CN102686532B - Ntc热敏电阻用半导体瓷器组合物及ntc热敏电阻 - Google Patents

Ntc热敏电阻用半导体瓷器组合物及ntc热敏电阻 Download PDF

Info

Publication number
CN102686532B
CN102686532B CN201080060023.1A CN201080060023A CN102686532B CN 102686532 B CN102686532 B CN 102686532B CN 201080060023 A CN201080060023 A CN 201080060023A CN 102686532 B CN102686532 B CN 102686532B
Authority
CN
China
Prior art keywords
ntc thermistor
mole
resistance
ceramic composition
ntc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080060023.1A
Other languages
English (en)
Other versions
CN102686532A (zh
Inventor
三上三知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN102686532A publication Critical patent/CN102686532A/zh
Application granted granted Critical
Publication of CN102686532B publication Critical patent/CN102686532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element

Abstract

本发明提供一种NTC热敏电阻用半导体瓷器组合物,其焙烧温度依赖性低,且可缩小电阻调整操作后的电阻值的偏差,又,可缩小高温环境下的电阻变动。本发明涉及用以构成NTC热敏电阻(1)的部件本体(2)所使用的半导体瓷器组合物,其包含Mn、Ni及Fe,Mn与Ni合计设为100摩尔%时,各个元素的摩尔比率为Mn:70~80摩尔%,Ni:20~30摩尔%,且将Mn与Ni的总摩尔量设为100摩尔份时,Fe含量为15摩尔份以上且25摩尔份以下。较佳为将Mn与Ni的总摩尔量为100摩尔份时,以2摩尔份以上且40摩尔份以下的范围还含有Co。

Description

NTC热敏电阻用半导体瓷器组合物及NTC热敏电阻
技术领域
本发明涉及NTC热敏电阻用半导体瓷器组合物及NTC热敏电阻,尤其涉及含Mn、Ni及Fe的NTC热敏电阻用半导体瓷器组合物及使用其构成的NTC热敏电阻。
背景技术
NTC热敏电阻已知有例如针对温度补偿用或温度检测用等用途。又,近年来,随着电子机器小型化及电路复杂化,谋求NTC热敏电阻自身特性的小偏差化。即,例如电阻值的偏差,先前容许在±5%以内,但最近要求至±1~0.5%以内。
关于上述小偏差化,更具体而言,谋求即使将NTC热敏电阻放置于125℃高温下,进而为对应车载而在175℃的更高温下,其特性也不易随时间变化,并且,谋求由制造步骤上可能不可避免产生的偏差特性的影响较小即制造成品率良好。
尤其关于后者的对因制造步骤上的条件偏差特性引起的影响,更详细说明,NTC热敏电阻的特性易受到制造步骤上的条件偏差、尤其焙烧步骤中的焙烧温度的偏差影响。例如由于焙烧炉的条件、应成为NTC热敏电阻的未焙烧片向炉内的投入量(充填量)及炉内的配置、焙烧炉的运转日的气象条件等,会导致影响未焙烧片的焙烧温度于未焙烧片间不期望地分散,其结果,会导致各个NTC热敏电阻的焙烧历程互不相同的事态。因此,可能会对所得NTC热敏电阻的电阻值等特性产生偏差。
如此,NTC热敏电阻的特性具有所谓焙烧温度依赖性比较大的倾向。
另一方面,对于NTC热敏电阻的特性偏差,作为焙烧后可对应的方法,已知有例如形成外部电极后于250~500℃温度下实施热处理,欲获得目标电阻值的电阻调整方法。但,由该热处理带来的电阻值的变化率因NTC热敏电阻中所使用的半导体瓷器组合物的组成或形状而不同,因此也有通过热处理获得目标值般的电阻值较困难的情形。
作为对于本发明有兴趣的NTC热敏电阻用半导体瓷器组合物,例如日本特开平6-263518号公报(专利文献1)中揭示有以通式FezNixMn3-x- zO4(x=0.84~1并且0<z<1.6)表示的NTC热敏电阻瓷器组合物。根据专利文献1,该瓷器组合物于高温下的电阻变化率较小。
但,可知专利文献1所记载的瓷器组合物的情形中,焙烧温度依赖性较大。
另一方面,日本特开2005-150289号公报(专利文献2)中揭示有一种热敏电阻用组合物,其包含锰氧化物、镍氧化物、铁氧化物与锆氧化物,作为主成份,含有将锰氧化物以Mn换算为a摩尔%(其中a为45~95,除去45与95),且将镍氧化物以Ni换算为(100-a)摩尔%,使该主成份作为100重量%时,含有将铁氧化物以Fe2O3换算为0~55重量%(其中,除去0重量%与55重量%),且将锆氧化物以ZrO2换算为0~15重量%(其中,除去0重量%与15重量%)。根据专利文献2,通过该组合物于高温高湿使用下的电阻变化率较小,且可将低温侧(25~-40℃)下的B常数大范围地调整,而可对应于要求广范围的电路设计。
但,可知专利文献2所记载的热敏电阻用组合物易受制造条件的影响,由此成品率较差,尤其高温放置下的可靠性不充分。
更具体说明,专利文献2的该实施例中,作为发明范围内的试料21,揭示有含Mn:80.0摩尔%及Ni:20.0摩尔%的主成份,及相对于主成份100重量%,含10.0重量%的Fe2O3的组成(换言之,相对于主成份100摩尔份,含9.51摩尔份Fe的组成),又,作为相同发明范围内的试料22,揭示有含Mn:80.0摩尔%及Ni:20.0摩尔%的主成份,及相对于主成份100重量%,含30.0重量%的Fe2O3的组成(换言之,相对于主成份100摩尔份,含28.54摩尔份的Fe的组成)。
但,根据上述试料21的组成,可知于周围温度175℃的环境下,电阻值不期望地较大变化,高温环境下的可靠性不足。
另一方面,如前述,已知通过焙烧后于250~500℃的温度下进行热处理而进行调整NTC热敏电阻的电阻值的情形中,根据上述试料22的组成,需要用于调整该电阻的比较高的温度,因此,电阻调整操作后的特性偏差易变大,由此获得稳定的特性较困难,该点上可能使成品率下降。
现有技术文献
专利文献
专利文献1:日本特开平6-263518号公报
专利文献2:日本特开2005-150289号公报
发明内容
发明所要解决的问题
因此,本发明的目的为提供一种NTC热敏电阻用半导体瓷器组合物,其焙烧温度依赖性低,且可减少电阻调整操作后的电阻值偏差,由此可提高制造成品率,又,可减少高温环境下的电阻变动。
本发明的其他目的为提供一种使用上述半导体瓷器组合物来构成的NTC热敏电阻。
解决问题的技术手段
本发明的NTC热敏电阻用半导体瓷器组合物的特征在于,包含Mn、Ni及Fe,为解决上述技术性问题,Mn与Ni合计设为100摩尔%时,各个元素的摩尔比率是Mn为70~80摩尔%,Ni为20~30摩尔%,且使Mn和Ni的总摩尔量设为100摩尔份时,Fe含量为15摩尔份以上且25摩尔份以下。
上述NTC热敏电阻用半导体瓷器组合物,优选为使Mn与Ni的总摩尔量设为100摩尔份时,还含有2摩尔份以上且40摩尔份以下的范围内的Co。
又,本发明也针对使用上述半导体瓷器组合物构成的NTC热敏电阻。本发明的NTC热敏电阻的特征在于,具备:用上述半导体瓷器组合物形成的部件本体,及夹着部件本体的至少一部份且对置设置的第1电极和第2电极。
发明效果
根据本发明,首先可获得焙烧温度依赖性低的NTC热敏电阻用半导体瓷器组合物。因此,无需焙烧时的温度条件的严密管理,由此,可简化用于制造的步骤管理,且可提高成品率,因此可谋求NTC热敏电阻的制造成本下降。
又,根据本发明,可获得125℃或175℃的高温环境下的电阻变动小,即具有高特性稳定性的NTC热敏电阻用半导体瓷器组合物。
再者,根据本发明的NTC热敏电阻用半导体瓷器组合物,如上述,即使125℃或175℃的温度下的电阻变动较小,在焙烧后的电阻调整下所应用的250~500℃温度范围下的热处理中,也可以比较低温且比较短时间地使电阻值容易变化。
另,为调整电阻,需要比较高的温度或比较长的时间的情形中,有焙烧后的用于电阻调整的热处理操作后的电阻偏差变大的倾向,但根据本发明的半导体瓷器组合物,如上述,可以比较低温且比较短时间使电阻值容易变化,因此可抑制焙烧后的用于电阻调整的热处理操作后的电阻偏差。此也有助于成品率的提高,其结果,可谋求NTC热敏电阻的成本下降。
本发明的NTC热敏电阻用半导体瓷器组合物中,使Mn和Ni的总摩尔量设为100摩尔份时,若还含有2摩尔份以上且40摩尔份以下范围内的Co,则可提高NTC热敏电阻的断裂强度。
附图说明
图1为图解显示使用本发明半导体瓷器组合物而构成的层叠型NTC热敏电阻1的剖面图。
图2为图解显示使用本发明半导体瓷器组合物而构成的单板型NTC热敏电阻21的剖面图。
具体实施方式
本发明的半导体瓷器组合物例如为用于图1所示的层叠型NTC热敏电阻1或图2所示的单板型NTC热敏电阻21中。首先,参照图1及图2,针对层叠型NTC热敏电阻1及单板型NTC热敏电阻21的结构进行说明。
参照图1,层叠型NTC热敏电阻1实质上具备长方体状的部件本体2。部件本体2具有含多个层3的层叠结构,在特定的层3之间形成内部电极4及5。内部电极4及5分类成第1内部电极4与第2内部电极5,第1内部电极4与第2内部电极5于层叠方向上交替配置。此处,形成为第1及第2内部电极4及5夹着部件本体2的一部份而对置的结构。
在部件本体2的一端面6上形成第1外部电极8,在部件本体2的另一端面7上形成第2外部电极9。这些外部电极8及9例如通过将Ag作为导电成份的导电性膏的烧结而形成。前述第1内部电极4被拉出至部件本体2的一端面6,因而与第1外部电极8电性连接,第2内部电极5被拉出至部件本体2的另一端面7,因而与第2外部电极9电性连接。
第1及第2外部电极8及9上,分别于必要时形成例如含Ni的第1镀敷膜10及11,进而在其上形成例如含Sn的第2镀敷膜12及13。
接着,参照图2,单板型NTC热敏电阻21实质上具备矩形之板状部件本体22,以夹着该部件本体22且对置的方式形成有第1及第2电极23及24。
如此的NTC热敏电阻1及21中,部件本体2及22由本发明的半导体瓷器组合物构成。
本发明的NTC热敏电阻用半导体瓷器组合物如前述,包含Mn、Ni及Fe,Mn与Ni合计设为100摩尔%时,各个元素的摩尔比率是Mn为70~80摩尔%,Ni为20~30摩尔%,且使Mn和Ni的总摩尔量设为100摩尔份时,Fe的含量为15摩尔份以上且25摩尔份以下。
如前述,如此组成的半导体瓷器组合物的焙烧温度依赖性低,且可减少电阻调整操作后的电阻值偏差,由此可提高NTC热敏电阻1及21的制造成品率。又,可减少NTC热敏电阻1及21的高温环境下的电阻变动。
又,构成部件本体2及22的半导体瓷器组合物在使Mn与Ni的总摩尔量设为100摩尔份时,若还含有2摩尔份以上且40摩尔份以下范围内的Co,则可提高NTC热敏电阻1及21的断裂强度。
接着,针对图1所示层叠型NTC热敏电阻1的制造方法的一例进行说明。
首先,作为陶瓷胚原料,准备Mn3O4、Fe2O3及NiO的各粉末,以及根据需要的Co3O4粉末,将这些粉末特定量称量,接着,将该称量物投入球磨机中,连同含氧化锆等的粉碎媒介物充分进行湿式粉碎,其后,以特定温度预烧,制成陶瓷粉末。
接着,在上述陶瓷粉末中加入特定量的有机粘合剂及水,以湿式进行混合处理成浆状,其后,使用刮刀成膜法等实施成形加工,制成应成部件本体2中各层3的陶瓷生胚片。
接着,例如使用以Ag-Pd为主成份的导电性膏,于上述陶瓷生胚片上实施网版印刷,形成应成内部电极4或5的导电性膏膜。
接着,将形成有导电性膏膜的多个陶瓷生胚片层叠,且以从外侧夹入其的方式层叠未形成有导电性膏膜的陶瓷生胚片,通过按压这些陶瓷生胚片而制作应成层叠结构的部件本体2的未加工层叠体。
接着,将该未加工层叠体视必要切断成特定尺寸后,例如收纳于氧化锆制匣中,例如以300~500℃温度进行脱粘合剂处理后,例如以1100~1200℃范围的特定温度实施焙烧处理,获得部件本体2。
其后,于部件本体2的两端面6及7上,涂布例如以Ag为主成份的导电性膏后进行烧结,形成外部电极8及9。其后,将形成有外部电极8及9的部件本体2视必要例如以250~500℃的温度进行热处理,进行电阻调整。此处,关于热处理温度及时间,根据期望的电阻变化量而改变。
接着,于外部电极8及9的表面,利用电解镀敷而形成例如含Ni的第1镀敷膜10及11,接着,形成例如含Sn的第2镀敷膜12及13。
如此,完成图1所示的层叠型NTC热敏电阻1。
另,外部电极8及9只要对于部件本体2的密接性良好即可,例如也可以溅射法或真空蒸镀法等薄膜形成方法而形成。
又,作为陶瓷胚原料使用了Mn3O4、Fe2O3、Co3O4及NiO等氧化物,但对于各Mn、Fe、Co及Ni也可使用碳酸盐、氢氧化物等。
接着,针对图2所示单板型NTC热敏电阻21的制造方法的一例进行说明。
首先,与层叠型NTC热敏电阻1的情形相同,制作陶瓷粉末,接着,使其成为浆状。其后,使用刮刀成膜法等实施成形加工,制作陶瓷生胚片,接着,以获得特定厚度的方式,通过将这些陶瓷生胚片叠放、按压,而获得应成为部件本体22的陶瓷生胚成形体。
接着,例如使用以Ag-Pd为主成份的导电性膏,在上述陶瓷生胚成形体的两面实施网版印刷,而形成应成为电极23或24的导电性膏膜。
接着,将形成有导电性膏膜的陶瓷生胚成形体视必要切断成特定尺寸后,例如收纳于氧化锆制匣内,进行脱粘合剂处理后,例如以1100~1200℃范围的特定温度实施焙烧处理。其后,视必要例如以250~500℃的温度进行特定时间的热处理、电阻调整。
如此,完成图2所示单板型NTC热敏电阻21。
另,关于上述电阻调整操作,单板型NTC热敏电阻21的情形中,也可利用切削其一部份的修整加工而进行电阻调整。与此相对,层叠型NTC热敏电阻1的情形中,实质上无法进行利用切削其一部份的修整加工的电阻调整。由此,由焙烧后的热处理的电阻调整较容易,尤其成为层叠型NTC热敏电阻1的显著优点。
接着,针对用以求得本发明的范围而实施的实验例进行说明。另,实验例中,将如图2所示单板型NTC热敏电阻作为试料而制作。
[实验例1]
首先,作为陶瓷胚原料,准备Mn3O4、Fe2O3及NiO的各粉末,将这些粉末以成为如表1所示组成的方式进行称量。表1中,在「Mn」及「Ni」的各栏内,关于Mn3O4及NiO,分别表示相对于换算成Mn及Ni的总摩尔量的摩尔量百分率,在「Fe/(Mn+Ni)」的栏内,Mn3O4与NiO分别为基于将换算成Mn及Ni时的总摩尔量设为100摩尔份时,将Fe2O3的含量换算成Fe的摩尔份而表示。
接着,将上述称量物投入球磨机中,连同含氧化锆的粉碎媒介物充分进行湿式粉碎,其后,于730℃的温度下预烧2小时,制成陶瓷粉末。
接着,在上述陶瓷粉末中加入特定量的有机粘合剂及水,以湿式进行混合处理成浆状,其后,使用刮刀成膜法实施成形加工,制成陶瓷生胚片。
接着,以获得约0.70mm厚度的方式,通过将多个上述陶瓷生胚片叠放、按压,而获得陶瓷生胚成形体。
接着,使用以Ag-Pd为主成份的导电性膏,在上述陶瓷生胚成形体的两面实施网版印刷,形成导电性膏膜。
接着,将形成有导电性膏膜的陶瓷生胚成形体以成2.0mm×2.0mm平面尺寸的方式切断后,收纳于氧化锆制匣内,进行以350℃温度保持8小时的脱粘合剂处理后,以特定温度实施焙烧处理,获得单板型NTC热敏电阻的试料。
此处,为评估焙烧温度依赖性,作为上述焙烧处理的温度,采用1100℃与1150℃,以4端子法测定各个温度下焙烧后而得的各NTC热敏电阻的室温(25℃)下的电阻值,即1100℃焙烧下的电阻值R25(1100℃)及1150℃焙烧下的电阻值R25(1150℃)。然后,基于ΔR/ΔT=[{R25(1150℃)-R25(1100℃)}/R25(1100℃)/(1150-1100)]×100式,算出相对于焙烧温度T[℃]的变动的电阻值R变化率ΔR/ΔT[%/℃]。其结果显示于表1之「ΔR/ΔT(1100-1150%间」栏内。
又,对于焙烧温度1125℃下所得的NTC热敏电阻,求得125℃及175℃的各温度下放置100小时前后的电阻变化率。即,利用4端子法,求得高温放置试验前的NTC热敏电阻的室温(25℃)下的电阻值R25(0小时),且求得125℃及175℃的各温度下放置100小时后的室温(25℃)下的电阻值R25(100小时),并基于ΔR/R={R25(100小时)-电阻值R25(0小时)}/电阻值R25(0小时)式,算出电阻变化率ΔR/R[%]。其结果对于125℃放置是显示于表1的「ΔR/R(125℃)」,及175℃的放置是显示于「ΔR/R(175℃)」的各栏内。
又,对于焙烧温度1125℃下所得的NTC热敏电阻,评估实施电阻调整操作后的电阻偏差。即,250~500℃的范围内,将由4端子法求得的电阻值5%变化(增加)的热处理温度按每试料地改变而采用,基于R3CV=标准偏差/平均值×300式,算出该温度下实施保持2小时的热处理后的电阻偏差R3CV[%]。其结果显示于表1的「电阻调整后R3CV」栏内。
[表1]
Figure BDA00001829018100091
表1中,试料编号中附*为本发明范围外的试料。另,本发明范围内的试料为,
对于「ΔR/ΔT(1100-1150℃间)」,满足1.0%/℃以下,
对于「ΔR/R(125℃)」,满足1.0%以下,
对于「ΔR/R(175℃)」,满足3.0%以下,
对于「电阻调整后R3CV」,满足15.0%以下。
本发明范围外的试料1中,「Mn」超过80摩尔%(「Ni」不满20摩尔%)。此时,「ΔR/R(125℃)」超过1.0%,且「ΔR/R(175℃)」超过3.0%,可知高温环境下的电阻变动大,可靠性差。此推测为是半导体瓷器组合物的烧结体中,立方晶的一部份变化成正方晶之故。
本发明范围外的试料2中,「Fe/(Mn+Ni)」不满15摩尔份。此时,「ΔR/R(175℃)」超过3.0%,可知高温环境下的电阻变动大,可靠性差。
本发明范围外的试料8及9中,「Fe/(Mn+Ni)」超过25摩尔份。这些情形中,「电阻调整后R3CV」超过15.0%,可知电阻调整操作后的电阻偏差大。这是由于调整电阻上所必要的温度变高之故。
本发明范围外的试料16中,「Ni」超过30摩尔%(「Mn」不满70摩尔%)。此时,「ΔR/ΔT(1100-1150℃)」超过1.0%,可知焙烧温度依赖性较高。此推测为是半导体瓷器组合物的烧结体中生成有NiO岩盐相之故。
与此相对,根据本发明范围内的试料3~7及10~15,「ΔR/ΔT(1100-1150℃间)」为1.0%/℃以下,焙烧温度依赖性较低,又,「ΔR/R(125℃)」为1.0%以下,且「ΔR/R(175℃)」为3.0%以下,可知高温环境下的电阻变动小,可靠性高,又,「电阻调整后R3CV」为15.0%以下,可知电阻调整操作后的电阻偏差较小。
[实验例2]
实验例2中,确认因含有Co的断裂强度的提高效果。
首先,作为陶瓷胚原料,除Mn3O4、Fe2O3及NiO的各粉末外,准备Co3O4粉末,将这些粉末以成如表2所示组成的方式进行称量。表2中,关于「Mn」、「Ni」及「Fe/(Mn+Ni)」的各栏内,以与表1的情形相同的表示方法表示,在「Co/(Mn+Ni)」的栏内,用Mn3O4与NiO分别为基于将换算成Mn及Ni时的总摩尔量设为100摩尔份时的、Co3O4的含量换算成Co的摩尔份而表示。
其后,经过与实验例1的情形相同的操作,制成陶瓷生胚片。接着,通过将所得多个陶瓷生胚片以获得约1.00mm厚度的方式进行叠放、按压,而获得陶瓷生胚成形体。接着,将陶瓷生胚成形体以成宽度3.0mm,长度50mm的方式切断后,收纳于氧化锆匣内,进行350℃的温度下保持8小时的脱粘合剂处理后,于1125℃的温度下实施焙烧处理,获得短条状的NTC热敏电阻的试料。
对所得各试料的NTC热敏电阻评估断裂强度。评估使用岛沣制作所制「AUTOGRAPH(AG-1)」,按以下试验条件实施3点弯曲试验,测量试验片破坏的最大荷重(P)。由所得最大荷重(P)与经测量长度的试料片的尺寸(宽度:w,厚度:t)按以下式(1)的计算式算出断裂强度。
[试验条件]
支点间距离(L):30mm
十字头速度:0.5mm/分
[式(1)]
(断裂强度)=3×P×L/(2×w×t2)
其结果显示于表2。
[表2]
Figure BDA00001829018100111
表2中,试料编号附*为Co含量偏离优选范围的试料。另,Co含量的优选范围为基于比未添加Co之试料21的情形进而提高断裂强度而规定。
试料22及23中,「Co/(Mn+Ni)」不满2.0摩尔份。这些情形中,无法获得超过「Co/(Mn+Ni)」为0摩尔份的试料21的断裂强度,无法显现Co的添加效果。
另一方面,试料28及29中,「Co/(Mn+Ni)」超过40.0摩尔份。此时也无法获得超过「Co/(Mn+Ni)」为0摩尔份的试料21的断裂强度,相反,由于Co添加而断裂强度下降。此推测为半导体瓷器组合物的烧结体中生成有CoO岩盐相之故。
符号说明
1、21    NTC热敏电阻
2、22    部件本体
4、5     内部电极
23、24   电极

Claims (3)

1.一种NTC热敏电阻用半导体瓷器组合物,其特征在于,
由Mn、Ni及Fe构成,将Mn和Ni合计设为100摩尔%时,各个元素的摩尔比率为Mn:70~80摩尔%,Ni:20~30摩尔%,且
将Mn和Ni的总摩尔量设为100摩尔份时,Fe的含量为15摩尔份以上且25摩尔份以下。
2.如权利要求1所述的NTC热敏电阻用半导体瓷器组合物,其中,将Mn和Ni的总摩尔量设为100摩尔份时,还含有2摩尔份以上且40摩尔份以下的范围的Co。
3.一种NTC热敏电阻,其具备:
用权利要求1或2所述的半导体瓷器组合物形成的部件本体,以及
夹着所述部件本体的至少一部份且对置设置的第1电极及第2电极。
CN201080060023.1A 2010-01-12 2010-12-28 Ntc热敏电阻用半导体瓷器组合物及ntc热敏电阻 Active CN102686532B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010003890 2010-01-12
JP2010-003890 2010-01-12
PCT/JP2010/073682 WO2011086850A1 (ja) 2010-01-12 2010-12-28 Ntcサーミスタ用半導体磁器組成物およびntcサーミスタ

Publications (2)

Publication Number Publication Date
CN102686532A CN102686532A (zh) 2012-09-19
CN102686532B true CN102686532B (zh) 2014-05-28

Family

ID=44304132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080060023.1A Active CN102686532B (zh) 2010-01-12 2010-12-28 Ntc热敏电阻用半导体瓷器组合物及ntc热敏电阻

Country Status (5)

Country Link
US (1) US8547198B2 (zh)
JP (1) JPWO2011086850A1 (zh)
CN (1) CN102686532B (zh)
TW (1) TWI433827B (zh)
WO (1) WO2011086850A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491756B (zh) * 2011-11-16 2015-03-18 重庆仪表材料研究所 一种水热法制备纳米热敏粉体的方法
JP6751570B2 (ja) * 2016-02-29 2020-09-09 ビークルエナジージャパン株式会社 リチウムイオン電池モジュール
DE102016014130B3 (de) * 2016-11-25 2017-11-23 Isabellenhütte Heusler Gmbh & Co. Kg Strommessvorrichtung
KR102500653B1 (ko) * 2018-05-04 2023-02-16 엘지이노텍 주식회사 액체 렌즈 제어 회로, 카메라 모듈 및 액체 렌즈 제어 방법
CN112334432B (zh) 2018-07-05 2022-09-30 株式会社村田制作所 陶瓷构件及电子元件
EP3901115A1 (en) * 2020-04-24 2021-10-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO A printable ntc ink composition and method of manufacturing thereof
CN113896512A (zh) * 2021-11-03 2022-01-07 句容市博远电子有限公司 用于制备ntc热敏电阻芯片的组合物及其制成的ntc热敏电阻
CN114455939B (zh) * 2022-01-07 2022-11-01 广东风华高新科技股份有限公司 一种高阻值高b值的ntc热敏电阻材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588574A (zh) * 2004-09-02 2005-03-02 中国科学院新疆理化技术研究所 负温度系数热敏电阻材料及其制造方法
CN1624821A (zh) * 2004-12-21 2005-06-08 上海维安热电材料股份有限公司 由半导体陶瓷制成的ntc热敏电阻元件
CN101116154A (zh) * 2005-02-08 2008-01-30 株式会社村田制作所 表面安装型负特性热敏电阻
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733667B2 (ja) * 1988-07-14 1998-03-30 ティーディーケイ株式会社 半導体磁器組成物
JPH03214703A (ja) * 1990-01-19 1991-09-19 Tdk Corp サーミスタ素子
US5246628A (en) * 1990-08-16 1993-09-21 Korea Institute Of Science & Technology Metal oxide group thermistor material
KR930005249B1 (ko) * 1990-08-16 1993-06-17 한국과학기술연구원 금속산화물계 써미스터 재료
JP2948933B2 (ja) * 1991-03-13 1999-09-13 ティーディーケイ株式会社 サーミスタ用組成物
JPH05261437A (ja) 1991-05-20 1993-10-12 Hirai Seimitsu:Kk マーク付金属条
JP2889422B2 (ja) * 1992-02-04 1999-05-10 コーア株式会社 チツプ型サーミスタ及びその製造方法
EP0609776A1 (de) * 1993-02-05 1994-08-10 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG Sinterkeramik für hochstabile Thermistoren und Verfahren zu ihrer Herstellung
JPH09162013A (ja) * 1995-12-04 1997-06-20 Matsushita Electric Ind Co Ltd サーミスタ用酸化物半導体及びその製造方法とサーミスタ
JP2000086336A (ja) * 1998-09-11 2000-03-28 Matsushita Electric Ind Co Ltd 正特性サーミスタの製造方法
JP4850330B2 (ja) * 1999-09-16 2012-01-11 宇部興産株式会社 サーミスタ組成物およびその製造方法、サーミスタ素子
JP4488325B2 (ja) * 2000-03-23 2010-06-23 コーア株式会社 サーミスタ用の組成物およびその作製方法並びにその組成物を用いたサーミスタ
JP4292057B2 (ja) 2003-11-13 2009-07-08 Tdk株式会社 サーミスタ用組成物及びサーミスタ素子
US7387537B1 (en) * 2007-01-03 2008-06-17 Tyco Electronics Corporation Connector system for solar cell roofing tiles
JP5309586B2 (ja) * 2008-02-06 2013-10-09 Tdk株式会社 サーミスタ用組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588574A (zh) * 2004-09-02 2005-03-02 中国科学院新疆理化技术研究所 负温度系数热敏电阻材料及其制造方法
CN1624821A (zh) * 2004-12-21 2005-06-08 上海维安热电材料股份有限公司 由半导体陶瓷制成的ntc热敏电阻元件
CN101116154A (zh) * 2005-02-08 2008-01-30 株式会社村田制作所 表面安装型负特性热敏电阻
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2000-86336A 2000.03.28

Also Published As

Publication number Publication date
US8547198B2 (en) 2013-10-01
TW201139326A (en) 2011-11-16
WO2011086850A1 (ja) 2011-07-21
CN102686532A (zh) 2012-09-19
US20120268234A1 (en) 2012-10-25
JPWO2011086850A1 (ja) 2013-05-16
TWI433827B (zh) 2014-04-11

Similar Documents

Publication Publication Date Title
CN102686532B (zh) Ntc热敏电阻用半导体瓷器组合物及ntc热敏电阻
US8035474B2 (en) Semi-conductive ceramic material and NTC thermistor using the same
CN104513061A (zh) 半导体陶瓷组合物以及ptc热敏电阻
US10961159B2 (en) Ceramic material, component, and method for producing the component
US20110002083A1 (en) Ceramic material and electronic device
JP6530569B2 (ja) サーミスタ焼結体及びサーミスタ素子
US8669841B2 (en) Semiconductor ceramic composition for NTC thermistors
US11929193B2 (en) NTC compound, thermistor and method for producing the thermistor
US20080169445A1 (en) Piezoelectric ceramic composition and piezoelectric component
CN103811139A (zh) 片状热敏电阻
KR102561933B1 (ko) Ntc 써미스터용 조성물 및 이를 이용한 ntc 써미스터
JPH07235405A (ja) サーミスタ焼結体
JP2007096205A (ja) チップ型ntc素子
JPWO2020090489A1 (ja) サーミスタ焼結体および温度センサ素子
CN203311954U (zh) 层叠型ptc热敏电阻
US11387021B2 (en) Ceramic member and electronic device
JPWO2020090309A1 (ja) サーミスタ焼結体および温度センサ素子
JP6828256B2 (ja) Ntcサーミスタ素子
WO1995018455A1 (fr) Thermistance a corps fritte et dispositif a thermistance utilisant ce corps
JPS5918807B2 (ja) 磁気コンデンサ材料
CN203480966U (zh) 层叠型ptc热敏电阻
JP5944123B2 (ja) 電圧非直線性抵抗素子の製造方法
KR101102698B1 (ko) 써미스터 및 그 제조 방법
JP2002193665A (ja) サーミスタ用半導体磁器及びそれを用いたチップ型サーミスタ
JP2006008484A (ja) 低温焼成誘電体磁器組成物及び誘電体部品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant