CN102598317A - 多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法 - Google Patents

多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法 Download PDF

Info

Publication number
CN102598317A
CN102598317A CN2010800466035A CN201080046603A CN102598317A CN 102598317 A CN102598317 A CN 102598317A CN 2010800466035 A CN2010800466035 A CN 2010800466035A CN 201080046603 A CN201080046603 A CN 201080046603A CN 102598317 A CN102598317 A CN 102598317A
Authority
CN
China
Prior art keywords
layer
nitride semiconductor
semiconductor layer
semiconductor device
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800466035A
Other languages
English (en)
Inventor
南玉铉
李东轩
俞根镐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul Viosys Co Ltd
Industry Academic Cooperation Foundation of Korea Polytechnic University
Original Assignee
Industry Academic Cooperation Foundation of Korea Polytechnic University
Seoul Optodevice Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Korea Polytechnic University, Seoul Optodevice Co Ltd filed Critical Industry Academic Cooperation Foundation of Korea Polytechnic University
Publication of CN102598317A publication Critical patent/CN102598317A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

提供了一种非极性/半极性半导体器件及其制造方法,该非极性/半极性半导体器件具有降低的氮化物半导体层的缺陷密度及提高的内部量子效率和光提取效率。用于制造半导体器件的方法在具有用于生长非极性或半极性氮化物半导体层的晶面的蓝宝石基底、SiC基底或Si基底上形成模板层和半导体器件结构。所述制造方法包括:在基底上形成氮化物半导体层;执行多孔表面改性,使得氮化物半导体层具有多个孔;通过在表面改性的氮化物半导体层上再生长氮化物半导体层来形成模板层;以及在模板层上形成半导体器件结构。

Description

多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法
技术领域
本发明涉及一种半导体光学器件及其制造方法,更具体地讲,涉及一种高品质非极性/半极性半导体器件及其制造方法。在高品质非极性/半极性半导体器件中,在能够生长非极性/半极性氮化物半导体层的蓝宝石晶面上形成非极性/半极性氮化物半导体晶体,从而不会在氮化物半导体层中出现在极性氮化物半导体层中产生的压电效应。此外,在形成在蓝宝石基底上方的模板层上的多孔GaN层上再生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1),以降低GaN层的缺陷密度并改善GaN层的内部量子效率和光提取效率。
背景技术
由于诸如GaN的第III-V主族氮化物半导体(也被简称为“氮化物半导体”)具有优异的物理和化学性质,所以近来已经将第III-V主族氮化物半导体看作诸如发光二极管(LED)、激光二极管(LD)和太阳能电池的半导体光学器件的主要材料。通常第III-V主族氮化物半导体由具有实验式InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,0≤x+y≤1)的半导体材料构成。这种氮化物半导体光学器件应用为诸如移动电话的键盘、电子显示板和照明装置之类的各种产品的光源。
具体地讲,随着使用LED或LD的数字产品的发展,对具有更高亮度和更高可靠性的氮化物半导体光学器件的需求增加。例如,由于移动电话的发展趋势为更纤薄,所以要求用作移动电话的背光的侧视型LED要更亮更薄。然而,如果在使用C面(例如,(0001)面)作为蓝宝石晶面的蓝宝石基底上生长诸如极性GaN的氮化物半导体,则由于形成极化场而导致的压电效应会降低内部量子效率。
因此,需要在蓝宝石基底上形成非极性/半极性氮化物半导体。然而,由于适于使用非极性/半极性GaN等形成模板层的蓝宝石与形成在蓝宝石上的非极性/半极性氮化物半导体模板层之间的晶格失配以及构成元件之间的热膨胀系数的差异,会导致诸如线缺陷和面缺陷的晶体缺陷。这样的晶体缺陷对光学器件的可靠性(例如,抗静电放电(ESD))产生不良影响,并且还导致光学器件内的电流泄漏。结果,光学器件的量子效率会降低,从而导致光学器件的性能劣化。
已经进行各种尝试来减少氮化物半导体层的晶体缺陷。各种尝试中的一种就是利用选择性外延生长。然而,这些尝试需要高成本和复杂的工艺,诸如SiO2掩模沉积。另外,可通过在蓝宝石基底上形成低温缓冲层,然后在低温缓冲层上形成GaN来减少晶体缺陷。然而,这并不足以解决光学器件的晶体缺陷问题。因此,需要解决由于晶体缺陷而导致光学器件的亮度和可靠性劣化的问题。
发明内容
技术目的
本发明的一方面在于提出一种高品质的非极性/半极性半导体器件及其制造方法。在该高品质的非极性/半极性半导体器件中,在能够生长非极性/半极性氮化物半导体层的蓝宝石晶面上形成氮化物半导体晶体,从而消除在极性GaN氮化物半导体中产生的压电效应。另外,在形成在蓝宝石基底上方的模板层上的多孔GaN层上再生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1),从而改善表面形貌、减少GaN层的缺陷并改善GaN层的晶体质量。因此,可以提高半导体器件的内部量子效率和光提取效率。
技术方案
根据本发明的实施例,一种制造在具有用于生长非极性或半极性氮化物半导体层的晶面的基底上形成模板层和半导体器件结构的半导体器件的方法包括:在基底上形成氮化物半导体层;执行多孔表面改性,使得氮化物半导体层具有多个孔;通过在表面改性的氮化物半导体层上再生长氮化物半导体层来形成模板层;以及在模板层上形成半导体器件结构。
在通过以上描述的方法制造的半导体器件中,在多孔表面改性之前的氮化物半导体层或再生长的氮化物半导体层可包括InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,0≤x+y≤1)、未掺杂的GaN层、n型掺杂的GaN层或p型掺杂的GaN层。
基底可包括蓝宝石基底、SiC基底或Si基底。
基底的晶面可包括A面、M面或R面。
可利用湿蚀刻溶液来执行氮化物半导体层的多孔表面改性。可通过金属有机化学气相沉积(MOCVD)工艺来执行氮化物半导体层的多孔表面改性之前的氮化物半导体层的生长以及氮化物半导体层的多孔表面改性之后的氮化物半导体层的再生长。
湿蚀刻溶液可包括含有氢氧化钾、氢氧化钠、硫酸、磷酸、硝酸或盐酸且浓度范围为0.001M至2M的溶液。
在氮化物半导体层的多孔表面改性过程中,可将具有氮化物半导体层的带隙以上的能量的光照射在氮化物半导体层的表面上。
此外,如果需要,可在GaN层的多孔表面改性过程中,通过外部电源将电流施加到基底。可改变用于表面改性的蚀刻溶液的温度。
半导体器件可包括具有位于n型氮化物半导体层和p型氮化物半导体层之间的活性层的发光二极管。
半导体器件可包括诸如发光二极管、激光二极管、光检测器或太阳能电池的光学器件,或者可以包括诸如晶体管的电子器件。
本发明的效果
根据以上阐述的半导体器件及其制造方法,在形成在蓝宝石基底的能够生长非极性/半极性氮化物半导体层的蓝宝石晶面上的多孔GaN层上再生长GaN层,然后在再生长的GaN层上形成氮化物半导体光学器件。因此,GaN层可具有低的晶体缺陷密度,从而提高半导体器件的可靠性和性能(例如,亮度)。
附图说明
图1示出了用于解释蓝宝石基底的晶面的蓝宝石晶体结构。
图2示出了用于解释半极性氮化物半导体层的半极性GaN晶体结构。
图3是用于解释根据本发明实施例的在蓝宝石基底上形成多孔GaN层的工艺和使GaN层再生长的工艺的剖视图。
图4是用于解释根据本发明实施例的多孔GaN层的侧向生长的视图。
图5是通过图3中的工艺形成的GaN层的扫描电子显微(SEM)照片。
图6是用于解释根据本发明实施例的半导体光学器件的结构的剖视图。
图7是用于解释根据本发明实施例的在使GaN层沿平行于M方向的方向再生长之前和之后的X射线衍射(XRD)测量结果的示图。
图8是用于解释根据本发明实施例的在使GaN层沿垂直于M方向的方向再生长之前和之后的X射线衍射(XRD)测量结果的示图。
图9是用于比较GaN层再生长之前和之后的半导体光学器件的光致发光(PL)强度的曲线图。
具体实施方式
下面将参照附图详细描述本发明的示例性实施例。提供这些实施例是为了使本公开将是彻底的和完整的,并将把本发明的范围充分地传达给本领域的技术人员。然而,本发明可以以很多不同的形式来实施,并不应该被解释为限于在此阐述的实施例。在整个附图和说明书中,将使用相同的标号表示相同的元件。
图1示出了用于解释蓝宝石基底的晶面的蓝宝石晶体结构。
通常,如图1所示,如果在使用C面(例如,(0001)面)作为蓝宝石晶面的蓝宝石基底上生长诸如极性GaN的氮化物半导体,则由于形成极化场而导致的压电效应会降低内部量子效率。
在本发明的实施例中,在蓝宝石基底上形成诸如LED、LD、光检测器或太阳能电池之类的氮化物半导体光学器件结构,并且使用图1中的A面(例如,(11-20)面)、M面(例如,(10-10)面)或R面(例如,(1-102)面)作为蓝宝石基底的晶面,从而可在上述晶面上生长非极性或半极性氮化物半导体层。如果需要,可使用C面作为蓝宝石基底的晶面,并且可在该晶面上形成非极性或半极性氮化物半导体层。
例如,在选择M面作为蓝宝石基底的晶面的情况下,可在如图2所示的对应晶面上形成沿垂直于(11-22)面的方向生长的半极性氮化物半导体层。在选择A面作为蓝宝石基底的晶面的情况下,可在对应晶面的离轴(off-axis)上形成沿预定方向生长的半极性氮化物半导体层。在选择R面作为蓝宝石基底的晶面的情况下,可在对应晶面的离轴上形成沿垂直于(11-20)面的方向生长的非极性氮化物半导体层。如上所述,可选择C面作为蓝宝石基底的晶面,并可在该晶面上形成预定的非极性或半极性氮化物半导体层。
即使在使用能够生长诸如非极性或半极性GaN的氮化物半导体层的蓝宝石基底的情况下,如果在蓝宝石基底上形成包括氮化物半导体层的模板层,则由于晶格失配和元件之间的热膨胀系数的差异也会导致诸如线缺陷和点缺陷之类的很多晶体缺陷。这样的晶体缺陷对光学器件的可靠性(例如,抗静电放电(ESD))产生不良影响,并且还导致电流泄漏。结果,可能会降低光学器件的量子效率,从而导致光学器件的性能劣化。在本发明的实施例中,当在能够生长非极性或半极性的氮化物半导体层的蓝宝石基底上形成模板层时,可通过执行表面改性以形成多孔GaN层并在表面改性的GaN层上再生长氮化物半导体层(例如,InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1))来解决上述问题。
下面将对用于制造半导体光学器件的方法进行描述。为了形成非极性或半极性氮化物半导体层,半导体光学器件采用使用A面、M面或R面作为晶面的蓝宝石基底,并且在包括具有通过表面改性形成的孔的GaN层的模板层上形成半导体光学器件。半导体光学器件指诸如LED、LD、光检测器或太阳能电池之类的氮化物半导体光学器件。尽管将以LED作为半导体光学器件的示例进行描述,但是本发明不限于此。本发明还可以类似地应用于制造诸如LD、光检测器或太阳能电池之类的其它氮化物半导体光学器件的方法。而且,根据本发明的用于制造半导体光学器件的方法也可以类似地应用于用于制造诸如普通二极管或晶体管之类的半导体电子器件的方法。
图3是用于解释根据本发明实施例的在蓝宝石基底上形成多孔GaN层的工艺和再生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1)的工艺的剖视图。
首先,准备能够生长非极性或半极性氮化物半导体层的蓝宝石基底110(S10)。
然后,在蓝宝石基底110上形成构成模板层的缓冲层111和GaN层112(S20)。缓冲层111可为低温氮化物半导体层,所述缓冲层111可具有实验式InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,0≤x+y≤1)并在400℃至700℃的温度范围内的特定温度下形成为厚度为10至
Figure BDA0000153616980000051
GaN层112可为高温未掺杂GaN层,所述高温未掺杂GaN层可在高温下(例如,在800℃至1100℃的温度范围内的特定温度下)生长并形成为厚度为10至在这种情况下,GaN层112可为InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,0≤x+y≤1)、掺杂有诸如Mg的杂质的p型掺杂GaN层或掺杂有诸如Si的杂质的n型掺杂GaN层。
可经诸如金属有机化学气相沉积(MOCVD)的真空沉积工艺来形成缓冲层111和GaN层112。如图5中的标号510所表示的,示出了如以上所形成的GaN层112的表面的SEM照片,在GaN层112中可包含诸如线缺陷或面缺陷的许多晶体缺陷(或位错)。
然后,对GaN层112进行表面改性以在GaN层112上形成多个孔(S30)。根据湿蚀刻溶液的浓度,将其上形成有GaN层112的蓝宝石基底110浸入到湿蚀刻溶液中几分钟至几十分钟,从而在GaN层112的表面上形成不规则的多个孔,其中,所述湿蚀刻溶液为例如酸溶液(例如,H2SO4溶液)或碱溶液(例如,KOH或NaOH)。按照这种方式,可对GaN层112进行表面改性以在GaN层112上形成多个孔。例如,作为用于表面改性以形成多孔的GaN层112的湿蚀刻溶液,可以使用含有氢氧化钾、氢氧化钠、硫酸、磷酸、硝酸或盐酸且浓度范围为0.001M至2M的溶液。此外,可将紫外光或激光束照射到GaN层112的表面上,从而可在GaN层112的表面上快速形成多个孔,由此实现多孔表面改性。在这种情况下,具有GaN的带隙以上能量的紫外光或激光束可使GaN层112活化,以有助于多孔表面改性。如果需要,可将外部电流施加到形成有GaN层112的基底上。在一些情况下,也可以改变蚀刻溶液的温度。如图5中的标号520所指示的,示出了表面改性的GaN层112的表面的SEM照片,可以看出在表面改性的GaN层112的表面上形成大量的孔。
同时,尽管已经描述了用于表面改性以形成多孔GaN层112的湿蚀刻工艺作为示例,但是本发明不限于此。在一些情况下,可通过诸如反应离子蚀刻(RIE)工艺的干蚀刻工艺对GaN层112进行表面改性,以在GaN层112上形成多孔。
在执行表面改性形成具有不规则的孔的GaN层112之后,经诸如金属有机化学气相沉积(MOCVD)的真空沉积工艺再生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1)。再生长的InxAlyGa1-x-yN层可为未掺杂的GaN层。在一些情况下,再生长的InxAlyGa1-x-yN层可为掺杂有诸如Mg的杂质的p型掺杂层或掺杂有诸如Si的杂质的n型掺杂层。
在GaN层的再生长过程中,在再生长之前在GaN层112上生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1),然后在如图4所示的孔内侧向再生长InxAlyGa1-x-yN层(0≤x≤1,0≤y≤1,0≤x+y≤1)。因此,可减少缺陷。再生长的InxAlyGa1-x-yN层113可为高温未掺杂层,所述再生长的InxAlyGa1-x-yN层113可在高温下(例如,在800℃至1100℃的温度范围内的特定温度下)生长并可形成为以预定的厚度覆盖整个孔(S50)。再生长的InxAlyGa1-x-yN层113可形成为
Figure BDA0000153616980000071
Figure BDA0000153616980000072
的厚度。如图5中的标号530所指示的,示出了再生长的InxAlyGa1-x-yN层113的表面的SEM照片,可以看出与再生长之前的GaN层112(见图5中的510)相比,诸如线缺陷或面缺陷的多种晶体缺陷(或位错)减少,因此,以均匀且精细的结构实现了晶体生长。
图6是用于解释根据本发明实施例的半导体光学器件100的结构的剖视图。
参照图6,根据本发明实施例的半导体光学器件100包括蓝宝石基底110、模板层120和LED层130。模板层120和LED层130形成在蓝宝石基底110上。
蓝宝石基底110具有A面、M面或R面,在A面、M面或R面上可生长非极性或半极性氮化物半导体层。
如以上参照图3所述,模板层120包括缓冲层111和GaN层112。此外,模板层120还包括通过在执行表面改性使得GaN层112具有多个孔之后再生长GaN层而形成的InxAlyGa1-x-yN层113。缓冲层111可为低温氮化物半导体层,该缓冲层111可具有实验式InxAlyGa1-x-yN(0≤x≤1,0≤y≤1,0≤x+y≤1)并在400℃至700℃的温度范围内的特定温度下形成为
Figure BDA0000153616980000073
的厚度。再生长之前的GaN层112和再生长的InxAlyGa1-x-yN层113中的每个可在800℃至1100℃的温度范围内的特定温度下形成
Figure BDA0000153616980000075
Figure BDA0000153616980000076
的厚度,并可为未掺杂层。
因此,如图5中的标号510所表示的,在再生长之前的GaN层112中存在大量晶体缺陷。相反,如图5中的标号530所表示的,当根据本发明实施例形成包括表面改性之后再生长的InxAlyGa1-x-yN层113的模板层120时,晶体缺陷显著减少。晶体缺陷的减少是由于孔内侧向晶体生长所致。晶体缺陷减少的均匀的非极性或半极性氮化物半导体层可从图7和图8的XRD测量结果中得到验证。
图7是用于解释根据本发明实施例的在GaN层沿平行于M方向的方向再生长之前和之后的XRD测量结果的示图。如从图7中的XRD强度可看出的,在再生长之前的GaN层112的情况下,半峰全宽(FWHM)值在平行于M方向的方向上为大约1213arcsec(弧度秒)。在多孔表面改性之后再生长的InxAlyGa1-x-yN层113的情况(再生长之后)下,FWHM值减小到在平行于M方向的方向上为大约1026arcsec。这是当使用R面作为蓝宝石晶面并沿垂直于A面的方向形成非极性GaN层时所获得的结果。
图8是用于解释根据本发明实施例的在GaN层沿垂直于M方向的方向再生长之前和之后的XRD测量结果的示图。如从图8中的XRD强度可看出的,在再生长之前的GaN层112的情况下,FWHM值在垂直于M方向的方向上为大约1425arcsec。在多孔表面改性之后再生长的InxAlyGa1-x-yN层113的情况(再生长之后)下,FWHM值减小到在垂直于M方向的方向上为大约1278arcsec。这是当使用R面作为蓝宝石晶面并沿垂直于A面的方向形成非极性GaN层时所获得的结果。
如上所述,在具有根据本发明实施例的多孔表面改性之后再生长的InxAlyGa1-x-yN层113的结构中获得的FWHM值比在仅具有再生长之前的GaN层112的结构中获得的FWHM值小得多。这表示在多孔表面改性之后使GaN层再生长的结构中结晶程度高。
在形成晶体缺陷显著减少并且结晶程度得到改善的模板层120,然后在该模板层120上形成诸如LED、LD、光检测器或太阳能电池的半导体光学器件结构的情况下,能够抑制像现有技术的结构中的在极性氮化物半导体层中出现的电流泄漏。而且,光学器件中的电子空穴复合率可增大,从而提高光学器件的量子效率。结果,可提高光学器件的亮度。
例如,在LED层130形成在模板层120上的情况下,LED层130可具有活性层132和133设置于n型氮化物半导体层131和p型氮化物半导体层134之间的结构,如图6所示。
可通过使掺杂有诸如Si的杂质的GaN层生长为大约2微米的厚度来形成n型氮化物半导体层131。
活性层132和133可包括多量子阱(MQW)层132和电子阻挡层(EBL)133。具体地讲,可通过交替地层叠GaN障碍层(大约7.5纳米)和In0.15Ga0.85N量子阱层(大约2.5纳米)若干次(例如,5次)来形成MQW层132。可利用Al0.12Ga0.88N层(大约20纳米)来形成电子阻挡层133。
MQW层132的InGaN量子阱层和GaN障碍层可以以大约1×1019/cm3的Si掺杂剂浓度被掺杂,电子阻挡层133可以以大约5×1019/cm3的Mg掺杂剂浓度被掺杂。尽管已经将In0.15Ga0.85N层描述为InGaN量子阱层的示例,但是本发明不限于此。类似于InxGa1-xN(0<x<1),In和Ga的比率可改变。另外,尽管已经将A10.12Ga0.88N层描述为电子阻挡层133的示例,但是本发明不限于此。类似于AlxGa1-xN(0<x<1),Al和Ga的比率可改变。此外,MQW层132的InGaN量子阱层和GaN障碍层可用O、S、C、Ge、Zn、Cd和Mg中的至少一种以及Si进行掺杂。
可通过使以大约5×1019/cm3的Mg掺杂剂浓度掺杂的GaN层生长为厚度为大约100纳米来形成p型氮化物半导体层134。
用于施加电压的电极141和142可分别形成在n型氮化物半导体层131和p型氮化物半导体层134上。完成的LED可安装在预定的封装基底上并用作单独的光学器件。
图9是用于比较再生长GaN层之前和之后的半导体光学器件的PL强度的曲线图。
参照图9,在使用R面作为蓝宝石晶面、在垂直于A面的方向上形成非极性GaN层以及在非极性GaN层上形成LED的结构中,在再生长之前的GaN层112的情况下的PL强度低。相反,在根据本发明实施例的在多孔表面改性之后再生长InxAlyGa1-x-yN层113的情况(再生长之后)下,在对应的可见光波长中的PL强度较高,是大约2.5倍以上。
如上所述,可在模板层120上不仅形成LED层130还形成其它半导体光学器件结构(诸如LD、光检测器和太阳能电池)或其它半导体电子器件(诸如普通二极管或晶体管),如图6所示。可在活性层132和133等处抑制压电效应。因此,可提高电子-空穴复合率和量子效率,从而有助于器件性能(例如,亮度)改善。
尽管上文已经描述蓝宝石基底作为示例,但是这里可以使用能够生长氮化物半导体的各种基底。例如,除了蓝宝石基底之外,这里还可以使用SiC基底或Si基底。
尽管已经参照具体实施例描述了本发明的实施例,但是将明白的是,在不脱离如权利要求书中限定的本发明的精神和范围的情况下,可以做出各种改变和变型。

Claims (11)

1.一种制造半导体器件的方法,在所述方法中,在具有用于生长非极性或半极性氮化物半导体层的晶面的基底上形成模板层和半导体器件结构,所述方法包括:
在基底上形成氮化物半导体层;
执行多孔表面改性,使得氮化物半导体层具有多个孔;
通过在表面改性的氮化物半导体层上再生长氮化物半导体层来形成模板层;以及
在模板层上形成半导体器件结构。
2.一种通过权利要求1的方法制造的半导体器件。
3.根据权利要求2所述的半导体器件,其中,在多孔表面改性之前的氮化物半导体层或再生长的氮化物半导体层包括InxAlyGa1-x-yN、未掺杂的GaN层、n型掺杂的GaN层或p型掺杂的GaN层,其中,0≤x≤1,0≤y≤1,0≤x+y≤1。
4.根据权利要求2所述的半导体器件,其中,基底包括蓝宝石基底、SiC基底或Si基底。
5.根据权利要求2所述的半导体器件,其中,基底的晶面包括A面、M面或R面。
6.根据权利要求2所述的半导体器件,其中,
利用湿蚀刻溶液来执行氮化物半导体层的多孔表面改性;以及
通过金属有机化学气相沉积工艺来执行氮化物半导体层的多孔表面改性之前的氮化物半导体层的生长以及氮化物半导体层的多孔表面改性之后的氮化物半导体层的再生长。
7.根据权利要求6所述的半导体器件,其中,湿蚀刻溶液包括含有氢氧化钾、氢氧化钠、硫酸、磷酸、硝酸或盐酸且浓度范围为0.001M至2M的溶液。
8.根据权利要求2所述的半导体器件,其中,通过干蚀刻工艺来执行氮化物半导体层的多孔表面改性。
9.根据权利要求2所述的半导体器件,其中,在氮化物半导体层的多孔表面改性过程中,将具有氮化物半导体层的带隙以上的能量的光照射在氮化物半导体层的表面上。
10.根据权利要求2所述的半导体器件,其中,半导体器件包括具有位于n型氮化物半导体层和p型氮化物半导体层之间的活性层的发光二极管。
11.根据权利要求2所述的半导体器件,其中,半导体器件包括光学器件或电子器件,所述光学器件包括发光二极管、激光二极管、光检测器或太阳能电池,所述电子器件包括晶体管。
CN2010800466035A 2009-10-16 2010-08-27 多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法 Pending CN102598317A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090098521A KR101082788B1 (ko) 2009-10-16 2009-10-16 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
KR10-2009-0098521 2009-10-16
PCT/KR2010/005764 WO2011046292A2 (ko) 2009-10-16 2010-08-27 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법

Publications (1)

Publication Number Publication Date
CN102598317A true CN102598317A (zh) 2012-07-18

Family

ID=43876653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800466035A Pending CN102598317A (zh) 2009-10-16 2010-08-27 多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法

Country Status (4)

Country Link
US (1) US9153737B2 (zh)
KR (1) KR101082788B1 (zh)
CN (1) CN102598317A (zh)
WO (1) WO2011046292A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810441A (zh) * 2014-01-29 2015-07-29 锐晶科技有限公司 发光元件
CN109148654A (zh) * 2018-08-30 2019-01-04 芜湖德豪润达光电科技有限公司 非极性面ⅲ族氮化物外延结构及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2529394A4 (en) 2010-01-27 2017-11-15 Yale University Conductivity based selective etch for gan devices and applications thereof
US9558954B2 (en) * 2010-04-22 2017-01-31 Luminus Devices, Inc. Selective wet etching and textured surface planarization processes
KR101393624B1 (ko) * 2012-01-27 2014-05-12 한국광기술원 적층결함이 제거된 반분극 질화물 소자의 제조방법
CN104205369A (zh) * 2012-03-19 2014-12-10 皇家飞利浦有限公司 在硅衬底上生长的发光器件
KR101391960B1 (ko) * 2012-05-07 2014-05-12 한국산업기술대학교산학협력단 저결함 질화물 반도체층을 갖는 고품질 반도체 소자용 기판의 제조 방법
US9583353B2 (en) 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
KR101317106B1 (ko) * 2012-08-20 2013-10-11 전북대학교산학협력단 오믹 컨택 제조방법 및 이에 의하여 제조된 오믹 컨택
KR101372352B1 (ko) * 2012-09-07 2014-03-12 전북대학교산학협력단 p-GaN 오믹 전극 제조방법 및 이에 의하여 제조된 p-GaN 오믹 전극
KR101355086B1 (ko) * 2012-12-18 2014-01-27 한국광기술원 나노 필러 구조를 이용한 반극성 질화물층의 제조방법
CN104218128B (zh) * 2013-05-31 2018-12-14 晶元光电股份有限公司 具有高效率反射结构的发光元件
JP6160501B2 (ja) * 2014-02-12 2017-07-12 豊田合成株式会社 半導体装置の製造方法
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
JP7016259B6 (ja) 2014-09-30 2023-12-15 イェール ユニバーシティー 多孔質窒化ガリウム層およびそれを含む半導体発光デバイス
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US10554017B2 (en) * 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
WO2020095179A1 (en) * 2018-11-05 2020-05-14 King Abdullah University Of Science And Technology Optoelectronic semiconductor device
CN113745361A (zh) * 2021-07-20 2021-12-03 五邑大学 一种多孔GaN窄带紫外光电二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176003A (en) * 1978-02-22 1979-11-27 Ncr Corporation Method for enhancing the adhesion of photoresist to polysilicon
JP2001223165A (ja) * 2000-02-10 2001-08-17 Hitachi Cable Ltd 窒化物半導体及びその製造方法
US20070221948A1 (en) * 2006-03-20 2007-09-27 Choi Rak J Group III nitride semiconductor thin film and group III semiconductor light emitting device
CN101054723A (zh) * 2007-02-07 2007-10-17 深圳市淼浩高新科技开发有限公司 一种r面蓝宝石晶体的生长方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964941B2 (ja) * 1996-01-12 1999-10-18 日本電気株式会社 光デバイスの製造方法及び実装構造
JP3780832B2 (ja) 2000-08-03 2006-05-31 日立電線株式会社 半導体結晶の製造方法
JP2005085851A (ja) * 2003-09-05 2005-03-31 Hitachi Cable Ltd 窒化物系化合物半導体発光素子の製造方法
KR100744933B1 (ko) * 2003-10-13 2007-08-01 삼성전기주식회사 실리콘 기판 상에 형성된 질화물 반도체 및 그 제조 방법
KR100580751B1 (ko) * 2004-12-23 2006-05-15 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100695117B1 (ko) 2005-10-25 2007-03-14 삼성코닝 주식회사 GaN 제조방법
JP4993435B2 (ja) * 2006-03-14 2012-08-08 スタンレー電気株式会社 窒化物半導体発光素子の製造方法
JP5250856B2 (ja) * 2006-06-13 2013-07-31 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子の製造方法
JP5165264B2 (ja) * 2007-03-22 2013-03-21 浜松ホトニクス株式会社 窒化物半導体基板
US8118934B2 (en) * 2007-09-26 2012-02-21 Wang Nang Wang Non-polar III-V nitride material and production method
KR101226077B1 (ko) * 2007-11-27 2013-01-24 삼성전자주식회사 측벽 스페이서 형성 방법 및 이를 이용한 반도체 소자의제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176003A (en) * 1978-02-22 1979-11-27 Ncr Corporation Method for enhancing the adhesion of photoresist to polysilicon
JP2001223165A (ja) * 2000-02-10 2001-08-17 Hitachi Cable Ltd 窒化物半導体及びその製造方法
US20070221948A1 (en) * 2006-03-20 2007-09-27 Choi Rak J Group III nitride semiconductor thin film and group III semiconductor light emitting device
CN101054723A (zh) * 2007-02-07 2007-10-17 深圳市淼浩高新科技开发有限公司 一种r面蓝宝石晶体的生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许晟瑞等: "金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究", 《物理学报》, vol. 58, no. 8, 31 August 2009 (2009-08-31), pages 5706 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810441A (zh) * 2014-01-29 2015-07-29 锐晶科技有限公司 发光元件
CN109148654A (zh) * 2018-08-30 2019-01-04 芜湖德豪润达光电科技有限公司 非极性面ⅲ族氮化物外延结构及其制备方法

Also Published As

Publication number Publication date
US20120205665A1 (en) 2012-08-16
US9153737B2 (en) 2015-10-06
WO2011046292A2 (ko) 2011-04-21
KR20110041611A (ko) 2011-04-22
KR101082788B1 (ko) 2011-11-14
WO2011046292A3 (ko) 2011-06-30

Similar Documents

Publication Publication Date Title
CN102598317A (zh) 多孔氮化物半导体上的高品质非极性/半极性半导体器件及其制造方法
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
KR101173072B1 (ko) 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
US20240063340A1 (en) METHOD FOR RELAXING SEMICONDUCTOR FILMS INCLUDING THE FABRICATION OF PSEUDO-SUBSTRATES AND FORMATION OF COMPOSITES ALLOWING THE ADDITION OF PREVIOUSLY UN-ACCESSIBLE FUNCTIONALITY OF GROUP lll-NITRIDES
US9099609B2 (en) Method of forming a non-polar/semi-polar semiconductor template layer on unevenly patterned substrate
KR20100093872A (ko) 질화물 반도체 발광소자 및 그 제조방법
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
US9515146B2 (en) Nitride semiconductor layer, nitride semiconductor device, and method for manufacturing nitride semiconductor layer
TWI755306B (zh) Led前驅物以及製造彼之方法
KR101391960B1 (ko) 저결함 질화물 반도체층을 갖는 고품질 반도체 소자용 기판의 제조 방법
KR101104239B1 (ko) 이종 기판, 그를 이용한 질화물계 반도체 소자 및 그의 제조 방법
KR101082784B1 (ko) 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
KR20150051819A (ko) 질화물 반도체 디바이스의 제조 방법
US8828751B2 (en) Method of manufacturing light emitting device
Bayram et al. Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices
KR101379341B1 (ko) 마스크 패턴을 삽입한 고품질 반도체 소자용 기판의 제조 방법
KR100988478B1 (ko) 비극성 또는 반극성 질화물 반도체 기판 및 제조방법
JP2000332293A (ja) Iii−v族窒化物半導体発光素子及びその製造方法
KR101471425B1 (ko) 양자섬을 삽입한 고품질 반도체 소자용 기판의 제조 방법
KR101250475B1 (ko) 절연체 패턴을 갖는 이종 기판 및 그를 이용한 질화물계 반도체 소자
WO2023140057A1 (ja) 単結晶AlN基板、単結晶AlN基板を用いた半導体ウェハ、及びこれらの製造方法
JP5611560B2 (ja) 半導体素子、画像表示装置、情報記憶再生装置、および半導体素子の製造方法
CN109378368B (zh) 在PSS衬底上沿半极性面外延生长GaN基片的方法
KR101143277B1 (ko) 기판 표면 질화층을 갖는 고품질 비극성 반도체 소자 및 그 제조 방법
TW202234479A (zh) 半導體基板、半導體基板之製造方法、半導體基板之製造裝置、電子零件及電子機器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: South Korea Gyeonggi Do Anshan City

Applicant after: Seoul Weiaoshi Co., Ltd.

Applicant after: Korea Polytechnic University Industry Academic Cooperation Foundation

Address before: South Korea Gyeonggi Do Anshan City

Applicant before: Seoul OPTO Device Co., Ltd.

Applicant before: Korea Polytechnic University Industry Academic Cooperation Foundation

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SEOUL OPTO DEVICE CO., LTD. TO: SEOUL WEIAOSHI CO., LTD.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120718