CN102480932B - 源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法 - Google Patents

源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法 Download PDF

Info

Publication number
CN102480932B
CN102480932B CN201080038540.9A CN201080038540A CN102480932B CN 102480932 B CN102480932 B CN 102480932B CN 201080038540 A CN201080038540 A CN 201080038540A CN 102480932 B CN102480932 B CN 102480932B
Authority
CN
China
Prior art keywords
extracellular vesicles
coming
mentioned
vaccine
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080038540.9A
Other languages
English (en)
Other versions
CN102480932A (zh
Inventor
金润根
高用松
朴琼绪
洪福实
金志贤
金宥善
李元熙
金政旭
金大谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AEON MEDIX Inc
Original Assignee
AEON MEDIX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEON MEDIX Inc filed Critical AEON MEDIX Inc
Publication of CN102480932A publication Critical patent/CN102480932A/zh
Application granted granted Critical
Publication of CN102480932B publication Critical patent/CN102480932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56916Enterobacteria, e.g. shigella, salmonella, klebsiella, serratia
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/20Animals treated with compounds which are neither proteins nor nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases

Abstract

本发明涉及一种包含源于肠道共生细菌肠道微生物或肠道菌群(gut microbiota or gut flora)的细胞外小泡的组合物及利用该小泡的疾病动物模型。另外,本发明还涉及一种利用上述源于肠道共生细菌的细胞外小泡能够有效地筛选预防或治疗由源于肠道共生细菌的细胞外小泡诱发疾病的备选药物的方法,以及能够有效地预防或治疗由源于肠道共生细菌的感染或者由源于肠道共生细菌的细胞外小泡诱发疾病的疫苗。另外,应用本发明的源于肠道共生细菌的细胞外小泡还能够研发出诊断由源于肠道共生细菌的细胞外小泡引发疾病的致病因子的技术。

Description

源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法
技术领域
本发明涉及一种包含源于肠道共生细菌(gut microbiota or gut flora)的细胞外小泡的组合物及利用其的疾病动物模型、由源于肠道共生细菌的小泡引起的疾病的预防及/或者治疗疫苗等。 
背景技术
肠道共生细菌由栖息于包括人在内的动物消化道(digestive tract)内的微生物构成,大约有100兆个肠道共生细菌栖息在人的消化道内,这一数字大约相当于人体细胞的10倍。 
1960年代,研究人员通过电子显微镜发现革兰氏阴性细菌分泌出细胞外小泡[外囊泡(extracellular vesicles)(EV)或者外膜囊泡(outer membrane vesicles) (OMV)],。细胞外小泡成球状,由双层磷脂构成,其大小为20-200nm。源于革兰氏阴性细菌的细胞外小泡不仅含有LPS,而且还含有多种外膜蛋白(outer membrane protein)(E. Y. Lee 等, Proteomics in gram-negative bacterial outer membrane vesicles. Mass. Spectrom. Rev. 2008;27(6):535-555)。据报告,在因重症败血症导致死亡的患者的血液中存在源于脑膜炎球菌的小泡(E. Namork 和P. Brandtzaeg, Fatal meningococcal septicaemia with "blebbing" meningococcus. Lancet. 2002;360(9347):1741), 虽然有报告称,源于脑膜炎球菌的细胞外小泡在体外分泌炎症性媒介(M. R. Mirlashari 等, Outer membrane vesicles from Neisseria meningitidis: effects on cytokine production in human whole blood. Cytokine. 2001;13(2):91-97; A. Bjerre 等, Complement activation induced by purified Neisseria meningitidis lipopolysaccharide (LPS), outer membrane vesicles, whole bacteria, and an LPS-free mutant. J. Infect. Dis. 2002;185(2):220-228),但是,却没有发现有关源于肠道共生细菌的细胞外小泡引发的以胃炎、消化性溃疡、胃癌、炎症性肠炎、大肠癌等粘膜的炎症为特征的局部疾病或者败血症、动脉硬化症、糖尿病等全身炎症疾病的研究结果。 
最近,由于老年人口和免疫抑制剂、抗癌剂等药物使用的增加等因素,导致人们对细菌感染的防御能力不断弱化。同时,从世界范围看,败血症的发病率正在逐年增加。败血症是一种因细菌、霉菌等局部感染导致的并发症而引发全身出现炎症反应的疾病(M. M. Levi 等. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care. Med. 2003;31(4):1250-1256)。当感染时,局部病原菌分泌的物质流入血管或者流入血管的病原菌分泌的物质激活血管内炎症细胞从而导致发生全身性炎症反应综合症 (systemic inflammatory response syndrome)。同时,激活血管内皮细胞使形成弥散性血管内凝血(disseminated intravascular coagulation),血栓(thrombosis)等,源于病原菌的物质分布在肺等重要脏器上,从而导致发生炎症和造成相关组织损伤,最终30%以上的发病者都会死亡(E. Lolis 和R. Bucala, Therapeutic approaches to innate immunity: severe sepsis and septic shock. Nat. Rev. Drug. Discov.2003;2(8):635-645)。 
虽然将败血症定义为由病原菌引发全身性炎症反应综合症,但是,有一半以上的败血症患者却检测不出血液内病原菌(R. S. Munford, Severe sepsis and septic shock: the role of gram-negative bacteremia. Annu. Rev. Pathol. 2006;1:467-496)。这就意味着,引发败血症并不需要细菌必须直接流入血液内,源于细菌等的物质流入血液内也可以导致败血症的发生。例如:使源于革兰氏阴性细菌的内毒素(endodotoxin)即脂多糖 (lipopolysaccharide,LPS)流入血液内引发败血症,研究人员以此为基础研发败血症治疗剂(S. M. Opal, The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int. J. Med. Microbiol. 2007;297(5):365-377)。但是,到目前为止还没有研发出,以LPS为对象的治疗剂的成功案例(J. Hellman,Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. J. Biol. Chem.2002;19;277(16):14274-14280)。 
为了研发针对人体所发生疾病的诊断、预防及治疗技术,重要的就是构建能够模拟人体疾病的合适动物模型。为了构建败血症动物模型,到目前为止都采用以下三种方法(J. A. Buras 等, Animal models of sepsis: setting the stage. Nat. Rev. Drug. Discov.2005;4(10):854-865)。第一, 可以将LPS注入实验动物的腹腔内构建败血症模型。第二,可以将细菌注入腹腔内构建败血症模型。第三,在将盲肠结扎后可以通过穿孔(cecal ligation and puncture,CLP)构建败血症模型。但是,这种败血症动物模型不能准确反映再现性、实验者间的误差或者人发生败血症的表现型。因此,为了研发针对败血症的诊断、预防及治疗技术,就需要构建实验者间的误差小、再现性高、能够准确反映人发生败血症的表现型的动物模型。 
炎症性媒介(特别是,IL-6)在血液内增加是败血症的典型指数。研发人员提出了通过测定细菌分泌的炎症性媒介评估针对治疗细菌性感染的备选物质效果的实例(国际专利公开 WO2009/030093 Functions and uses of human protein phosphatase 1 inhibitor-2)。但是,却没有告知从体外将源于肠道共生细菌的细胞外小泡注入细胞内调节炎症性媒介分泌的备选药物筛选方法及在利用源于共生细菌的细胞外小泡的败血症动物模型中将备选药物注入体内调节炎症性媒介分泌的备选药物筛选方法。 
从数十年前开始,就已经研发并广泛使用了应用细菌分泌的外毒素(exotoxin) 蛋白的疫苗。有关革兰氏阳性细菌的疫苗虽然研发出了针对细胞壁成份 (荚膜多糖capsular polysaccharide) 的疫苗,但是存在无相关于T细胞形成抗体的缺点。另外,为了改善这一缺点,虽然研发出了于细胞壁成份上接合 (conjugation)蛋白质形式的疫苗,但是,这种形式的疫苗仅对特定细菌的亚型有特殊作用,具有一定的局限性。针对革兰氏阴性细菌的疫苗目前为止还没有在临床使用的例子。最近,关于针对革兰氏阴性细菌即脑膜炎球菌的疫苗,研发人员通过将细菌经洗涤剂 (detergent)处理后获得的人造小泡而研发出了疫苗(M. P. Girard 等,A review of vaccine research and development: meningococcal disease. Vaccine. 2006;24(22):4692-4700)。美国专利US7384645 "Outer membrane vesicles from Gram negative bacteria and use as a vaccine"的特征在于,从脑膜炎球菌中提取小泡作为疫苗使用。美国公开专利US 2007/0166333 "Method of antigen incorporation into neisseria bacterial outer membrane vesicles and resulting vaccine formulations"涉及一种将蛋白抗原插入脑膜炎球菌小泡内的方法,其特征在于:依据上述方法,不仅可以保持小泡的免疫刺激特性,而且还能够提高免疫反应,从而可以将其作为针对脑膜炎球菌感染的预防和治疗的疫苗使用。另外,关于脑膜炎球菌疫苗的生产和使用,也申请了一种涉及适合疫苗生产的脑膜炎球菌菌株培养过程的专利(国际专利公开WO 2007/144316及WO 2004/014417)。另外,研发人员开展了源于沙门氏菌的小泡提高宿主的先天性免疫及获得性免疫反应,以检验其作为疫苗的效果的研究(R. C. Alaniz 等,Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses,and stimulate protective immunity in vivo. J Immunol. 2007;179(11):7692-701)。但是,到目前为止,还没有报告披露为预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病及由肠道共生细菌引发的感染而利用源于肠道共生细菌的细胞外小泡生产的疫苗。 
发明内容
技术问题 
本发明的目的在于,提供一种包含源于肠道共生细菌的细胞外小泡的组合物及利用该组合物的疾病动物模型。 
本发明的另一个目的在于,提供一种有效筛选能够预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病的备选药物的方法。 
本发明的另一个目的在于,提供一种能够预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病的疫苗。 
本发明的另一个目的在于,提供一种能够预防或者治疗由肠道共生细菌引发感染的疫苗。 
本发明的另一个目的在于,提供一种能够利用上述疫苗预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病及/或者由肠道共生细菌引发感染的方法。 
本发明的另一个目的在于,提供一种诊断由源于肠道共生细菌的细胞外小泡引发的疾病原因因素的方法。 
本发明所要解决的技术课题并不仅限于上面所提到的课题,本领域的技术人员可通过以下的表述可以明确理解上面未提到的课题或者其它相关课题。 
技术方案 
本发明的一方面,提供了一种包含源于肠道共生细菌的细胞外小泡的组合物。
依据本发明的一个实施例,上述肠道共生细菌可以是共栖于肠道内的革兰氏阴性细菌,但并不仅限于此。 
依据本发明的另一个实施例,上述肠道共栖革兰氏阴性细菌可以是大肠杆菌 (Escherichia coli)、肺炎克雷伯菌(Klebsiella pneumoniae)、假单胞菌属(Pseudomonas)细菌、类杆菌属(Bacteroides)细菌,但并不仅限于此。 
依据本发明的另一个实施例,上述细胞外小泡可以是从肠道共生细菌培养液中分离出来的,但并不仅限于此。 
依据本发明的另一个实施例,上述细胞外小泡包括自然分泌和人工分泌两种。 
依据本发明的另一个实施例,上述细胞外小泡可以从哺乳动物的大便、肠道、胃液、小肠液或者口腔液等分离,但并不仅限于此。 
本发明的另一方面,提供了一种将源于肠道共生细菌的细胞外小泡注入于动物而构建的疾病模型。 
本发明的肠道共生细菌及细胞外小泡如前面所述。 
依据本发明的一个实施例,上述动物可以是老鼠,但并不仅限于此。 
上述本发明的注入包括:腹腔注入、静脉注入、口腔注入、肛门注入、鼻腔注入、呼吸道呼吸道注入等。 
上述本发明的疾病包括:败血症、动脉硬化症、急性冠状动脉综合症、脑脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎及脑病等。 
依据本发明的另一个实施例,上述疾病包括:口腔炎、口腔癌、食道炎、食道癌、胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌、胆管炎、胆囊炎、胰腺炎、胆管癌及胰腺癌等。 
本发明的另一方面,提供了一种利用源于肠道共生细菌的细胞外小泡预防或者治疗疾病的备选药物的筛选方法。 
上述本发明的肠道共生细菌、细胞外小泡及疾病如前面所述。 
依据本发明的一个实施例,上述筛选方法包括:将源于肠道共生细菌的细胞外小泡注入细胞进行处理的步骤。上述细胞包括:炎症细胞、上皮细胞、血管内皮细胞、干细胞等。另外,上述炎症细胞包括:单核细胞、中性粒细胞、嗜酸性粒细胞、嗜碱性粒细胞、单核细胞在组织中分化的细胞等,上述干细胞可以是源于骨髓组织或者脂肪组织的细胞,但并不仅限于此。 
依据本发明的另一个实施例,上述筛选方法包括:将源于肠道共生细菌的细胞外小泡与备选物质一起注入后,测定炎症相关媒介水平的步骤。上述炎症相关媒介包括白细胞介素(Interleukin,IL)-6。 
依据本发明的另一个实施例,上述筛选方法包括:将源于肠道共生细菌的细胞外小泡与备选物质一起注入后,评估炎症相关信号传递过程的步骤。 
本发明的另一方面,为预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病而提供了一种包含源于肠道共生细菌的细胞外小泡的疫苗。上述本发明的肠道共生细菌、细胞外小泡、疾病等如前面所述。 
依据本发明的一个实施例,上述疫苗可以基于增强效果或者减少副作用的目的而变形使用。上述变形包括:使用转化的细菌、将化合物注入细菌内进行处理等,上述化合物包括药物。 
依据本发明的另一个实施例,上述细胞外小泡可以基于增强效果或者减少副作用的目的而变形使用,上述变形包括:将化合物注入细胞外小泡进行处理等,上述化合物包括药物。 
依据本发明的另一个实施例,上述疫苗可以基于增强效果或者减少副作用的目的而与药物并用或者与免疫增强剂并用使用,但并不仅限于此。 
本发明的另一方面,为预防或者治疗由肠道共生细菌引发的感染而提供了一种包含源于肠道共生细菌的细胞外小泡的疫苗。 
依据本发明的一个实施例,由上述肠道共生细菌引发的感染包括:腹膜炎、败血症、肺炎、泌尿道感染、骨关节及中枢神经系统感染等,但并不仅限于此。 
上述本发明的肠道共生细菌如前面所述。 
依据本发明的另一个实施例,上述疫苗可以基于增强效果或者减少副作用的目的而变形使用,上述变形包括:使用转化的细菌、将化合物注入细菌进行处理等,上述化合物包括药物。 
依据本发明的另一个实施例,上述细胞外小泡可以基于增强效果或者减少副作用的目的而变形使用,上述变形包括将化合物注入细胞外小泡进行处理,上述化合物包括药物。 
依据本发明的另一个实施例,上述疫苗可以基于增强效果或者减少副作用的目的而与药物并用或者与免疫增强剂并用使用,但并不仅限于此。 
本发明的另一方面,提供了一种预防或者治疗疾病的方法,包括将源于肠道共生细菌的细胞外小泡按低于致死量的标准注入哺乳动物的步骤。 
上述本发明的肠道共生细菌及细胞外小泡如前面所述。 
依据本发明的一个实施例,上述疾病包括由源于肠道共生细菌的细胞外小泡引发或者导致恶化的疾病。 
依据本发明的另一个实施例,上述疾病包括:败血症、动脉硬化症、急性冠状动脉综合症、脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎及脑病,但并不仅限于此。 
依据本发明的另一个实施例,上述疾病包括:口腔炎、口腔癌、食道炎、食道癌、胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌、胆管炎、胆囊炎、胰腺炎、胆管癌及胰腺癌,但并不仅限于此。 
依据本发明的另一个实施例,上述疾病包括:腹膜炎、败血症、肺炎、泌尿道感染、骨关节及中枢神经系统感染,但并不仅限于此。 
依据本发明的另一个实施例,上述注入包括:皮下注射、静脉注射、鼻腔注入、舌下注入、呼吸道吸入、口服、肛门注入、皮肤注入、粘膜注入等。 
依据本发明的另一个实施例,上述细胞外小泡可以基于增强效果或者减少副作用的目的而变形使用,上述变形包括:使用转化的细菌、将化合物注入细菌进行处理、将化合物注入细胞外小泡进行处理等,上述化合物包括药物。 
依据本发明的另一个实施例,上述注入可以基于增强效果或者减少副作用的目的而与药物并用或者与免疫增强剂并用使用,但并不仅限于此。 
本发明的另一方面,提供了一种预防或者治疗疾病的药学组合物,包含通过利用源于肠道共生细菌的细胞外小泡的筛选方法筛选的物质。 
依据本发明的一个实施例,上述物质可以是激酶抑制剂(kinase inhibitor),上述激酶抑制剂包括:虎刺醛 (3-羟基-1-甲氧基-9,10-二氧蒽-2-甲醛)、H-7 (5-(2-甲基-1-哌嗪基)磺酰异喹啉二盐酸盐)、LY294002 (2-吗啉-4-基-8-苯基苯并吡喃-4-酮)、GF109203X (3-[1-[3-(二甲氨基)丙基]吲哚-3-基]-4-(1H-吲哚-3-基)吡咯-2,5-二酮)、ML-7 (1-(5-碘萘-1-基)磺酰基-1,4-二氮杂环庚烷盐酸盐)、 ML-9 (1-(5-氯萘-1-基)磺酰基-1,4-二氮杂环庚烷盐酸盐)、ZM449829 (1-(2-萘基)-2-丙烯-1-酮)、DRB ((2S,3S,4R,5R)-2-(5,6-二氯苯并咪唑-1-基)-5-(羟甲基)四氢呋喃-3,4-二醇)、靛玉红-3’-一肟 (3-[3-(羟氨酸)-1H-吲哚-2-基]吲哚-2-酮)、9-溴-7,12-二氢-5H-吲哚并[3,2-d][1]苯并氮杂卓-6-酮(Kenpaullone))、BML-259 (N-(5-异丙基噻唑-2-基)苯乙酰胺)及芹菜素(5,7-二羟基-2-(4-羟苯基)苯并吡喃-4-酮)等。 
依据本发明的另一个实施例,上述物质可以是磷酸酶抑制剂(phosphatase inhibitor),上述磷酸酶抑制剂包括PD-144795 (5-甲氧基-3-(1-甲基乙氧基)苯并[b]噻吩-2-甲酰胺-1-氧化物)。 
依据本发明的另一个实施例,上述物质可以是前体药物 (前体药物prodrug),上述前体药物包括:阿密替林、环苯扎林、地昔帕明、多塞平、氟奋乃静二氯化物、氟哌啶醇、丙咪嗪、马普替林、邻甲苯海明、特非那定、托灭酸、盐酸曲唑酮、三氯噻嗪、维拉帕米等。 
依据本发明的另一个实施例,上述疾病包括由源于肠道共生细菌的细胞外小泡引发或者导致恶化的疾病。 
依据本发明的另一个实施例,上述疾病包括:败血症、动脉硬化症、急性冠状动脉综合症、脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎及脑病,但并不仅限于此。 
依据本发明的另一个实施例,上述疾病包括:口腔炎、口腔癌、食道炎、食道癌、胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌、胆管炎、胆囊炎、胰腺炎、胆管癌及胰腺癌,但并不仅限于此。 
本发明的另一方面,提供了一种应用源于肠道共生细菌的细胞外小泡诊断疾病原因因素的方法。 
上述本发明的肠道共生细菌如前面所述。 
依据本发明的一个实施例,上述疾病包括:败血症、动脉硬化症、急性冠状动脉综合症、脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎及脑病,但并不仅限于此。 
依据本发明的另一个实施例,上述疾病包括:口腔炎、口腔癌、食道炎、食道癌、胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌、胆管炎、胆囊炎、胰腺炎、胆管癌及胰腺癌,但并不仅限于此。 
依据本发明的另一个实施例,上述应用包括:对源于肠道共生细菌的细胞外小泡所含遗传物质的碱基序列进行分析,上述遗传物质可以是16S rRNA,但并不仅限于此。 
依据本发明的另一个实施例,上述应用包括:对源于肠道共生细菌的细胞外小泡所含蛋白质进行测定或者对源于肠道共生细菌的细胞外小泡的免疫反应进行测定,但并不仅限于此。上述免疫反应测定包括:对源于肠道共生细菌的细胞外小泡的抗体进行测定,但并不仅限于此。 
依据本发明的另一个实施例,上述诊断可以利用从血液、大便、小便、脑脊液、关节液、胸水或者腹水等提取的样品,但并不仅限于此。 
技术效果 
本发明通过发现源于共栖于肠道内大肠杆菌的细胞外小泡不仅诱发以粘膜出现炎症为特征的局部疾病,而且被血液吸收后还引发以全身出现炎症反应为特征的败血症等全身疾病,从而提供一种利用源于肠道共生细菌的细胞外小泡的疾病模型、预防或者治疗疾病的备选药物的筛选技术,以及利用细胞外小泡的疾病预防或者治疗用疫苗技术等。
在本发明中,当分离源于肠道共生细菌的细胞外小泡并将其注入细胞内时,会分泌出炎症性媒介;当局部注入时,会引发粘膜炎症;当通过腹腔注入时,细胞外小泡流入血管内会引发以全身出现炎症反应为特征的败血症,同时,还会诱发血液凝固、肺气肿、高血压、骨质疏松症等疾病。本发明可以利用以上特征提供一种有效筛选疾病动物模型及备选药物的筛选方法。另外,可以通过利用源于肠道共生细菌的细胞外小泡的筛选方法有效发掘可以预防或者治疗由源于肠道共生细菌的细胞外小泡引发的疾病的药物。另外,可以通过将源于肠道共生细菌的细胞外小泡本身或者将其变形后注入以调节免疫反应,从而将其应用于能够有效预防或者治疗由肠道共生细菌引发感染或者由源于肠道共生细菌的细胞外小泡诱发疾病的疫苗研发。另外,还可以利用源于肠道共生细菌的细胞外小泡研发诊断由源于肠道共生细菌的细胞外小泡诱发疾病原因的技术。 
附图说明
图1是通过分析源于老鼠大便的细胞外小泡蛋白质量而鉴定体内共生细菌种属的示意图; 
图2是从正常老鼠小肠液中提取的细胞外小泡的透射式电子显微镜照片; 
图3是将从正常老鼠小肠中提取的细胞外小泡(siEV) 注入RAW 264.7巨噬细胞株中利用剂量依赖性处理6小时后对细胞培养液中表达的炎症性媒介IL-6利用ELISA方法进行测定的示意图; 
图4是将从由DSS诱发炎症性肠炎老鼠的小肠中提取的细胞外小泡(DSS_siEV)注入RAW 264.7 巨噬细胞株中利用剂量依赖性处理6小时后,对细胞培养液中表达的炎症性媒介IL-6利用ELISA方法进行测定的示意图; 
图5是将从正常老鼠和由DSS诱发炎症性肠炎老鼠的小肠中提取的细胞外小泡(分别为siEV, DSS_siEV)注入RAW 264.7 巨噬细胞株处理时将LPS的拮抗剂即多粘菌素B (PMB)注入细胞外小泡处理6小时后,对细胞培养液中表达的炎症性媒介IL-6利用ELISA方法进行测定的示意图; 
图6是显示提取的老鼠肠道大肠杆菌的16s rRNA碱基序列的示意图; 
图7及图8是分别将提取的老鼠肠道大肠杆菌通过扫描电子显微镜 (scanning electron microscope,SEM)和透射式电子显微镜 (transmission electron microscope,TEM)观察到的图像; 
图9是将源于肠道大肠杆菌的细胞外小泡的形状与大小通过透射式电子显微镜分析获得的图像; 
图10是以10张源于肠道大肠杆菌的细胞外小泡的透射式电子显微镜照片为基础按细胞外小泡大小分布的示意图;
图11及图12是将源于肠道大肠杆菌的细胞外小泡(EC_EV)和从肠道大肠杆菌提取的LPS按多种浓度处理后注入RAW264.7巨噬细胞内培养,然后将对细胞因子(TNF-a IL-6)的量利用ELISA方法进行测定的示意图; 
图13及图14将源于肠道大肠杆菌的细胞外小泡(EC_EV)分别以1, 10,100 ng注入老鼠鼻腔内后,对支气管肺泡灌洗液内炎症细胞细胞数量(BAL细胞)和IL-6的量进行测定的示意图; 
图15是将源于大肠杆菌的细胞外小泡(EC_EV) 15, 25, 50 μg分别通过一次腹腔注入C57BL/6 (雄性,6周)老鼠后,每隔12小时显示老鼠存活率的示意图; 
图16是将源于大肠杆菌的细胞外小泡5μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时后对提取的老鼠血液的血清中对炎症性媒介即TNF-α,IL-6,IL-1β,IL-12,IFN-γ,IL-10,IL-17,VEGF的浓度利用ELISA方法进行测定的示意图; 
图17将源于大肠杆菌的细胞外小泡(EC_EV) 5 μg按间隔12小时的频率注射3次后再每隔24小时测定其呼吸频率的示意图; 
图18是将源于大肠杆菌的细胞外小泡(EC_EV) 5 μg按间隔12小时的频率注射3次后再每隔8小时连续3天测定其体温的示意图; 
图19是将源于大肠杆菌的细胞外小泡5μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时后分析其白血球数量的示意图; 
图20是将源于大肠杆菌的细胞外小泡(EC_EV) 5μg按间隔12小时的频率注射3次后再隔12小时后分析其白血球总数及每种白血球数量的示意图; 
图21是将源于大肠杆菌的细胞外小泡(EC_EV) 5μg按间隔12小时的频率注射3次后再每隔24小时测定其血压的示意图; 
图22是将源于大肠杆菌的细胞外小泡5 μg按间隔12小时的频率注射3 次后再分别间隔6,12,24 小时测定D-二聚体(dimer)量的示意图; 
图23是将源于大肠杆菌的细胞外小泡5 μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时测定血小板数量的示意图; 
图24是将源于大肠杆菌的细胞外小泡(EC_EV) 分别按0.1,1,5, 10,20 ng/ml注入血管内皮细胞处理后确认ICAM-1表达的增加量的示意图; 
图25是将源于大肠杆菌的细胞外小泡(EC_EV) 1 ng/ml注入血管内皮细胞处理后测定血液凝固因子即组织因子(tissue factor)的分泌的示意图; 
图26是将源于大肠杆菌的细胞外小泡(EC_EV) 10 μg利用花青苷-7 (cyanin-7,cy7)染色后注入老鼠的腹腔内间隔6小时后通过柯达影像 (Kodak image station)系统获得的老鼠全身整体荧光照片; 
图27是对将源于大肠杆菌的细胞外小泡(EC_EV)分别按10,20 μg利用DiO染色后注入老鼠的腹腔内间隔6小时后提取的血液和肺中利用RBC (红细胞) 裂解液除去红细胞后,再通过荧光激活细胞分选仪 (FACS)对包含细胞外小泡的血液细胞与肺组织细胞的比率进行分析的示意图; 
图28是将源于大肠杆菌的细胞外小泡(EC_EV) 5 μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时后显示的血液从血管至肺组织的穿透力(湿 / 干重比值(wet-to-dry ratio))程度的示意图; 
图29是将源于大肠杆菌的细胞外小泡(EC_EV) 5 μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时后显示支气管肺泡灌洗液中炎症细胞数量的示意图; 
图30是将源于大肠杆菌的细胞外小泡(EC_EV) 5μg按间隔12小时的频率注射3次后再分别间隔6,12,24小时后将肺摘除放入4%甲醛 (formaldehyde)中将其固定(fixing)后制作切片,然后再通过苏木精-伊红(hematoxylin-eosin)染色并通过光学显微镜进行观察到的图像; 
图31是将源于大肠杆菌的细胞外小泡(EC_EV)分别按0.1,1 μg每1周2次注射18周后测定其血压的函数图; 
图32是将源于大肠杆菌的细胞外小泡(EC_EV) 1 μg每1周2次注射18周后通过X 射线技术观察到的长骨图像; 
图33是将源于大肠杆菌的细胞外小泡(EC_EV) 25 μg通过腹腔注入到正常老鼠 (C57BL/6,雄性 6周)和IL-6缺乏老鼠(C57BL/6,雄性,6周)后每隔12小时显示老鼠存活率的示意图; 
图34是将源于大肠杆菌的细胞外小泡(EC_EV) 5 μg按间隔12小时的频率分3次注入到正常老鼠(C57BL/6,雄性6周)和IL-6缺乏老鼠(C57BL/6,雄性,6周)后再分别间隔6,12,24小时后将肺放入4%甲醛 (formaldehyde)中将其固定(fixing)后制作切片,然后再通过苏木精-伊红(hematoxylin-eosin)染色并通过光学显微镜观察到的图像; 
图35是利用源于肠道共生细菌的细胞外小泡(EV)发掘药物备选物质方法的模式图;
图36是将源于大肠杆菌的细胞外小泡 (100 ng/ml)和激酶抑制剂同时注入老鼠巨噬细胞处理后对培养液中存在的IL-6量以仅将细胞外小泡单独处理的阳性对照群的测定值为基准按百分比显示的函数图;
图37是针对将激酶抑制剂单独处理的情况和将两种以上组合处理的情况,对由源于大肠杆菌的细胞外小泡(EC_EV)诱发的老鼠巨噬细胞 IL-6分泌量按阳性对照群的百分比显示的函数图; 
图38是将源于大肠杆菌的细胞外小泡 (100 ng/ml)和磷酸酶抑制剂 (10 μM,1; 斑蝥酸, 2; 斑蝥素. 3;内氧草索(Endothall), 4; 苄基磷酸, 5; L-p-对溴四咪唑草酸盐, 6; RK-682, 7; RWJ-60475, 8; RWJ-60475 (AM)3, 9; 盐酸左旋咪唑, 10; 盐酸四咪唑, 11; 氯氰菊酯, 12; 溴氰菊酯, 13; 氰戊菊酯, 14; 酪氨酸磷酸化抑制剂 8, 15; CinnGEL, 16; CinnGEL 2 Me,17; BN-82002,19; NSC-663284, 20; 环孢菌素 A,21; 戊烷脒,22; BVT-948,24; BML-268, 26; BML-260,27; PD-144795,28; BML-267,29; BML-267 酯,30; OBA,31; OBA 酯,33;阿仑膦酸钠)同时注入老鼠巨噬细胞处理后对培养液中存在的IL-6量以仅将细胞外小泡单独处理的阳性对照群测定值为基准按百分比显示的函数图; 
图39是含有浓度分别为0.1,1,5,10 μM的PD-144795和源于大肠杆菌的细胞外小泡(EC_EV)的培养液注入老鼠巨噬细胞处理后显示 IL-6 分泌的函数图。 
图40是将源于大肠杆菌的细胞外小泡(100ng/ml)和前体药物同时注入老鼠巨噬细胞处理后对培养液中存在的IL-6量以仅将细胞外小泡单独处理的阳性对照群测定值为基准按百分比显示的函数图; 
图41是含有浓度为10μM的前体药物和源于大肠杆菌的细胞外小泡(EC_EV)的培养液注入源于老鼠腹腔的巨噬细胞处理后显示IL-6分泌的函数图;
图42是将源于大肠杆菌的细胞外小泡(EC_EV) 5μg注入老鼠腹腔引发全身性免疫反应,再将前体药物即氟哌啶醇(haloperitol)和多塞平(doxepin)分别按10 mg/kg注入上述老鼠腹腔内并对血清内IL-6 分泌进行测定的示意图;
图43在将源于大肠杆菌的细胞外小泡(EC_EV) 1 μg间隔1周分3次注入腹腔的过程中对老鼠血液内小泡特异抗体的量进行测定的函数图; 
图44是将源于大肠杆菌的细胞外小泡从体外向已注入有源于大肠杆菌的细胞外小泡(EC_EV)疫苗的老鼠脾脏细胞注入并处理时显示分泌的IFN-g量的函数图; 
图45是将源于大肠杆菌的细胞外小泡从体外向已注入有源于大肠杆菌的细胞外小泡(EC_EV)疫苗的老鼠脾脏细胞注入并处理时显示分泌的IL-17量的函数图; 
图46是将源于大肠杆菌的细胞外小泡从体外向已注入有源于大肠杆菌的细胞外小泡(EC_EV)疫苗的老鼠脾脏细胞注入并处理时显示分泌的IL-4量的函数图; 
图47是显示因通过腹腔注入大肠杆菌(EC)诱发败血症而导致老鼠致死率的示意图; 
图48是显示源于大肠杆菌的细胞外小泡疫苗(EC_EV)对通过腹腔注入大肠杆菌(EC)诱发败血症所起效果的函数图;
图49是在通过腹腔注入大肠杆菌(EC)诱发败血症的模型中根据是否接种源于大肠杆菌的细胞外小泡(EC_EV)显示血液及腹腔中大肠杆菌数量(CFU)的函数图; 
图50是在通过腹腔注入大肠杆菌(EC)诱发败血症的模型中根据是否接种源于大肠杆菌的细胞外小泡(EC_EV)在感染大肠杆菌6小时后测定血清中存在的IL-6量的示意图;
图51是在通过腹腔注入大肠杆菌(EC)诱发败血症的模型中根据是否接种源于大肠杆菌的细胞外小泡(EC_EV)在感染大肠杆菌6小时后摘出老鼠的肺对肺组织进行观察的图像; 
图52是将源于大肠杆菌的细胞外小泡 (5μg)通过腹腔分3次注入到接种了源于大肠杆菌的细胞外小泡(EC_EV)的老鼠后间隔6小时对老鼠血清中的IL-6进行测定的示意图; 
图53是将源于大肠杆菌的细胞外小泡 (5 μg)通过腹腔分3次注入到接种了源于大肠杆菌的细胞外小泡(EC_EV)的老鼠后隔6小时对与败血症相关的全身性炎症反应指标即体温进行测定的示意图; 
图54是将源于大肠杆菌的细胞外小泡 (5 μg)通过腹腔分3次注入到接种了源于大肠杆菌的细胞外小泡(EC_EV)的老鼠后隔6小时对弥散性血管内凝血指标即血液内血小板的减少情况进行观察的图像;
图55是对通过腹腔接种多种浓度的源于克雷伯菌的细胞外小泡(KP_EV)的老鼠血液中对源于克雷伯菌的细胞外小泡特异抗体的量进行测定的函数图; 
图56是将源于克雷伯菌的细胞外小泡于体外向从通过腹腔接种多种浓度的源于克雷伯菌的细胞外小泡(KP_EV)的老鼠脾脏中提取的T 细胞注入处理后显示CD3+CD4+IFN-g+ T细胞数量的示意图;
图57将源于克雷伯菌的细胞外小泡于体外向从通过腹腔接种多种浓度的源于克雷伯菌的细胞外小泡(KP_EV)的老鼠脾脏中提取的T 细胞注入处理后显示CD3+CD4+IL17+ T细胞的示意图;
图58是显示因通过腹腔注入克雷伯菌(KP)诱发败血症而导致老鼠致死率的示意图; 
图59是观察源于克雷伯菌的细胞外小泡疫苗对通过腹腔分3次接种源于克雷伯菌的细胞外小泡(KP_EV) 1μg的老鼠感染克雷伯菌(KP)诱发败血症所起效果的函数图;
图60是将源于大肠杆菌和克雷伯菌的细胞外小泡(分别为EC_EV,KP_EV)疫苗通过并合腹腔接种时对血液中源于大肠杆菌的细胞外小泡特异抗体的形成进行测定的函数图; 
图61是将源于大肠杆菌和克雷伯菌的细胞外小泡(分别为EC_EV,KP_EV)疫苗通过并合腹腔接种时对血液中源于克雷伯菌的细胞外小泡特异抗体的形成进行测定的函数图; 
图62是对从C57BL/6老鼠大便中分离的细胞外小泡的遗传物质碱基序列进行序列分析(sequencing)的示意图; 
图63是对从BALB/c老鼠大便中分离的细胞外小泡的遗传物质碱基序列进行序列分析的示意图; 
图64是将源于肠道大肠杆菌的细胞外小泡(EC_EV)利用细菌-通用引物(bacteria-universal primer)进行RT-PCR处理后显示16S rRNA的基因及源于16S rRNA的RNA转录体(RNA transcript)的示意图; 
图65是从通过老鼠腹腔注入源于肠道大肠杆菌的细胞外小泡(EC_EV) 25 μg的组和注入PBS的组中提取各种脏器及体液并评估是否存在源于大肠杆菌的细胞外小泡蛋白的示意图。 
具体实施方式
本发明提供了一种源于肠道共生细菌的细胞外小泡及利用该小泡的疾病模型、疫苗、备选药物筛选方法及诊断方法等。 
在本发明中,所谓的"肠道(gut)"意味着包括哺乳动物消化道(digestive tracts)的内部及上皮细胞层表面,例如:可以是以人类为首的哺乳动物消化道即口腔、食道、胃、小肠、大肠、直肠、肛门、胆管、胆囊,、胰管等的内部及上皮细胞层表面,但并不仅限于此。 
在本发明中,所谓的"肠道共生细菌(gut microbiota or gut flora)"是指栖息于哺乳动物消化道内部或者表面的细菌,其特征在于:在正常状态下不会诱发疾病,但是在防御能力降低的状态下或者离开消化道时就会引发疾病,本领域技术人员所公知的肠道共生细菌包含在其中,但并不仅限于此。 
在本发明中,所谓的"源于肠道共生细菌的细胞外小泡"包括:哺乳动物肠道共生细菌在肠道内分泌或者被体内吸收后分泌的小泡,其特征在于:大小比原来细胞小,但并不仅限于此。 
肠道共生细菌一般作为引发疾病的病原性细菌,往往不被重视。对于由细菌引发的肠道感染,人们往往主要关注的是摄入被病原性细菌污染的食物等而引发的急性感染性疾病。最近,就胃炎、消化性溃疡、胃癌等的发病而言,人们都关注共栖于胃内的螺杆菌(helicobacter)。另外,关于炎症性肠炎、大肠癌的发病,人们都关注共栖于大肠内的细菌。但是,对于作为引发上述胃肠道疾病的致病物质即源于肠道共生细菌的细胞外小泡的重要性一直没有足够的认识。 
本发明人首次阐明,源于肠道共生细菌的细胞外小泡诱发粘膜炎症,特别是诱发以对癌症病因产生重要影响的中性粒细胞性炎症为特征的Th17免疫反应,并将源于肠道共生细菌的细胞外小泡通过局部注入而研发出针对上述局部疾病的疾病模型。 
关于以全身性炎症反应为特征的败血症病因,有人说是源于细菌的物质被血管吸收后引发的,但是却没有谈到病因物质的实体。本发明人首次阐述,当源于肠道共生细菌的细胞外小泡流入血管时,就会通过血液中炎症性媒介的分泌引发以全身性炎症反应为特征的败血症、血管内凝血、肺气肿等疾病。这就意味着,不仅对于败血症的发病,而且对于以因血管内凝血而导致血栓形成为特征的急性冠状动脉综合症、脑卒中等血管疾病、肺气肿、急性呼吸窘迫综合症等肺疾病的发病,源于肠道共生细菌的细胞外小泡都是重要的致病因子,并通过将源于肠道共生细菌的细胞外小泡向全身注入而研发出了针对上述全身疾病的疾病模型。 
人们都知道,肠道感染细菌以后就会诱发关节炎。最近,肥胖、糖尿病等代谢疾病与肠道细菌之间的关联性受到了研究人员的关注。本发明人最早阐述,将源于肠道共生细菌的细胞外小泡按低用量、长时间、全身注入就会诱发高血压、骨质疏松症等疾病,这表明,作为病因不明的慢性疾病的致病物质,源于肠道共生细菌的细胞外小泡非常重要,并且可以利用源于肠道共生细菌的细胞外小泡研发出上述疾病模型。
为了研发出预防或者治疗疾病的药物,准确掌握致病物质是非常重要的,例如:在将致病物质从体外向细胞注入的过程中,可以对备选药物进行处理并检验其效果,同时,可以将备选药物注入上述动物模型检验其效果。为了研发出预防或者治疗由源于肠道共生细菌的细胞外小泡引发疾病的药物,本发明人确立了对利用源于肠道共生细菌的细胞外小泡的备选药物进行筛选的筛选方法,并通过这一方法研发出了相应的药物。也就是说,通过上述筛选方法从80种激酶抑制剂中发掘了抑制分泌炎症性媒介的11种备选药物,从30种磷酸酶抑制剂中发掘了1种备选药物,从100种前体药物中发掘了14种备选药物,并在上述疾病动物模型中检验了其效果。这就意味着,通过本发明研发的备选药物筛选方法能够非常有效地发掘用于预防或者治疗由源于肠道共生细菌的细胞外小泡引发疾病的药物。 
准确掌握疾病的致病因子对于预防或者治疗疾病疫苗的研发是必不可少的。就病毒性感染疾病而言,先通过将致病病毒以弱毒(attenuation)形态注入体内诱发针对病毒的免疫反应并研发出预防疫苗使用,现在就可以利用预防疫苗有效地预防由病毒引发的疾病。本发明人阐明,通过将源于肠道共生细菌的细胞外小泡注入体内诱发针对小泡的免疫反应,从而就能够有效地预防由源于肠道共生细菌的细胞外小泡引发的疾病。这意味着,对于败血症、动脉硬化症、急性冠状动脉综合症、脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎、脑病等全身疾病及口腔炎、口腔癌、食道炎、食道癌、胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌、胆管炎、胆囊炎、胰腺炎、胆管癌、胰腺癌等局部疾病的发生,作为相关于源于肠道共生细菌的细胞外小泡疾病的疫苗,可以使用源于肠道共生细菌的细胞外小泡本身,或者为了增强效果或减少副作用而使用变形的小泡或者与药物并用,从而就可以有效地预防或者治疗上述疾病。 
为了预防由细菌分泌的外毒素引发的疾病,数十年前就已经研发出了利用外毒素蛋白的预防疫苗并一直使用。但是,至今还没有研发出针对细菌本身的有效疫苗。作为针对细菌本身的预防疫苗的实例,就革兰氏阳性细菌而言,虽然研发出了利用细胞壁成份的疫苗,但是,生成了T细胞非依赖性抗体,由于只生成了仅对细菌的亚型有特异作用的抗体,其效果有限。为了生成T细胞依赖性抗体,就研发出了细胞壁成份与蛋白质接合形态的疫苗,但是,价格非常昂贵,且具有仅作用于细菌的亚型的缺点。如果将源于细菌的小泡作为疫苗使用,由于小泡中含有源于细菌的多种蛋白质,因此就可以克服原来的细菌疫苗针对细菌的亚型诱发特异免疫反应的缺点,不仅形成了针对细菌的抗体,而且还有诱发T细胞反应的免疫增强剂,因此具有能够有效地诱发免疫反应的优点。本发明通过注入源于肠道共生细菌的细胞外小泡,不仅形成了针对细菌蛋白的抗体,而且还有效地诱发了对细菌的防御有重要作用的T细胞免疫反应即Th1及Th17免疫反应,从而就能够有效地预防由肠道共生细菌引发的感染。这意味着,作为针对由肠道共生细菌引发的腹膜炎、败血症、肺炎、泌尿道感染、骨关节及中枢神经系统感染等的疫苗,可以使用源于肠道共生细菌的细胞外小泡本身,或者为增强效果或减少副作用而使用变形的小泡或者与药物并用,从而就能够有效地预防或者治疗上述感染。 
源于肠道共生细菌的细胞外小泡是败血症、动脉硬化症、急性冠状动脉综合症、脑卒中、肺气肿、急性呼吸窘迫综合症、骨质疏松症、高血压、肥胖、糖尿病、关节炎、脑病等全身疾病及胃炎、消化性溃疡、胃癌、炎症性肠炎、肠易激综合征、大肠癌等局部疾病的致病物质的事实对于准确诊断致病物质不明的上述疾病的病因是非常重要的。本发明人分析了源于肠道共生细菌的细胞外小泡的遗传物质的碱基序列,进行了蛋白质鉴定,并阐述了针对源于肠道共生细菌的细胞外小泡的特异抗体的形成,从而研发出了准确诊断上述疾病致病因子的方法。 
在本发明中,从老鼠大便中分离出细胞外小泡并对其蛋白质组进行了分析。结果表明,鉴定了总共 295个蛋白质,其中73个蛋白质源于老鼠宿主细胞,77个源于革兰氏阴性细菌,145个源于革兰氏阳性细菌。通过对从大便中分离的细胞外小泡蛋白质进行分析,鉴定了分泌细胞外小泡的细菌,发现革兰氏阴性细菌包括:多形拟杆菌 (Bacteroides thetaiotaomicron)、大肠杆菌 (Esherichia coli)、肺炎克雷伯菌 (Klebsiella pneumoniae) 等,革兰氏阳性细菌包括:长双歧杆菌 (Bifidobacterium longum)、产气荚膜梭菌 (Clostridium perfringens)、粪肠球菌 (Enterococcus faeacalis)、直肠真杆菌(Eubacterim rectale)、罗伊乳杆菌(Lactobacillus reuteri)、痤疮丙酸杆菌 (Propiobacterium acnes)、无乳链球菌 (Streptococcus agalactiae)等。 
炎症性肠炎是一种以大肠的慢性炎症为特征的疾病,最近,由Th17免疫反应引发的炎症正受到研究人员的关注。特别是,炎症性肠炎作为导致大肠癌的危险因素,通过动物实验表明Th17免疫反应会诱发大肠癌。众所周知,现在普通采用口服埃罗替尼埃罗替尼葡聚糖硫酸酯钠 (dextran sodium sulfate,DSS)构建炎症性肠炎动物模型的方法。在本发明中,口服1% DSS 6日后,第7日从小肠液中分离出细胞外小泡。将分离的细胞外小泡从体外注入老鼠巨噬细胞  (RAW 264.7)处理时,从正常老鼠小肠液中分离的小泡未诱发白细胞介素(Interleukin,IL)-6的分泌,但是,从疾病状态老鼠小肠液中分离的小泡却诱发IL-6的分泌。如果考虑到IL-6是诱发Th17免疫反应的重要媒介,则从疾病状态小肠液中分离的细胞外小泡就能够诱发Th17免疫反应。另外,当将其与拮抗革兰氏阴性细菌的细胞外膜成份即LPS的多粘菌素b(polymyxin B)一起注入从疾病状态的小肠液中分离的细胞外小泡时,不分泌IL-6。这意味着,在肠道共生细菌中源于革兰氏阴性细菌的细胞外小泡对诱发炎症性肠炎起着重要作用。 
将老鼠的盲肠结扎后通过盲肠结扎穿孔(cecal ligation and puncture,CLP)制作败血症动物模型的方法比较普遍。在本发明中,实施CLP后,通过腹腔灌洗从腹腔中分离与败血症相关的肠道共生细菌,通过16S rRNA 碱基序列鉴定分离出的细菌属于大肠杆菌。通过电子显微镜照片确认大肠杆菌表面分泌了20-40 nm 大小的球状细胞外小泡。 
在本发明中,无需通过其它的物理化学刺激就可以从肠道共生细菌培养液中分离出通过生理方式分泌的细胞外小泡。例如:将大肠杆菌在培养基中长时间培养后,收集上层液,将比细胞外小泡大的物质通过过滤器过滤后,通过超速离心分离浓缩溶液,从而分离出细胞外小泡。源于大肠杆菌的细胞外小泡包括能够诱发炎症反应的LPS和外膜蛋白(outer membrane protein)。大肠杆菌培养液中自然分泌的细胞外小泡由质量比为75%的LPS与大肠杆菌外膜及外膜蛋白构成。 
除了上述分离自然分泌的细胞外小泡的方法之外,也可以通过多种机械、电气、化学方法分离源于肠道共生细菌的细胞外小泡,也可以通过利用渗透压的细胞溶解、电穿孔 (electroporation)、超声讲解处理 (sonication)、均质化 (homogenization)、灌洗剂 (detergent)处理、冷冻-解冻(freeze-thaw)、挤压(extrusion)、机械降解等方法人工构建细胞外小泡后再进行分离。在本发明中,以下无其它标记的细胞外小泡是指培养细菌自然分泌的细胞外小泡。 
为了评估通过上述方法分离的源于大肠杆菌的细胞外小泡是否能够诱发炎症性媒介的分泌,将细胞外小泡注入老鼠巨噬细胞 (RAW 264. 7)处理。结果表明,巨噬细胞中TNF-α与IL-6等炎症性媒介的分泌与细胞外小泡的浓度成比例增加。 
大肠内栖息有大量的共生细菌,为了评估由特定细菌引发的病因,就使用肠内无菌的小鼠 (germ free mouse)。相比大肠而言,呼吸道上没有共生细菌,它具有评估由特定细菌引发的病因的最佳环境。在本发明中,为了评估源于大肠杆菌的细胞外小泡是否局部作用于粘膜而诱发炎症,将源于大肠杆菌的细胞外小泡注入呼吸道。结果表明,支气管肺泡灌洗液 (bronchoalveolar lavage fluid,BAL fluid)内的炎症细胞数量与细胞外小泡的浓度成比例增加。另外,Th17免疫反应及引发癌症相关的IL-6的分泌也与小泡的浓度成比例增加。这意味着,源于肠道共栖革兰氏阴性细菌的细胞外小泡能够局部作用于粘膜而诱发以Th17免疫反应为特征的炎症。 
为了评估当源于大肠杆菌的细胞外小泡被全身吸收时是否诱发全身炎症反应,将细胞外小泡注入腹腔内。结果表明,老鼠的死亡率与细胞外小泡的浓度成比例增加。 
败血症的特征在于,发生局部细菌感染的同时还带有全身炎症反应(systemic inflammatory response syndrome,SIRS),SIRS由呼吸急促、低体温或者高体温、心率增加、白血球减少或者增加等指标构成,如果这些指标中满足2个以上就定义为败血症。在本发明中,当将源于大肠杆菌的细胞外小泡按照低于致死量的用量注入老鼠腹腔内时,血液中的炎症性媒介即TNF-a IL-6,IL-12,IL-17等就增加,并诱发呼吸急促、低体温、白血球减少。这说明,源于大肠杆菌的细胞外小泡被血管吸收后分泌炎症性媒介,并通过炎症性媒介诱发败血症。 
败血症在临床上得到重视的原因就是其死亡率非常高,如果在患上败血症期间发展成为重症败血症(severe sepsis),则死亡的可能性就非常高。在本发明中,当将细胞外小泡注入腹腔内时,就会诱发出现重症败血症的指标即低血压。这意味着,即使在患上败血症期间发展成为重症过程中,源于细菌的细胞外小泡也能够发挥重要的作用。 
如果血管中的血液凝固(coagulation)就会堵塞血管,成为造成猝死(sudden death)的主要原因。特别是,如果脑血管与冠状动脉因血液凝固形成的血栓(thrombosis)而堵塞,大多就会分别因脑卒中(stroke)和急性冠状动脉综合症(acute coronary syndrome)而死亡。 
在本发明中,为了评估当源于肠道共生细菌的细胞外小泡流入血管时是否诱发血液凝固,将源于大肠杆菌的细胞外小泡注入腹腔。结果表明,在注入细胞外小泡的群中,血液内减少了弥散性血管内凝血(disseminated intravascular coagulation,DIC)的指标即血小板,同时,增加了D-二聚体的量。这意味着,源于肠道共生细菌的细胞外小泡流入血管后引起血液凝固,如果脑血管与冠状动脉内发生血液凝固,就会分别引发脑卒中和急性冠状动脉综合症。 
为了评估源于肠道共生细菌的细胞外小泡是否作用于血管内皮细胞将其激活并引起血液凝固,将源于肠道共生细菌的细胞外小泡注入血管内皮细胞 (HUVEC)进行处理。结果表明,据说在包括炎症反应及冠状动脉疾病在内的各种疾病状况下会增加的ICAM-1的量增加了,血液凝固因子即组织因子 (tissue factor)的分泌也增加了。这意味着,在源于肠道共生细菌的细胞外小泡的作用下将激活血管内皮细胞,发生血液凝固,诱发因血栓(thrombosis)或者栓塞 (embolism)堵塞血管而导致的缺血性血管疾病。 
当源于肠道共生细菌的细胞外小泡流入血管时,其它的问题是会分布在多个脏器上。实际上,当将源于大肠杆菌的细胞外小泡注入腹腔时,细胞外小泡分布在全身,特别是,可以向肺组织渗透,从而评估向肺组织渗透的细胞外小泡是否诱发肺炎。结果表明,肺炎的指标即湿 / 干重比值(wet-dry ratio)在注入细胞外小泡的情况下明显增加,同时支气管肺泡灌洗液内炎症细胞的数量也增加了。另外,还评估了炎症是否引发组织损伤,结果表明,在注入细胞外小泡的情况下,发生了以破坏肺泡为特征的肺气肿。这意味着,源于肠道共生细菌的细胞外小泡如果被血管吸收,就不仅分布在肺上,而且还分布在脑、骨关节、肾脏等多种脏器上,引发炎症和组织损伤,从而诱发多种疾病。 
肠道共生细菌持续分泌细胞外小泡,且细胞外小泡会流入血管会引发多种问题。在本发明中,当将源于大肠杆菌的细胞外小泡按低用量、长时间注入时,观察体内发生的变化。结果表明,细胞外小泡诱发高血压,同时还引发骨质疏松症。这意味着,源于肠道共生细菌的细胞外小泡对于目前为止病因不明的慢性炎症疾病的发病来说是重要的致病因子。 
IL-6通过发挥多种作用干预炎症疾病及癌症的发生,IL-6通过经由STAT3进行的信号传递诱导密切关联于癌症发生相关的细胞增殖(cell proliferation)、血管生成(angiogenesis)、侵袭 (invasion)、免疫逃避(immune evasion)的基因表达,并通过对癌症发生有重要影响的Th17免疫反应,在中性粒细胞性炎症作用下诱导癌症发生。另外,血液中IL-6的浓度与包括动脉硬化症及肺气肿在内的慢性阻塞性肺病患者的死亡相关的预后有密切的关联性。特别是,血液中由炎症细胞分泌的IL-6作用于血管内皮细胞增加与血液凝固相关的基因表达,并干预血液凝固。在本发明中,为了通过利用源于大肠杆菌的细胞外小泡构建的败血症动物模型评估IL-6对疾病病因产生的作用,将源于大肠杆菌的细胞外小泡注入正常及IL-6缺乏老鼠的腹腔内。结果表明,有80%以上的正常老鼠因源于大肠杆菌的细胞外小泡导致死亡,但是,IL-6 缺乏老鼠却因注入小泡而全部存活。另外,对于因将源于大肠杆菌的细胞外小泡注入腹腔而引发肺气肿的情况,正常老鼠均因注入小泡而发病,但是,IL-6 缺乏老鼠却未观察到发病。这意味着,源于肠道共生细菌的细胞外小泡引发体内分泌的IL-6是细胞外小泡诱发疾病病因的一个非常重要的生物标志物。 
基于上述研究成果,本发明人希望研发出一种筛选用于预防或者治疗由源于肠道共生细菌的细胞外小泡引发疾病的备选药物的筛选方法。为此,用源于大肠杆菌的细胞外小泡作为致病因子评估老鼠巨噬细胞(RAW 264.7)分泌的IL-6的效果。将细胞外小泡与80种激酶抑制剂 (激酶抑制剂库,BIOMOL No.2832: PD-98059,U-0126, SB-203580,H-7,H-9,AG-494,AG-825,灰薰草菌素 A,RG-14620, 酪氨酸磷酸化抑制剂 23,酪氨酸磷酸化抑制剂 25,酪氨酸磷酸化抑制剂46,酪氨酸磷酸化抑制剂47,酪氨酸磷酸化抑制剂 51,酪氨酸磷酸化抑制剂 1,酪氨酸磷酸化抑制剂 9,酪氨酸磷酸化抑制剂 AG 1288, 酪氨酸磷酸化抑制剂 AG 1478,酪氨酸磷酸化抑制剂 AG 1295, HNMPA,虎刺醛,白皮杉醇,AG-490,AG-126,AG-370,AG-879, LY 294002,渥曼青霉素,GF 109203X,金丝桃素,鞘氨醇,H-89, H-8,HA-1004,HA-1077,HDBA,KN-62,KN-93,ML-7,ML-9, 2-氨基嘌呤,N9-异丙基-奥罗莫星,奥罗莫星,异奥罗莫星,核抑制剂(Roscovitine),LFM-A13,SB-202190,ZM 336372, SU 4312,AG-1296,粗糠柴毒素,染料木黄酮,大豆素(Daiazein),癌基因抑活药类似物(Erbstatin analog),槲皮素,SU 1498, ZM 449829,DRB (5,6-二氯-1-b-D-呋喃核糖基苯并咪唑),HBDDE (2,2',3,3',4,4'-六羟基-1,1'-联苯-6,6'-二甲醇二甲醚),靛玉红,靛玉红-3'-一肟,Y-27632,Kenpaullone,土曲霉酸, BML-257,BML-259,芹菜素,BML-265 (埃罗替尼类似物),雷怕霉素),30种磷酸酯酶抑制剂 (磷酸酯酶抑制剂库, BIOMOL No.2834: 斑蝥酸,斑蝥素.内氧草索(Endothall), 苄基磷酸,L-p-对溴四咪唑草酸盐,RK-682, RWJ-60475,RWJ-60475 (AM)3,盐酸左旋咪唑,盐酸四咪唑,氯氰菊酯,溴氰菊酯,氰戊菊酯,酪氨酸磷酸化抑制剂 8, CinnGEL,CinnGEL 2 Me, BN-82002,紫草素,NSC-663284,环孢菌素 A,戊烷脒,BVT-948,B4-绕丹宁,BML-268,二氧菲(Dioxophenanthrene),BML-260,PD-144795,BML-267,BML-267 酯, OBA,OBA 酯,棉酚,阿仑膦酸钠),100种前体药物 (前体药物; 醋氨酚,乙酰半胱氨酸,别嘌呤醇, 盐酸阿普洛尔,盐酸阿密替林,阿托品,溴苄乙胺,溴苯那敏,布地奈德,盐酸丁螺环酮, 头孢呋辛,水合氯醛,盐酸氯丙嗪,甲氰咪胍,盐酸氯米帕明,克霉唑,环苯扎林,盐酸地昔帕明,双氯芬酸,二氟尼柳, 地尔硫卓,盐酸苯海拉明,达舒平,戒酒硫,D-甘露醇, 多塞平,强力霉素水物,琥珀酸多西拉敏,依酚氯铵,马来酸依那普利,法莫替丁,芬布芬,非诺贝特,苯氧布洛芬钙,氟桂嗪二盐酸盐, 氟奋乃静二氯化合物,氟比洛芬,速尿灵, 吉非罗齐,格列齐特,格列吡嗪,氟哌啶醇,双氢氯噻嗪,氢氟甲噻嗪,盐酸羟嗪,布洛芬,盐酸丙咪嗪,吲达帕胺,吲哚-2-羧酸,消炎痛, 异丙托溴铵,酮洛芬,酮咯酸氨丁三醇,盐酸马普替林,甲氯灭酸,褪黑素,二甲双胍,盐酸美沙吡林, 甲巯咪唑,美索巴莫,盐酸甲氧氯普胺,甲硝唑,萘丁美酮,萘普生,溴化新斯的明,烟酸,盐酸尼卡地平,硝苯吡啶,呋喃妥英,尼扎替丁,炔诺酮,去甲替林,盐酸邻甲苯海明,奥昔布宁,盐酸苯乙双胍,苯基丁氮酮,苯妥英,吡罗昔康, 强的松,丙磺舒,盐酸心得安, 溴吡斯的明,盐酸雷尼替丁,安体舒通, 磺胺甲氧哒嗪(sulfameth),止呕灵,替诺昔康,特非那定,茶碱,盐酸噻氯匹定,甲磺氮卓脲, 妥拉唑林,甲糖宁, 托灭酸,盐酸曲马多,反苯环丙胺,盐酸曲唑酮,氨苯蝶啶,三氯噻嗪,盐酸苄吡二胺, 维拉帕米,杀鼠灵)一起注入巨噬细胞内。激酶抑制剂中有11种备选物质、磷酸酶抑制剂中有1种备选物质、前体药物中有14种备选物质抑制由细胞外小泡引发的IL-6分泌。 
评估了上述备选药物对体内IL-6分泌的效果,结果表明,在将源于肠道大肠杆菌的细胞外小泡5μg注入老鼠腹腔诱发全身性免疫反应的老鼠模型中,当与上述备选药物一起注入腹腔时,由细胞外小泡导致增加的血清内IL-6的量减少了。这说明,利用本发明的方法可以有效地筛选炎症性疾病治疗剂的备选药物。 
作为针对细菌感染的防御机制,T细胞免疫反应与B细胞中生成的抗体反应是非常生要的。针对细菌的抗体大致可分为针对LPS等非蛋白成份的抗体和针对蛋白成份的抗体,对于前者来说,其生成不受T细胞的影响,与此相反,对于后者来说,其生成却受T细胞的影响。T细胞免疫反应根据细胞因子的分泌情况可以分为:分泌γ干扰素 (IFN-g)的Th1, 分泌IL-17的Th17,分泌IL-4/IL-5/IL-13等的Th2细胞。其中,对细菌的防御重要的是Th1及Th17免疫反应。源于细菌的细胞外小泡上不仅含有细菌携带的多种蛋白质,而且还有促使免疫反应的免疫增强剂,因此,可以将其作为针对细菌的疫苗。在本发明中,评估了注入源于肠道共生细菌的细胞外小泡时是否能诱发针对细菌的免疫反应。为此,将源于大肠杆菌(EC)及肺炎克雷伯菌(KP)的细胞外小泡按间隔1周的频率分3次注入腹腔并对免疫反应进行了评估。结果表明,在注入细胞外小泡的情况下,针对细菌特异蛋白的抗体随着注入次数的增加而增加,受各细菌中存在的蛋白质的影响,T细胞分泌γ干扰素和IL-17的能力明显增强。这意味着,如果注入源于肠道共生细菌的细胞外小泡,不仅能诱导针对分泌小泡的细菌蛋白的抗体的形成,而且还能够诱导蛋白特异Th1及Th17免疫反应,从而就可以有效地预防或者治疗由细菌感染及细胞外小泡引发的疾病。 
实际上,通过事先注入小泡疫苗诱导免疫反应,并评估了其是否对细菌感染及细胞外小泡引发的疾病发生有预防效果。为此,将肠道共生细菌即大肠杆菌和肺炎克雷伯菌注入腹腔构建败血症动物模型,在将上述细菌注入腹腔前分别利用源于大肠杆菌和肺炎克雷伯菌的细胞外小泡诱导免疫反应。利用小泡疫苗诱导免疫反应后,分别将大肠杆菌和肺炎克雷伯菌注入腹腔,评估疫苗对因败血症导致死亡率发生所产生的效果。结果表明,当分别注入源于大肠杆菌和肺炎克雷伯菌大肠杆菌的小泡疫苗时,有效地抑制了因大肠杆菌和肺炎克雷伯菌感染引发的败血症而导致的死亡率。另外,当注入源于大肠杆菌的小泡疫苗时,源于大肠杆菌的细胞外小泡流入血管,显著减少了血液中分泌的IL-6量。这意味着,如果将源于肠道共生细菌的细胞外小泡作为疫苗诱导免疫反应,不仅能够有效预防肠道共生细菌感染,而且还能够有效预防源于细菌的细胞外小泡引发的疾病。 
如上所述,源于肠道共生细菌的细胞外小泡可以诱发各种疾病的发生,这意味着,源于肠道共生细菌的细胞外小泡对于病因不明的疾病发生而言是重要的致病因子。为了提供诊断疾病致病因子的方法,进行了确认源于肠道共生细菌的细胞外小泡中是否存在遗传物质的实验,结果表明,存在16S rRNA。就源于老鼠大便的细胞外小泡而言,确认了栖息于大便中具有代表性的10种细菌中存在大肠杆菌(Escherichia coli)和肺炎克雷伯菌(Klebsiella pneumoniae)的遗传物质。同时,将源于肠道共生细菌的细胞外小泡注入老鼠腹腔的结果表明,老鼠的各种脏器及小便、血液中存在细胞外小泡蛋白质。这样,通过确认容易提取的小便、大便及血液中是否存在遗传物质及细胞外小泡蛋白质而提供了一种能够有效诊断疾病致病因子的方法。 
下面,为了有助于对本发明的理解,将提供理想的实施例。但是,以下实施例仅用于使受众能够更加容易地理解本发明,本发明的内容不能限定于以下实施例。 
实施例
实施例 1. 分析从正常老鼠大便中分离的细胞外小泡的蛋白质组
为了分离源于老鼠大便的细胞外小泡,将通过5周龄雄性C57BL/6老鼠获得的大便25g放入生理盐水(phosphate buffered saline,PBS) 2 L中,在4℃的条件下悬浮 (resuspension)16小时。将这种悬浮液在4℃, 10,000×g的条件下离心分离20分钟,然后,取上层液通过带有0.45 mm大小孔的过滤器过滤。然后,将除去细菌的过滤液使用安装有能够除去分子量低于100 kDa的蛋白质的薄膜(membrane)的超滤系统 (QuixStand Benchtop System)大约浓缩30倍至70 ml。然后,将浓缩液再次在4℃, 10,000 × g的条件下离心分离20分钟取上层液。将这种上层液放入装有0.5 ml的2.5 M 蔗糖溶液(2.5 M sucrose/20 mM HEPES/150 mM NaCl, pH7.4)和1 ml的0.8 M蔗糖溶液(0.8 M sucrose/20 mM HEPES/150 mM NaCl, pH7.4)的超速离心管 (ultracentrifuge tube)中,在4℃,100,000×g的条件下超速离心分离4小时,然后,取位于2.5 M与0.8 M 蔗糖溶液之间的包含细胞外小泡的层。将其利用PBS稀释10倍后,再将其放入装有0.15 ml的2.5 M蔗糖溶液和0.35 ml的0.8 M蔗糖溶液的超速离心管中,在4℃,200,000×g的条件下超速离心分离2小时。然后,取位于2.5 M与0.8 M蔗糖溶液之间的包含细胞外小泡的层,并利用PBS将其稀释10倍后,在 4℃,150,000×g的条件下超速离心分离3小时使其沉淀。然后,将沉淀物放入2.2 ml的50% 密度梯度(Optiprep)溶液中悬浮,将其放入超速离心管后,在其上面依次装入2 ml的40% 密度梯度溶液和0.8 ml的10%密度梯度溶液。然后,在4℃,200,000×g的条件下超速离心分离2小时,在40% 密度梯度溶液与10%密度梯度溶液之间的层中取得细胞外小泡。 
为了对源于老鼠大便的细胞外小泡的蛋白质组进行分析,采用溶液状态(in-solution)胰蛋白酶蛋白分解方法。将从老鼠大便中通过上述实施例的方法分离的细胞外小泡50 mg溶于分解液 (7 M 尿素,2 M 硫脲,100 mM NH4HCO3)中后,利用10 mM DTT在 60℃的条件下使其还原(reduction)45分钟。之后,将样本在常温下冷却后,放入55 mM 碘乙酰胺 (iodoacetamide),蔽光并在常温下使蛋白质烷化(alkylation)30分钟。然后,利用10 的胰蛋白酶处理,并通过超声处理(sonication)提高胰蛋白酶的活性,然后,在 37℃的条件下使其反应12小时。然后,将降解的肽利用游离胶分馏系统 (OFFGEL fractionators system,Agilent)进行分离。先将24 cm的IPG 胶条(IPG strip)(pH 3-10)利用IPG 再水化 (IPG-rehydration) 缓冲液使其进行水合反应。再将分解的肽溶于2.8 ml的游离胶 (off-gel) 缓冲液中,将其中的150装入一个泳道(lane)内,然后,利用50 mA 8000 V的电压电泳40小时使肽根据各自的等电点(pI)分离。将分离后获得的样本利用PepClean C18 spin column进行脱盐(desalting)处理。 
通过纳米离子质量分析(Nano-LC-ESI-MS/MS)进行质量分析,将通过溶解(in-solution)降解法准备的源于老鼠大便的细胞外小泡的降解肽装入用5 mm大小的C18树脂 (resin)填充的管柱(75 mm x 12 cm)中,然后,再采用下述方法进行分离: 3-40%缓冲液B 70分;血流速度0.3 ml/min (缓冲液A组成: 0.1% 甲酸H2O ,缓冲液B组成: 0.1%甲酸乙腈 )。将分离的肽利用LTQ-ion-trap 质量分析仪(Thermo Finnigan)进行分析。离子化电喷射(electrospary)的电压为1.9 kV,按照35%的归一化碰撞能量 (normalized collision energy)条件进行质量分析(MS/MS)。所有的质谱(spectrum])都通过数据依赖 (data-dependent) 扫描 (scan)获得。LTQ参数(parameter)在全质谱联用扫描 (full MS scan)中选取5个最高质谱 (most abundant spectrum)进行分裂(fragmentation),动态排除(dynamic exclusion)的重复数 (repeat count)为1,重复时间(repeat duration)为30秒,动态排除时间(dynamic exclusion duration)为180秒,排除质量宽度(exclusion mass width)为1.5 Da,动态排除的列表大小(list size)设定为50。 
为了对栖息在源于老鼠肠细胞的细胞外小泡中的蛋白质进行分析,利用现有构建氨基酸碱基序列的老鼠数据库(Uniprot),同时,为了对栖息在源于肠道细菌的细胞外小泡内的蛋白质进行分析,利用代表存在于肠道内的多数种属(genus)的10种(species)细菌数据库 (Uniprot)。分别利用上述各种数据库总共进行了11次数据分析。利用MASCOT 蛋白分析搜索引擎version 2.2 (http://www.matrixscience.com)对通过质量分析获得的所有质谱(MS 质谱 和 MS/MS 质谱)进行了分析。通过对分析的验证,筛选出了候选肽/候选蛋白质 (peptide prophet/protein prophet)95%/99%以上可靠性高的蛋白质,在各自的蛋白质中断定的肽为一个的质谱是直接进行氨基酸序列分析(manual validation),从而提高其可靠性。 
图1是利用上述方法对存在于老鼠大便中的细胞外小泡的蛋白质组进行分析的示意图。从图中可以看出,总共295个蛋白质中有222个是源于细菌的蛋白质,其中,源于革兰氏阴性细菌的蛋白质有77个,源于革兰氏阳性细菌的蛋白质有145个。对于革兰氏阴性细菌来说,源于多形拟杆菌(Bacteroides thetaiotaomicron), 大肠杆菌 K-12,肺炎克雷伯菌(Klebsiella pneumonia )的蛋白质构成主要部分,对于革兰氏阳性细菌来说,源于产气荚膜梭菌(Clostridium perfringens),罗伊氏乳酸杆菌(Lactibacillus reuteri)的蛋白质构成主要部分。 
实施例 2. 正常及疾病状态的老鼠小肠液分泌由细胞外小泡诱发的炎症性媒介
为了从由正常及DSS诱发的炎症性肠炎老鼠小肠液中分离出细胞外小泡,将老鼠解剖摘出小肠。将摘出的小肠除去淋巴结(peyer`s patch)和脂质(lipid)后,将小肠按约5 cm的长度切断,横向切开,用生理盐水灌洗,除去小肠内的杂质。将除去杂质的小肠切成1 cm大小的方块,放入30 ml的生理盐水中,用旋涡(vortex)在5秒内进行5次涡流(vortexing)。将小肠组织及杂质通过离心分离除去,将上层液通过超速离心分离获得细胞外小泡。 
图2是将利用上述方法分离的细胞外小泡通过透射式电子显微镜 (transmission electron microscope,TEM)观察看到大致形状和大小的示意图,可以看到约为100 nm大小的球状细胞外小泡。 
图3及图4是为了对从由正常及DSS引发的炎症性肠炎老鼠小肠液中分离的细胞外小泡诱导的炎症性媒介即IL-6的分泌能力进行评估而将多种浓度的细胞外小泡注入老鼠巨噬细胞(RAW 264.7)进行处理的示意图。结果通过酶联免疫吸附试验 (enzyme linked immunosorbent assay,ELISA)方法确认,从正常老鼠中分离的细胞外小泡不能诱导IL-6表达,但是,从由DSS引发的炎症性肠炎老鼠小肠中分离的细胞外小泡却能够利用剂量依赖性诱导IL-6的表达。 
图5是评估从由DSS引发的炎症性肠炎老鼠中分离的细胞外小泡中是否含有源于革兰氏阴性细菌的细胞外小泡的示意图。结果表明,当将抵抗革兰氏阴性细菌的细胞外膜构成成份即LPS的多粘菌素b(polymyxin B)注入从由DSS引发的炎症性肠炎老鼠中分离的细胞外小泡内处理时,由存在于疾病状态的小肠液中的细胞外小泡诱发的IL-6分泌被抑制。 
上述结果表明,源于栖息在肠道的革兰氏阴性细菌的细胞外小泡对炎症性肠道疾病的发生发挥着重要作用。 
实施例 3. 源于从CLP败血症动物模型的腹腔液中分离的肠道共生细菌即大肠杆菌的细胞外小泡的特性分析
用18 计量(gauge)注射器针头对1只C57BL/6 (雄性,6周)老鼠的盲肠末端扎2次实施CLP (ceacal ligation and puncture)手术。40 小时后,将PBS 3 ml利用5 ml注射器注入老鼠腹腔,充分混合后,再从腹腔回收1 ml,将其中10 μl与LB (Luria Bertani) 溶液 90 μl相混合后,稀释10,000倍,将其涂抹于LB琼指平板(Agar plate)上,放入37°C培养器 (incubator)中培养8小时。从多个菌落(colonoy)中选取一个放入装有5 ml LB 溶液的试管内,再放入37°C 培养器中培养8小时。然后,将其中10 μl与LB 溶液 90 μl相混合,稀释10,000倍,涂抹于LB 琼指平板上,再放入37°C 培养器中培养8小时。再按照与上述相同的方法再执行一次对上述菌落的选取 (picking)过程,最终获得一个菌落并提取出肠道大肠杆菌。 
图6是对提取的肠道大肠杆菌的16S rRNA进行分析的示意图,鉴定出其属于E.coli C4,这是能从人类大便中观察到的共生细菌。 
图7及图8是分别将提取的老鼠肠道大肠杆菌通过扫描电子显微镜 (scanning electron microscope,SEM)和透射式电子显微镜 (transmission electron microscope,TEM)观察的示意图,可以看到其表面分泌有30 nm 大小的细胞外小泡。 
将肠道大肠杆菌放入装有3 ml LB 溶液的试管内,在37°C的条件下培养4小时,然后,将其中的每10 μl分别移入8个装有500 ml LB 溶液的2L三角烧瓶中,在37°C的条件下培养 4小时。将培养液分装入12个350 ml容量高速离心管内,在4°C,5,000 x g的条件下超速离心分离15分钟,连续执行2次。将4 L左右的上层液通过带有0.45 μm大小孔的薄膜过滤器(membrane filter)进行1次过滤,然后,利用仅能让分子量小于100 kDa的分子通过的超滤系统(Quixstand system) 将其浓缩至300 ml,。将浓缩液通过带有0.22 μm大小孔的薄膜过滤器进行1次过滤,然后,再分装入 50 ml容量的高速离心管(ultracentrifuge tube)内,在4°C, 150,000 x g的条件下超速离心分离(ultracetrifugation)3小时。去掉上层液,将利用PBS溶解沉淀在试管下部的沉淀物,从而提取出源于肠道大肠杆菌的细胞外小泡。 
图9是将对源于肠道大肠杆菌的细胞外小泡的形状和大小通过透射式电子显微镜 (transmission electron microscope,TEM)进行分析的示意图,可以看出,细胞外小泡由双层脂质构成,大小为20-100 nm,大致成球状。 
图10是以10张细胞外小泡的透射式电子显微镜照片为基础按细胞外小泡大小分布的示意图,可以看出,20-40 nm大小的细胞外小泡占了整体的一半。 
实施例 4. 由源于大肠杆菌的细胞外小泡诱发的体外(in vitro)炎症性媒介分泌
将1 x 105 个老鼠巨噬细胞(RAW 264. 7)分别播种(seeding)在24 孔板上,24小时后将利用细胞外小泡 (0.1,1,10,100,1000 ng/ml) 或者苯酚 (phenol),使从肠道大肠杆菌提取的LPS (100,200, 500,1000,2000 ng/ml)注入细胞进行处理,然后,再放入37°C 培养器中进行培养。15小时后,取其上层液,在4°C,500 x g的条件下离心分离10分钟,然后,再在 4°C,3000 x g的条件下离心分离20分钟。对分离的上层液中含有的细胞因子量通过ELISA方法进行测定。 
图11及图12是显示细胞因子量的示意图,可以看出,炎症性媒介即TNF-α (参照图11),IL-6 (参照图12)与细胞外小泡的量成比例增加。另外,与对LPS单独进行处理的情况相比,更少量的细胞外小泡也能诱导上述炎症性媒介的分泌。这意味着,源于肠道共生细菌的细胞外小泡作用于炎症细胞,即使在很低的浓度下也能够诱导炎症性媒介的分泌。 
实施例 5. 局部注入源于大肠杆菌的细胞外小泡而诱发的粘膜炎症及IL-6 分泌
准备C57BL/6 (雌性,6周) 老鼠实验群和对照群各5只,对属于实验群的老鼠将源于大肠杆菌的细胞外小泡1,10,100 ng注入鼻腔。注入后分别间隔6 小时、24小时测定其呼吸道粘膜的炎症。将氯胺酮 (ketamine)与甲苯噻嗪 (xylazine)混合构成的麻醉液注入老鼠腹腔进行麻醉后,切开胸部,露出气管,将尿管插入气管内并进行结扎。将PBS每次按1 ml注入2次,对气管进行灌洗,获得支气管肺泡灌洗液 (bronchoalveolar lavage,BAL fluid)。将支气管肺泡灌洗液在4oC的条件下按3,000 rpm的离心分离10分钟后,将细胞团 (cell pellet)溶于PBS 溶液中。将上述细胞团通过光学显微镜观察可以获得细胞数量。另外,利用ELISA方法对支气管肺泡灌洗液中诱导Th17 免疫反应的炎症性媒介即IL-6进行测定。 
图13是将源于大肠杆菌的细胞外小泡注入鼻腔后分别间隔6小时和24小时通过支气管肺泡灌洗液内炎症细胞的数量显示呼吸道粘膜的炎症的示意图,可以看出,与注入源于大肠杆菌的细胞外小泡之前相比,注入细胞外小泡间隔6小时和24小时后支气管肺泡灌洗液中炎症细胞的数量显著增加,这与注入的细胞外小泡的浓度有关。 
图14是对支气管肺泡灌洗液内IL-6的量通过ELISA方法进行测定的示意图,可以看出,与注入源于大肠杆菌的细胞外小泡之前相比,注入细胞外小泡6小时后支气管肺泡灌洗液内IL-6的量显著增加,这与注入的小泡的浓度有关。 
从上述结果可以看出,源于肠道共生细菌的细胞外小泡通过局部作用诱导粘膜发生炎症,其特征在于,诱导Th17免疫反应。 
实施例 6. 将源于大肠杆菌的细胞外小泡按大用量注入腹腔诱发的败血症
将通过实施例3所述方法分离的细胞外小泡对C57BL/6 (雄性,6周)老鼠20只分别按15,25,50 μg的量一次注入腹腔,并每隔12小时确认老鼠的死亡数量。 
图15是显示在细胞外小泡作用下老鼠生存曲线的示意图,可以看出,将25 μg以上的细胞外小泡注入腹腔内就会导致 95%的老鼠死亡。 
为了评估细胞外小泡诱发败血症的情况,将通过实施例3所述方法分离的源于老鼠肠道大肠杆菌的细胞外小泡(5 μg)以每隔12小时分3次注入腹腔,然后,分析与败血症相关的指标。注射细胞外小泡后分别间隔6,12,24小时从老鼠的心脏提取血液,在4°C,3,500 x g的条件下离心分离10分钟后,取上层液即血清。 
图16是对血清中与败血症发生相关的媒介的量通过ELISA方法进行测定的示意图,可以看出,TNF-α,IL-6,IL-1β,IL-12,IFN-γ, IL-10,IL-17等均增加了。 
另外,败血症的特征即全身性炎症反应 (systemic inflammatory response syndrome,SIRS)可以通过呼吸频率、温度、体重、白血球的数量等指标进行评估。 
图17是注射细胞外小泡 (5 μg)后每隔24小时测定呼吸频率的示意图,可以看出,呼吸频率可以通过将老鼠放入试验装置(chamber)内使用喷雾器 (nebulizer)3分钟获得f (呼吸频率)值而进行测定。结果观察到,出现了在细胞外小泡的作用下反映SIRS的指标之一即呼吸频率增加的现象(呼吸急促)。 
图18是注射细胞外小泡 (5 μg)后在3日内每间隔8小时测定体温的示意图,可以看出,体温可以通过将直肠体温计插入老鼠的肛门测定并记录体温计数字画面上显示的数值。结果观察到,出现了在细胞外小泡的作用下反映全身性炎症反应的指标即体温降低的现象(低温症)。 
图19是注射细胞外小泡 (5 μg)后分别间隔6,12,24小时测定白血球数量的示意图,可以看出,白血球数量可以通过以下方法测定:从心脏提取血液后放入装有乙二胺四乙酸 (EDTA)的试管内在4°C的环境下保管,将其中的10 μl血与90 μl的1% 盐酸(HCl)相混合,放于25°C的条件下反应6分钟,再通过血球计数器 (hematoctometer)测定反应液中所含白血球的数量。结果观察到,出现了在细胞外小泡的作用下反映全身性炎症反应的指标即血液内白血球数量减少的白血球减少症(leucopenia)。 
图20是注射细胞外小泡 (5 μg)后间隔12小时测定总白血球数量和各自白血球数量的示意图,可以看出,注射细胞外小泡后间隔12小时从心脏提取血液放入装有乙二胺四乙酸的试管内在4°C的环境下保管,将血液10 μl涂抹在载玻片上实施迪芙-奎克(Diff Quick)染色,在光学显微镜 1000倍视野内可以观察到300个以上的炎症细胞,包括嗜碱性粒细胞、淋巴细胞、中性粒细胞、嗜酸性粒细胞,从而可以对各种炎症细胞的数量进行测定。结果观察到,总白血球数量减少,特别是淋巴细胞数量明显减少,相反,中性粒细胞数量却反而增加。   
为了评估细胞外小泡是否诱发重症败血症而测定了血压。 
图21是注射细胞外小泡 (5 μg)后每间隔24小时测定血压的示意图,可以看出,将老鼠放在试验台(platform)上后,尾巴的血压可以通过传感器 (sensor)识别并对向计算机界面输出的血压数值进行分析。结果观察到,在细胞外小泡的作用下血压显著降低。 
从以上结果可以看出,当源于大肠杆菌等肠道共生细菌的细胞外小泡流入血管时,细胞外小泡就是诱发败血症的重要致病因子。 
实施例 7. 将源于大肠杆菌的细胞外小泡按大用量注入腹腔诱发的血液凝固
对在患重症败血症的情况下观察到的血液凝固现象是否由细胞外小泡诱发进行了分析。结果表明,如果发生弥散性血管内凝血,则血小板减少,D-二聚体的量增加。 
图22是注射细胞外小泡 (5 μg)后分别间隔6,12,24小时测定D-二聚体量的示意图,可以看出,将细胞外小泡注入腹腔后分别间隔6,12,24小时从心脏采血,将其放入装有柠檬酸钠(sodium citrate)的试管内在4℃的环境下保管。然后,再通过ELISA方法测定血液中D-二聚体的量。结果表明,间隔12 小时后D-二聚体的量增加最多。 
另外,为了测定血小板的数量,将细胞外小泡注入腹腔后分别间隔6, 12,24小时从心脏采血,放入装有乙二胺四乙酸的试管在4°C的环境下保管。将血液与1%草酸铵 (ammonium oxalate)按1/200稀释后在湿板上反应10分钟,再通过血球计数器测定血小板的数量。   
图23是注入细胞外小泡间隔6小时后开始显示弥散性血管内凝血的指标即血小板减少情况的示意图。 
上述结果表明,当源于肠道共生细菌的细胞外小泡被血管吸收时,发生弥散性血管内凝血,这意味着,源于肠道共生细菌的细胞外小泡是重要的血液凝固的致病因子。 
实施例 8. 由源于大肠杆菌的细胞外小泡诱发的血管内皮细胞激活及促凝血物质(procoagulant molecule)表达
为了评估由源于肠道共栖大肠杆菌的细胞外小泡诱发的血管内皮细胞激活,将带有5 x 105 细胞数的血管内皮细胞 (HUVEC; Human Umbilical Vein Endothelial Cell)播种(seeding)在6 孔板上,间隔24小时后,将细胞外小泡 (0.1,1,5,10,20 ng/ml)注入细胞进行处理,放入37°C培养器内培养。8 小时后除去培养液,利用PBS 灌洗1次后,对细胞裂解(lysis)溶液进行处理,进行10 分钟培养后,在4°C,13,000 x rpm的条件下离心分离10分钟,从而获得细胞整体蛋白。将其与5x荷载染色剂 (荷载染料,250 mM Tris-HCl,10% SDS,0.5% 溴酚蓝,50% 甘油)混合最终变成1x,在100°C的条件下处理10 分钟。准备10% 聚丙烯酰胺凝胶(polyacrylamide gel),加载样本。在100 V的条件下电泳2 小时,然后,在300 mA的条件下于2 小时内将蛋白质通过PVDF (polyvinylidene fluoride) 薄膜进行转移(transfer)。将脱脂乳(Skim milk)溶于PBS变成3%, 将薄膜在上述溶液中进行2小时模块化(blocking)处理。将ICAM-1与β-肌动蛋白(βactin)抗体在4oC的条件下处理12小时。利用0.05% 吐温20/PBS灌洗3次后,分别将粘有过氧化物酶(peroxidase)的二次抗体在室温下处理1小时。利用0.05% 吐温 20/PBS灌洗30分钟后, 通过ECL(enhanced chemiluminescence,Amersham Co.No.RPN2106) 基质(substrate)进行确认,在对细胞外小泡进行处理的情况下,根据剂量依赖性从细胞整体蛋白标准看,确认β-肌动蛋白对比ICAM-1增加了。ICAM-1作为免疫细胞附着蛋白,当各种免疫反应的发生及冠状动脉疾病等血管内皮细胞激活时,它在血管内皮细胞内就会增加,并渗透到免疫细胞的组织内。 
通过图24可以确认,在细胞外小泡的作用下血管内皮细胞被激活,且ICAM-1会增加。 
为了评估源于肠道共栖大肠杆菌的细胞外小泡是否诱导促凝血物质,将有5 x 105 细胞数的血管内皮细胞 (HUVEC; Human Umbilical Vein Endothelial Cell) 播种(seeding)在6孔板上,间隔 24小时后,将细胞外小泡 (1 ng/ml)注入细胞进行处理,放入37°C培养器中培养。12 小时后,取上层液,在 4°C,500 x g的条件下离心分离10分钟后,再在 4°C,3000 x g的条件下离心分离20分钟。为了测定分离的上层液含有的促凝血物质即组织因子,在ELISA板上放上层液100 μl ,在4°C的条件下于12小时内进行涂层处理,然后,将组织因子抗体在室温下处理2小时。利用0.05% 吐温 20/PBS灌洗3次后,将粘有过氧化物酶(peroxidase)的二次抗体在室温下处理1小时。利用0.05% 吐温 20/PBS灌洗30分钟后,通过 ECL(enhanced chemiluminescence,Amersham Co.No.RPN2106) 基质(substrate)进行确认,如图25所示,在对细胞外小泡进行处理的情况下,促凝血物质即组织因子的分泌显著增加了。 
实施例 9. 将源于大肠杆菌的细胞外小泡按大用量注入诱发的肺炎及肺气肿
将源于肠道大肠杆菌的细胞外小泡 (10 μg)利用花青苷-7 (cyanin-7, cy7)染色后,注入老鼠的腹腔内,6小时后,利用能够对老鼠全身进行分析的柯达影像(Kodak image station)系统确认源于肠道大肠杆菌的细胞外小泡的位置。  
图26是通过老鼠荧光照片显示细胞外小泡遍布全身并渗透到肺部的示意图。 
将源于肠道大肠杆菌的细胞外小泡 (10,20 μg)利用DiO染色后注入老鼠的腹腔,6小时后提取血液与肺。 
图27是利用RBC (red blood cell) 裂解缓冲液除去上述血液和肺中的红细胞后,通过荧光激活细胞分选仪 (FACS)对包含细胞外小泡的血液细胞与肺组织细胞的比率进行分析的示意图。结果,可以看到,带有荧光细胞的比率增加了。这意味着,如图26所示,细胞外小泡遍布包含肺在内的全身,这意味着细胞外小泡被细胞吸收后就向其周围扩散。 
为了对肺部炎症反应进行分析,注射细胞外小泡 (5 μg)后分别间隔6, 12,24小时后摘出老鼠的肺,称重后放入65oC 培养器中放置48小时,然后,通过对与变化后的肺的湿/干重比值(wet-to-dry ratio)进行分析从而对肺炎情况进行评估。 
图28是显示反映肺炎的指标即湿/干重比值的示意图,将细胞外小泡注入腹腔后间隔6小时后观察肺炎发生情况。 
另外,注入细胞外小泡 (5 μg)后分别间隔 6,12,24小时提取老鼠的支气管肺泡灌洗液测定炎症细胞数量。将含有氯胺酮 (ketamin)的麻醉液注入老鼠腹腔进行麻醉后,切开胸部露出气管,将尿管插入气管并进行结扎。将PBS按每次注入1 ml注射2次,对气管进行灌洗,获得支气管肺泡灌洗液。将支气管肺泡灌洗液在4°C,3000 rpm的条件下离心分离10分钟,然后,将沉淀的细胞溶于PBS中,测定细胞数量。利用光学显微镜测定总炎症细胞数量后,将沉淀的细胞利用细胞离心涂片机 (cytospin)进行离心分离后涂抹于载玻片上实施迪芙-奎克染色,在光学显微镜1000倍视野内可以观察到300个以上的炎症细胞,包括巨噬细胞、淋巴细胞、中性粒细胞、嗜酸性粒细胞,且分别对各种炎症细胞数量进行测定。 
图29是显示支气管肺泡灌洗液内炎症细胞数量的函数图,可以看出,在细胞外小泡的作用下炎症细胞数量增加,特别是巨噬细胞数量显著增加。 
注射细胞外小泡 (5 μg)后分别间隔6,12,24小时摘出肺放入4% 甲醛 (formaldehyde)中并进行固定(fixing),然后,制作切片,利用苏木精-伊红(hematoxylin-eosin)进行染色,通过光学显微镜观察到的图像如图30所示。可以看到,在细胞外小泡的作用下肺泡被显著破坏。这意味着,在源于肠道共生细菌的细胞外小泡的作用下同时发生肺炎和肺气肿。 
上述结果显示,源于肠道共生细菌的细胞外小泡通过血管分布在多个脏器同时诱发炎症和组织损伤,这意味着,作为病因不明的炎症疾病的致病因子,源于肠道共生细菌的细胞外小泡非常重要。 
实施例 10.将源于大肠杆菌的细胞外小泡长时间低用量注入腹腔诱发的高血压及骨质疏松症
为了评估将源于肠道大肠杆菌的细胞外小泡按低用量反复显现时是否会诱发慢性疾病,将细胞外小泡(0.1,1 μg) 按每1周向腹腔注射2次共注射18周。 
图31是将源于肠道大肠杆菌的细胞外小泡反复显现时显示血压变化的示意图,可以看出,在细胞外小泡的作用下出现了高血压。 
为了评估将源于肠道大肠杆菌的细胞外小泡按低用量反复显现时是否会诱发骨质疏松症,将细胞外小泡 (1 μg) 按每1周向腹腔注射2次共注射18周后,从老鼠的腿部提取长骨(long bone),于固定液中固定一整天,将放入固定液中的长骨用盐水清洗2次后,将其依次放入30,50,70,90,100% 乙醇中脱水1小时。将经脱水处理的长骨放入一种被称作“环氧丙烷 (propylene oxide)”的置换液中浸泡1小时共实施2次,准备实施其与聚合物的置换。置换液与聚合物的比例按3:1,1:1,1:3的顺序逐渐升高,实施其与聚合物的置换。最后,将剩下的置换液放于防护罩上置于空气中而散发,使骨头浸在仅由聚合物构成的溶液中,在65oC烤箱中进行一天的聚合过程。骨头样本的X线断层(X-RAY tomogrpahy)图像全都是通过浦项加速器 7B2 光束线 (7B2 beamline at Pohang Light Source,PLS)的同步辐射X射线显微镜(Synchroton radiation X-ray microscopy)获得的。将内置聚合物(polymer embedding)的骨头放于放射光X射线显微镜的样本镜台上后,通过180旋转就可以获得全部1200张图像。样本镜台与闪烁体 (scintillator)间的距离为10 cm,图像主要是利用放射光 X射线显微镜的吸收对比效果(absorption contrast effect)获得的。将获得的图像通过Octopus和Amira程序作成3维图像(3D reconstruction),对1200张中有代表性的剖面图像(tomographic slice image)进行比较。 
图32是显示将细胞外小泡长时间按低用量注入而诱发的以破坏骨头的连接构成为特征的骨质疏松症示意图。 
上述结果表明,当源于肠道共生细菌的细胞外小泡长时间反复被血管吸收并向全身分布时,就会诱发高血压、骨质疏松症等慢性疾病。 
实施例 11. IL-6对由源于大肠杆菌的细胞外小泡诱发的败血症及肺气肿的发生所起的作用
将通过实施例3所述方法分离的源于老鼠肠道大肠杆菌的细胞外小泡(25 μg)分别向正常老鼠 (C57BL/6,雄性 6周)和IL-6缺乏(knock out)老鼠(C57BL/6,雄性,6周)的腹腔注射1次,每隔12小时确认死亡老鼠的数量,其存活率如图33所示。可以看出,IL-6 缺乏老鼠与正常老鼠不同,在25 μg细胞外小泡的作用下,不会诱发死亡。 
将细胞外小泡 (5 μg)在12小时内注射3次,分别间隔6,12,24小时后将肺摘出,通过实施例9所述方法对肺的病理变化进行分析。图34是肺切片的照片,可以看出,与正常老鼠不同,在细胞外小泡的作用下IL-6 缺乏老鼠的肺组织细胞完全未被破坏。 
上述结果表明,不仅对于由源于肠道共生细菌的细胞外小泡诱发的败血症发生,而且对于其诱发的多个脏器上发生的炎症疾病而言,IL-6都是非常重要的媒介。 
实施例 12. 预防或治疗由源于肠道共生细菌的细胞外小泡诱发疾病的备选药物体外(in vitro)筛选系统的构建
基于以上述实施例,确认由源于老鼠肠道共生细菌的细胞外小泡诱发的炎症性细胞因子在很大程度上对各种疾病产生了影响。这意味着,发掘炎症性媒介,特别是能够抑制IL-6分泌的物质,对于筛选用于预防或治疗由源于肠道共生细菌的细胞外小泡诱发疾病的备选药物非常重要。 
图35是发掘抑制由源于肠道共生细菌的细胞外小泡诱发的IL-6分泌的物质的模式图,可以看出,将通过实施例3所述方法分离的源于肠道共生细菌即大肠杆菌的细胞外小泡(100 ng/ml)单独或者与药物备选物质(10 μM)一起注入按实施例4所述准备的老鼠巨噬细胞(RAW 264.7)进行处理后,放入37°C 培养器中培养15小时。15小时后,取上层液,在 4°C,500 x g的条件下离心分离10分钟,再在 4°C, 3000 x g的条件下离心分离20分钟。通过ELISA方法测定分离的上层液中所含的IL-6量。这样,就可以构建在体外(in vitro)筛选抑制由源于肠道共生细菌的细胞外小泡诱发的IL-6分泌的备选物质的方法,从而就可以提供用于预防或治疗由源于肠道共生细菌的细胞外小泡诱发疾病的备选药物。 
实施例 13. 通过体外(In vitro)筛选系统发掘的激酶抑制剂的体外(in vitro)消炎效果
按照实施例12所述方法,分别将仅用培养液对老鼠巨噬细胞 (RAW 264.7)处理的群(阴性对照群)、仅将源于肠道大肠杆菌的细胞外小泡(0.1 /ml)混入培养液中进行处理的群(阳性对照群) ,以及80种激酶抑制剂 ((激酶抑制剂库, BIOMOL No.2832: PD-98059,U-0126,SB-203580, H-7,H-9,AG-494,AG-825,灰薰草菌素 A,RG-14620,酪氨酸磷酸化抑制剂 23,酪氨酸磷酸化抑制剂 25,酪氨酸磷酸化抑制剂46, 酪氨酸磷酸化抑制剂47,酪氨酸磷酸化抑制剂 51,酪氨酸磷酸化抑制剂 1,酪氨酸磷酸化抑制剂 9,酪氨酸磷酸化抑制剂 AG 1288,酪氨酸磷酸化抑制剂 AG 1478,酪氨酸磷酸化抑制剂 AG 1295,HNMPA, 虎刺醛,白皮杉醇,AG-490,AG-126,AG-370,AG-879,LY 294002,渥曼青霉素,GF 109203X,金丝桃素,鞘氨醇,H-89, H-8,HA-1004,HA-1077,HDBA,KN-62,KN-93,ML-7,ML-9, 2-氨基嘌呤,N9-异丙基-奥罗莫星,奥罗莫星,异奥罗莫星,核抑制剂,LFM-A13,SB-202190,ZM 336372,SU 4312, AG-1296,粗糠柴毒素,染料木黄酮,大豆素,癌基因抑活药类似物,槲皮素,SU 1498,ZM 449829,DRB (5,6-二氯-1-b-D-呋喃核糖基苯并咪唑),HBDDE (2,2',3,3',4,4'-六羟基-1,1'-联苯-6,6'-二甲醇二甲醚),靛玉红,靛玉红-3'-一肟,Y-27632, Kenpaullone,土曲霉酸,BML-257,BML-259, 芹菜素,BML-265 (埃罗替尼类似物),雷怕霉素) 各按10 μM浓度与上述等量的细胞外小泡一起混入培养液中处理以构成实验所用的群。经过处理15小时后通过夹层(sandwich)ELISA方法对培养液中IL-6的量进行测定。 
在对各种激酶抑制剂进行处理的情况下,所测定的IL-6量与从阳性对照群中测定的IL-6量相比较获得的百分比如图36所示。 
结果表明,在80余种激酶抑制剂中有11种物质(4; H-7,29; LY294002,31; GF109203X,42; ML-7,43; ML-9,64; ZM449829, 66; DRB (5,6-二氯-1-b-D-呋喃核糖基苯并咪唑),70;靛玉红-3'一肟.72; Kenpaullone,77; BML-259,78; 芹菜素)使IL-6的量与阳性对照群相比降至50%以下。 
图37是在将上述激酶抑制剂中虎刺醛,LY294002,GF109203X单独或者两种以上组合(这种情况下,处理的各药物的浓度保持10 mm) 与细胞外小泡 (100 ng/ml)同时进行处理的情况下,对细胞培养液内IL-6的量进行测定的示意图。可以看出,当将两种以上同时处理时,IL-6分泌抑制效果显著增强。 
实施例 14. 通过体外(In vitro)筛选系统发掘的磷酸酶抑制剂的体外(in vitro)消炎效果   
图38是按实施例13所述方法对30种磷酸酯酶抑制剂 (磷酸酯酶抑制剂库,BIOMOL No.2834: 斑蝥酸,斑蝥素.内氧草索, 苄基磷酸,L-p-对溴四咪唑草酸盐,RK-682, RWJ-60475,RWJ-60475 (AM)3,盐酸左旋咪唑,盐酸四咪唑,氯氰菊酯,溴氰菊酯,氰戊菊酯,酪氨酸磷酸化抑制剂 8, CinnGEL,CinnGEL 2 Me, BN-82002,紫草素,NSC-663284,环孢菌素 A,戊烷脒,BVT-948,B4-绕丹宁,BML-268,二氧菲(Dioxophenanthrene),BML-260,PD-144795,BML-267,BML-267 酯, OBA,OBA 酯,棉酚,阿仑膦酸钠)进行处理后检索使IL-6的量与阳性对照群相比降至50%以下的药物备选物质并发掘PD-144795的示意图。 
图39是准备含有浓度分别为0.1,1,5,10 μM 的PD-144795及含有浓度为100 ng/ml 源于肠道大肠杆菌的细胞外小泡的培养液,按实施例13所述方法注入源于老鼠的巨噬细胞进行处理后根据剂量依赖性确认抑制IL-6分泌的示意图。 
实施例 15. 通过体外(In vitro)筛选系统发掘的前体药物的体内(in vitro)消炎效果
图40是按实施例13所述方法对100种前体药物 (醋氨酚,乙酰半胱氨酸,别嘌呤醇,盐酸阿普洛尔,盐酸阿密替林,阿托品,溴苄乙胺,溴苯那敏, 布地奈德,盐酸丁螺环酮,头孢呋辛,水合氯醛,盐酸氯丙嗪,甲氰咪胍,盐酸氯米帕明,克霉唑,环苯扎林,盐酸地昔帕明,双氯芬酸,二氟尼柳,地尔硫卓,盐酸苯海拉明, 达舒平,戒酒硫,D-甘露醇,多塞平,强力霉素水物,,琥珀酸多西拉敏依酚氯铵,马来酸依那普利,法莫替丁,芬布芬,非诺贝特,苯氧布洛芬钙,氟桂嗪二盐酸盐,氟奋乃静二氯化合物,氟比洛芬,速尿灵,吉非罗齐,格列齐特,格列吡嗪,氟哌啶醇,双氢氯噻嗪,氢氟甲噻嗪,盐酸羟嗪,布洛芬,盐酸丙咪嗪,吲达帕胺,吲哚-2-羧酸, 消炎痛,异丙托溴铵,酮洛芬,酮咯酸氨丁三醇,盐酸马普替林,甲氯灭酸,褪黑素,二甲双胍,盐酸美沙吡林,甲巯咪唑,美索巴莫,盐酸甲氧氯普胺,甲硝唑,萘丁美酮萘普生,溴化新斯的明,烟酸,盐酸尼卡地平,硝苯吡啶,呋喃妥英,尼扎替丁,炔诺酮,去甲替林,盐酸邻甲苯海明,奥昔布宁,盐酸苯乙双胍,苯基丁氮酮,苯妥英,吡罗昔康,强的松,丙磺舒,盐酸心得安,溴吡斯的明,盐酸雷尼替丁,安体舒通,磺胺甲氧哒嗪(sulfameth),止呕灵,,替诺昔康,特非那定,茶碱,盐酸噻氯匹定,甲磺氮卓脲,妥拉唑林,甲糖宁,托灭酸,盐酸曲马多,反苯环丙胺,盐酸曲唑酮,氨苯蝶啶,三氯噻嗪,盐酸苄吡二胺,维拉帕米,杀鼠灵) 进行处理后发掘出使IL-6的量与阳性对照群相比降至80%以下的备选物质14 种(10; 阿密替林,39; 环苯扎林,41; 地昔帕明,54; 多塞平,72; 氟奋乃静二氯化合物,82; 氟哌啶醇,89; 丙咪嗪,101; 马普替林,132; 邻甲苯海明,165; 特非那定,173; 托灭酸,179; 曲唑酮,187; 三氯噻嗪,188; 维拉帕米)的示意图。   
图41是将通过上述体外(in vitro)筛选系统发掘的14种前体药物注入源于老鼠腹腔的巨噬细胞内,经体内-体外(ex vivo)处理后确认显示IL-6减少效果的11种前体药物 (10; 阿密替林,39; 环苯扎林,41; 地昔帕明,54; 多塞平, 72; 氟奋乃静二氯化合物,82; 氟哌啶醇,89; 丙咪嗪,101; 马普替林,132; 邻甲苯海明,165; 特非那定, 173; 托灭酸,179; 盐酸曲唑酮)的示意图。
实施例 16. 通过体外(In vitro)筛选系统发掘的前体药物的体内(in vivo)消炎效果
对实施例15发掘的前体药物是否在体内产生消炎效果进行了评估。为此,先如实施例6所述将源于肠道大肠杆菌的细胞外小泡5 μg注入C57BL/6老鼠 (雄性,6周,每组4只)腹腔构建诱发败血症的老鼠模型,再将上述发掘的前体药物中氟哌啶醇和多塞平(Doxepein)分别按10 mg/kg的用量注入老鼠模型腹腔中,6小时后提取血清。
图42是通过ELISA方法对血清中IL-6的量进行测定的示意图,可以看出,由源于肠道大肠杆菌的细胞外小泡诱发的炎症性媒介即IL-6的分泌因向血液内注入通过体外(in vitro)筛选系统发掘的氟哌啶醇和多塞平(Doxepein)而被有效地抑制。   
从上述结果可以看出,利用实施例12所述源于肠道共生细菌的细胞外小泡的体外(in vitro)药物筛选系统是一种非常有效的方法,利用它可以有效地筛选用于预防或治疗由源于肠道共生细菌的细胞外小泡诱发的各种疾病的药物。 
实施例 17. 源于大肠杆菌的细胞外小泡疫苗的免疫学特性
将按实施例3所述方法分离的源于大肠杆菌的细胞外小泡1 mg每隔1周注射1次注射3周分3次注入C57BL/6 (雄性,6周,每组10只)腹腔内。每次注射间隔6 小时、24小时、7日后提取老鼠血液测定血液内存在的细胞外小泡特异性抗体。将利用1% BSA/PBS按1:500稀释的老鼠血清放于涂有源于大肠杆菌的小泡200 ng的黑色96 孔板上,在常温下培养2小时后通过过氧化物酶(peroxidase)结合的老鼠抗体进行观察。 
图43是对老鼠血液内源于大肠杆菌的细胞外小泡特异性抗体的量随时间进行观察的示意图。可以看出,细胞外小泡特异抗体在1次注入细胞外小泡7日后开始形成,第二次和第三次注入细胞外小泡后形成了更多的抗体,第三次完成小泡疫苗接种7日后形成的抗体最多。 
通过上述方法完成三次源于大肠杆菌的细胞外小泡的接种7日后从老鼠中将脾脏细胞分离出来,将源于大肠杆菌的细胞外小泡100 ng放入分离的脾脏细胞 (2 x 104)内培养72小时后,通过ELISA方法分别测定出与脾脏细胞分泌的免疫反应相关的细胞因子即IFN-g,IL-17,IL-4的量。 
图44是显示将源于大肠杆菌的细胞外小泡注入老鼠脾脏细胞处理时分泌的IFN-g量的示意图。可以看出,与从未接种源于大肠杆菌的细胞外小泡的老鼠组获得的脾脏细胞相比,从接种了细胞外小泡的老鼠获得的脾脏细胞的IFN-g分泌增加了。 
图45是显示将源于大肠杆菌的细胞外小泡注入老鼠脾脏细胞处理时分泌的IL-17量的示意图。可以看出,与从未接种源于大肠杆菌的细胞外小泡的老鼠组获得的脾脏细胞相比,从接种了细胞外小泡的老鼠获得的脾脏细胞的IL-17的分泌增加了。 
图46是显示将源于大肠杆菌的细胞外小泡注入老鼠脾脏细胞处理时分泌的IL-4量的示意图。可以看出,源于大肠杆菌的细胞外小泡的接种对脾脏细胞的IL-4分泌没有影响。 
从上述结果可以看出,接种源于大肠杆菌的细胞外小泡时,会诱发针对细菌感染的防御机制即B细胞生成的抗体反应和T细胞免疫反应。特别是,通过接种源于大肠杆菌的细胞外小泡可以有效地诱发T细胞免疫反应,即对于防御细菌感染非常重要的分泌IFN-g的Th1免疫反应和分泌IL-17的Th17免疫反应。 
实施例 18. 源于大肠杆菌的细胞外小泡疫苗对由大肠杆菌感染诱发的败血症发生的效果
为了评估源于大肠杆菌的细胞外小泡疫苗的效果,构建了由大肠杆菌感染诱发的败血症动物模型。将大肠杆菌1 x 106,1 x 108,1 x 1010 CFU注入C57BL/6 (雄性,6 周,每组10只)的腹腔,5 日内每间隔8小时观察老鼠的存活率。 
图47是显示由大肠杆菌感染诱发老鼠致死率的示意图,即,如果注入大肠杆菌 1 x 1010 CFU,老鼠在24小时内死亡,如果注入大肠杆菌1 x 106,1 x 108 CFU,则对老鼠的生存没有影响。 
按实施例17所述方法将源于大肠杆菌的细胞外小泡0.5,1 μg每隔1周注射1次注射3周分3次注入C57BL/6 (雄性,6周,每组10只)腹腔。完成三次源于大肠杆菌的细胞外小泡的接种7日后,将大肠杆菌 1 x 1010 CFU注入腹腔,在5日内每隔8小时观察老鼠的存活率。 
图48是观察源于大肠杆菌的细胞外小泡疫苗对图47所述由大肠杆菌感染诱发的败血症发生所产生的效果的示意图。可以看出,5日后未接种源于大肠杆菌的细胞外小泡的老鼠存活率为20%,然而接种了源于大肠杆菌的细胞外小泡的老鼠组的存活率达到80 -100 %。 
按图48所述方法将源于大肠杆菌的细胞外小泡1 μg每隔1周注射1次分3次注入腹腔进行接种后,再将大肠杆菌1 x 1010 CFU注入老鼠腹腔,6小时后测定腹水与血液中受感染的大肠杆菌个数,结果如图49所示。另外,利用ELISA测定血清内IL-6 量,结果如图50所示,肺组织图像如图51所示。 
图49是显示接种源于大肠杆菌的细胞外小泡时的受感染的大肠杆菌CFU变化的示意图。可以看出,当感染大肠杆菌时,与从未接种源于大肠杆菌的细胞外小泡的老鼠获得的血液和腹水相比,接种了小泡的老鼠的血液及腹水中大肠杆菌的数量显著减少。 
图50是接种了源于大肠杆菌的细胞外小泡的老鼠感染大肠杆菌 1 x 108 CFU 经过6小时后,对血清中存在的IL-6量进行测定的示意图。可以看出,感染大肠杆菌的老鼠血清内炎症性细胞因子即IL-6的量显著增加,但是,用源于大肠杆菌的细胞外小泡进行预防接种的老鼠血清内IL-6的量却急剧减少。 
图51是接种了源于大肠杆菌的细胞外小泡的老鼠感染大肠杆菌 6小时后,将老鼠的肺摘出确认肺组织状态的示意图。可以看出,当感染大肠杆菌时,肺组织细胞被大量破坏,但是,用源于大肠杆菌的细胞外小泡进行预防接种的一组的肺病理组织却与正常老鼠相似。 
上述结果表明,如果事先将源于肠道共生细菌即大肠杆菌的细胞外小泡作为疫苗注入,就能够有效地预防由大肠杆菌引起的感染及病理。 
实施例 19. 源于大肠杆菌的细胞外小泡疫苗对由源于大肠杆菌的细胞外小泡诱发的败血症发生的效果
按实施例17所述方法将源于大肠杆菌的细胞外小泡1 μg每隔1周注射1次分3次注入C57BL/6 (雄性,6周,每组5只)腹腔后,观察源于大肠杆菌的细胞外小泡疫苗对如实施例 6所述由源于大肠杆菌的细胞外小泡诱发的败血症发生的效果。完成源于大肠杆菌的细胞外小泡预防接种7日后,将源于大肠杆菌的细胞外小泡5 μg每隔12小时分3次注入腹腔,对与败血症相关的指标进行分析。 
图52至图54是观察源于大肠杆菌的细胞外小泡疫苗对如实施例 6所述由源于大肠杆菌的细胞外小泡诱发的败血症发生的效果的示意图。 
图52是将源于大肠杆菌的细胞外小泡 (5 μg,3次)注入接种了源于大肠杆菌的细胞外小泡的老鼠6小时后提取老鼠血液并测定血清内细胞因子即IFN-g的示意图。可以看出,与未接种源于大肠杆菌的细胞外小泡的老鼠组相比,接种了源于大肠杆菌的细胞外小泡的一组的血清内IL-6量显著减少。 
图53是对与败血症相关的全身性炎症反应中的温度进行测定的示意图。可以看出,因将源于大肠杆菌的细胞外小泡 5 μg分3次注入而引发低烧,但是,如果事先将源于大肠杆菌的细胞外小泡 1 μg间隔1周注射1次分3次进行接种,则其体温保持与正常老鼠相似。 
图54是在患重症败血症的情况下对血小板减少现象进行观察的示意图。可以看出,因将源于大肠杆菌的细胞外小泡 5 μg分3次注入而导致血小板数量减少,但是,如果事先将源于大肠杆菌的细胞外小泡1 μg间隔1周注射1次分3次注入进行接种,则血小板减少情况就会降低。 
上述结果表明,如果事先将源于肠道共生细菌即大肠杆菌的细胞外小泡作为疫苗注入,就能够有效地预防由源于大肠杆菌的细胞外小泡诱发的疾病。 
实施例 20. 源于肺炎克雷伯菌的细胞外小泡疫苗的免疫学特性
将按实施例 3所述方法分离的源于肺炎克雷伯菌的细胞外小泡 100 ng,1 mg 间隔5日分3次注入C57BL/6 (雄性,6周,每组5只)腹腔。最后接种 3日后提取老鼠血液并确认血液中存在的源于肺炎克雷伯菌的细胞外小泡特异性抗体,结果如图55所示,将脾脏摘出后,分离脾脏内T细胞并测定细胞因子即IFN-g,IL-17,结果如图56所示。 
图55是显示了从接种了源于肺炎克雷伯菌的细胞外小泡的老鼠提取的血液内存在源于肺炎克雷伯菌的细胞外小泡特异性抗体情况的示意图,可以看出,小泡特异抗体与源于肺炎克雷伯菌的细胞外小泡的浓度成一定的比例。 
图56是将源于肺炎克雷伯菌的细胞外小泡注入从脾脏中提取的T细胞处理时显示CD3+CD4+IFN-g+ T细胞的示意图。可以看出,与未接种源于肺炎克雷伯菌的细胞外小泡的老鼠组相比,接种了细胞外小泡的一组中CD3+CD4+IFN-g+ T细胞增加了。 
图57是将源于肺炎克雷伯菌的细胞外小泡注入从脾脏中提取的T 细胞处理时显示 CD3+CD4+IL17+ T细胞的示意图。可以看出,与未接种源于肺炎克雷伯菌的细胞外小泡的老鼠组相比,接种了细胞外小泡的一组中CD3+CD4+IL17+ T细胞增加了。 
如图55至图57所示,接种源于肺炎克雷伯菌的细胞外小泡时,就会诱发针对细菌感染的防御机制即B细胞生成的抗体反应和T细胞免疫反应。特别是,通过接种小泡疫苗能够有效地诱导T细胞免疫反应中对于防御细菌感染非常重要的分泌IFN-g的Th1免疫反应和分泌IL-17的Th17免疫反应。 
实施例 21. 源于大肠杆菌的细胞外小泡疫苗对由肺炎克雷伯菌感染诱发的败血症发生的效果
为了评估源于肺炎克雷伯菌的细胞外小泡疫苗的效果,构建由肺炎克雷伯菌感染诱发的败血症动物模型。将肺炎克雷伯菌1 x 106,1 x 107,1 x 108 CFU注入C57BL/6 (雄性,6周,每组5只)腹腔,在5日内间隔8小时观察老鼠的存活率。 
图58是显示因肺炎克雷伯菌感染导致老鼠致死率的示意图,即,如果注入肺炎克雷伯菌1 x 10CFU,老鼠会在24小时内死亡,如果注入大肠杆菌 1 x 106,1 x 107 CFU,则对老鼠的生存没有影响。 
为了评估源于肺炎克雷伯菌的细胞外小泡对肺炎克雷伯菌感染的效果,将细胞外小泡 1 μg间隔5日分3次注入C57BL/6 (雄性,6周,每组5只)腹腔。完成三次源于肺炎克雷伯菌的细胞外小泡的接种3日后,将肺炎克雷伯菌 1 x 108 CFU注入腹腔,在5日内间隔8小时观察老鼠的存活率。 
图59是观察源于肺炎克雷伯菌的细胞外小泡疫苗对按上述方法构建的由肺炎克雷伯菌感染诱发的败血症发生的效果的示意图。可以看出,感染肺炎克雷伯菌5日后,未接种源于肺炎克雷伯菌的细胞外小泡的老鼠存活率为40%,而接种了源于肺炎克雷伯菌的细胞外小泡的老鼠一组的存活率为100 %。 
上述结果表明,如果事先将源于肠道共生细菌即肺炎克雷伯菌的细胞外小泡作为疫苗注入,就能够有效地预防由源于肺炎克雷伯菌的细胞外小泡诱发的疾病。 
实施例 22. 并用注入源于大肠杆菌及肺炎克雷伯菌的细胞外小泡疫苗时的免疫学特性
分别将按实施例 3所述方法分离的源于大肠杆菌的细胞外小泡,源于肺炎克雷伯菌的细胞外小泡 1 mg,源于大肠杆菌及肺炎克雷伯菌的细胞外小泡各1 mg按间隔5日分2次注入C57BL/6 (雄性,6 周,每组5只)腹腔内。接种细胞外小泡3日后提取血液,将按1:500稀释的血清放于涂有细胞外小泡的黑色96孔板上在常温下培养2小时。 
图60是显示形成源于大肠杆菌的细胞外小泡特异性抗体的示意图。可以看出,当将并用注入源于大肠杆菌与肺炎克雷伯菌的细胞外小泡时,源于大肠杆菌的细胞外小泡特异抗体的形成与将单独注入源于大肠杆菌的细胞外小泡时相比增加了。 
图61是显示形成源于肺炎克雷伯菌的细胞外小泡特异性抗体的示意图。可以看出,当将并用注入源于大肠杆菌与肺炎克雷伯菌的细胞外小泡时,源于肺炎克雷伯菌的细胞外小泡特异抗体的形成与将单独注入源于肺炎克雷伯菌的细胞外小泡时相比增加了。 
上述结果表明,如果事先将源于肠道共生细菌即大肠杆菌与肺炎克雷伯菌的细胞外小泡混合作为疫苗注入时,不仅能够有效地预防由源于大肠杆菌及肺炎克雷伯菌的细胞外小泡诱发的疾病,而且还能够有效地预防由大肠杆菌及肺炎克雷伯菌诱发的感染。 
实施例 23. 源于肠道共生细菌的细胞外小泡的遗传物质碱基序列分析
提取C57BL/6 (6周,雄性)与BALB/c (6周,雄性)老鼠的大便,将细胞外小泡分离后,分3次分别向10 μg细胞外小泡中添加蒸馏水使总体积达到8 μl。当分别向小泡中添加2 μl的随机十聚体(random decamer) (Ambion,5722G)后,在95°C的条件下培养10分钟,再在75°C的条件下培养10分钟,然后,在4°C的环境下保管。分别向添加随机十聚体后的样本中添加AMV反转录酶(Promega, M510F) 3 μl,AMV反转录酶缓冲液(Promega,M515A) 4 μl,10 mM dNTP 2 μl,RNase抑制剂 (Promega,N211B) 1 μl进行处理后,在25°C的条件下使其反应10分钟,然后,再在37°C的条件下使其反应2小时。利用添加AMV反转录酶处理后的各20 μl样本中的1 μ l通过PCR对16S rRNA 基因进行确认。为了执行PCR,向样本1 μl中添加Taq 酶 (NEB,M0273S) 0.5 μl,Taq 酶缓冲液 (NEB,B9014S) 2 μl,10 mM dNTP 1 μl,10 pM 细菌通用正向引物(bacterial universal forward primer) 1 μl (5'aaggcgacgatccctagctg-3'),10 pM细菌通用反向引物(bacterial universal reverse primer)1 μl (5'ttgagcccggggatttcaca-3'),然后,分3次添加蒸馏水13.5 μl进行混合。将混合物在95°C的条件下使其反应2分钟后,在分别在95°C的条件下反应30秒,在55°C的条件下反应30秒,在 72°C的条件下反应45秒,共反复执行上述操作45次。最后,在72°C的条件下反应5分钟,然后,委托SolGent(株)(大田广域市儒城区花岩洞63-10)对PCR结果物进行排序,最终获得以C57BL/6对象的图62所示结果及以BALB/c为对象的图63所示结果。
如图62及图63所示,从第100~120号,第150-190号核酸部分出现的多重峰值来看,可知其中混入有源于多种细菌的16S rRNA。由此,可以确认源于大便的细胞外小泡中含有源于多种细菌的细胞外小泡。通过将从NCBI 数据库 (http://www.ncbi.nlm.nih.gov/gene)获得的细菌的16S rRNA 碱基序列与考虑多重峰值的排序结果进行比较可以确认栖息于图1所示大便中具有代表性的10种细菌中大肠杆菌与肺炎克雷伯菌存在是可能的。 
为了确认源于肠道大肠杆菌的细胞外小泡中存在16S rRNA遗传物质,按上述方法对细胞外小泡 10 μg执行RT-PCR操作。阴性对照使用3次蒸馏水,而阳性对照将肠道大肠杆菌培养至O.D. 值为1.0后,使用1 μl。向RT-PCR结果物20 μl中混入5X绿色GoTaq反应缓冲液(5X Green GoTaq Flexi Buffer)(Promega,M891A) 5 μl后,将其中的5 μl 加入(loading)到2% 琼脂糖凝胶中。通过100 V将其执行30分钟的电泳(gel running)操作,将凝胶放入0.005% EtBr溶液中浸泡10分钟后,在紫外线照射的状态下拍下照片。 
结果如图64所示,最终获得了与阳性对照相同的条带(band),由此可知,源于肠道大肠杆菌的细胞外小泡中存在16S rRNA 基因及源于其中的RNA 转录体。 
实施例 24. 确认组织及体液中源于肠道共生细菌的细胞外小泡蛋白
将源于肠道共生细菌的细胞外小泡25 μg注入C57BL/6 (6 周,雄性,每组3只)老鼠腹腔,6 小时后提取老鼠脏器及体液,利用细胞外小泡的抗体通过ELISA确认是否存在细胞外小泡蛋白。将老鼠脏器摘出后,在存在液氮的状态下放入研钵中研磨后,加入RIPA 溶液 (50 mM Tris (pH 7.5),1% NP-40,0.25% Na-脱氧胆酸盐,100 mM NaCl,1 mM EDTA,蛋白酶抑制剂)并进行裂解操作,在4°C的条件下按13,000 rpm离心分离10分钟获得蛋白质,体液可以通过与上述实施例5,6相同的方法获得。 
图65是显示通过腹腔注入的细胞外小泡存在于各种脏器及腹腔灌洗液 (peritoneal fluid; PF)、小便、血液中的示意图。这表明由细胞外小泡诱发的炎症性疾病可以通过获得小便及血液等容易提取的体液进行诊断。 
上述所述的本发明的说明是只是用于举例,相关工作人员完全可以在不偏离本项发明技术思想或必须特征的范围内,可转换成其他具体的形式。因此,上述所述的实施例只是在全方面内进行了举例,但并不限定于此。 
工业实用性 
利用本发明源于肠道共生细菌的细胞外小泡可以有效地发掘能够预防或治疗源于肠道共生细菌的细胞外小泡引发疾病的药物。另外,注射源于肠道共生细菌的细胞外小泡本身或者将其变形注入以调节免疫反应,从而能够研发出可以有效地预防或治疗由肠道共生细菌引发的感染或者源于肠道共生细菌的细胞外小泡诱发的疾病的疫苗。另外,利用源于肠道共生细菌的细胞外小泡还能够研发出诊断源于肠道共生细菌的细胞外小泡引发疾病的致病因子的技术。

Claims (12)

1.一种包含源于肠道共生细菌的细胞外小泡且用于预防或治疗肺炎、肺气肿或败血症的组合物,其特征在于:
上述肠道共生细菌为肺炎克雷伯菌,所述细胞外小泡是从哺乳动物的大便、大肠液、胃液及小肠液组成的组中选择并分离而得到。
2.如权利要求1所述的组合物,其特征在于:
上述细胞外小泡为分离出的自然分泌的或者人工分泌的细胞外小泡。
3.如权利要求1所述的组合物,其特征在于:
上述组合物还包含大肠杆菌来源的细胞外小泡。
4.一种针对于肺炎、肺气肿或败血症的预防或治疗的备选药物的筛选方法,该方法包括在试管内将源于肠道共生细菌的细胞外小泡进行处理阶段,其特征在于:
上述肠道共生细菌为肺炎克雷伯菌,所述细胞外小泡是从哺乳动物的大便、大肠液、胃液及小肠液构成的群中选择并分离而得到,上述筛选方法包括在试管内将细胞外小泡与备选药物同时对细胞进行处理后测定IL-6水平的步骤,上述肠道共生细菌为革兰氏阴性细菌。
5.如权利要求4所述的筛选方法,其特征在于:
上述肠道共生细菌还包含大肠杆菌。
6.一种含有源于肠道共生细菌的细胞外小泡的可用于预防或治疗肺炎、肺气肿或败血症的疫苗,其特征在于:
上述肠道共生细菌为肺炎克雷伯菌,所述细胞外小泡是从哺乳动物的大便、大肠液、胃液及小肠液构成的群中选择并分离而得到。
7.如权利要求6所述的疫苗,其特征在于:
上述疫苗还包含大肠杆菌来源的细胞外小泡。
8.如权利要求6所述的疫苗,其特征在于:
上述疫苗使用转化的细菌或者利用化合物对上述细菌进行处理。
9.如权利要求6所述的疫苗,其特征在于:
上述疫苗为利用化合物对细胞外小泡进行的处理。
10.如权利要求6所述的疫苗,其特征在于:
上述疫苗基于增强效果或者减少副作用的目的而与药物并用。
11.一种预防或治疗肺炎、肺气肿、败血症的药学组合物,上述药学组合物包含通过利用源于肠道共生细菌的细胞外小泡的筛选方法筛选的物质,其特征在于:
上述肠道共生细菌为肺炎克雷伯菌,所述细胞外小泡是从哺乳动物的大便、大肠液、胃液及小肠液组成的组中选择并分离而得到。
12.如权利要求11所述的药学组合物,其特征在于:
上述物质包括激酶抑制剂、磷酸酶抑制剂或者前体药物。
CN201080038540.9A 2009-09-01 2010-07-20 源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法 Active CN102480932B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0082220 2009-09-01
KR20090082220 2009-09-01
PCT/KR2010/004747 WO2011027971A2 (ko) 2009-09-01 2010-07-20 장내 공생 세균유래 세포밖 소포체, 및 이를 이용한 질병모델, 백신, 후보 약물 탐색 방법, 및 진단 방법

Publications (2)

Publication Number Publication Date
CN102480932A CN102480932A (zh) 2012-05-30
CN102480932B true CN102480932B (zh) 2015-01-14

Family

ID=43649739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080038540.9A Active CN102480932B (zh) 2009-09-01 2010-07-20 源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法

Country Status (6)

Country Link
US (2) US9201072B2 (zh)
EP (1) EP2494865A4 (zh)
JP (1) JP5818793B2 (zh)
KR (1) KR101430283B1 (zh)
CN (1) CN102480932B (zh)
WO (1) WO2011027971A2 (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421779B1 (ko) * 2011-04-08 2014-07-28 주식회사이언메딕스 아시네토박터 속 세균유래 세포밖 소포체 및 이의 용도
JP6004322B2 (ja) * 2012-04-24 2016-10-05 国立大学法人 千葉大学 心血管イベントの発症リスクの検査方法
KR101453607B1 (ko) * 2012-08-02 2014-10-27 성균관대학교산학협력단 4―디메틸아미노―2―메톡시―6―((메틸―[2―(4―니트로페닐)에틸]아미노)메틸)페놀을 포함하는 항염증용 조성물
CA2886991A1 (en) * 2012-10-05 2014-04-10 Nestec S.A. Antibodies to microbiome, stress factors and mast cell markers as diagnostic markers for ibs
KR101599281B1 (ko) * 2013-12-09 2016-03-02 한국기초과학지원연구원 폐렴연쇄상구균 유래 막소포체를 포함하는 폐렴연쇄상구균 백신 조성물
KR101740893B1 (ko) 2014-05-20 2017-06-13 주식회사 엠디헬스케어 Akkermansia muciniphila 균에서 유래하는 세포밖 소포를 유효성분으로 함유하는 대사질환의 치료 또는 예방용 조성물
KR101726488B1 (ko) * 2015-02-23 2017-04-13 이화여자대학교 산학협력단 바실러스 속 세균 유래 세포밖 소포체를 포함하는 임신관련 질환 치료용 조성물
KR20170103140A (ko) * 2016-03-03 2017-09-13 주식회사 엠디헬스케어 아커만시아 뮤시니필라균 유래 나노소포 및 이의 용도
WO2018008895A1 (ko) * 2016-07-08 2018-01-11 주식회사 엠디헬스케어 프로피오니박테리움 속 세균 유래 나노소포 및 이의 용도
KR101923969B1 (ko) * 2016-07-08 2018-11-30 주식회사 엠디헬스케어 프로피오니박테리움 속 세균 유래 나노소포 및 이의 용도
KR102085787B1 (ko) * 2016-08-12 2020-03-06 주식회사 엠디헬스케어 바실러스 속 세균 유래 나노소포 및 이의 용도
WO2018030732A1 (ko) * 2016-08-12 2018-02-15 주식회사 엠디헬스케어 바실러스 속 세균 유래 나노소포 및 이의 용도
EP3546566A4 (en) * 2016-11-01 2020-05-27 Keio University TH1 CELL INDUCTION BACTERIA
KR101940423B1 (ko) * 2016-12-16 2019-01-18 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 심장질환 진단방법
KR101833348B1 (ko) * 2016-12-26 2018-03-02 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 유방암 진단방법
KR101942197B1 (ko) * 2016-12-28 2019-01-24 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 전립선질환 진단 방법
KR101940445B1 (ko) * 2017-02-24 2019-01-18 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 당뇨병 진단 방법
KR102008451B1 (ko) * 2017-05-26 2019-08-07 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 자폐증 진단방법
KR102019646B1 (ko) * 2017-06-07 2019-09-10 주식회사 엠디헬스케어 미생물 메타게놈 분석을 통한 아토피피부염 진단방법
KR102019648B1 (ko) * 2017-06-30 2019-09-10 주식회사 엠디헬스케어 천식환자에서 세균 메타게놈 분석을 통한 폐암 진단방법
KR102011375B1 (ko) * 2017-06-30 2019-08-16 주식회사 엠디헬스케어 프로테우스 속 세균 유래 나노소포 및 이의 용도
EP3678693A1 (en) 2017-09-08 2020-07-15 Evelo Biosciences, Inc. Bacterial extracellular vesicles
MA50087A (fr) * 2017-09-08 2020-07-15 Evelo Biosciences Inc Vésicules extracellulaires provenant de prevotella
KR102007786B1 (ko) * 2017-10-18 2019-08-07 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 두경부암 진단방법
WO2019078432A1 (ko) * 2017-10-18 2019-04-25 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 림프종 진단방법
KR102007783B1 (ko) 2017-10-18 2019-08-07 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 림프종 진단방법
KR102008440B1 (ko) * 2017-10-18 2019-08-08 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 대사증후군 진단방법
KR102095355B1 (ko) * 2018-01-12 2020-03-31 주식회사 엠디헬스케어 모르가넬라 속 세균 유래 나노소포 및 이의 용도
WO2019139279A1 (ko) * 2018-01-12 2019-07-18 주식회사 엠디헬스케어 모르가넬라 속 세균 유래 나노소포 및 이의 용도
KR101940950B1 (ko) * 2018-01-23 2019-01-21 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 담관암 진단방법
KR101944660B1 (ko) * 2018-01-29 2019-01-31 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 우울증 진단방법
KR102063196B1 (ko) * 2018-02-06 2020-01-07 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 과민성장증후군 진단방법
KR101944662B1 (ko) * 2018-02-14 2019-02-01 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 뇌졸중 진단방법
KR102194274B1 (ko) * 2018-02-20 2020-12-22 주식회사 엠디헬스케어 카테니박테리움 속 세균 유래 나노소포 및 이의 용도
WO2019164197A1 (ko) * 2018-02-20 2019-08-29 주식회사 엠디헬스케어 카테니박테리움 속 세균 유래 나노소포 및 이의 용도
US11771742B2 (en) 2018-02-21 2023-10-03 Md Healthcare Inc. Nano-vesicles derived from genus cupriavidus bacteria and use thereof
WO2019164230A1 (ko) * 2018-02-21 2019-08-29 주식회사 엠디헬스케어 큐프리아비더스 속 세균 유래 나노소포 및 이의 용도
KR102087105B1 (ko) * 2018-02-21 2020-03-10 주식회사 엠디헬스케어 큐프리아비더스 속 세균 유래 나노소포 및 이의 용도
WO2019168328A1 (ko) * 2018-02-28 2019-09-06 주식회사 엠디헬스케어 리조비움 속 세균 유래 나노소포 및 이의 용도
WO2019168331A1 (ko) * 2018-02-28 2019-09-06 주식회사 엠디헬스케어 슈도모나스 속 세균 유래 나노소포 및 이의 용도
WO2019172600A1 (ko) * 2018-03-05 2019-09-12 주식회사 엠디헬스케어 엔히드로박터 세균 유래 나노소포 및 이의 용도
KR102118989B1 (ko) * 2018-03-05 2020-06-05 주식회사 엠디헬스케어 엔히드로박터 세균 유래 나노소포 및 이의 용도
KR102185983B1 (ko) * 2018-03-06 2020-12-03 주식회사 엠디헬스케어 콜린셀라 속 세균 유래 나노소포 및 이의 용도
CN108379297B (zh) * 2018-05-04 2019-07-02 中南大学湘雅医院 益生菌及其外膜囊泡在制备防治骨质疏松症药物中的应用
KR102141246B1 (ko) * 2018-05-25 2020-08-04 주식회사 엠디헬스케어 qPCR 분석을 통한 대장암 진단방법
KR102242196B1 (ko) 2018-12-10 2021-04-20 주식회사 엠디헬스케어 스핀고모나스 속 세균 유래 나노소포 및 이의 용도
WO2020122450A1 (ko) * 2018-12-10 2020-06-18 주식회사 엠디헬스케어 스핀고모나스 속 세균 유래 나노소포 및 이의 용도
WO2020122449A1 (ko) * 2018-12-10 2020-06-18 주식회사 엠디헬스케어 코리네박테리움 속 세균 유래 나노소포 및 이의 용도
KR102223406B1 (ko) * 2018-12-10 2021-03-05 주식회사 엠디헬스케어 코리네박테리움 속 세균 유래 나노소포 및 이의 용도
CN110150226A (zh) * 2019-05-21 2019-08-23 中国科学院合肥物质科学研究院 一种肠道菌群啮齿动物模型的构建方法
KR102308931B1 (ko) * 2019-05-24 2021-10-06 주식회사 엠디헬스케어 qPCR 분석을 통한 대장염 진단방법
KR102379022B1 (ko) * 2019-05-24 2022-03-28 주식회사 엠디헬스케어 qPCR 분석을 통한 위암 진단방법
CN110178794A (zh) * 2019-07-03 2019-08-30 江苏省中医药研究院 一种腹泻型肠易激综合征复合动物模型建立方法
WO2021049798A1 (ko) * 2019-09-10 2021-03-18 주식회사 엠디헬스케어 미생물 유래 소포에 대한 항체 기반 폐질환 진단 방법
CN110622922A (zh) * 2019-09-30 2019-12-31 广西医科大学第一附属医院 胰腺癌腹水小鼠动物模型的建立方法
JP7406789B2 (ja) * 2019-10-30 2023-12-28 国立大学法人広島大学 細菌メンブランベシクルの単離方法、単離キット、およびその除去方法
US20220401386A1 (en) * 2019-12-12 2022-12-22 Zhujiang Hospital, Southern Medical University Use of nitric oxide synthase pathway inhibitor in perparation of medicine
CN111599461B (zh) * 2020-04-08 2024-01-05 深圳市领治医学科技有限公司 肠道菌群干预方式作用原理分析方法、装置、设备及存储介质
KR102554318B1 (ko) * 2020-09-25 2023-07-11 이화여자대학교 산학협력단 뇌졸중 재발 예측 방법
CN113180007B (zh) * 2021-04-30 2022-08-19 扬州大学 一种渗出性动物肺炎模型构建方法
CN114164134B (zh) * 2021-09-30 2023-03-03 东北农业大学 具有预防及缓解结肠炎症状的长双歧杆菌长亚种及其应用
CN114747539A (zh) * 2022-03-08 2022-07-15 重庆第二师范学院 小鼠肥胖的实验方法及发酵柠檬汁对小鼠肥胖的抑制作用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107007A (zh) * 2005-01-27 2008-01-16 奥克兰儿童医院及研究中心 对脑膜炎奈瑟球菌所致疾病具有广谱保护作用的gna1870囊泡疫苗

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217872A (en) 1990-02-27 1993-06-08 The United States Of America As Represented By The Department Of Health And Human Services Method for detection of borrelia burgdorferi antigens
EP0841944A2 (en) 1995-08-04 1998-05-20 University Of Guelph Novel vaccines and pharmaceutical compositions using membrane vesicles of microorganisms, and methods for preparing same
JPH09163896A (ja) 1995-12-13 1997-06-24 Sumitomo Pharmaceut Co Ltd 胸膜炎病態モデル動物
US6558677B2 (en) * 1996-10-15 2003-05-06 Wendell D. Zollinger Vaccine against gram negative bacteria
GB9918319D0 (en) 1999-08-03 1999-10-06 Smithkline Beecham Biolog Vaccine composition
CA2905326C (en) * 1999-09-28 2016-09-27 Geneohm Sciences Canada Inc. Nucleic acids and methods for the detection of klebsiella
GB0130123D0 (en) * 2001-12-17 2002-02-06 Microbiological Res Agency Outer membrane vesicle vaccine and its preparation
ES2537737T3 (es) 2002-08-02 2015-06-11 Glaxosmithkline Biologicals S.A. Composiciones de vacuna que comprenden lipooligosacáridos de inmunotipo L2 y/o L3 de Neisseria meningitidis de IgtB
GB0220194D0 (en) * 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
GB0316560D0 (en) 2003-07-15 2003-08-20 Chiron Srl Vesicle filtration
EP1498144A1 (en) 2003-07-15 2005-01-19 Universite Pierre Et Marie Curie Paris Vi Extracellular vesicles from non-pathogenic amoebae useful as vehicle for transferring a molecule of interest to an eukaryotic cell
GB0323709D0 (en) * 2003-10-09 2003-11-12 Health Prot Agency Modified whole cell,cell extract and omv-based vaccines
CU23377A1 (es) 2003-11-04 2009-05-28 Ct De Ingenieria Genetica Y Biotecnologia Metodo para la incorporacion de antigenos en vesiculas de membrana externa de bacterias y formulaciones resultantes
GB0408977D0 (en) 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
EP1805500A4 (en) * 2004-09-28 2008-05-07 Singulex Inc SYSTEM AND METHOD FOR THE SPECTROSCOPIC ANALYSIS OF INDIVIDUAL PARTICLES
ES2337309T5 (es) 2006-06-12 2013-07-30 Glaxosmithkline Biologicals S.A. Vacuna
WO2009030093A1 (fr) 2007-09-05 2009-03-12 Zhejiang University Fonctions et utilisations de l'inhibiteur 2 de la protéine phosphatase 1 humaine
US9365885B2 (en) 2009-06-16 2016-06-14 Puiying Annie Mak High-throughput complement-mediated antibody-dependent and opsonic bactericidal assays
ES2694100T3 (es) 2010-04-07 2018-12-18 California Institute Of Technology Vehículo para distribuir un compuesto en una membrana mucosa y composiciones, procedimientos y sistemas relacionados

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107007A (zh) * 2005-01-27 2008-01-16 奥克兰儿童医院及研究中心 对脑膜炎奈瑟球菌所致疾病具有广谱保护作用的gna1870囊泡疫苗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Special delivery: vesicle trafficking in prokaryotes;Lauren M等;《Molecular Microbiology》;20061231;第61卷(第4期);摘要,第842页第1-5段,第843页第1-4段,以及附图1-2 *

Also Published As

Publication number Publication date
WO2011027971A3 (ko) 2011-08-25
JP5818793B2 (ja) 2015-11-18
WO2011027971A2 (ko) 2011-03-10
US20120222142A1 (en) 2012-08-30
JP2013503857A (ja) 2013-02-04
KR20110025068A (ko) 2011-03-09
US9274109B2 (en) 2016-03-01
KR101430283B1 (ko) 2014-08-14
EP2494865A2 (en) 2012-09-05
US20150017664A1 (en) 2015-01-15
EP2494865A4 (en) 2014-05-14
US9201072B2 (en) 2015-12-01
CN102480932A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
CN102480932B (zh) 源于肠道共生细菌的细胞外小泡及利用其的疫苗、备选药物筛选方法
Chassaing et al. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice
Chassaing et al. Dextran sulfate sodium (DSS)‐induced colitis in mice
CN102549143B (zh) 源于革兰氏阳性细菌的细胞外小泡及其用途
Yilmaz et al. Characterisation of lipid profiles in dogs with parvoviral enteritis
Broussard et al. Mycobacterium marinum produces long-term chronic infections in medaka: a new animal model for studying human tuberculosis
Shan et al. Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes
Colella et al. Mice as paratenic hosts of Aelurostrongylus abstrusus
Montesinos et al. Effects of meloxicam on hematologic and plasma biochemical analyte values and results of histologic examination of kidney biopsy specimens of African grey parrots (Psittacus erithacus)
Soto et al. Bacterial distribution and tissue targets following experimental Edwardsiella ictaluri infection in Nile tilapia Oreochromis niloticus
Krueger et al. Murine models of H. pylori-induced gastritis and gastric adenocarcinoma
Rahmati-Holasoo et al. Identification and characterization of lymphocystis disease virus (LCDV) from Indian glassy fish (Parambassis ranga Hamilton, 1822) in Iran
Park et al. A secretory PLA2 associated with tobacco hornworm hemocyte membrane preparations acts in cellular immune reactions
Machida et al. Mycobacteriosis in cultured koi carp Cyprinus carpio caused by Mycobacterium paragordonae and two Mycolicibacterium spp.
Zhang et al. Immune strategies of silver pomfret (Pampus argenteus) infected with Nocardia seriolae at different infection stages
Řehulka et al. Disseminated infection due to Exophiala pisciphila in Cardinal tetra, Paracheirodon axelrodi
Christiansen et al. Infection of a Goeldi's monkey (Callimico goeldii) with a European strain of Echinococcus multilocularis in a Canadian Institution
Choi et al. The pathogenicity of Streptococcus parauberis isolated from cultured olive flounder Paralichthys olivaceus
Frenette et al. Experimental Loma morhua (Microsporidia) infections reveal early-onset production implications for Atlantic cod (Gadus morhua) aquaculture
CN109641029A (zh) 用于apoa1给药的组合物和剂量
Budiyansah Identification, characterization and pathogenicity of aeromonas schubertii isolated from diseased striped snakehead fish (Channa Striata)
Khoo Reproductive Disorders
US6040495A (en) Hairless mouse sensitive to helicobacter pylori
Zhang et al. Artificial infection pathway of largemouth bass LMBV and identification of resistant and susceptible individuals
Mallik et al. Pathological analysis and antimicrobial susceptibility of Chryseobacterium balustinum RTFCP 298 isolated from diseased rainbow trout, Oncorhynchus mykiss

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant