CN102795826A - 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法 - Google Patents

一种气凝胶/无机轻集料复合保温隔热材料及其制备方法 Download PDF

Info

Publication number
CN102795826A
CN102795826A CN2012102957649A CN201210295764A CN102795826A CN 102795826 A CN102795826 A CN 102795826A CN 2012102957649 A CN2012102957649 A CN 2012102957649A CN 201210295764 A CN201210295764 A CN 201210295764A CN 102795826 A CN102795826 A CN 102795826A
Authority
CN
China
Prior art keywords
inorganic light
weight aggregate
thermal insulation
composite thermal
colloidal sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102957649A
Other languages
English (en)
Other versions
CN102795826B (zh
Inventor
王子生
王智宇
王小山
阮华
李陆宝
屠浩驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO RONGSHAN NEW MATERIAL CO Ltd
Original Assignee
NINGBO RONGSHAN NEW MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO RONGSHAN NEW MATERIAL CO Ltd filed Critical NINGBO RONGSHAN NEW MATERIAL CO Ltd
Priority to CN201210295764.9A priority Critical patent/CN102795826B/zh
Publication of CN102795826A publication Critical patent/CN102795826A/zh
Application granted granted Critical
Publication of CN102795826B publication Critical patent/CN102795826B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种气凝胶/无机轻集料复合保温隔热材料及其制备方法,该复合保温隔热材料是采用无机轻集料或无机轻集料板材与SiO2气凝胶复合,然后凝胶、老化、干燥制备而成的;其制备方法,包括:(1)以水玻璃为硅源,加入硼酸,稀释后,加入催化剂,制得溶胶;(2)通过低压吸附或直接浸泡的工艺,将配制好的溶胶吸入无机轻集料的孔内或其板材孔隙内,然后静置待凝胶后,采用常压干燥工艺或超临界干燥工艺,制得气凝胶/无机轻集料复合保温隔热材料。本发明的制备方法操作简单,成本低,可规模化生产;本发明得到的复合保温隔热材的导热系数低,保温隔热性好,寿命也较长,且具有很好的防火性能,应用前景广阔。

Description

一种气凝胶/无机轻集料复合保温隔热材料及其制备方法
技术领域
本发明属于复合保温隔热材料及其制备领域,特别涉及一种气凝胶/无机轻集料复合保温隔热材料及其制备方法。
背景技术
公消【2011】65号红头文件的公布后,无机保温隔热材料已经拥有了一个庞大的市场。然而目前建筑节能采用的无机保温隔热材料从形态上可以分为纤维状和多孔状两类。纤维状保温隔热材料主要有岩(矿)棉、玻璃棉、陶瓷纤维等,呈固体基质与气孔连续的结构特征和软质易压缩的性能特征,易下坠、吸水率高,用于外墙保温时须采取繁复的构造措施,确保外保温系统整体的强度、抗裂、保温、防潮、防下坠等性能,通常作为多层复合板材中的保温隔热材料层使用,其施工难度大,造价高,无市场竞争力。多孔状保温隔热材料主要有泡沫玻璃、膨胀珍珠岩、微孔硅酸钙等,呈固体基质连续与气孔不连续的结构特征和硬质不易压缩的性能特征,可直接用于建筑墙体外保温的保温构造层。相对于有机保温隔热材料,目前建筑上所用的无机保温隔热材料的导热系数较高。
迄今为止,超级绝热材料是保温隔热性能最好的材料之一。它是指在预定的使用条件下,其导热系数低于“无对流空气”导热系数的绝热材料。目前研究最为广泛的超级绝热材料是SiO2气凝胶。SiO2气凝胶主要有以下特征:(1)孔的特征:SiO2气凝胶几乎所有的孔隙都应在100nm以下,80%以上的气孔都应小于50nm(孔径小于空气分子自由程)。(2)密度特征:SiO2气凝胶具有很低的体积密度。为了降低固体材料的热传导,作为气体屏障的固体薄壁应该最大限度的薄,即SiO2气凝胶必须有最大的气孔率。(3)导热系数:常温下“无对流空气”的导热系数为0.005w/(m·K),材料在常温和特定使用温度下,导热系数应比“无对流空气”的导热系数更低。
SiO2气凝胶极低的体积密度决定了它极差的机械强度,通常无法直接作为保温隔热材料使用。为了提高SiO2气凝胶的强度,通行的方法是从结合剂以及骨架材料来考虑增加其强度。
发明内容
本发明所要解决的技术问题是提供一种气凝胶/无机轻集料复合保温隔热材料及其制备方法,该方法操作简单,成本低,得到的复合保温隔热材的导热系数低,保温隔热性好,寿命也较长,且具有很好的防火性能。
本发明的一种气凝胶/无机轻集料复合保温隔热材料,该复合保温隔热材料是采用无机轻集料或无机轻集料板材与SiO2气凝胶复合,然后凝胶、老化、干燥制备而成的;所述的气凝胶/无机轻集料复合保温隔热材料中无机轻集料或无机轻集料板材与SiO2气凝胶的质量比为20~70:1。
所述的无机轻集料板材为复合后的无机轻集料板材,其是由无机轻集料与SiO2气凝胶复合、凝胶、老化、干燥得到的复合保温隔热材料制备得到的板材。
所述的无机轻集料为膨胀珍珠岩、膨胀蛭石或玻化微珠。
本发明的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,包括:
1、溶胶的制备
1.1以水玻璃为硅源,加入定量的硼酸,稀释后,加入定量的催化剂,制得凝胶时间为1小时左右的溶胶。
1.2以水玻璃为硅源,加入定量的硼酸,稀释后,加入适量表面改性剂(如六甲基二硅氧烷、六甲基二硅胺烷、三甲基六硅烷或甲基三甲氧基硅烷等),然后加入定量的催化剂,制得凝胶时间为1小时左右的溶胶。
1.3以水玻璃为硅源,加入定量的硼酸,稀释后,加入适量抗收缩剂(如聚乙二醇、聚氧化乙烯、聚丙烯酸、聚乙烯吡咯烷酮或聚苯乙烯磺酸钠等),然后加入定量的催化剂,制得凝胶时间为1小时左右的溶胶。
上述的溶胶的制备过程中,按质量分数Na2O 5%~30%、B2O3≤30%、SiO240%~80%配置Na2O-B2O3-SiO2溶胶。
2、气凝胶与无机轻集料复合(如图1所示)
2.1在室温条件下,将1.1中制备的溶胶直接与无机轻集料混合,在低压条件(-0.1MPa)下将溶胶吸入无机轻集料的孔内,之后静置40分钟左右,滤出吸饱溶胶的无机轻集料。凝胶后,40℃老化一定时间,然后在40℃、10Mpa条件下,与超临界态的二氧化碳混合,静置1天后,接着以6~8kg/h的速度循环二氧化碳干燥1小时,最后制得气凝胶与无机轻集料的复合保温隔热材料。
2.2在室温条件下,将1.2中制备的溶胶直接与无机轻集料混合,在低压条件(-0.1MPa)下将溶胶吸入无机轻集料的孔内,之后静置40分钟左右,滤出吸入溶胶的无机轻集料。凝胶后,40℃老化1天,依次在70、90、120和200℃各干燥两小时,最后制得气凝胶与无机轻集料的复合保温隔热材料。
2.3在室温条件下,将1.3中制备的溶胶直接与无机轻集料混合,在低压条件(-0.1MPa)下将溶胶吸入无机轻集料的孔内,之后静置40分钟左右,滤出吸入溶胶的无机轻集料。凝胶后,40℃老化1天,依次在70、90、120、200和400℃各干燥两小时,最后制得气凝胶与无机轻集料的复合保温隔热材料。
3、气凝胶与无机轻集料板材复合(如图2所示)
3.1在室温条件下,将无机轻集料板材浸泡于1.1中制备的溶胶中,让溶胶进入无机轻集料板材的间隙内,静置40分钟左右;凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,然后在40℃、10Mpa条件下,与超临界态的二氧化碳混合,静置1天后,接着以6~8kg/h的速度循环二氧化碳干燥1小时,最后制得气凝胶的无机轻集料改性板材。
3.2在室温条件下,将无机轻集料板材浸泡于1.2中制备的溶胶中,让溶胶进入无机轻集料板材的间隙内,静置40分钟左右;凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、120、200℃各干燥两小时,最后制得气凝胶的无机轻集料改性板材。
3.3在室温条件下,将无机轻集料板材浸泡于1.3中制备的溶胶中,让溶胶进入无机轻集料板材的间隙内,静置40分钟左右;凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、120、200、400℃各干燥两小时,最后制得气凝胶的无机轻集料改性板材。
4、气凝胶与复合后无机轻集料制备的板材复合(如图3所示)
4.1在室温条件下,将复合后的无机轻集料板材浸泡于1.1中制备的溶胶中,让溶胶进入复合后的无机轻集料板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,然后在40℃、10Mpa条件下,与超临界态的二氧化碳混合,静置1天后,接着以6~8kg/h的速度循环二氧化碳干燥1小时,最后制得气凝胶与复合后的无机轻集料改性板材。
4.2在室温条件下,将复合后的无机轻集料板材浸泡于1.2中制备的溶胶中,让溶胶进入复合后的无机轻集料板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、120、200℃各干燥两小时,最后制得气凝胶与复合后的无机轻集料改性板材。
4.3在室温条件下,将复合后的无机轻集料板材浸泡于1.3中制备的溶胶中,让溶胶进入复合后的无机轻集料板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、120、200、400℃各干燥两小时。最后制得气凝胶与复合后的无机轻集料改性板材。
本发明是以膨胀珍珠岩、膨胀蛭石或玻化微珠等无机轻集料及其板材为基体,采用气凝胶与之复合,以制得低导热系数和高强度的气凝胶/无机轻集料复合保温隔热材料。其制备工艺为:以水玻璃为硅源,引入硼酸、外加剂和催化剂制得均匀的溶胶,通过低压吸附或直接浸泡的工艺,将配制好的溶胶吸入无机轻集料的孔内或其板材孔隙内。然后静置待凝胶后,采用常压干燥工艺或超临界干燥工艺,制得气凝胶/无机轻集料复合保温隔热材料。
本发明以无机轻集料为骨架,也就规避了气凝胶机械强度差的特性,并采用气凝胶填充无机轻集料内部和无机轻集料颗粒之间的缝隙和孔洞,以达到降低导热系数的目的。
由于本发明采用了导热系数很低、保温隔热性极好的气凝胶改性传统无机轻集料,彻底去除了传统无机轻集料中的气体对流热传导,所以使得新型复合材料的保温隔热效果有所提高。而且新型复合材料中几乎全是无机的,因此不仅具有极佳的保温隔热性能,且使用寿命也较长,可与房屋的使用寿命匹配,同时也有很好的防火性能。此外,还因所选取的原料都是密度小,成本低的材料,所以本发明同样具有密度低、成本低的特点。
有益效果:
(1)本发明的制备方法操作简单,成本低,可规模化生产;
(2)本发明得到的复合保温隔热材的导热系数低,保温隔热性好,寿命也较长,且具有很好的防火性能。
附图说明
图1复合后的无机轻集料示意图;
图2复合后的无机轻集料板材示意图;
图3复合后的复合无机轻集料板材示意图;
图4a、b均为实施例1中采用抗收缩剂制备的超级绝热材料与膨胀珍珠岩的复合保温隔热材料的电镜照片;
图5a、b均为实施例2中采用超临界干燥制备的超级绝热材料与膨胀珍珠岩的复合保温隔热材料的电镜照片。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明实施例中,采用的水玻璃的模数为3.5;膨胀珍珠岩的粒径为2~3mm,堆积密度为70kg/m3左右;催化剂为2mol/L的盐酸。
实施例1
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L加入4g聚氧化乙烯(分子量为400万),加入2mol/L的盐酸160ml,制得凝胶时间为1小时左右的溶胶。
(2)然后在低压(4000Pa)下,将上述溶胶与1L膨胀珍珠岩混合,40分钟左右后,恢复至常压滤出吸入溶胶的膨胀珍珠岩。在室温条件下,静置约30分钟后凝胶,于40℃老化1天,最后依次在70、90、120、200和400℃各干燥两小时,制得气凝胶与膨胀珍珠岩的复合保温隔热材料,如图1所示。堆积密度由70kg/m3变化为80kg/m3。导热系数由0.08w/(m·K)降至0.05w/(m·K),下降了37.5%。
实施例2
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释。取1L然后加入160ml盐酸(2mol/L)制得溶胶。
(2)然后在低压(4000Pa)下,将溶胶与膨胀珍珠岩1:1(体积比)混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。然后在40℃、10Mpa条件下,与超临界态的二氧化碳混合,静置1天后,接着以6~8kg/h的速度循环二氧化碳干燥1小时,制得气凝胶与膨胀珍珠岩的复合保温隔热材料,如图2所示。堆积密度由70kg/m3变化为75kg/m3。导热系数由0.08w/(m·K)降至0.05w/(m·K),下降了37.5%。
实施例3
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入70ml的六甲基二硅胺烷,然后加入160ml的盐酸(2mol/L)制得溶胶。
(2)然后在低压(4000Pa)下,将溶胶与膨胀珍珠岩1:1(体积比)混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120和200℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为110kg/m3。导热系数由0.08w/(m·K)降至0.045w/(m·K),下降了43.8%。
实施例4
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入4g的聚氧化乙烯(分子量为400万)。然后加入160ml的催化剂盐酸(2mol/L),制得溶胶。
(2)然后在常温常压条件下,将膨胀蛭岩板材浸泡于溶胶中,让溶胶进入膨胀蛭岩板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、90、120和200℃各干燥两小时。最后制得气凝胶复合的膨胀蛭岩板材。体积密度由150kg/m3变化为200kg/m3。导热系数由0.07w/(m·K)降至0.045w/(m·K),下降了35.7%。
实施例5
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入8g的聚丙烯酸(分子量为200万)。然后加入160ml盐酸,制得溶胶。
(2)然后在常温常压条件下,将玻化微珠压制的板材浸泡于溶胶中,让溶胶进入玻化微珠板材的间隙内,静置待凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、90、120和3500℃各干燥两小时,制得气凝胶改性的玻化微珠板材。体积密度由200kg/m3变化为250kg/m3。导热系数由0.50w/(m·K)降至0.045w/(m·K),下降了43.8%。
实施例6
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入70ml六甲基二硅氧烷。然后加入160ml的盐酸(2mol/L)为制得溶胶。
(2)然后在低压(-0.1MPa)下,将溶胶与膨胀珍珠岩1:1(体积比)混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120和200℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为100kg/m3。导热系数由0.08w/(m·K)降至0.040w/(m·K),下降了50%。
实施例7
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入90ml的三甲基氯硅烷。然后加入160ml盐酸(2mol/L)制得溶胶。
(2)然后在低压(4000Pa)下,将溶胶与膨胀珍珠岩1:1(体积比)混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120和200℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为100kg/m3。导热系数由0.08w/(m·K)降至0.045w/(m·K),下降了43.8%。
实施例8
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入80ml的甲基三甲氧基硅烷,然后加入160ml盐酸(2mol/L)制得溶胶。
(2)然后在常压条件下,将溶胶与膨胀珍珠岩1:1(体积比)混合。40分钟后接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120和200℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为110kg/m3。导热系数由0.08w/(m·K)降至0.045w/(m·K),下降了43.8%。
实施例9
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入800g聚乙二醇(分子量为2万),加入160ml盐酸为制得溶胶。
(2)然后在低压(-0.1MPa)下,将溶胶与膨胀珍珠岩混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120、200和400℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为100kg/m3。导热系数由0.08w/(m·K)降至0.05w/(m·K),下降了37.5%。
实施例10
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入40g聚乙烯吡咯烷酮(分子量为36万),加入160ml盐酸制得溶胶。
(2)然后在低压(-0.1MPa)下,将溶胶与膨胀珍珠岩混合。接着滤出膨胀珍珠岩,静置凝胶后老化1天。最后依次在70、90、120、200和400℃各干燥两小时,制得超级绝热材料与膨胀珍珠岩的复合保温隔热材料。堆积密度由70kg/m3变化为110kg/m3。导热系数由0.08w/(m·K)降至0.05w/(m·K),下降了37.5%。
实施例11
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入26g聚苯乙烯磺酸钠(分子量为60万),加入160ml盐酸制得溶胶。
(2)然后在低压(4000Pa)下,将溶胶与膨胀蛭岩混合。接着滤出膨胀蛭岩,静置凝胶后老化1天。最后依次在70、90、120、200和400℃各干燥两小时,制得超级绝热材料与膨胀蛭岩的复合保温隔热材料。堆积密度由100kg/m3变化为130kg/m3。导热系数由0.08w/(m·K)降至0.055w/(m·K),下降了31.3%。
实施例12
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入4g的聚氧化乙烯(分子量为400万)。然后加入160ml盐酸制得溶胶。
(2)然后在常温常压条件下,将膨胀珍珠岩板材浸泡于溶胶中,让溶胶进入膨胀珍珠岩板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、90、120、200和400℃各干燥两小时。最后制得超级绝热材料改性的膨胀珍珠岩板材。堆积密度由150kg/m3变化为200kg/m3。导热系数由0.08w/(m·K)降至0.05w/(m·K),下降了37.5%。
实施例13
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入4g的聚氧化乙烯(分子量为400万)。然后加入160ml盐酸制得溶胶。
(2)然后在常温常压条件下,将由实施例1得到的气凝胶与膨胀珍珠岩复合材料制备的板材浸泡于溶胶中,让溶胶进入板材的间隙内,静置40分钟左右。凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、90、120、200和400℃各干燥两小时。最后制得复合后保温隔热板材。堆积密度由160kg/m3变化为230kg/m3。导热系数由0.05w/(m·K)降至0.035w/(m·K),下降了30.0%。
实施例14
(1)采用模数为3.5的水玻璃为硅源,硼酸为添加剂配制出B2O3的质量分数6%混合溶液(其中Na2O、SiO2的质量分数分别为21.4%和72.6%),按1:10(体积比)稀释后,取1L然后加入70ml的六甲基二硅氧烷,然后加入160ml盐酸(2mol/L),制得溶胶。
(2)然后在常温常压条件下,将由实施例2得到的气凝胶与膨胀珍珠岩的复合材料制备的板材浸泡于溶胶中,让溶胶进入板材的间隙内,静置40分钟左右,凝胶后,将板材表面多余的凝胶刮去,40℃老化1天,依次在70、90、120和200℃各干燥两小时。最后制得复合后保温隔热板材。堆积密度由180kg/m3变化为230kg/m3。导热系数由0.045w/(m·K)降至0.035w/(m·K),下降了22.2%。

Claims (9)

1.一种气凝胶/无机轻集料复合保温隔热材料,其特征在于:该复合保温隔热材料是采用无机轻集料或无机轻集料板材与SiO2气凝胶复合,然后凝胶、老化、干燥制备而成的;所述的气凝胶/无机轻集料复合保温隔热材料中无机轻集料或无机轻集料板材与SiO2气凝胶的质量比为20~70:1。
2.根据权利要求1所述的一种气凝胶/无机轻集料复合保温隔热材料,其特征在于:所述的无机轻集料板材为复合后的无机轻集料制备的板材。
3.根据权利要求1所述的一种气凝胶/无机轻集料复合保温隔热材料,其特征在于:所述的无机轻集料为膨胀珍珠岩、膨胀蛭石或玻化微珠。
4.如权利要求1所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,包括:
(1)溶胶的制备:
以水玻璃为硅源,加入硼酸,稀释后,加入催化剂,制得溶胶;
(2)在低压4000Pa的条件下,将无机轻集料直接与上述溶胶混合,静置凝胶后老化,然后干燥,即得气凝胶/无机轻集料复合保温隔热材料;
或在常压下将无机轻集料板材浸泡于上述溶胶中静置凝胶后老化,然后干燥,即得气凝胶/无机轻集料复合保温隔热材料。
5.根据权利要求4所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,其特征在于:步骤(1)中所述的溶胶的制备过程中,按质量分数Na2O 5%~30%、B2O3≤30%、SiO2 40%~80%配置Na2O-B2O3-SiO2溶胶。
6.根据权利要求4所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,其特征在于:步骤(1)中所述的稀释后,再加入表面改性剂,所述的表面改性剂为六甲基二硅氧烷、六甲基二硅胺烷、三甲基六硅烷或甲基三甲氧基硅烷;步骤(2)中所述的干燥为依次在70、90、120和200℃各干燥两小时。
7.根据权利要求4所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,其特征在于:步骤(1)中所述的稀释后,再加入抗收缩剂,所述的抗收缩剂为聚乙二醇、聚氧化乙烯、聚丙烯酸、聚乙烯吡咯烷酮或聚苯乙烯磺酸钠;步骤(2)中所述的干燥为依次在70、90、120、200和400℃各干燥两小时。
8.根据权利要求4所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,其特征在于:步骤(1)中所述的催化剂为2mol/L的盐酸。
9.根据权利要求4所述的一种气凝胶/无机轻集料复合保温隔热材料的制备方法,其特征在于:步骤(1)中所述的干燥工艺,在40℃、10Mpa条件下,与超临界态的二氧化碳混合,静置后,接着以6~8kg/h的速度循环二氧化碳干燥,即可。
CN201210295764.9A 2012-08-20 2012-08-20 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法 Expired - Fee Related CN102795826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210295764.9A CN102795826B (zh) 2012-08-20 2012-08-20 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210295764.9A CN102795826B (zh) 2012-08-20 2012-08-20 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102795826A true CN102795826A (zh) 2012-11-28
CN102795826B CN102795826B (zh) 2014-08-13

Family

ID=47195169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210295764.9A Expired - Fee Related CN102795826B (zh) 2012-08-20 2012-08-20 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102795826B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301787A (zh) * 2013-07-03 2013-09-18 陕西盟创纳米新型材料股份有限公司 一种二氧化硅气凝胶复合材料及成型方法
CN103386281A (zh) * 2013-07-15 2013-11-13 陕西盟创纳米新型材料股份有限公司 以膨胀珍珠岩为载体的二氧化硅气凝胶颗粒、制备方法及用途
CN103755302A (zh) * 2013-12-12 2014-04-30 纳诺科技有限公司 一种纤维增强TiO2-SiO2气凝胶复合材料的制备方法
CN104016654A (zh) * 2014-06-12 2014-09-03 凯盟节能建材科技江苏有限公司 防火型无机改性聚苯板
CN104018589A (zh) * 2014-06-12 2014-09-03 凯盟节能建材科技江苏有限公司 无机改性聚苯板
CN105503046A (zh) * 2015-09-09 2016-04-20 杭州来宝得新材料科技有限公司 一种高性能保温隔热墙体材料
CN105645803A (zh) * 2016-01-13 2016-06-08 太原理工大学 气凝胶膨胀珍珠岩的制备方法
CN105860127A (zh) * 2016-05-03 2016-08-17 中国工程物理研究院核物理与化学研究所 一种聚氨酯硬质泡沫-气凝胶复合阻燃保温材料及其制备方法
CN106478051A (zh) * 2016-10-17 2017-03-08 吉林建筑大学 一种硅藻土复合材料及其制备方法
CN106659013A (zh) * 2016-11-01 2017-05-10 深圳万发创新进出口贸易有限公司 一种电子设备保护箱体
CN107032679A (zh) * 2017-05-19 2017-08-11 上海市建筑科学研究院(集团)有限公司 一种基于憎水性气凝胶的无机保温砂浆及其制备方法
CN107200605A (zh) * 2017-06-20 2017-09-26 安徽瑞联节能科技有限公司 一种提升岩棉芯保温隔热性能的加工工艺
CN107265915A (zh) * 2017-06-20 2017-10-20 安徽瑞联节能科技有限公司 一种提升岩棉芯防火性能的加工工艺
CN107759151A (zh) * 2017-10-23 2018-03-06 中国地质大学(北京) 一种膨胀珍珠岩‑SiO2气凝胶的轻质保温墙体材料的制备方法
DE102015117035B4 (de) 2015-05-22 2018-07-05 Interbran Systems Ag Verfahren zur Herstellung von porösen Kompositpartikeln, die Kompositpartikel, deren Verwendung sowie Dämmstoff und Baustofftrockenmischung mit den Kompositpartikeln
CN108892419A (zh) * 2018-07-05 2018-11-27 常州蓝森环保设备有限公司 一种无机墙体保温材料的制备方法
CN111039583A (zh) * 2018-10-11 2020-04-21 卢孟磊 一种低成本快速制备微纳结构气凝胶膨胀珍珠岩的方法
CN111471218A (zh) * 2020-05-14 2020-07-31 重庆硕盈峰新能源科技有限公司 一种环保可降解高吸水复合材料及其制备方法
CN113354357A (zh) * 2021-06-16 2021-09-07 江西中科新建材股份有限公司 二氧化硅气凝胶改性保温砌筑砂浆及使用方法
CN113833140A (zh) * 2021-10-20 2021-12-24 西安工程大学 一种三相复合结构隔热材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096273A (zh) * 2007-06-05 2008-01-02 南京工业大学 一种块状低密度凝胶隔热复合材料
CN101143776A (zh) * 2006-09-13 2008-03-19 上海暄洋化工材料科技有限公司 纳米保温节能材料及其生产工艺
CN101468907A (zh) * 2007-12-27 2009-07-01 上海暄洋化工材料科技有限公司 一种SiO2纳米复合绝热保温膏及其制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143776A (zh) * 2006-09-13 2008-03-19 上海暄洋化工材料科技有限公司 纳米保温节能材料及其生产工艺
CN101096273A (zh) * 2007-06-05 2008-01-02 南京工业大学 一种块状低密度凝胶隔热复合材料
CN101468907A (zh) * 2007-12-27 2009-07-01 上海暄洋化工材料科技有限公司 一种SiO2纳米复合绝热保温膏及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
付帮升等: "一种复合气凝胶隔热板的研制与应用", 《河南科技》, no. 3, 31 December 2011 (2011-12-31), pages 75 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301787A (zh) * 2013-07-03 2013-09-18 陕西盟创纳米新型材料股份有限公司 一种二氧化硅气凝胶复合材料及成型方法
CN103301787B (zh) * 2013-07-03 2015-09-09 陕西盟创纳米新型材料股份有限公司 一种二氧化硅气凝胶复合材料及成型方法
CN103386281B (zh) * 2013-07-15 2015-08-05 陕西盟创纳米新型材料股份有限公司 以膨胀珍珠岩为载体的二氧化硅气凝胶颗粒、制备方法及用途
CN103386281A (zh) * 2013-07-15 2013-11-13 陕西盟创纳米新型材料股份有限公司 以膨胀珍珠岩为载体的二氧化硅气凝胶颗粒、制备方法及用途
CN103755302A (zh) * 2013-12-12 2014-04-30 纳诺科技有限公司 一种纤维增强TiO2-SiO2气凝胶复合材料的制备方法
CN103755302B (zh) * 2013-12-12 2015-07-15 纳诺科技有限公司 一种纤维增强TiO2-SiO2气凝胶复合材料的制备方法
CN104016654A (zh) * 2014-06-12 2014-09-03 凯盟节能建材科技江苏有限公司 防火型无机改性聚苯板
CN104018589A (zh) * 2014-06-12 2014-09-03 凯盟节能建材科技江苏有限公司 无机改性聚苯板
CN104016654B (zh) * 2014-06-12 2016-07-27 凯盟节能建材科技江苏有限公司 防火型无机改性聚苯板
DE102015117035B4 (de) 2015-05-22 2018-07-05 Interbran Systems Ag Verfahren zur Herstellung von porösen Kompositpartikeln, die Kompositpartikel, deren Verwendung sowie Dämmstoff und Baustofftrockenmischung mit den Kompositpartikeln
CN105503046A (zh) * 2015-09-09 2016-04-20 杭州来宝得新材料科技有限公司 一种高性能保温隔热墙体材料
CN105645803A (zh) * 2016-01-13 2016-06-08 太原理工大学 气凝胶膨胀珍珠岩的制备方法
CN105645803B (zh) * 2016-01-13 2018-01-12 太原理工大学 气凝胶膨胀珍珠岩的制备方法
CN105860127B (zh) * 2016-05-03 2018-12-18 中国工程物理研究院核物理与化学研究所 一种聚氨酯硬质泡沫-气凝胶复合阻燃保温材料及其制备方法
CN105860127A (zh) * 2016-05-03 2016-08-17 中国工程物理研究院核物理与化学研究所 一种聚氨酯硬质泡沫-气凝胶复合阻燃保温材料及其制备方法
CN106478051B (zh) * 2016-10-17 2019-04-30 吉林建筑大学 一种硅藻土复合材料及其制备方法
CN106478051A (zh) * 2016-10-17 2017-03-08 吉林建筑大学 一种硅藻土复合材料及其制备方法
CN106659013A (zh) * 2016-11-01 2017-05-10 深圳万发创新进出口贸易有限公司 一种电子设备保护箱体
CN107032679A (zh) * 2017-05-19 2017-08-11 上海市建筑科学研究院(集团)有限公司 一种基于憎水性气凝胶的无机保温砂浆及其制备方法
CN107032679B (zh) * 2017-05-19 2019-06-25 上海市建筑科学研究院(集团)有限公司 一种基于憎水性气凝胶的无机保温砂浆及其制备方法
CN107200605A (zh) * 2017-06-20 2017-09-26 安徽瑞联节能科技有限公司 一种提升岩棉芯保温隔热性能的加工工艺
CN107265915A (zh) * 2017-06-20 2017-10-20 安徽瑞联节能科技有限公司 一种提升岩棉芯防火性能的加工工艺
CN107759151A (zh) * 2017-10-23 2018-03-06 中国地质大学(北京) 一种膨胀珍珠岩‑SiO2气凝胶的轻质保温墙体材料的制备方法
CN107759151B (zh) * 2017-10-23 2020-07-21 中国地质大学(北京) 一种膨胀珍珠岩-SiO2气凝胶的轻质保温墙体材料的制备方法
CN108892419A (zh) * 2018-07-05 2018-11-27 常州蓝森环保设备有限公司 一种无机墙体保温材料的制备方法
CN111039583A (zh) * 2018-10-11 2020-04-21 卢孟磊 一种低成本快速制备微纳结构气凝胶膨胀珍珠岩的方法
CN111471218A (zh) * 2020-05-14 2020-07-31 重庆硕盈峰新能源科技有限公司 一种环保可降解高吸水复合材料及其制备方法
CN113354357A (zh) * 2021-06-16 2021-09-07 江西中科新建材股份有限公司 二氧化硅气凝胶改性保温砌筑砂浆及使用方法
CN113833140A (zh) * 2021-10-20 2021-12-24 西安工程大学 一种三相复合结构隔热材料及其制备方法和应用
CN113833140B (zh) * 2021-10-20 2023-08-25 西安工程大学 一种三相复合结构隔热材料及其制备方法和应用

Also Published As

Publication number Publication date
CN102795826B (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN102795826B (zh) 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法
CN107140938B (zh) 一种防脱粉气凝胶复合保温毡及其制备方法
CN107162627B (zh) 一种多功能绿色建筑材料
CN102910870B (zh) 纳米硅气凝胶/玻化微珠复合保温砂浆
CN109231910A (zh) 一种纤维气凝胶泡沫混凝土及其制备方法和应用
CN101913835B (zh) 一种泡沫陶瓷增强纤维气凝胶隔热材料及其制备方法
CN102910926B (zh) 一种耐高温碳化硅气凝胶隔热复合材料的制备方法
CN101653960B (zh) 一种轻质隔热保温材料及其制备方法
CN103043976A (zh) 薄型隧道防火阻燃涂料及制备方法
CN102351506B (zh) 一种块状耐高温硅-炭复合气凝胶材料的制备方法
CN106518155A (zh) 具有防水防火功能的地聚合物基保温砂浆
CN104529301A (zh) 含纳米珍珠岩的建筑保温混凝土及其制备方法
CN104446305A (zh) 一种硫酸钙晶须气凝胶隔热复合材料及其制备方法
CN109020469A (zh) 一种SiO2气凝胶/SiC泡沫复合绝热材料及其制备方法
CN107188469A (zh) 一种阻燃防水保温材料及其制备方法
CN105314933B (zh) 一种低导热保温砂浆
CN105503037A (zh) 一种纳米隔热保温材料及其制备方法
CN102807326B (zh) 一种聚合物改性的低温泡沫玻璃保温材料及其制备方法
CN105036142A (zh) 一种增韧型SiO2气凝胶复合材料的制备方法
CN107098723A (zh) 一种节能保温材料
CN113264533A (zh) 一种利用废弃玻璃制备纳米二氧化硅气凝胶的方法
CN107443824B (zh) 一种改性岩棉板及其制备方法
CN107954746A (zh) 微孔焦宝石轻质耐火砖及其制备方法
CN204876290U (zh) 填充泡沫混凝土烧结复合保温砌块及其构筑的自保温墙体
CN108328602B (zh) 一种碳纳米管纳米颗粒复合保温材料其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140813

Termination date: 20200820