CN102762763A - SiCOH低K膜的气相沉积法 - Google Patents

SiCOH低K膜的气相沉积法 Download PDF

Info

Publication number
CN102762763A
CN102762763A CN2011800100663A CN201180010066A CN102762763A CN 102762763 A CN102762763 A CN 102762763A CN 2011800100663 A CN2011800100663 A CN 2011800100663A CN 201180010066 A CN201180010066 A CN 201180010066A CN 102762763 A CN102762763 A CN 102762763A
Authority
CN
China
Prior art keywords
oet
ome
hme
presoma
eto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800100663A
Other languages
English (en)
Other versions
CN102762763B (zh
Inventor
C·迪萨拉
F·多尼亚
C·安德森
J·J·F·麦克安德鲁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN102762763A publication Critical patent/CN102762763A/zh
Application granted granted Critical
Publication of CN102762763B publication Critical patent/CN102762763B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

公开了适于沉积具有适于后代介电膜的介电常数和杨氏模量的SiCOH膜的前驱体。

Description

SiCOH低K膜的气相沉积法
相关申请案的交叉引用
本申请主张2010年2月17日提交的美国临时申请第61/305,491号的权益,其全部内容以引用的方式并入本文中。
技术领域
本发明公开了适于沉积具有适于后代介电膜的介电常数和杨氏模量的SiCOH膜的前驱体,其用于制造半导体、光伏、LCD-TFT或平板型器件基质。
背景技术
JSR公司的EP2264219公开了一种具有下式的有机硅烷化学气相沉积化合物:
Figure BDA00002026429700011
其中R1及R2独立地表示氢原子、具有1至4个碳原子的烷基、乙烯基或苯基,R3和R4独立地表示具有1至4个碳原子的烷基、乙酰基或苯基,m为0至2的整数,且n为1至3的整数。
JSR公司公开了170种以上满足该式的特定化合物,且那些化合物可能并非穷尽该式的可用迭代。JSR公司在0033段、0045段及0052段公开了:根据易于合成、纯化及处理的观点,具有所公开式的化合物在R1及R2中包含0至1个H原子;根据降低化合物沸点且增加机械强度的观点,该化合物在R1及R2中包含1至2个H原子。
JSR公司进一步公开了170种以上特定化合物与致孔剂(porogen)和具有式R6 aSi(OR7)4-a、R8 b(R9O)3-bSi-Oe-Si(OR10)3-cR11 c及-[R13 f(R14O)2-fSi-(R15)g]-的另一硅烷化合物的组合,其中R6、R8至R11、R13及R14独立地表示H原子、F原子或单价有机基团,R7独立地表示单价有机基团,R15表示O原子、亚苯基或由-(CH2)n-所示的基团,a为0至4的整数,b及c独立地为0至3的整数,e为0或1,f为0至2,g为0或1,h为2至3的整数,且n为1至6的整数(0062段)。成孔剂可为具有环结构的任何化合物(0094段)。声称数值上有希望的组合产生展现“更优良”的机械强度及低相对介电常数的绝缘膜(0067段)。
使用前驱体的组合进行沉积可提供介电常数及杨氏模量为单独由前驱体产生的膜的介电常数及杨氏模量的近似平均值的膜。该现象部分说明于本申请的对比例1中,其总结了EP2264219的实施例2及14-18。该现象进一步说明于对比例2、4和5中。
另外,对于特定前驱体或前驱体的组合而言,杨氏模量结果的任何改进通常伴随着介电常数的提高。该现象说明于本申请的对比例1中,其总结了EP2264219的实施例14至17。该现象进一步说明于对比例6中。
仍需要具有低介电常数和高机械强度的绝缘膜。
发明内容
本发明公开了在一个或多个安置于反应室内的基质上形成SiCOH膜层的方法。将含Si-(CH2)n-Si的前驱体(其中n=1或2)引入反应室中。该含Si-(CH2)n-Si的前驱体选自由以下组成的组:
Figure BDA00002026429700021
(式I,其中n=1)
Figure BDA00002026429700022
(式2,其中n=2)
其中R1至R4各自独立地选自由H、甲基、乙基、丙基、乙烯基和C1-C3烷氧基组成的组;R5选自由甲基、乙基和丙基组成的组;优选R1至R4中至少一个为甲基、乙基或丙基;且R1至R3中至少一个为烷氧基,其可与-OR5相同或不同。将含乙烯基的前驱体引入反应室中。该含乙烯基的前驱体具有式Si(R1)x(O(R2))4-x,其中至少一个R1为乙烯基,任选的第二R1为氢或烷基,优选为甲基或乙基;各R2独立地选自烷基,优选甲基或乙基;且x为1或2。将致孔剂引入反应室中。使Si-(CH2)n-Si前驱体、含乙烯基的前驱体、致孔剂及基质接触以使用沉积方法、优选化学气相沉积在基质的至少一个表面上形成SiCOH膜。该方法可进一步包括一个或多个以下方面:
.含乙烯基的前驱体选自由乙烯基二乙氧基硅烷、乙烯基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基甲基二甲氧基硅烷及乙烯基甲基二乙氧基硅烷组成的组;
.含乙烯基的前驱体选自由乙烯基三乙氧基硅烷或乙烯基甲基二乙氧基硅烷组成的组;
.致孔剂为经取代或未经取代的双环[2.2.1]庚-2,5-二烯;
.沉积方法为单频PECVD;
.使SiCOH膜变得多孔;
.R1至R4不为H;
.含Si-(CH2)n-Si的前驱体选自由(EtO)3Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)HMe、Me2(OEt)Si-CH2-Si(OEt)2H、(EtO)Me2SiCH2Si(OMe)2H、Me2(OEt)Si-CH2-Si(OEt)HMe、(OEt)3Si-CH2-Si(OEt)HMe、(EtO)3Si-CH2-Si(OMe)HMe、Me(OMe)2Si-CH2-Si(OMe)2H、Me(OMe)2Si-CH2-Si(OMe)HMe、Me2(OMe)SiCH2Si(OMe)2H和Me2(OEt)Si-CH2-Si(OMe)HMe组成的组;
.含Si-(CH2)n-Si的前驱体选自由Me(OEt)2Si-CH2-Si(OEt)2H、Me2(OEt)Si-CH2-Si(OEt)2H和Me(OEt)2Si-CH2-Si(OEt)HMe组成的组;
.含Si-(CH2)n-Si的前驱体选自由(EtO)3Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)HMe、Me2(OEt)Si-CH2CH2-Si(OEt)2H、(EtO)Me2SiCH2CH2Si(OMe)2H、Me2(OEt)Si-CH2CH2-Si(OEt)HMe、(OEt)3Si-CH2CH2-Si(OEt)HMe、(EtO)3Si-CH2CH2-Si(OMe)HMe、Me(OMe)2Si-CH2CH2-Si(OMe)2H、Me(OMe)2Si-CH2CH2-Si(OMe)HMe、Me2(OMe)SiCH2CH2Si(OMe)2H和Me2(OEt)Si-CH2CH2-Si(OMe)Hme组成的组;
.含Si-(CH2)n-Si的前驱体选自由Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me2(OEt)Si-CH2CH2-Si(OEt)2H和Me(OEt)2Si-CH2CH2-Si(OEt)HMe组成的组;
.R1至R3中仅一个为H;
.含Si-(CH2)n-Si的前驱体选自由MeH(OMe)Si-CH2-Si(OMe)HMe、(EtO)2HSi-CH2-Si(OEt)2H、(EtO)HMeSi-CH2-Si(OEt)HMe和(iPrO)HMeSi-CH2-Si(OiPr)HMe组成的组;及
.SiCOH膜具有低于以下两者的介电常数:(1)由含Si-(CH2)n-Si的前驱体和致孔剂形成的SiCOH膜的介电常数;及(2)由含乙烯基的前驱体和致孔剂形成的SiCOH膜的介电常数。
还公开了通过所公开方法形成的膜。优选通过所公开方法形成的膜具有在约2.0至约2.7、优选约2.0至约2.5的介电常数,及在约4GPa至约10GPa、优选约5GPa至约10GPa的杨氏模量。
符号及命名
某些缩写、符号及术语在整个以下说明书和权利要求书中使用且包括:缩写“SiCOH”指含有Si、C、O和H原子的介电膜;缩写“pSiCOH”指已使SiCOH膜变得多孔后的SiCOH膜;缩写“BCHD”指双环[2.2.1]庚-2,5-二烯,也称作2,5-降冰片二烯;缩写“PECVD”指等离子体增强化学气相沉积;缩写“CVD”指化学气相沉积;缩写“MIM”指金属绝缘体金属(电容器中所用的结构);缩写“DRAM”指动态随机存取内存;缩写“FeRAM”指铁电随机存取内存;缩写“CMOS”指互补金属氧化物半导体;缩写“UV”指紫外线;且缩写“RF”指射频。
此外,本发明预期使用三种前驱体(Si-(CH2)n-Si前驱体、含乙烯基的前驱体和致孔剂)各自中的一种或多种且互换地以单数或复数形式指代各者,而不意欲借此限制范围。
术语“烷基”指仅含有碳和氢原子的饱和官能基团。此外,术语“烷基”指直链、支化或环烷基。直链烷基的实例包括(不限于)甲基、乙基、丙基、丁基等。支化烷基的实例包括(不限于)叔丁基。环烷基的实例包括(不限于)环丙基、环丁基、环戊基、环己基等。
如本文中所用的缩写“Me”指甲基;缩写“Et”指乙基;缩写“Pr”指丙基;缩写“nPr”指链丙基(chain propyl group);缩写“iPr”指异丙基;缩写“Bu”指丁基(正丁基);缩写“tBu”指叔丁基;缩写“sBu”指仲丁基;缩写“iBu”指异丁基;且缩写“TMS”指三甲代甲硅烷基。
本文中使用来自元素周期表的元素的标准缩写。应了解,元素可由这些缩写表示(例如Si指硅,C指碳等)。
实施方式
本申请人已惊讶地发现使用特定含Si-(CH2)n-Si的前驱体(其中n为1或2)、特定乙烯基烷氧基硅烷或乙烯基烷基烷氧基硅烷前驱体和特定致孔剂的组合进行CVD沉积导致SiCOH膜与由单独任一前驱体/致孔剂组合沉积的SiCOH膜的介电常数和杨氏模量相比具有相同或改进的介电常数和改进的杨氏模量。本申请人认为含Si-(CH2)n-Si的前驱体中的Si-H键与乙烯基烷氧基硅烷或乙烯基烷基烷氧基硅烷上的乙烯基反应产生具有较低介电常数和改进机械强度的膜。
使用一种或多种下文更详细描述的含Si-(CH2)n-Si的前驱体、一种或多种第二含硅前驱体和一种或多种致孔剂,通过气相沉积、优选CVD、更优选PECVD沉积SiCOH膜。该膜优选使用紫外光或另一能量源移除致孔剂而固化,以产生具有较低介电常数的pSiCOH膜。
本申请人认为所公开的含Si-(CH2)n-Si的前驱体适于沉积含有Si-(CH2)n-Si结构的膜。一般而言,含Si-(CH2)n-Si的前驱体可由下式描述:
Figure BDA00002026429700051
(式1)
(式2)
其中R1至R4各自独立地选自由H、甲基、乙基、丙基、乙烯基及C1-C3烷氧基组成的组;R5选自由甲基、乙基及丙基组成的组;优选R1至R4中至少一个为甲基、乙基或丙基;且R1至R3中至少一个为烷氧基,其可与-OR5相同或不同。优选地,R1和R2为Me,R3和R4为OEt,且R5为Et。
烷氧基配体(即甲氧基、乙氧基或丙氧基)导致SiCOH膜中产生交联Si-O-Si结构。因此,至少一个烷氧基配体应存在于各Si原子处以使得充分交联。Si-OEt基团为优选的,因为其比Si-OMe基团稍不具反应性,且因此更不易导致前驱体在储存期间本体聚合或在环境暴露于前驱体时的不良健康影响。
Si-Me基团将开放体积或超微孔引入结构中且降低介电常数。它们还增加最终膜的碳含量,这有助于增加对等离子体损坏及湿法蚀刻的抗性。还认为高碳含量会增加对“图像上下跳动”的抗性。“图像上下跳动”为高纵横比的紧密间隔特征叠并于彼此之上。因此理想的是分子内有至少一个甲基。然而,甲基也导致交联降低且因此对机械性能有害。可根据低介电常数与所需机械性能之间的平衡来选择甲基数目。
Si-(CH2)n-Si子结构允许并入碳以提供对等离子体损害及翻转的良好抗性,同时维持交联以保持机械性能。
前驱体中的Si-H已显示有利于并入一些致孔剂。然而,膜中的残余Si-H趋向于与大气氧和/或水分反应以形成Si-OH,其转而导致水分吸收入膜中且k增加。因此,具有适当数目Si-H键是重要的。本发明人认为每个前驱体分子一个Si-H键可能是最佳的。
在第一实施方案中,R1至R4不为H,前驱体仅具有一个Si-H键。实施例1及对比例4和6证明,仅具有一个Si-H键的含Si-(CH2)n-Si的前驱体与含乙烯基的前驱体和BCHD的组合(实施例1)产生的膜与由各单独前驱体/BCHD组合(对比例4和6)产生的膜相比具有改进的介电常数结果及变化最小的杨氏模量结果。相反,对比例2、3和5证明,不含Si-H键的Si-(CH2)n-Si前驱体由于添加含乙烯基的前驱体而不产生具有改进的介电常数或杨氏模量的膜。本申请人认为来自含乙烯基的前驱体的乙烯基与含Si-(CH2)n-Si的前驱体的Si-H基团反应,导致碳并入膜中。
第一实施方案的例示性分子包括(EtO)3Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)HMe、Me2(OEt)Si-CH2-Si(OEt)2H、(EtO)Me2SiCH2Si(OMe)2H、Me2(OEt)Si-CH2-Si(OEt)HMe、(OEt)3Si-CH2-Si(OEt)HMe、(EtO)3Si-CH2-Si(OMe)HMe、Me(OMe)2Si-CH2-Si(OMe)2H、Me(OMe)2Si-CH2-Si(OMe)HMe、Me2(OMe)SiCH2Si(OMe)2H和/或Me2(OEt)Si-CH2-Si(OMe)HMe,优选Me(OEt)2Si-CH2-Si(OEt)2H、Me2(OEt)Si-CH2-Si(OEt)2H和/或Me(OEt)2Si-CH2-Si(OEt)HMe。
或者,第一实施方案的含Si-(CH2)n-Si的前驱体包括(EtO)3Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)HMe、Me2(OEt)Si-CH2CH2-Si(OEt)2H、(EtO)Me2SiCH2CH2Si(OMe)2H、Me2(OEt)Si-CH2CH2-Si(OEt)HMe、(OEt)3Si-CH2CH2-Si(OEt)HMe、(EtO)3Si-CH2CH2-Si(OMe)HMe、Me(OMe)2Si-CH2CH2-Si(OMe)2H、Me(OMe)2Si-CH2CH2-Si(OMe)HMe、Me2(OMe)SiCH2CH2Si(OMe)2H和/或Me2(OEt)Si-CH2CH2-Si(OMe)HMe,优选Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me2(OEt)Si-CH2CH2-Si(OEt)2H和/或Me(OEt)2Si-CH2CH2-Si(OEt)HMe。
在第二实施方案中,R1、R2或R3为H,前驱体在各个Si上键合有一个H。理论上,本申请人认为在第二实施方案中将发生与第一实施方案中所述相同的乙烯基/Si-H反应机制。然而,一个特定分子的极小数目的初步测试结果不提供预期协同作用。
第二实施方案的例示性分子包括MeH(OMe)Si-CH2-Si(OMe)HMe、(EtO)2HSi-CH2-Si(OEt)2H、(EtO)HMeSi-CH2-Si(OEt)HMe和(iPrO)HMeSi-CH2-Si(OiPr)HMe。
可使用常规方法根据以下流程实现这些Si-CH2-Si前驱体的合成:
Figure BDA00002026429700081
(式3)                    (式4)                               (式1)
其中R'为乙基或甲基且格氏试剂R1R2R3SiCH2MgCl以中间物形式形成。可通过在干的回流溶剂如四氢呋喃(THF)中逐滴添加起始氯化合物(式3)至镁屑(magnesium turning)中来形成格氏试剂。随后逐滴添加甲氧基或乙氧基化合物(式4)至格氏反应溶液中以形成所需产物(式1)。可通过过滤移除反应的镁盐副产物,接着蒸发溶剂以从溶液中分离所需产物(式1)。关于经由格氏试剂形成Si-CH2-Si键的程序的其他详情可见于美国专利第5,296,624号(Larson等人)及美国专利申请公开案第2009/0299086号(Nobe等人)中。应在惰性氛围下(例如在流动的干燥氮气下)进行本文所述的所有反应。
根据上述程序,优选化合物的起始材料如下:
(EtO)MeHSiCH2SiHMe(OEt)MeH(OEt)2SiCH2Cl+Si(OEt)2MeH
(EtO)3Si-CH2-Si(OEt)2H(EtO)3SiCH2Cl+Si(OEt)3H
Me(OEt)2Si-CH2-Si(OEt)2H Me(OEt)2SiCH2Cl+Si(OEt)3H
Me(OEt)2Si-CH2-Si(OEt)HMe Me(OEt)2SiCH2Cl+Si(OEt)2MeH
Me2(OEt)Si-CH2-Si(OEt)2H Me2(OEt)SiCH2Cl+Si(OEt)3H
Me2(OEt)Si-CH2-Si(OEt)HMe Me(OEt)2SiCH2Cl+Si(OEt)2MeH
(OEt)3Si-CH2-Si(OEt)HMe(OEt)3SiCH2Cl+Si(OEt)2MeH
这些起始材料可市购。
另一合成方法(最适用于对称分子)根据以下流程:
Figure BDA00002026429700091
其中RO为烷氧基。举例而言,对于R1=R6=H,且R=Et,流程A可用于制备(EtO)2HSiCH2SiH(OEt)2。这些起始材料可市购。应在溶剂如THF中进行反应,其中试剂在搅拌下缓慢添加。替代RONa,醇ROH可与碱如三烷基胺或吡啶一起使用。
可根据流程B制备化合物(EtO)MeHSiCH2SiHMe(OEt),其中R=Et,R1=R6=H,R2=R5=Me,且其中起始材料根据Hemida等人,J.Mat.Sci323485(1997)所述的程序制备。
可使用以下例示性方法实现Si-CH2-CH2-Si前驱体的合成:
Figure BDA00002026429700092
(式5)                      (式6)                           (式2)
其中R可以为烷基或烷氧基。产物可通过在室温下在干溶剂如甲苯中连续逐滴搅拌添加起始材料(式5和6)而形成。将氯铂酸加入该混合物中。使反应混合物回流。将混合物冷却至室温以后,将吡啶引入该混合物中。然后逐滴加入理想的醇。在加入以后,使混合物在室温下反应。反应的盐副产物可通过过滤、之后分馏而除去以分离所需产物(式2)。形成Si-CH2-CH2-Si键的程序的其他细节可在EP2264219的Gelest目录的第484页找到。
如上所述的Si-(CH2)n-Si前驱体可彼此组合及与一种或多种适于沉积低k SiCOH膜的含乙烯基的前驱体组合。文献中已知许多含乙烯基的前驱体。这种前驱体的一重要种类由式Si(R1)x(O(R2))4-x描述,其中第一R1为乙烯基且任选的第二R1为氢或烷基,优选甲基或乙基;各R2独立地为烷基;且x为1或2。优选地,含乙烯基的前驱体为乙烯基二乙氧基硅烷、乙烯基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基甲基二甲氧基硅烷及乙烯基甲基二乙氧基硅烷,更优选乙烯基三乙氧基硅烷或乙烯基甲基二乙氧基硅烷。
合适的致孔剂包括不饱和多环烃如2,5-降冰片二烯(双环[2.2.1]庚-2,5-二烯或BCHD)及经取代的BCHD。
可使用Si-(CH2)n-Si前驱体、含乙烯基的前驱体及致孔剂通过本领域已知的气相沉积方法在基质上形成多孔SiCOH膜,该基质上可能已包括或可能不包括其他层。美国专利第6,312,793号、第6,479,110号、第6,756,323号、第6,953,984号、第7,030,468号、第7,049,427号、第7,282,458号、第7,288,292号、第7,312,524号、第7,479,306号及美国专利申请公开案第2007/0057235号中所公开的关于气相沉积方法的例示性、但非限制性参考以引用的方式并入本文中。
举例而言,预期本文所公开的Si-(CH2)n-Si前驱体、含乙烯基的前驱体及致孔剂可用于美国专利第7,479,306号中公开的沉积SiCOH介电材料的方法中,且更特别的如实施例6中所公开的。如实施例6中所述,将基质置于PECVD沉积反应室中的经加热的接受器(也称作晶片夹盘(waferchuck))上。将接受器在300℃下加热至425℃,优选在350℃下加热至400℃,但该温度也可介于150℃与300℃之间。前驱体流速可在100mg/min至2000mg/min之间变化。He气可以10sccm至500sccm之间的速率流动。致孔剂流速可在50mg/min至2000mg/min之间变化。前驱体流动经稳定以达到压力在1-10Torr(133-1333Pa)范围内。将RF辐射施加至簇射头(shower head),持续5秒至500秒的时间。本领域技术人员将认识到不同沉积器件可需要不同参数。
当利用BCHD作为致孔剂时,应注意向其中并入聚合抑制剂如由同在申请中的美国专利申请案第12/613,260号所公开的聚合抑制剂,该专利申请案以全文引用的方式并入本文中。本文进一步描述这些方法的常见重点部分。
将基质置于气相沉积装置的反应室中。用于形成绝缘膜的Si-(CH2)n-Si前驱体及含乙烯基的前驱体以及致孔剂可以气态直接传递至反应室中,以蒸发的液体形式传递且引入反应室中,或通过惰性载气(包括但不限于氦气或氩气)传输。优选地,在引入反应室中之前,Si-(CH2)n-Si前驱体、含乙烯基的前驱体及致孔剂在载气如He或Ar的存在下在介于约70℃与约150℃之间的温度下蒸发。
上面将要沉积SiCOH层的基质的类型将根据预期最终用途而变化。基质可包括掺杂或未掺杂的含硅材料如SiCN,任选涂布有氧化硅层,及在这种应用中用作导电材料的金属如钨、钛、钽、钌或铜。或者,基质可包括铜互连及绝缘区如另一低k材料,任选涂布有密封层如SiO2或SiN。上面可涂布pSiCOH膜的基质的其他实例包括但不限于固体基质如金属基质(例如Ru、Al、Ni、Ti、Co、Pt和金属硅化物,例如TiSi2、CoSi2和NiSi2);含金属氮化物的基质(例如TaN、TiN、WN、TaCN、TiCN、TaSiN及TiSiN);半导体材料(例如Si、SiGe、GaAs、InP、钻石、GaN及SiC);绝缘体(例如SiO2、Si3N4、HfO2、Ta2O5、ZrO2、TiO2、Al2O3及钛酸钡锶);或包括这些材料的任何数目的组合的其他基质。所用实际基质也将取决于所用SiCOH层。
将含Si-(CH2)n-Si的前驱体、含乙烯基的前驱体和致孔剂同时或以脉冲顺序引入膜沉积室中且与基质接触以在基质的至少一个表面上形成绝缘层。普遍地,将前驱体和致孔剂同时引入PECVD室中。膜沉积室可以为进行沉积方法的器件的任何封闭空间或室,例如(不限于)平行板型反应器、冷壁型反应器、热壁型反应器、单晶片反应器、多晶片反应器或其他这种类型的沉积系统。
本领域技术人员应能够容易地选择在低k膜沉积期间控制工艺变量的适当值,包括RF功率、前驱体混合物及流速、反应室中的压力和基质温度。
随后可通过额外加工使SiCOH层变得多孔以降低绝缘层的介电常数。该加工包括但不限于退火、UV光或电子束。
所得膜优选具有低于以下两者的介电常数:(1)由含Si-(CH2)n-Si的前驱体和致孔剂形成的SiCOH膜的介电常数;及(2)由含乙烯基的前驱体和致孔剂形成的SiCOH膜的介电常数。所得膜优选具有在约2.0至约2.7的范围内的介电常数和在约4至约10的范围内的杨氏模量。
实施例
提供以下非限制性实施例以进一步说明本发明的实施方案。然而,这些实施例不意欲全部包括在内且不意欲限制本文所述本发明的范围。
在以下实施例中,使用配备有DxZ沉积室和TEOS组的AppliedMaterials P5000等离子体增强化学气相沉积装置来沉积SiCOH膜。通过经TEOS或DMDMOS校准的质量流量控制器来控制前驱体的流速。通过关于BCHD校准的质量流量控制器来控制致孔剂的流速。
沉积后,使膜在另一定制室(也基于DxZ室)中固化,该室经改进而包括在室盖中的熔融二氧化硅窗和透过该窗照射晶片的UV灯。膜在1Torr压力、1slm氮气流速和400℃接受器温度下固化3-30分钟。
为了评估除对比例1以外的以下实施例中沉积膜的介电常数,用汞探针测定介电常数。
为了评估除对比例1以外的以下实施例中沉积膜的机械效能,通过纳米压痕(nanoindentation)测定其杨氏模量。为了实现代表性测量,各膜厚度为纳米压痕尖端的特征尺寸的约10倍或大于10倍。选择该厚度以消除基质的影响。对各样品在该深度测定的杨氏模量一般为其最小值。
对比例1
表1总结了JSR公司在EP2264219的实施例中获得的结果。
EP2264219的实施例2和14-18的结果似乎说明所提出的含Si-(CH2)n-Si的前驱体与第二前驱体和致孔剂的组合对介电常数和杨氏模量结果不产生任何显著改变。不幸的是,由于未提供(CH3CH2O)2CH3SiH+成孔剂的结果,因此未明确说明由于将两种前驱体(即Si-(CH2)n-Si前驱体和二乙氧基甲基硅烷前驱体)混合而出现的平均效应。然而,由于由含Si-(CH2)n-Si的前驱体与BCHD形成的膜的大部分介电常数结果和所有杨氏模量结果优于由含Si-(CH2)n-Si的前驱体、二乙氧基甲基硅烷前驱体和BCHD形成的膜的结果,因此本领域技术人员将推断出,由二乙氧基甲基硅烷前驱体与BCHD的组合形成的膜的杨氏模量将低于由含Si-(CH2)n-Si的前驱体和BCHD形成的膜的杨氏模量。
EP2264219的实施例16、14、17和15的结果证明了对于特定前驱体或前驱体的组合,杨氏模量的任何改进通常伴随介电常数的提高。
EP2264219的实施例1、3-6及对比例1和2总结了使用BCHD作为致孔剂形成的膜的结果。EP2264219的实施例10、12、13及对比例5和6总结了使用对二甲苯作为致孔剂所形成的膜的结果。EP2264219的实施例7-9和11及对比例3和4总结了使用环戊烯氧化物作为致孔剂所形成的膜的结果。除了EP2264219的实施例11以外,使用BCHD或对二甲苯作为致孔剂所形成的膜与使用环戊烯氧化物所形成的膜相比具有较低的介电常数。在特定致孔剂的结果内,杨氏模量结果变化极大(即杨氏模量对于BCHD在9.3至16.5的范围内,对于环戊烯氧化物在11.2至14.4的范围内,对于对二甲苯在9.1至14.2的范围内)。最终,EP2264219的实施例3、4和13的结果似乎表明向沉积方法中添加氧气导致膜具有较高的杨氏模量。
请注意,EP2264219中的例示性沉积方法利用双频等离子体CVD装置,而本申请人在以下实施例中利用单频等离子体。因此,在以下表1中由JSR公司提供的实施例所获得的结果无法与本申请人的以下实施例相比。
表1
Figure BDA00002026429700131
Figure BDA00002026429700141
对比例2:Me(EtO)2Si-CH2-SiMe(OEt)2
使用Me(EtO)2Si-CH2-SiMe(OEt)2和BCHD沉积SiCOH膜来进行多项测试。Me(EtO)2Si-CH2-SiMe(OEt)2流速从300mg/min变为800mg/min。BCHD流速从300mg/min变为750mg/min。氦气载气流速保持在350sccm。氧气流速介于5sccm与30sccm之间。接受器温度设定为260℃或300℃。等离子体功率介于200W与600W之间。间隔设定为0.275英寸(6.985mm)或0.500英寸(12.7mm)之间。“间隔”指上面停置有晶片的接受器与“簇射头”之间的间距,“簇射头”为引入气体所穿过的上部电极。所得最佳介电常数为约2.5。所得膜在约2.51的k值下具有约4.4GPa的杨氏模量。
对比例3:Me(EtO)2Si-CH2CH2-SiMe(OEt)2
使用Me(EtO)2Si-CH2CH2-SiMe(OEt)2和BCHD沉积SiCOH膜来进行多项测试。Me(EtO)2Si-CH2CH2-SiMe(OEt)2流速从300mg/min变为600mg/min。BCHD流速从300mg/min变为800mg/min。氦气载气流速保持在350sccm或1000sccm。氧气流速介于5sccm与30sccm之间。接受器温度设定为260℃或300℃。等离子体功率介于200W与500W之间。间隔设定为0.275英寸(6.985mm)或0.500英寸(12.7mm)之间。所得最佳介电常数为约2.4。所得膜具有约3.5GPa的杨氏模量。
对比例4:(HC=CH2)(EtO)3Si
使用(HC=CH2)(EtO)3Si和BCHD沉积SiCOH膜来进行多项测试。(HC=CH2)(EtO)3Si流速为750mg/min。BCHD流速为800mg/min。氦气载气流速保持在750sccm。氧气流速设定为0sccm。接受器温度设定为260℃。等离子体功率设定为150W。间隔设定为0.500英寸(12.7mm)。所得最佳介电常数为约2.31。所得膜具有5.5GPa的杨氏模量。
对比例5:Me(EtO)2Si-CH2-SiMe(OEt)2+(HC=CH2)(EtO)3Si
用Me(EtO)2Si-CH2-SiMe(OEt)2、(HC=CH2)(EtO)3Si和BCHD沉积SiCOH膜来进行测试。Me(EtO)2Si-CH2-SiMe(OEt)2流速为200mg/min。(HC=CH2)(EtO)3Si流速为500mg/min。BCHD流速为800mg/min。氦气载气流速保持在500sccm。氧气流速为5sccm。接受器温度设定为300℃。等离子体功率为500W。间隔设定为0.500英寸(12.7mm)。所得介电常数为约2.41。所得膜具有约3.6GPa的杨氏模量。
由Me(EtO)2Si-CH2-SiMe(OEt)2、(HC=CH2)(EtO)3Si和BCHD的组合(即2.41)形成的膜得到的介电常数几乎是由Me(EtO)2Si-CH2-SiMe(OEt)2与BCHD(即2.5)和由(HC=CH2)(EtO)3Si与BCHD(即2.31)形成的膜的介电常数的精确的平均值。此外,当与由单独前驱体/BCHD组合形成的膜相比时,由Me(EtO)2Si-CH2-SiMe(OEt)2、(HC=CH2)(EtO)3Si和BCHD的组合形成的膜具有较低的杨氏模量结果。
对比例6:Me2(EtO)Si-CH2-SiH(OEt)2
使用Me2(EtO)Si-CH2-SiH(OEt)2和BCHD沉积SiCOH膜来进行多项测试。Me2(EtO)Si-CH2-SiH(OEt)2流速从300mg/min变为750mg/min。BCHD流速从300mg/min变为750mg/min。氦气载气流速保持在500sccm。氧气流速设定为0sccm、5sccm、15sccm、30sccm或50sccm。接受器温度设定为260℃或300℃。等离子体功率设定为250W、300W、400W或500W。间隔设定为0.275英寸(6.985mm)或0.500英寸(12.7mm)之间。所得最佳介电常数为约2.3。所得膜在2.31的k值下在5sccmO2下具有4.2GPa的杨氏模量,且在2.39的k值下在30sccm O2下具有6.5GPa的杨氏模量。再一次,对于特定前驱体组合,杨氏模量的改进伴随介电常数的提高。
实施例1:Me2(EtO)Si-CH2-SiH(OEt)2+(HC=CH2)(EtO)3Si
使用Me2(EtO)Si-CH2-SiH(OEt)2、(HC=CH2)(EtO)3Si和BCHD沉积SiCOH膜来进行多项测试。Me2(EtO)Si-CH2-SiH(OEt)2流速从250mg/min变为500mg/min。(HC=CH2)(EtO)3Si流速从250mg/min变为500mg/min。BCHD流速为800mg/min。氦气载气流速保持在500sccm。氧气流速在5sccm与30sccm之间变化。接受器温度设定为260℃或300℃。等离子体功率设定为300W或500W。反应室压力设定为8Torr。间隔设定为0.500英寸(12.7mm)。所得最佳介电常数为约2.17,其出人意料地优于对比例4和6中所得的介电常数。另外,所得膜在2.28的k值下具有6.0GPa的杨氏模量且在2.23的k值下具有6.1GPa的杨氏模量。
如表2中所示,除了由Me2(EtO)Si-CH2-SiH(OEt)2、(HC=CH2)(EtO)3Si和BCHD的混合物所形成的膜之一以外所有的膜的介电常数(测量的k)均低于由Me2(EtO)Si-CH2-SiH(OEt)2和BCHD或(HC=CH2)(EtO)3Si和BCHD所获得的膜的最佳介电常数。
表2
Figure BDA00002026429700161
应了解,本领域技术人员可在如所附权利要求所表示的本发明的原理和范围内对本文中已描述及说明以解释本发明本质的详情、材料、步骤及零件配置作出多种其他改变。因此,本发明并不意欲局限于上文和/或附图中给出的实施例中的特定实施方案。

Claims (13)

1.一种在基质上形成SiCOH膜层的方法,所述方法包括以下步骤:
-提供安置有至少一个基质的反应室;
-向反应室中引入含Si-(CH2)n-Si的前驱体,其中n=1或2,含Si-(CH2)n-Si的前驱体选自由以下组成的组:
Figure FDA00002026429600011
(式I,其中n=1)
Figure FDA00002026429600012
(式2,其中n=2)
其中R1至R4各自独立地选自由H、甲基、乙基、丙基、乙烯基和C1-C3烷氧基组成的组;R5选自由甲基、乙基和丙基组成的组;优选R1至R4中至少一个为甲基、乙基或丙基;且R1至R3中至少一个为烷氧基,其可与-OR5相同或不同;
-向反应室中引入具有式Si(R1)x(O(R2))4-x的含乙烯基的前驱体,其中至少一个R1为乙烯基,任选第二R1为氢或烷基,优选甲基或乙基;各R2独立地选自烷基,优选甲基或乙基;且x为1或2;和
-向反应室中引入致孔剂;及
-使Si-(CH2)n-Si前驱体、含乙烯基的前驱体、致孔剂和基质接触以使用沉积方法,优选化学气相沉积在基质的至少一个表面上形成SiCOH膜。
2.根据权利要求1的方法,其中该含乙烯基的前驱体选自由乙烯基二乙氧基硅烷、乙烯基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基甲基二甲氧基硅烷和乙烯基甲基二乙氧基硅烷组成的组,优选为乙烯基三乙氧基硅烷或乙烯基甲基二乙氧基硅烷。
3.根据权利要求1或2的方法,其中致孔剂为经取代或未经取代的双环[2.2.1]庚-2,5-二烯。
4.根据权利要求1-3中任一项的方法,其中沉积方法为单频PECVD。
5.根据权利要求1-4中任一项的方法,其进一步包含使SiCOH膜变得多孔的步骤。
6.根据权利要求1-5中任一项的方法,其中R1至R4不为H。
7.根据权利要求6的方法,其中含Si-(CH2)n-Si的前驱体选自由(EtO)3Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)2H、Me(OEt)2Si-CH2-Si(OEt)HMe、Me2(OEt)Si-CH2-Si(OEt)2H、(EtO)Me2SiCH2Si(OMe)2H、Me2(OEt)Si-CH2-Si(OEt)HMe、(OEt)3Si-CH2-Si(OEt)HMe、(EtO)3Si-CH2-Si(OMe)HMe、Me(OMe)2Si-CH2-Si(OMe)2H、Me(OMe)2Si-CH2-Si(OMe)HMe、Me2(OMe)SiCH2Si(OMe)2H和Me2(OEt)Si-CH2-Si(OMe)HMe组成的组,优选Me(OEt)2Si-CH2-Si(OEt)2H、Me2(OEt)Si-CH2-Si(OEt)2H和Me(OEt)2Si-CH2-Si(OEt)HMe。
8.根据权利要求6的方法,其中含Si-(CH2)n-Si的前驱体选自由(EtO)3Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me(OEt)2Si-CH2CH2-Si(OEt)HMe、Me2(OEt)Si-CH2CH2-Si(OEt)2H、(EtO)Me2Si-CH2CH2Si(OMe)2H、Me2(OEt)Si-CH2CH2-Si(OEt)HMe、(OEt)3Si-CH2CH2-Si(OEt)HMe、(EtO)3Si-CH2CH2-Si(OMe)HMe、Me(OMe)2Si-CH2CH2-Si(OMe)2H、Me(OMe)2Si-CH2CH2-Si(OMe)HMe、Me2(OMe)Si-CH2CH2Si(OMe)2H和Me2(OEt)Si-CH2CH2-Si(OMe)HMe组成的组,优选Me(OEt)2Si-CH2CH2-Si(OEt)2H、Me2(OEt)Si-CH2CH2-Si(OEt)2H和Me(OEt)2Si-CH2CH2-Si(OEt)HMe。
9.根据权利要求1-5中任一项的方法,其中R1至R3中仅一个为H。
10.根据权利要求9的方法,其中含Si-(CH2)n-Si的前驱体选自由MeH(OMe)Si-CH2-Si(OMe)HMe、(EtO)2HSi-CH2-Si(OEt)2H、(EtO)HMeSi-CH2-Si(OEt)HMe和(iPrO)HMeSi-CH2-Si(OiPr)HMe组成的组。
11.根据权利要求6的方法,其中SiCOH膜具有低于以下两者的介电常数:(1)由含Si-(CH2)n-Si的前驱体和致孔剂形成的SiCOH膜的介电常数;和(2)由含乙烯基的前驱体和致孔剂形成的SiCOH膜的介电常数。
12.根据权利要求1-11中任一项的方法形成的膜。
13.根据权利要求12的膜,其中所述膜具有在约2.0至约2.7、优选约2.0至约2.5的范围内的介电常数,及在约4GPa至约10GPa、优选约5GPa至约10GPa的范围内的杨氏模量。
CN201180010066.3A 2010-02-17 2011-02-17 SiCOH低K膜的气相沉积法 Expired - Fee Related CN102762763B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30549110P 2010-02-17 2010-02-17
US61/305,491 2010-02-17
PCT/US2011/025234 WO2011103282A2 (en) 2010-02-17 2011-02-17 VAPOR DEPOSITION METHODS OF SiCOH LOW-K FILMS

Publications (2)

Publication Number Publication Date
CN102762763A true CN102762763A (zh) 2012-10-31
CN102762763B CN102762763B (zh) 2014-12-31

Family

ID=44483561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180010066.3A Expired - Fee Related CN102762763B (zh) 2010-02-17 2011-02-17 SiCOH低K膜的气相沉积法

Country Status (8)

Country Link
US (1) US8932674B2 (zh)
EP (1) EP2536867A4 (zh)
JP (1) JP2013520030A (zh)
KR (1) KR20130043084A (zh)
CN (1) CN102762763B (zh)
SG (1) SG183291A1 (zh)
TW (1) TWI550121B (zh)
WO (1) WO2011103282A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073030A (zh) * 2016-11-02 2019-07-30 弗萨姆材料美国有限责任公司 甲硅烷基桥联烷基化合物用于致密osg膜的用途

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788350B2 (ja) * 2012-03-23 2015-09-30 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
WO2014015248A1 (en) * 2012-07-20 2014-01-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Organosilane precursors for ald/cvd silicon-containing film applications
CN103258734B (zh) * 2013-05-16 2016-03-30 复旦大学 一种SiCOH薄膜及其制备方法
TW201509799A (zh) 2013-07-19 2015-03-16 Air Liquide 用於ald/cvd含矽薄膜應用之六配位含矽前驅物
US9382268B1 (en) 2013-07-19 2016-07-05 American Air Liquide, Inc. Sulfur containing organosilane precursors for ALD/CVD silicon-containing film applications
US10570513B2 (en) 2014-12-13 2020-02-25 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications and methods of using the same
US20180202042A1 (en) * 2015-07-09 2018-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Alkylamino-substituted halocarbosilane precursors
KR102624608B1 (ko) 2016-01-19 2024-01-16 삼성전자주식회사 저유전막의 형성 방법 및 이를 이용한 반도체 소자의 제조 방법
TWI753794B (zh) 2016-03-23 2022-01-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 形成含矽膜之組成物及其製法與用途
US9831118B1 (en) 2016-05-24 2017-11-28 Sandisk Technologies Llc Reducing neighboring word line in interference using low-k oxide
US11600486B2 (en) * 2020-09-15 2023-03-07 Applied Materials, Inc. Systems and methods for depositing low-κdielectric films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080629A2 (en) * 2004-02-19 2005-09-01 Degussa Ag SILICON COMPOUNDS FOR PRODUCING SiO2-CONTAINING INSULATING LAYERS ON CHIPS
JP2009132855A (ja) * 2007-11-01 2009-06-18 Jsr Corp ケイ素含有膜形成用組成物、ケイ素含有絶縁膜、およびケイ素含有絶縁膜の形成方法
WO2009119583A1 (ja) * 2008-03-26 2009-10-01 Jsr株式会社 化学気相成長法用材料ならびにケイ素含有絶縁膜およびその製造方法

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791308B2 (ja) 1989-06-20 1995-10-04 信越化学工業株式会社 トリアルキルシリルメチル基含有シラン化合物
US5296624A (en) 1992-11-25 1994-03-22 Huls America, Inc. Preparation of sterically-hindered organosilanes
US5989998A (en) 1996-08-29 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method of forming interlayer insulating film
US6159871A (en) 1998-05-29 2000-12-12 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6312793B1 (en) 1999-05-26 2001-11-06 International Business Machines Corporation Multiphase low dielectric constant material
US6558747B2 (en) 1999-09-29 2003-05-06 Kabushiki Kaisha Toshiba Method of forming insulating film and process for producing semiconductor device
US6410151B1 (en) 1999-09-29 2002-06-25 Jsr Corporation Composition for film formation, method of film formation, and insulating film
US6953984B2 (en) 2000-06-23 2005-10-11 International Business Machines Corporation Hydrogenated oxidized silicon carbon material
US6756323B2 (en) 2001-01-25 2004-06-29 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device
US6583048B2 (en) 2001-01-17 2003-06-24 Air Products And Chemicals, Inc. Organosilicon precursors for interlayer dielectric films with low dielectric constants
KR20030002993A (ko) 2001-06-29 2003-01-09 학교법인 포항공과대학교 저유전체 박막의 제조방법
US20080268177A1 (en) 2002-05-17 2008-10-30 Air Products And Chemicals, Inc. Porogens, Porogenated Precursors and Methods for Using the Same to Provide Porous Organosilica Glass Films with Low Dielectric Constants
US7384471B2 (en) 2002-04-17 2008-06-10 Air Products And Chemicals, Inc. Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants
US6846515B2 (en) 2002-04-17 2005-01-25 Air Products And Chemicals, Inc. Methods for using porogens and/or porogenated precursors to provide porous organosilica glass films with low dielectric constants
US6936551B2 (en) 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
JP3734463B2 (ja) 2002-08-09 2006-01-11 錦湖石油化學株式會▲社▼ ドミナントネガティブなカルコンシンターゼをコードする遺伝子配列およびその使用
US6797643B2 (en) 2002-10-23 2004-09-28 Applied Materials Inc. Plasma enhanced CVD low k carbon-doped silicon oxide film deposition using VHF-RF power
TWI282124B (en) 2002-11-28 2007-06-01 Tosoh Corp Insulating film material containing an organic silane compound, its production method and semiconductor device
US7288292B2 (en) 2003-03-18 2007-10-30 International Business Machines Corporation Ultra low k (ULK) SiCOH film and method
JP2004288979A (ja) 2003-03-24 2004-10-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude 絶縁膜の成膜方法
US7241704B1 (en) 2003-03-31 2007-07-10 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US20050260420A1 (en) 2003-04-01 2005-11-24 Collins Martha J Low dielectric materials and methods for making same
US8137764B2 (en) 2003-05-29 2012-03-20 Air Products And Chemicals, Inc. Mechanical enhancer additives for low dielectric films
US7022864B2 (en) 2003-07-15 2006-04-04 Advanced Technology Materials, Inc. Ethyleneoxide-silane and bridged silane precursors for forming low k films
US7345000B2 (en) * 2003-10-10 2008-03-18 Tokyo Electron Limited Method and system for treating a dielectric film
JP2005133060A (ja) 2003-10-29 2005-05-26 Rohm & Haas Electronic Materials Llc 多孔性材料
US7390537B1 (en) * 2003-11-20 2008-06-24 Novellus Systems, Inc. Methods for producing low-k CDO films with low residual stress
US7030468B2 (en) 2004-01-16 2006-04-18 International Business Machines Corporation Low k and ultra low k SiCOH dielectric films and methods to form the same
US20050196974A1 (en) 2004-03-02 2005-09-08 Weigel Scott J. Compositions for preparing low dielectric materials containing solvents
US7049247B2 (en) 2004-05-03 2006-05-23 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
JP2006024670A (ja) 2004-07-07 2006-01-26 Sony Corp 半導体装置の製造方法
EP1615260A3 (en) 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
JP2006040936A (ja) 2004-07-22 2006-02-09 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude 絶縁膜の成膜方法および絶縁膜成膜装置
US7491658B2 (en) 2004-10-13 2009-02-17 International Business Machines Corporation Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
JP2006111738A (ja) 2004-10-15 2006-04-27 Jsr Corp 表面疎水化用組成物、表面疎水化方法、半導体装置およびその製造方法
US7229934B2 (en) 2004-10-18 2007-06-12 International Business Machines Corporation Porous organosilicates with improved mechanical properties
US7892648B2 (en) 2005-01-21 2011-02-22 International Business Machines Corporation SiCOH dielectric material with improved toughness and improved Si-C bonding
JP5324734B2 (ja) 2005-01-21 2013-10-23 インターナショナル・ビジネス・マシーンズ・コーポレーション 誘電体材料とその製造方法
US7202564B2 (en) 2005-02-16 2007-04-10 International Business Machines Corporation Advanced low dielectric constant organosilicon plasma chemical vapor deposition films
JP2006241305A (ja) 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd 膜形成用組成物、絶縁膜、およびその製造方法
FR2887252A1 (fr) 2005-06-21 2006-12-22 Air Liquide Procede de formation d'un film dielectrique et nouveaux precurseurs pour la mise en oeuvre de ce procede
SG165359A1 (en) 2005-09-12 2010-10-28 Fujifilm Electronic Materials Additives to prevent degradation of cyclic alkene derivatives
US7381659B2 (en) 2005-11-22 2008-06-03 International Business Machines Corporation Method for reducing film stress for SiCOH low-k dielectric materials
US7521377B2 (en) 2006-01-11 2009-04-21 International Business Machines Corporation SiCOH film preparation using precursors with built-in porogen functionality
US20070173071A1 (en) 2006-01-20 2007-07-26 International Business Machines Corporation SiCOH dielectric
JP2007221039A (ja) 2006-02-20 2007-08-30 National Institute For Materials Science 絶縁膜および絶縁膜材料
EP2004872A1 (en) 2006-03-31 2008-12-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Novel pore-forming precursors composition and porous dielectric layers obtained there from
JP2007318067A (ja) 2006-04-27 2007-12-06 National Institute For Materials Science 絶縁膜材料、この絶縁膜材料を用いた成膜方法および絶縁膜
JPWO2008020592A1 (ja) 2006-08-15 2010-01-07 Jsr株式会社 膜形成用材料、ならびにケイ素含有絶縁膜およびその形成方法
WO2008099811A1 (ja) 2007-02-14 2008-08-21 Jsr Corporation ケイ素含有膜形成用材料、ならびにケイ素含有絶縁膜およびその形成方法
US7500397B2 (en) 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
US8026035B2 (en) 2007-03-30 2011-09-27 Cheil Industries, Inc. Etch-resistant disilane and saturated hydrocarbon bridged silicon-containing polymers, method of making the same, and method of using the same
WO2009008424A1 (ja) 2007-07-10 2009-01-15 Jsr Corporation ケイ素化合物の製造方法
US7998536B2 (en) 2007-07-12 2011-08-16 Applied Materials, Inc. Silicon precursors to make ultra low-K films of K<2.2 with high mechanical properties by plasma enhanced chemical vapor deposition
US7989033B2 (en) 2007-07-12 2011-08-02 Applied Materials, Inc. Silicon precursors to make ultra low-K films with high mechanical properties by plasma enhanced chemical vapor deposition
US7964442B2 (en) 2007-10-09 2011-06-21 Applied Materials, Inc. Methods to obtain low k dielectric barrier with superior etch resistivity
JP5304983B2 (ja) 2008-02-12 2013-10-02 Jsr株式会社 ケイ素含有膜形成用組成物
JP5251156B2 (ja) 2008-02-12 2013-07-31 Jsr株式会社 ケイ素含有膜およびその形成方法
JP5141885B2 (ja) 2008-02-13 2013-02-13 Jsr株式会社 ケイ素含有絶縁膜およびその形成方法
US20100143580A1 (en) 2008-05-28 2010-06-10 American Air Liquide, Inc. Stabilization of Bicycloheptadiene
JP5365785B2 (ja) 2008-05-30 2013-12-11 Jsr株式会社 有機ケイ素化合物の製造方法
US8298965B2 (en) * 2008-09-03 2012-10-30 American Air Liquide, Inc. Volatile precursors for deposition of C-linked SiCOH dielectrics
KR20110125651A (ko) * 2009-03-10 2011-11-21 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 저 유전상수 실릴화를 위한 시클릭 아미노 화합물
JP4379637B1 (ja) 2009-03-30 2009-12-09 Jsr株式会社 有機ケイ素化合物の製造方法
KR101263789B1 (ko) 2009-07-13 2013-05-13 제이에스아이실리콘주식회사 유기 클로로하이드로실란과 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080629A2 (en) * 2004-02-19 2005-09-01 Degussa Ag SILICON COMPOUNDS FOR PRODUCING SiO2-CONTAINING INSULATING LAYERS ON CHIPS
JP2009132855A (ja) * 2007-11-01 2009-06-18 Jsr Corp ケイ素含有膜形成用組成物、ケイ素含有絶縁膜、およびケイ素含有絶縁膜の形成方法
WO2009119583A1 (ja) * 2008-03-26 2009-10-01 Jsr株式会社 化学気相成長法用材料ならびにケイ素含有絶縁膜およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073030A (zh) * 2016-11-02 2019-07-30 弗萨姆材料美国有限责任公司 甲硅烷基桥联烷基化合物用于致密osg膜的用途

Also Published As

Publication number Publication date
TWI550121B (zh) 2016-09-21
KR20130043084A (ko) 2013-04-29
EP2536867A4 (en) 2013-07-10
US8932674B2 (en) 2015-01-13
EP2536867A2 (en) 2012-12-26
CN102762763B (zh) 2014-12-31
SG183291A1 (en) 2012-09-27
JP2013520030A (ja) 2013-05-30
TW201134976A (en) 2011-10-16
WO2011103282A3 (en) 2012-02-02
US20130042790A1 (en) 2013-02-21
WO2011103282A2 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
CN102762763B (zh) SiCOH低K膜的气相沉积法
TWI673278B (zh) 用於沉積含矽膜的有機胺官能基化的線性及環狀寡矽氧烷
JP6864086B2 (ja) 酸化ケイ素膜の堆積のための組成物及び方法
TWI791477B (zh) 形成含矽膜之組成物及藉由化學氣相沉積法在基板上沉積含矽膜的方法
TWI680982B (zh) 作為高成長速率含矽膜的前驅物的官能化環矽氮烷
TWI660961B (zh) 製造用於填充表面特徵的低k膜的前驅物及流動cvd方法
KR102442026B1 (ko) 알콕시실라사이클릭 또는 아실옥시실라사이클릭 화합물 및 이를 사용하여 막을 증착시키기 위한 방법
JP6868640B2 (ja) Si含有膜形成用組成物並びにそれを製造及び使用する方法
CN109804101A (zh) 用于高生长速率含硅膜的碳桥联氨基硅烷化合物
Seo et al. Organic and organic–inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application
TWI667249B (zh) 用於沉積含矽膜的有機胺基-多矽氧烷
TWI798765B (zh) 用於鍺種子層的組合物及使用其的方法
TWI822044B (zh) 用於氣相沉積一介電膜的組合物及用於沉積一有機矽膜的方法
TWI776109B (zh) 在550°C或更高的溫度下使用ALD沈積含Si膜之先質及製程
CN110952074B (zh) 硅化合物和使用硅化合物沉积膜的方法
KR20220035506A (ko) 규소 화합물 및 이를 사용하여 막을 증착시키는 방법
JPWO2022020705A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20190217

CF01 Termination of patent right due to non-payment of annual fee