes Mikroschieberventil
US8387659B2 (en) 2007-03-31 2013-03-05 Dunan Microstaq, Inc. Pilot operated spool valve
CN102164846B (zh) 2008-08-09 2016-03-30 盾安美斯泰克公司(美国) 改进的微型阀装置
US8540207B2 (en) 2008-12-06 2013-09-24 Dunan Microstaq, Inc. Fluid flow control assembly
WO2010117874A2 (en) 2009-04-05 2010-10-14 Microstaq, Inc. Method and structure for optimizing heat exchanger performance
WO2011022267A2 (en) 2009-08-17 2011-02-24 Microstaq, Inc. Micromachined device and control method
CN102812538B (zh) 2010-01-28 2015-05-13 盾安美斯泰克股份有限公司 用以促进接合的重调节半导体表面的方法
WO2011094300A2 (en) 2010-01-28 2011-08-04 Microstaq, Inc. Process and structure for high temperature selective fusion bonding
US8996141B1 (en) 2010-08-26 2015-03-31 Dunan Microstaq, Inc. Adaptive predictive functional controller
US8925793B2 (en) 2012-01-05 2015-01-06 Dunan Microstaq, Inc. Method for making a solder joint
US9140613B2 (en) 2012-03-16 2015-09-22 Zhejiang Dunan Hetian Metal Co., Ltd. Superheat sensor
US9188375B2 (en) 2013-12-04 2015-11-17 Zhejiang Dunan Hetian Metal Co., Ltd. Control element and check valve assembly
CN103822813B (zh) * 2014-03-10 2016-05-11 上海华虹宏力半导体制造有限公司 半导体器件测试样品的制作方法
US9970572B2 (en) 2014-10-30 2018-05-15 Dunan Microstaq, Inc. Micro-electric mechanical system control valve and method for controlling a sensitive fluid
CN110718453B (zh) * 2019-11-15 2021-08-20 武汉新芯集成电路制造有限公司 半导体器件及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589422A (en) * 1993-01-15 1996-12-31 Intel Corporation Controlled, gas phase process for removal of trace metal contamination and for removal of a semiconductor layer
US7449413B1 (en) * 2006-04-11 2008-11-11 Advanced Micro Devices, Inc. Method for effectively removing polysilicon nodule defects

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US668202A (en) 1900-04-30 1901-02-19 Joseph W Nethery Automatically-closing valve.
US886045A (en) 1906-03-06 1908-04-28 Herman J Ehrlich Valve.
US1926031A (en) 1927-05-17 1933-09-12 Chas A Beatty Automatic stage lift flowing device
US1886205A (en) 1929-07-01 1932-11-01 Int Harvester Co Spring pressure contact element
US2412205A (en) 1945-05-12 1946-12-10 John A Cook Pontoon metering valve and combination
US2651325A (en) 1947-08-14 1953-09-08 Ohio Brass Co Valve control mechanism
US2504055A (en) 1948-10-08 1950-04-11 Stewart Warner Corp High-pressure lubricant receiving fitting
US2875779A (en) 1954-02-08 1959-03-03 John F Campbell Variable area metering valve
US2840107A (en) 1955-01-31 1958-06-24 John F Campbell Variable area scheduling valve
US3031747A (en) 1957-12-31 1962-05-01 Tung Sol Electric Inc Method of forming ohmic contact to silicon
US3540218A (en) 1969-05-12 1970-11-17 Gen Signal Corp Hydraulic supply system with two pumping units
GB1374626A (en) 1970-10-30 1974-11-20 Matsushita Electronics Corp Method of making a semiconductor device
NL7102074A (zh) 1971-02-17 1972-08-21
DE2215526C3 (de) 1972-03-30 1979-02-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum Herstellen eines sperrfreien Metallanschlußkontaktes an p- oder n-leitende Halbleiterkörper
US3860949A (en) 1973-09-12 1975-01-14 Rca Corp Semiconductor mounting devices made by soldering flat surfaces to each other
GB1457806A (en) 1974-03-04 1976-12-08 Mullard Ltd Semiconductor device manufacture
DE2514922C2 (de) 1975-04-05 1983-01-27 SEMIKRON Gesellschaft für Gleichrichterbau u. Elektronik mbH, 8500 Nürnberg Gegen thermische Wechselbelastung beständiges Halbleiterbauelement
US4019388A (en) 1976-03-11 1977-04-26 Bailey Meter Company Glass to metal seal
US4100236A (en) 1976-11-16 1978-07-11 The Continental Group, Inc. Method of preparing micron size particles of solid polymers
US4152540A (en) 1977-05-03 1979-05-01 American Pacemaker Corporation Feedthrough connector for implantable cardiac pacer
US4181249A (en) 1977-08-26 1980-01-01 Hughes Aircraft Company Eutectic die attachment method for integrated circuits
DE2930779C2 (de) 1978-07-28 1983-08-04 Tokyo Shibaura Denki K.K., Kawasaki, Kanagawa Halbleitervorrichtung
DE2933835A1 (de) 1979-08-21 1981-03-26 Siemens AG, 1000 Berlin und 8000 München Verfahren zum befestigen von in scheiben- oder plattenform vorliegenden targetmaterialien auf kuehlteller fuer aufstaeubanlagen
US4476893A (en) 1980-07-04 1984-10-16 Barmag Barmer Maschinenfabrik Ag Hydraulic flow control valve
US4298023A (en) 1980-09-09 1981-11-03 Mcginnis Gerald E Spring loaded exhalation valve
US4354527A (en) 1980-10-09 1982-10-19 Caterpillar Tractor Co. Control system for pilot operated valve
US4434813A (en) 1981-11-19 1984-03-06 The United States Of America As Represented By The Secretary Of The Army Laminar proportional amplifier and laminar jet angular rate sensor with rotating splitter for null adjustment
DE3245259A1 (de) 1982-12-07 1984-06-07 Mannesmann Rexroth GmbH, 8770 Lohr Elektrohydraulisches wegeventil
DE3401404A1 (de) 1984-01-17 1985-07-25 Robert Bosch Gmbh, 7000 Stuttgart Halbleiterbauelement
US4581624A (en) 1984-03-01 1986-04-08 Allied Corporation Microminiature semiconductor valve
US4593719A (en) 1984-11-30 1986-06-10 Leonard Willie B Spool valve
US4772935A (en) 1984-12-19 1988-09-20 Fairchild Semiconductor Corporation Die bonding process
JPH0637874B2 (ja) 1984-12-28 1994-05-18 株式会社豊田自動織機製作所 可変容量圧縮機
US4628576A (en) 1985-02-21 1986-12-16 Ford Motor Company Method for fabricating a silicon valve
US4647013A (en) 1985-02-21 1987-03-03 Ford Motor Company Silicon valve
DE3621331A1 (de) 1986-06-26 1988-01-14 Fraunhofer Ges Forschung Mikroventil
US4943032A (en) 1986-09-24 1990-07-24 Stanford University Integrated, microminiature electric to fluidic valve and pressure/flow regulator
US4821997A (en) 1986-09-24 1989-04-18 The Board Of Trustees Of The Leland Stanford Junior University Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator
US4966646A (en) 1986-09-24 1990-10-30 Board Of Trustees Of Leland Stanford University Method of making an integrated, microminiature electric-to-fluidic valve
US4824073A (en) 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
DE3738630C2 (de) 1987-11-13 1995-06-08 Rexroth Mannesmann Gmbh Elektrohydraulische Druckwandlervorrichtung
US4938742A (en) 1988-02-04 1990-07-03 Smits Johannes G Piezoelectric micropump with microvalves
JP2503569B2 (ja) 1988-02-24 1996-06-05 株式会社豊田自動織機製作所 ワブル型コンプレッサの駆動制御装置
DE3814150A1 (de) 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
US5065978A (en) 1988-04-27 1991-11-19 Dragerwerk Aktiengesellschaft Valve arrangement of microstructured components
US4828184A (en) 1988-08-12 1989-05-09 Ford Motor Company Silicon micromachined compound nozzle
US4826131A (en) 1988-08-22 1989-05-02 Ford Motor Company Electrically controllable valve etched from silicon substrates
US5074629A (en) 1988-10-26 1991-12-24 Stanford University Integrated variable focal length lens and its applications
US4869282A (en) 1988-12-09 1989-09-26 Rosemount Inc. Micromachined valve with polyimide film diaphragm
JPH043Y2 (zh) 1988-12-28 1992-01-06
US5064165A (en) 1989-04-07 1991-11-12 Ic Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5177579A (en) 1989-04-07 1993-01-05 Ic Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5116457A (en) 1989-04-07 1992-05-26 I C Sensors, Inc. Semiconductor transducer or actuator utilizing corrugated supports
US5209118A (en) 1989-04-07 1993-05-11 Ic Sensors Semiconductor transducer or actuator utilizing corrugated supports
US5037778A (en) 1989-05-12 1991-08-06 Intel Corporation Die attach using gold ribbon with gold/silicon eutectic alloy cladding
DE3917423C1 (zh) 1989-05-29 1990-05-31 Buerkert Gmbh & Co Werk Ingelfingen, 7118 Ingelfingen, De
DE3917396A1 (de) 1989-05-29 1990-12-06 Buerkert Gmbh Mikroventil
DE3919876A1 (de) 1989-06-19 1990-12-20 Bosch Gmbh Robert Mikroventil
US5069419A (en) 1989-06-23 1991-12-03 Ic Sensors Inc. Semiconductor microactuator
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5066533A (en) 1989-07-11 1991-11-19 The Perkin-Elmer Corporation Boron nitride membrane in wafer structure and process of forming the same
DE3926647A1 (de) 1989-08-11 1991-02-14 Bosch Gmbh Robert Verfahren zur herstellung eines mikroventils
US5238223A (en) 1989-08-11 1993-08-24 Robert Bosch Gmbh Method of making a microvalve
GB2238267A (en) 1989-11-01 1991-05-29 Stc Plc Brazing process
DE3940427A1 (de) 1989-12-07 1991-06-13 Bosch Gmbh Robert Fahrzeugbremsanlage mit blockierschutzvorrichtung
US5180623A (en) 1989-12-27 1993-01-19 Honeywell Inc. Electronic microvalve apparatus and fabrication
US5244537A (en) 1989-12-27 1993-09-14 Honeywell, Inc. Fabrication of an electronic microvalve apparatus
US5082242A (en) 1989-12-27 1992-01-21 Ulrich Bonne Electronic microvalve apparatus and fabrication
US5133379A (en) 1990-01-31 1992-07-28 University Of Utah Research Foundation Servovalve apparatus for use in fluid systems
DE4003619A1 (de) 1990-02-07 1991-08-14 Bosch Gmbh Robert Mikroventil
DE4006152A1 (de) 1990-02-27 1991-08-29 Fraunhofer Ges Forschung Mikrominiaturisierte pumpe
DE4009090A1 (de) 1990-03-21 1991-09-26 Bosch Gmbh Robert Verfahren zur herstellung von mehrschichtigen siliziumstrukturen
US5000009A (en) 1990-04-23 1991-03-19 American Standard Inc. Method for controlling an electronic expansion valve in refrigeration system
US5050838A (en) 1990-07-31 1991-09-24 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
DE4035852A1 (de) 1990-11-10 1992-05-14 Bosch Gmbh Robert Mikroventil in mehrschichtenaufbau
DE4041579A1 (de) 1990-12-22 1992-06-25 Bosch Gmbh Robert Mikroventil
GB2251703B (en) 1991-01-11 1994-08-03 Marconi Gec Ltd Valve devices
US5400824A (en) 1991-01-21 1995-03-28 Robert Bosch Gmbh Microvalve
DE4101575A1 (de) 1991-01-21 1992-07-23 Bosch Gmbh Robert Mikroventil
DE4107660C2 (de) 1991-03-09 1995-05-04 Bosch Gmbh Robert Verfahren zur Montage von Silizium-Plättchen auf metallischen Montageflächen
US5058856A (en) 1991-05-08 1991-10-22 Hewlett-Packard Company Thermally-actuated microminiature valve
US5176358A (en) 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
US5355712A (en) 1991-09-13 1994-10-18 Lucas Novasensor Method and apparatus for thermally actuated self testing of silicon structures
US5217283A (en) 1991-09-25 1993-06-08 Ford Motor Company Integral anti-lock brake/traction control system
US5179499A (en) 1992-04-14 1993-01-12 Cornell Research Foundation, Inc. Multi-dimensional precision micro-actuator
US5222521A (en) 1992-05-08 1993-06-29 Moog Controls, Inc. Hydraulic valve
US5271597A (en) 1992-05-29 1993-12-21 Ic Sensors, Inc. Bimetallic diaphragm with split hinge for microactuator
JPH0656014A (ja) 1992-08-07 1994-03-01 Nisshinbo Ind Inc アンチスキッド制御方法
JP3397346B2 (ja) 1992-09-30 2003-04-14 豊興工業株式会社 弁装置
US5309943A (en) 1992-12-07 1994-05-10 Ford Motor Company Micro-valve and method of manufacturing
US5300461A (en) 1993-01-25 1994-04-05 Intel Corporation Process for fabricating sealed semiconductor chip using silicon nitride passivation film
US5333831A (en) 1993-02-19 1994-08-02 Hewlett-Packard Company High performance micromachined valve orifice and seat
JPH06286600A (ja) 1993-03-31 1994-10-11 Toyota Motor Corp 車両用ブレーキ圧制御装置
US5445185A (en) 1993-04-05 1995-08-29 Ford Motor Company Piezoelectric fluid control valve
US5267589A (en) 1993-04-05 1993-12-07 Ford Motor Company Piezoelectric pressure control valve
US5325880A (en) 1993-04-19 1994-07-05 Tini Alloy Company Shape memory alloy film actuated microvalve
US5417235A (en) 1993-07-28 1995-05-23 Regents Of The University Of Michigan Integrated microvalve structures with monolithic microflow controller
US5368704A (en) 1993-08-06 1994-11-29 Teknekron Corporation Micro-electrochemical valves and method
DE4331851A1 (de) 1993-09-20 1995-03-23 Bosch Gmbh Robert Lochkörper und Ventil mit Lochkörper
DE4417251A1 (de) 1994-05-17 1995-11-23 Bosch Gmbh Robert Druckausgeglichenes Mikroventil
DE4422942B4 (de) 1994-06-30 2004-07-08 Robert Bosch Gmbh Vorrichtung für den Antrieb eines Mikroventils
US5611214A (en) 1994-07-29 1997-03-18 Battelle Memorial Institute Microcomponent sheet architecture
US5473944A (en) 1994-08-18 1995-12-12 Kulite Semi Conductor Products, Inc. Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
US5577533A (en) 1994-09-13 1996-11-26 Cook, Jr.; Joseph S. Flexured shaft poppet
DE19526897A1 (de) 1995-07-22 1997-01-23 Bosch Gmbh Robert Mikroventil mit verbundenen Schichten und Verfahren zur Herstellung eines Mikroventils
US5838351A (en) 1995-10-26 1998-11-17 Hewlett-Packard Company Valve assembly for controlling fluid flow within an ink-jet pen
US5941608A (en) 1996-03-07 1999-08-24 Kelsey-Hayes Company Electronic brake management system with manual fail safe
US5954079A (en) 1996-04-30 1999-09-21 Hewlett-Packard Co. Asymmetrical thermal actuation in a microactuator
US6533366B1 (en) 1996-05-29 2003-03-18 Kelsey-Hayes Company Vehicle hydraulic braking systems incorporating micro-machined technology
US6019437A (en) 1996-05-29 2000-02-01 Kelsey-Hayes Company Vehicle hydraulic braking systems incorporating micro-machined technology
US6105737A (en) 1996-06-05 2000-08-22 Varity Kelsey-Hayes Gmbh Programmable electronic pedal simulator
US6140755A (en) 1996-06-12 2000-10-31 American International Technologies, Inc. Actinic radiation source and uses thereofor
JP3329663B2 (ja) 1996-06-21 2002-09-30 株式会社日立製作所 電子装置用冷却装置
US5810325A (en) 1996-06-25 1998-09-22 Bcam International, Inc. Microvalve
US5785295A (en) 1996-08-27 1998-07-28 Industrial Technology Research Institute Thermally buckling control microvalve
WO1998015807A1 (en) 1996-10-07 1998-04-16 Lucas Novasensor Silicon at least 5 micron high acute cavity with channel by oxidizing fusion bonding and stop etching
US6123316A (en) 1996-11-27 2000-09-26 Xerox Corporation Conduit system for a valve array
US6124663A (en) 1996-12-16 2000-09-26 The Boeing Company Fiber optic connector having a microelectromechanical positioning apparatus and an associated fabrication method
US5909078A (en) 1996-12-16 1999-06-01 Mcnc Thermal arched beam microelectromechanical actuators
US5994816A (en) 1996-12-16 1999-11-30 Mcnc Thermal arched beam microelectromechanical devices and associated fabrication methods
US5962949A (en) 1996-12-16 1999-10-05 Mcnc Microelectromechanical positioning apparatus
US6096149A (en) 1997-04-21 2000-08-01 Ford Global Technologies, Inc. Method for fabricating adhesion-resistant micromachined devices
US6116863A (en) 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
US5873385A (en) 1997-07-21 1999-02-23 Emhart Inc. Check valve
US6041650A (en) 1997-08-26 2000-03-28 Rochester Gauges, Inc. Liquid level gauge
US5848605A (en) 1997-11-12 1998-12-15 Cybor Corporation Check valve
US5908098A (en) 1997-12-12 1999-06-01 General Motors Corporation Regulating valve for engagement control of friction drive devices
US5970998A (en) 1998-02-27 1999-10-26 The Regents Of The University Of California Microfabricated cantilever ratchet valve, and method for using same
US6171972B1 (en) 1998-03-17 2001-01-09 Rosemount Aerospace Inc. Fracture-resistant micromachined devices
US7011378B2 (en) 1998-09-03 2006-03-14 Ge Novasensor, Inc. Proportional micromechanical valve
WO2000014415A2 (en) 1998-09-03 2000-03-16 Lucas Novasensor Proportional micromechanical device
US6523560B1 (en) 1998-09-03 2003-02-25 General Electric Corporation Microvalve with pressure equalization
US6408876B1 (en) 1998-12-01 2002-06-25 Hitachi Construction Machinery Co., Ltd. Control valve
JP2000187041A (ja) 1998-12-24 2000-07-04 Mitsubishi Electric Corp 容量式加速度センサ及びその製造方法
JP2000220763A (ja) 1999-01-29 2000-08-08 Toyota Autom Loom Works Ltd 可変容量型圧縮機用の容量制御弁
US6540203B1 (en) 1999-03-22 2003-04-01 Kelsey-Hayes Company Pilot operated microvalve device
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
FR2797714B1 (fr) * 1999-08-20 2001-10-26 Soitec Silicon On Insulator Procede de traitement de substrats pour la microelectronique et substrats obtenus par ce procede
JP4020233B2 (ja) 1999-08-25 2007-12-12 セイコーインスツル株式会社 近視野光ヘッドとその製造方法
US6255757B1 (en) 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6279606B1 (en) 1999-10-18 2001-08-28 Kelsey-Hayes Company Microvalve device having a check valve
US6477901B1 (en) 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
JP3520232B2 (ja) 1999-12-27 2004-04-19 株式会社日立ユニシアオートモティブ 流量制御装置
US6283441B1 (en) 2000-02-10 2001-09-04 Caterpillar Inc. Pilot actuator and spool valve assembly
US7264617B2 (en) 2000-02-29 2007-09-04 Alex Freeman Integrally manufactured micro-electrofluidic cables
US6318101B1 (en) 2000-03-15 2001-11-20 Carrier Corporation Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat
US6390782B1 (en) 2000-03-21 2002-05-21 Alumina Micro Llc Control valve for a variable displacement compressor
US6694998B1 (en) 2000-03-22 2004-02-24 Kelsey-Hayes Company Micromachined structure usable in pressure regulating microvalve and proportional microvalve
US6845962B1 (en) 2000-03-22 2005-01-25 Kelsey-Hayes Company Thermally actuated microvalve device
JP2001281265A (ja) 2000-03-31 2001-10-10 Sumitomo Precision Prod Co Ltd 加速度センサとその使用及び製造方法
US6321549B1 (en) 2000-04-14 2001-11-27 Carrier Corporation Electronic expansion valve control system
US6520197B2 (en) 2000-06-02 2003-02-18 The Regents Of The University Of California Continuous laminar fluid mixing in micro-electromechanical systems
US6494804B1 (en) 2000-06-20 2002-12-17 Kelsey-Hayes Company Microvalve for electronically controlled transmission
US6505811B1 (en) 2000-06-27 2003-01-14 Kelsey-Hayes Company High-pressure fluid control valve assembly having a microvalve device attached to fluid distributing substrate
US6701774B2 (en) 2000-08-02 2004-03-09 Symyx Technologies, Inc. Parallel gas chromatograph with microdetector array
US6581640B1 (en) 2000-08-16 2003-06-24 Kelsey-Hayes Company Laminated manifold for microvalve
US20020096421A1 (en) 2000-11-29 2002-07-25 Cohn Michael B. MEMS device with integral packaging
JP3943871B2 (ja) 2001-07-25 2007-07-11 株式会社テージーケー 可変容量圧縮機および可変容量圧縮機用容量制御弁
JP2003049933A (ja) 2001-08-06 2003-02-21 Denso Corp 流体圧力制御装置
US6647930B2 (en) 2002-02-11 2003-11-18 L'Air Liquide-Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude Ammonia vapor generation
US20030206832A1 (en) 2002-05-02 2003-11-06 Pierre Thiebaud Stacked microfluidic device
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US6966329B2 (en) 2003-01-27 2005-11-22 Hydraforce, Inc. Proportional pilot-operated flow control valve
US7063100B2 (en) 2003-03-06 2006-06-20 Hydraforce Inc. Flow regulator with pressure relief combination valve
CA2546585A1 (en) 2003-11-24 2005-06-09 Alumina Micro Llc Microvalve device suitable for controlling a variable displacement compressor
US20070251586A1 (en) 2003-11-24 2007-11-01 Fuller Edward N Electro-pneumatic control valve with microvalve pilot
US7528075B2 (en) 2004-02-25 2009-05-05 Hrl Laboratories, Llc Self-masking defect removing method
EP1723359A2 (en) 2004-02-27 2006-11-22 Alumina Micro LLC Hybrid micro/macro plate valve
US7803281B2 (en) 2004-03-05 2010-09-28 Microstaq, Inc. Selective bonding for forming a microvalve
US7414843B2 (en) 2004-03-10 2008-08-19 Intel Corporation Method and apparatus for a layered thermal management arrangement
KR100599115B1 (ko) 2004-07-20 2006-07-12 삼성전자주식회사 진동형 멤스 스위치 및 그 제조방법
JP2006080194A (ja) 2004-09-08 2006-03-23 Nikon Corp 温調装置、露光装置、並びにデバイス製造方法
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
JP4441386B2 (ja) 2004-11-08 2010-03-31 株式会社豊田自動織機 流量切換型フローディバイダ
WO2006076386A1 (en) 2005-01-14 2006-07-20 Alumina Micro Llc. System and method for controlling a variable displacement compressor
JP2006307828A (ja) 2005-03-31 2006-11-09 Tgk Co Ltd 可変容量圧縮機用制御弁
US7372074B2 (en) 2005-10-11 2008-05-13 Honeywell International, Inc. Surface preparation for selective silicon fusion bonding
KR100785979B1 (ko) 2006-08-04 2007-12-14 주식회사 대우일렉트로닉스 공기 조화기의 전자 팽창 밸브 제어 방법
US20080072977A1 (en) 2006-09-27 2008-03-27 Curtiss-Wright Flow Control Corporation Pilot-operated valves and manifold assemblies
CN101617155B (zh) 2006-12-15 2012-03-21 麦克罗斯塔克公司 微阀装置
FR2913102B1 (fr) 2007-02-28 2012-11-16 Valeo Systemes Thermiques Installation de climatisation equipee d'une vanne de detente electrique
DE112008000862T5 (de) 2007-03-30 2010-03-11 Microstaq, Inc., Austin Vorgesteuertes Mikroschieberventil
US8387659B2 (en) 2007-03-31 2013-03-05 Dunan Microstaq, Inc. Pilot operated spool valve
CN101311851B (zh) 2007-05-25 2013-05-22 开利公司 用于冷却器电子膨胀阀的修改的模糊控制
CN102164846B (zh) 2008-08-09 2016-03-30 盾安美斯泰克公司(美国) 改进的微型阀装置
US8113482B2 (en) 2008-08-12 2012-02-14 DunAn Microstaq Microvalve device with improved fluid routing
US8540207B2 (en) 2008-12-06 2013-09-24 Dunan Microstaq, Inc. Fluid flow control assembly
US9138994B2 (en) 2009-03-03 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods of fabrication thereof
US8113448B2 (en) 2009-04-22 2012-02-14 Keating Joseph Z Methods of recycling carpet components and carpet components formed thereform
WO2011022267A2 (en) 2009-08-17 2011-02-24 Microstaq, Inc. Micromachined device and control method
WO2011094300A2 (en) 2010-01-28 2011-08-04 Microstaq, Inc. Process and structure for high temperature selective fusion bonding
CN102812538B (zh) 2010-01-28 2015-05-13 盾安美斯泰克股份有限公司 用以促进接合的重调节半导体表面的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589422A (en) * 1993-01-15 1996-12-31 Intel Corporation Controlled, gas phase process for removal of trace metal contamination and for removal of a semiconductor layer
US7449413B1 (en) * 2006-04-11 2008-11-11 Advanced Micro Devices, Inc. Method for effectively removing polysilicon nodule defects

Also Published As

Publication number Publication date
US20120295371A1 (en) 2012-11-22
WO2011094302A2 (en) 2011-08-04
TW201203328A (en) 2012-01-16
CN102812538A (zh) 2012-12-05
US8956884B2 (en) 2015-02-17
WO2011094302A3 (en) 2011-11-17
TWI527100B (zh) 2016-03-21

Similar Documents

Publication Publication Date Title
CN102812538B (zh) 用以促进接合的重调节半导体表面的方法
JP5528711B2 (ja) ターゲット基板に結合される少なくとも一の薄層を備えた積層構造の作製方法
KR101185426B1 (ko) 복합 트리밍 방법
JP5032119B2 (ja) 基板の準備及び組み立て方法
CN101084577B (zh) 修整通过组装两晶片构成的结构的方法
US8202785B2 (en) Surface treatment for molecular bonding
CN102792419B (zh) 高温选择性融合接合的工艺与构造
US8530334B2 (en) Process of treating defects during the bonding of wafers
US7253083B2 (en) Method of thinning a semiconductor structure
KR20120089696A (ko) 분자 본딩을 개시하는 방법
JP2005528779A (ja) 半導体膜の薄層化方法
JP2007515789A (ja) 半導体材料の中から選択された材料製の層から形成された多層ウェハの表面処理
JP2014007421A (ja) レイヤ転送プロセス用の基板強化方法および結果のデバイス
JP5244650B2 (ja) Soiウェーハの製造方法
EP0711029A2 (en) Microstructure and method of forming the same
EP2272084A2 (en) A method of assembling wafers by molecular bonding
JP2009148883A (ja) 微小機械デバイス及びその製造方法
CN101351879A (zh) 制造具体是由硅制成的板状可拆卸结构的方法以及该方法的应用
US9321636B2 (en) Method for producing a substrate holder
JP2001094080A (ja) 半導体用薄膜ウェハの製造方法
SG112005A1 (en) A surface treatment for use in the fabrication of mems devices
Lin Application of CMP and wafer bonding for integrating CMOS and MEMS Technology
Ems et al. Fabrication of Inverted Trapezoidal Microstructures for Heat Transfer and Microfluidics Applications
JP2005040900A (ja) 微小構造体の製造方法
Tay Process Development and Fabrication

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant