CN102474974A - 电磁波供电机构以及微波导入机构 - Google Patents
电磁波供电机构以及微波导入机构 Download PDFInfo
- Publication number
- CN102474974A CN102474974A CN2011800025770A CN201180002577A CN102474974A CN 102474974 A CN102474974 A CN 102474974A CN 2011800025770 A CN2011800025770 A CN 2011800025770A CN 201180002577 A CN201180002577 A CN 201180002577A CN 102474974 A CN102474974 A CN 102474974A
- Authority
- CN
- China
- Prior art keywords
- antenna
- wave
- microwave
- waveguide
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 49
- 230000005670 electromagnetic radiation Effects 0.000 title abstract 2
- 239000004020 conductor Substances 0.000 claims abstract description 94
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 48
- 230000008569 process Effects 0.000 claims description 48
- 230000008676 import Effects 0.000 claims description 32
- 230000005855 radiation Effects 0.000 claims description 24
- 230000000644 propagated effect Effects 0.000 claims description 11
- 230000006698 induction Effects 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 description 75
- 239000007789 gas Substances 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- -1 pottery Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/3222—Antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32229—Waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32293—Microwave generated discharge using particular waveforms, e.g. polarised waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32311—Circuits specially adapted for controlling the microwave discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
- H05H1/4622—Microwave discharges using waveguides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
- H05H1/463—Microwave discharges using antennas or applicators
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明的电磁波供电机构具备:微波电力导入端口(55),其被设置于同轴构造的波导(44)的侧部,连接有作为供电线的同轴线路(56);和供电天线(90),其与同轴线路(56)连接,向波导(44)的内部辐射电磁波电力。供电天线(90)具有:天线本体(91),该天线本体(91)具有与同轴线路(56)连接的第1极(92)和与波导(44)的内侧导体(53)接触的第2极(93);和形成为环状的反射部(94),该反射部(94)从所述天线本体(91)的两侧延伸。
Description
技术领域
本发明涉及电磁波供电机构以及微波导入机构。
背景技术
在半导体器件或液晶显示装置的制造工序中,为了对半导体晶片、玻璃基板之类的被处理基板施以蚀刻处理或成膜处理等等离子体处理,要使用等离子体蚀刻装置或等离子体CVD成膜装置等等离子体处理装置。
近来,作为这样的等离子体处理装置,能够均匀地形成高密度、低电子温度的表面波等离子体的RLSA(Radial Line Slot Antenna)微波等离子体处理装置备受注目(例如日本特开2007-109457号公报)。
RLSA微波等离子体处理装置在处理室的上部设置以规定的图案形成了缝隙的平面天线(Radial Line Slot Antenna),从平面天线的缝隙向处理室内辐射由微波发生源通过同轴构造的波导所导入的微波,通过微波电场将导入处理室内的气体等离子体化,对半导体晶片等被处理体进行等离子体处理。
另外,还提出一种具有微波等离子体源的微波等离子体处理装置,该微波等离子体源通过将微波分配为多路,用固态放大器放大,经由具有同轴构造的波导与形成了上述缝隙的平面天线的多个天线模块将微波导入处理室内,在处理室内对微波进行空间合成(国际公开第2008/013112号小册子)。
为了向同轴构造的波导供给微波电力之类的电磁波电力,如上述专利文献2所记载的那样,通常,在同轴构造的波导的轴的延长线上设置供电端口,从这里进行供电。
发明内容
但是,在装置的设计上,有时需要在对应同轴构造的波导的轴的延长线上的部分配置驱动机构、其他的部件,在这种情况下,不存在有效的供电方式。
本发明的目的在于提供一种当从同轴构造的波导的轴的延长线上不能供给电磁波电力时,也能够有效地向同轴构造的波导供给电磁波电力的电磁波供电机构以及使用该电磁波供电机构的微波导入机构。
根据本发明的第1观点,提供一种电磁波供电机构,其向同轴构造的波导供给电磁波电力,该电磁波供电机构的特征在于,具备电力导入端口,该电力导入端口被设置在所述同轴构造的波导的侧部,连接有供电线;和供电天线,该供电天线与所述供电线连接,向所述波导的内部辐射电磁波电力,所述供电天线具有:天线本体,该天线本体具有与所述供电线连接的第1极和与所述波导的内侧导体接触的第2极;和形成为环状的反射部,该形成为环状的反射部从所述天线本体的两侧沿着所述内侧导体的外侧延伸,由射入所述天线本体的电磁波与被所述反射部反射的电磁波形成驻波,电磁波电力通过该驻波产生的感应磁场以及感应电场的连锁作用在所述波导中传播。
在上述第1观点中,还具有在所述波导的供电方向相反侧设置的反射板,可以使由所述供电天线供给的电磁波电力被所述反射板反射而在所述波导中传播。另外,还具有在所述反射板与所述供电天线之间设置的滞波部件,还可以缩短电磁波的有效波长。
根据本发明的第2观点,提供一种微波导入机构,其用于在处理室内形成表面波等离子体的表面波等离子体源,该微波导入机构的特征在于,具备:呈同轴构造的波导;电力导入端口,该电力导入端口被设置于所述同轴构造的波导的侧部,并与供电线连接;供电天线,该供电天线与所述供电线连接,向所述波导的内部辐射电磁波电力;和天线部,该天线部具有向所述处理室内辐射供给到所述波导的微波的微波辐射天线,所述供电天线具有:天线本体,该天线本体具有与所述供电线连接的第1极和与所述波导的内侧导体接触的第2极;和形成为环状的反射部,该形成为环状的反射部从所述天线本体的两侧沿着所述内侧导体的外侧延伸,由射入到所述天线本体的电磁波与被所述反射部反射的电磁波形成驻波,电磁波电力通过该驻波产生的感应磁场以及感应电场的连锁作用在所述波导中传播。
在上述第2观点中,可以构成具备入射波反射波监视器,所述入射波反射波监视器具有:定向耦合器,其被设置于所述波导中,取出基于通过所述波导的微波中的朝向所述处理室的入射波和通过反射而返回来的反射波的任意一方而生成的电流;和检测器,其检测所述定向耦合器所取出的电流。在该情况下,所述定向耦合器具有形成于所述同轴构造的波导的外侧导体的缝隙;被设置于所述缝隙内的板状导体;取出在所述板状导体中流动的电流的一对导电柱;和导电体构成的调整器,其被设置于所述外侧导体的外侧,与所述板状导体相对置并且可以调节与所述板状导体之间的距离,优选所述缝隙的与所述调整器相对置的部分形成与所述调整器对应地展开的形状。另外,还具备调谐器,其被设置在所述电力导入端口与所述天线部之间,使所述处理室内的负载的阻抗与被装载于所述表面波等离子体源的微波电源的特性阻抗相匹配,所述调谐器具有由电介质构成的环状铁芯,该环状铁芯被设置于所述外侧导体与所述内侧导体之间,可以沿着内侧导体的长度方向移动,所述定向耦合器可以形成被设置于所述电力导入端口与所述铁芯之间或者/以及被设置于所述铁芯与所述天线部之间的构成。
附图说明
图1是表示表面波等离子体处理装置的概略构成的剖面图,该表面波等离子体处理装置具有应用了本发明的一实施方式的电磁波供电机构的微波导入机构。
图2是表示具有图1的微波导入机构的微波等离子体源的构成的构成图。
图3是表示图1的微波导入机构的剖面图。
图4是表示微波导入机构的供电机构的横向剖面图。
图5是表示调谐器本体中的铁芯与滑动部件的俯视图。
图6是表示调谐器的本体中的内侧导体的立体图。
图7是表示在微波导入机构中安装的平面缝隙天线的俯视图。
图8是表示作为本发明的电磁波供电机构的一例的用于导入频率为915MHz的微波的构成例的示意图。
图9是表示使用了图8的电磁波供电机构时的电磁场解析的结果的图。
图10是表示安装了入射波反射波监视器的微波导入机构的剖面图。
图11是示意地表示在入射波反射波监视器中使用的定向耦合器的构造的剖面图。
图12A是示意地表示以往的定向耦合器的主视图。
图12B是示意地表示图11的定向耦合器的主视图。
图13A是表示使用了实施方式的入射波反射波监视器时的入射波以及反射波的相位与电流值的关系的图。
图13B是放大地表示图13A的反射波的一部的图。
图13C是表示使用了实施方式的入射波反射波监视器时的入射波以及反射波的距离D与监视电流的关系的图。
图13D是表示使用了实施方式的入射波反射波监视器时的距离D与衰减率的关系的图。
图14A是表示使用了以往的入射波反射波监视器时的入射波以及反射波的相位与电流值的关系的图。
图14B是放大地表示图14A的反射波的一部分的图。
图14C是表示使用了以往的入射波反射波监视器时的入射波以及反射波的距离D与监视电流的关系的图。
图14D是表示使用了以往的入射波反射波监视器时的距离D与衰减率的关系的图。
具体实施方式
下面,参照附图对本发明的实施方式进行详细的说明。
<表面波等离子体处理装置的构成>
图1是表示表面波等离子体处理装置的概略构成的剖面图,该表面波等离子体处理装置具有应用了本发明的一实施方式的电磁波供电机构的微波导入机构,图2是表示作为表面波等离子体源具有微波导入机构的微波等离子体源的构成的构成图。
表面波等离子体处理装置100构成为对晶片例如施以蚀刻处理作为等离子体处理的等离子体蚀刻装置,具有气密地构成的由铝或者不锈钢等金属材料形成的大致圆筒状的接地的处理室1和用于在处理室1内形成微波等离子体的微波等离子体源2。在处理室1的上部形成有开口部1a,微波等离子体源2被设置为从该开口部1a面向处理室1的内部。
在处理室1内,用于水平地支撑作为被处理体的晶片W的基座11以被在处理室1的底部中央经由绝缘部件12a而竖立设置的筒状的支撑部件12支撑的状态被设置。作为构成基座11以及支撑部件12的材料,可以举出对表面进行了氧化铝膜处理(阳极氧化处理)的铝等。
另外,虽未图示,在基座11上设置有用于静电吸附晶片W的静电卡盘、温度控制机构、向晶片W的背面供给热传导用的气体的气体流路以及为了传送晶片W而升降的升降销等。此外,高频偏压电源14经由匹配器13与基座11电连接。通过从该高频偏压电源14向基座11供给高频率电力,而使等离子体中的离子吸引到晶片W侧。
在处理室1的底部连接有排气管15,在该排气管15上连接有包含真空泵的排气装置16。然后,通过使该排气装置16工作,处理室1内被排气,处理室1内可以高速地减压至规定的真空度。另外,在处理室1的侧壁上设置有用于进行晶片W的搬入搬出的搬入搬出口17和开闭该搬入搬出口17的闸阀18。
在处理室1内的基座11的上方位置水平地设置有向晶片W喷出用于等离子体蚀刻的处理气体的喷淋板20。该喷淋板20具有形成格子状的气体流路21和在该气体流路21中形成的多个气体喷出孔22,在格子状的气体流路21之间形成空间部23。在该喷淋板20的气体流路21连接有向处理室1的外侧延伸的管路24,在该管路24上连接有处理气体供给源25。
另一方面,在处理室1的喷淋板20的上方位置沿着处理室壁设置有环状的等离子体气体导入部件26,在该等离子体气体导入部件26的内周设置有多个气体喷出孔。供给等离子体气体的等离子体气体供给源27经由管路28连接于该等离子体气体导入部件26。优选使用Ar气体等作为等离子体生成气体。
从等离子体气体导入部件26导入到处理室1内的等离子体气体通过从微波等离子体源2导入处理室1内的微波被等离子体化,该等离子体通过喷淋板20的空间部23,激发从喷淋板20的气体喷出孔22喷出的处理气体来形成处理气体的等离子体。
微波等离子体源2被设置于处理室1的上部的支撑环29支撑,他们之间被气密性地密封。如图2所示,微波等离子体源2具有分配成多条路径来输出微波的微波输出部30和传输由微波输出部30输出的微波向处理室1内辐射用的微波供给部40。
微波输出部30具有电源部31、微波振荡器32、放大振荡的微波的放大器33、将放大的微波分配为多路的分配器34。
微波振荡器32通过例如PLL振荡产生规定频率(例如,915MHz)的微波。在分配器34中,为了尽量不产生微波的损耗,边使输入侧与输出侧的阻抗匹配,边分配用放大器33放大的微波。此外,除了915MHz之外,还可以使用从700MHz到3GHz范围的频率作为微波的频率。
微波供给部40具有主要放大用分配器34分配后的微波的多个放大器部42和与多个放大器部42的每一个连接的微波导入机构41。
放大器部42具有相位器45、可变增益放大器46、构成固态放大器的主放大器47和隔离器48。
相位器45构成为可以使微波的相位发生变化,通过调整相位可以调制辐射特性。例如,通过按各天线模块的每一个调整相位,可以控制方向性来使等离子体分布发生变化,或者如后述那样在相邻的天线模块中各错开90°的相位来得到圆偏振波。另外,相位器45是为了调整放大器内的部件间的延迟特性,在调谐器内的空间进行合成而被使用的。但是,当不需要这样的辐射特性的调制、放大器内的部件间的延迟特性的调整时,不需要设置相位器45。
可变增益放大器46是用于调整向主放大器47输入的微波的功率大小来进行各个天线模块的偏差的调整或者等离子体强度调整的放大器。通过按各天线模块的每一个使可变增益放大器46变化,可以在产生的等离子体中产生分布。
构成固态放大器的主放大器47可以形成例如具有输入匹配电路、半导体放大元件、输出匹配电路和高Q值谐振电路的构成。
隔离器48隔离被微波导入机构41反射的朝向主放大器47的反射微波,具有循环器与虚拟负载(同轴终端器)。循环器将被后述的微波导入机构41的天线部43所反射的微波导向虚拟负载,虚拟负载将被循环器导入的反射微波变换为热。
接下来,对微波导入机构41详细地进行说明。
图3是微波导入机构41的纵向剖面图,图4是表示微波导入机构41的供电机构的横向剖面图。微波导入机构41具有传输微波的同轴构造的波导44和将波导44中传输的微波向处理室1内辐射的天线部43。然后,由微波导入机构41辐射至处理室1内的微波会在处理室1内的空间被合成,在处理室1内形成表面波等离子体。
波导44构成为筒状的外侧导体52以及在其中心设置的棒状的内侧导体53被配置为同轴状,在波导44的顶端设置有天线部43。波导44的内侧导体53成为供电侧,外侧导体52成为接地侧。外侧导体52以及内侧导体53的上端成为反射板58。
在波导44的底端侧设置有供给微波(电磁波)的供电机构54。供电机构54具有被设置在波导44(外侧导体52)的侧面的用于导入微波电力的微波电力导入端口55。在微波电力导入端口55上连接有由内侧导体56a以及外侧导体56b构成的同轴线路56作为用于供给被放大器部42放大的微波的供电线。而且,在同轴线路56的内侧导体56a的顶端连接有朝向外侧导体52的内部水平地延伸的供电天线90。
供电天线90例如在作为印刷基板的PCB基板上形成为微波带状线。在反射板58到供电天线90之间设置有由缩短反射波的有效波长用的特氟隆(注册商标)等电介质构成的滞波部件59。此外,当使用2.45G等频率高的微波时,也可以不设置滞波部件59。这时,通过用反射板58反射由供电天线90辐射的电磁波,将最大的电磁波送入同轴构造的波导44内。在该情况下,从供电天线90到反射板58的距离被设定为约λg/4的半波长倍。但在频率低的微波中,由于径向的制约有时也不适用这一规定。在这样的情况下,将天线到反射板58的距离设定为约λg/4的半波长倍也不能传输电磁波。在该情况下,优选将供电天线的形状最适化,以使得不在供电天线90处而在供电天线90的下方感应出由供电天线90产生的电磁波的波腹。
如图4所示,供电天线90具有:天线本体91,该天线本体91在微波电力导入端口55与同轴线路56的内侧导体56a连接,并具有供给微波(电磁波)的第1极92以及辐射被供给的微波(电磁波)的第2极93;和反射部94,其从天线本体91的两侧沿着内侧导体53的外侧延伸而形成环状,构成为由射入天线本体91的电磁波与被反射部94反射的电磁波形成驻波。天线本体91的第2极93与波导44的内侧导体53接触。
供电天线90辐射微波(电磁波),从而向外侧导体52与内侧导体53之间的空间供给微波电力。然后,供给到供电机构54的微波电力朝向天线部43传播。
另外,在波导44中设置有调谐器60。调谐器60使处理室1内的负载(等离子体)的阻抗与微波输出部30中的微波电源的特性阻抗相匹配,具有在外侧导体52与内侧导体53之间上下地移动的2个铁芯61a、61b和被设置在反射板58的外侧(上侧)的铁芯驱动部70。
在这些铁芯中,铁芯61a被设置于铁芯驱动部70侧,铁芯61b被设置于天线部43侧。另外,在内侧导体53的内部空间中,沿其长度方向设置有例如由形成了梯形螺丝的螺杆构成的铁芯移动用的2根铁芯移动轴64a、64b。
如图5所示,铁芯61a由电介质构成,呈圆环状,在其内侧嵌入有具有滑动性的由树脂构成的滑动部件63。在滑动部件63中设置有与铁芯移动轴64a螺合的螺孔65a与穿插铁芯移动轴64b的通孔65b。另一方面,铁芯61b与铁芯61a同样地具有螺孔65a与通孔65b,但与铁芯61a相反地,螺孔65a与铁芯移动轴64b螺合,在通孔65b中穿插铁芯移动轴64a。由此,通过使铁芯移动轴64a旋转,铁芯61a进行升降移动,通过使铁芯移动轴64b旋转,铁芯61b进行升降移动。即,通过由铁芯移动轴64a、64b与滑动部件63构成的螺合机构,铁芯61a、61b进行升降移动。
如图6所示,在内侧导体53中沿着长度方向等间隔地形成3个缝隙53a。另一方面,滑动部件63与这些缝隙53a相对应地等间隔地设置有3个突出部63a。而且,滑动部件63以这些突出部63a与铁芯61a、61b的内周抵接的状态嵌入铁芯61a、61b的内部。滑动部件63的外周面与内侧导体53的内周面无间隙地接触,铁芯移动轴64a、64b进行旋转,从而滑动部件63在内侧导体53中滑动地升降。即内侧导体53的内周面作为铁芯61a、61b的滑动引导部发挥作用。此外,优选缝隙53a的宽度在5mm以下。由此,如后所述,能够实质上消除向内侧导体53的内部泄露的微波电力,能够较高地维持微波电力的辐射效率。
可以使用具有良好的滑动性,加工比较容易的树脂例如可以优选地举出聚苯硫醚(PPS)树脂,作为构成滑动部件63的树脂材料。
上述铁芯移动轴64a、64b贯通反射板58延伸到铁芯驱动部70。在铁芯移动轴64a、64b与反射板58之间设置有轴承(未图示)。另外,在内侧导体53的下端设置有由导体构成的轴承部67,铁芯移动轴64a、64b的下端被该轴承部67轴支承。
铁芯驱动部70具有框体71,铁芯移动轴64a以及64b在框体71内延伸,在铁芯移动轴64a以及64b的上端分别安装有齿轮72a以及72b。另外,在铁芯驱动部70中设置有使铁芯移动轴64a旋转的电动机73a和使铁芯移动轴64b旋转的电动机73b。在电动机73a的轴上安装有齿轮74a,在电动机73b的轴上安装有齿轮74b,齿轮74a与齿轮72a啮合,齿轮74b与齿轮72b啮合。因此,铁芯移动轴64a经由齿轮74a以及72a被电动机73a驱动旋转,铁芯移动轴64b经由齿轮74b以及72b被电动机73b驱动旋转。此外,电动机73a、73b例如是步进电动机。
此外,铁芯移动轴64b比铁芯移动轴64a长,可以到达更上方,因此,齿轮72a以及72b的位置上下地偏离,电动机73a以及73b也上下地偏离。由此,可以减小电动机以及齿轮等动力传递机构的空间,使收纳他们的框体71与外侧导体52为相同直径。
在电动机73a以及73b之上,按照直接连结他们的输出轴的方式分别设置有用于检测铁芯61a以及61b的位置的增量型的编码器75a以及75b。使用增量型的编码器按照下面的步骤掌握绝对位置。首先,缓慢地使铁芯移动轴64a旋转从而一边观察编码器75a的计数器,一边使铁芯61a以一定速度移动。当铁芯61a到达机械止点(未图示)时,电动机73a脱调而停止。停止的情况可以通过编码器75a的计数不变化来检知,将这时的铁芯61a的位置或者从这里开始偏离了规定脉冲的量的位置作为原点。以该原点位置为基准,计算从原点开始的脉冲数,从而可以检知铁芯61a的绝对位置。同样地通过掌握原点也可以检知铁芯61b的绝对位置。
铁芯61a以及61b的位置由铁芯控制器68控制。具体而言,基于由未图示的阻抗检测器检测到的输入端的阻抗值与由编码器75a以及75b检知到的铁芯61a以及61b的位置信息,铁芯控制器68将控制信号送至电动机73a以及73b来控制铁芯61a以及61b的位置,从而调整阻抗。铁芯控制器68执行阻抗匹配以使终端例如变为50Ω。若仅移动2个铁芯中的一个,则描绘通过史密斯图的原点的轨迹,如双方同时地移动,则仅相位旋转。
天线部43具有作为微波辐射天线发挥作用的、呈平面状并带有缝隙81a的平面缝隙天线81。天线部43具有设置于平面缝隙天线81的上面的滞波部件82。由导体构成的圆柱部件82a贯通于滞波部件82的中心,连接轴承部67与平面缝隙天线81。因此,内侧导体53经由轴承部67以及圆柱部件82a与平面缝隙天线81连接。此外,外侧导体52的下端在平面缝隙天线81间延伸,滞波部件82的周围被外侧导体52覆盖。另外,平面缝隙天线81以及后述的顶板83的周围被覆导体84覆盖。
滞波部件82具有比真空大的介电常数,例如由石英、陶瓷、聚四氟乙烯等氟系树脂、聚酰亚胺系树脂构成,在真空中微波的波长变长,因此具有使微波的波长变短来缩短天线的功能。可以通过滞波部件82的厚度来调整微波的相位,调整其厚度以使平面缝隙天线81变为驻波的“波腹”。由此,能够使反射最小,平面缝隙天线81的辐射能量最大。
另外,在平面缝隙天线81的更靠顶端侧配置有用于真空密封的电介质部件,例如由石英、陶瓷等构成的顶板83。而且,被主放大器47放大的微波通过内侧导体53与外侧导体52的侧壁之间,从平面缝隙天线81的缝隙81a透过顶板83向处理室1内的空间辐射。优选缝隙81a为图7所示的扇形形状,优选设置图示的2个或者4个。由此,可以使微波以TEM模式高效率地传导。
在本实施方式中,主放大器47、调谐器60、平面缝隙天线81邻近地配置。而且,调谐器60与平面缝隙天线81构成在1/2波长内存在的集中常数电路,并且平面缝隙天线81、滞波部件82、顶板83被设定为合成电阻为50Ω,调谐器60可以对等离子体负载直接调谐,能够效率良好地向等离子体传导能量。
表面波等离子体处理装置100中的各构成部分由具备微处理器的控制部110控制。控制部110具备存储作为表面波等离子体处理装置100的处理顺序以及控制参数的处理配方的存储部、输入单元以及显示器等,根据被选择的处理配方控制等离子体处理装置。
<表面波等离子体处理装置的动作>
接下来,对以上那样构成的表面波等离子体处理装置100的动作进行说明。
首先,将晶片W搬入处理室1内,载置于基座11上。然后,由等离子体气体供给源27经由管路28以及等离子体气体导入部件26向处理室1内导入等离子体气体,例如Ar气体,并且从微波等离子体源2将微波导入处理室1内来生成表面波等离子体。
这样在生成表面波等离子体后,处理气体,例如Cl2气体等蚀刻气体从处理气体供给源25经由管路24以及喷淋板20向处理室1内喷出。被喷出的处理气体被通过喷淋板20的空间部23进入的等离子体激发而进行等离子体化,通过该处理气体的等离子体向晶片W施以等离子体处理,例如蚀刻处理。
在生成上述表面波等离子体时,在微波等离子体源2中,被微波输出部30的微波振荡器32振荡的微波电力通过放大器33放大后,由分配器34分配为多路,被分配的微波电力导向微波供给部40。在微波供给部40中,这样被分配为多路的微波电力分别被构成固态放大器的主放大器47放大,向微波导入机构41的波导44供电,阻抗通过调谐器60被自动匹配,以实质上不存在电力反射的状态经由天线部43的平面缝隙天线81以及顶板83,向处理室1内辐射并被空间合成。
这时,与同轴构造的波导44的轴的延长线上对应的部分上设置有铁芯驱动部70,因此向波导44的微波电力的供电不能在通常进行供电的波导44的轴的延长线上进行。
于是,在本实施方式中,设置了供电机构54,该供电机构54具有设置于波导44的侧面的微波电力导入端口55、和从连接于微波电力导入端口55的供电用的同轴线路56的内侧导体56a向波导44的内部辐射电磁波的供电天线90。
在该情况下,当从同轴线路56传播过来的微波(电磁波)在微波电力导入端口55到达供电天线90的第1极92时,微波(电磁波)沿着天线本体91传播下去,从天线本体91的顶端的第2极93辐射微波(电磁波)。另外,在天线本体91中传播的微波(电磁波)被反射部94反射,其与入射波合成从而产生驻波。当在供电天线90的配置位置产生驻波时,沿着内侧导体53的外壁产生感应磁场,被其感应而产生感应电场。微波(电磁波)通过他们的连锁作用在波导44内传播,被导向天线部43。
这样,在从同轴构造的波导44的轴的延长线上不能供给微波(电磁波)电力时,也能够向波导44供给微波(电磁波)电力。
也就是说,根据本实施方式设置供电机构54,其具有设置于波导44的侧面的电力导入端口、即微波电力导入端口55和从作为与微波电力导入端口55连接的供电线的同轴线路56向波导44的内部辐射微波电力(电磁波电力)的供电天线90,供电天线90被形成具有如下的构造:具有天线本体91,该天线本体91具有与作为供电线的同轴线路56的内侧导体56a连接的第1极92和与波导44的内侧导体53接触的第2极93;和反射部94,其从天线本体91的两侧延伸,沿着内侧导体53的外侧形成环状。由被射入天线本体91的微波(电磁波)与被反射部反射的微波(电磁波)形成驻波,电磁波电力通过由该驻波产生的感应磁场以及感应电场的连锁作用在所述波导中传播,因此在从同轴构造的波导的轴的延长线上不能供给电磁波电力的情况下,也能够向波导供给电磁波电力。
这时,供电天线90的第2极93与波导44的内侧导体53接触,另外,反射部94呈环状,因此没有接头,不存在于接头处产生强电场的情况。因此,能够效率良好且均匀地供给微波(电磁波)电力。
另外,在波导44中,通过使供电天线90辐射的微波(电磁波)被反射板58反射,能够使最大的微波(电磁波)电力在同轴构造的波导44中传输,在该情况下,为了有效地进行与反射波的合成,将从供电天线90到反射板58的距离设为约λg/4的半波长倍即可。
但是,由于径向的制约,频率低的微波有时也不适用这一规定,在这样的情况下,例如,为使由供电天线90产生的电磁波的波腹不在供电天线90处,而在供电天线90的下方被感应,能够通过将供电天线的形状最适化来缩短从供电天线到反射板的距离。另外,当微波的频率低时,通过在供电天线90与反射板58之间设置由特氟隆(注册商标)等电介质构成的滞波部件59,可以高效地缩短有效波长。
举出一例,如图8所示将波导44的外侧导体52的直径设为45mm,将从反射板58到供电天线90的距离设为32.3mm,为了缩短有效波长,在该处设置了特氟隆(注册商标)制的滞波部件59。而且,从同轴线路56经由供电天线90导入了频率为915MHz的微波。这样能够利用低频率的微波从1个位置供应充足的电力的微波。
电磁场解析的结果如图9所示,这样当频率低时,即使从供电天线90到反射板58的距离为约λg/4的半波长倍也不能效率良好地传输微波,在该例中,由供电天线90传输的电磁波的波腹在供电天线90的上部约λg/8处产生,滞波部件59中的有效波长为约λg/8,从电磁波的波腹到反射板58的长度为约λg/4。由此,在反射板58处的反射为最大,最大的电力被传输入波导44。
在本实施方式中,通过构成固态放大器的主放大器47分别放大被分配为多路的微波,使用平面缝隙天线81逐个地将其辐射后,在处理室1内进行合成,因此不需要大型的隔离器、合成器。
另外,天线部43与调谐器60成为一体,因此微波导入机构41极其紧凑。因此,可以使微波等离子体源2自身紧凑化。此外,主放大器47、调谐器60以及平面缝隙天线81邻近地设置,特别是调谐器60与平面缝隙天线81可以构成为集中常数电路,并且将平面缝隙天线81、滞波部件82、顶板83的合成电阻设计为50Ω,从而可以由调谐器60以高精度调谐等离子体负载。另外,调谐器60构成通过仅移动2个铁芯61a、61b就能进行阻抗匹配的铁芯调谐器,因此紧凑、损耗低。
此外,这样,调谐器60与平面缝隙天线81邻近而构成集中常数电路且作为谐振器发挥作用,从而能够以高精度消除至平面缝隙天线81为止的阻抗不匹配,实质上可以将不匹配部分作为等离子体空间,因此可以通过调谐器60进行高精度的等离子体控制。
进而,通过相位器45使各天线模块的相位变化,从而可以进行微波的指向性控制,可以容易地进行等离子体等分布的调整。
进而,在内侧导体53的内部设置与驱动传递部、驱动引导部、保持部相当的部件,所以与将他们设置于外侧导体52的外部的情况相比较,可以减小机械因素的重量以及力矩,另外,不需要在外侧导体52上设置用于移动保持机构的缝隙,不需要用于防止电磁波泄露的屏蔽机构。因此,能够与以往相比,使铁芯61a、61b的驱动机构小型化,能够使微波导入机构41小型化。
另外,铁芯61a、61b自身安装有具有滑动性的由树脂构成的滑动部件63,在该滑动部件63的螺孔65a中使铁芯移动轴64a或者64b螺合而构成螺旋机构,由电动机73a、73b使铁芯移动轴64a、64b旋转,从而滑动部件63的外周以沿着内侧导体53的内周滑行的方式被引导,铁芯61a、61b发生移动,因此滑动部件63以及铁芯移动轴64a、64b兼有驱动传递机构、驱动引导机构、保持机构3种功能,能够显著地使驱动机构变得紧凑,能够使调谐器60进一步小型化。
此外,在滑动部件63中设置通孔65b,在该通孔65b中穿通未与螺孔65a螺合的一个铁芯移动轴,因此可以在内侧导体53内设置分别用于驱动铁芯61a以及61b的2个铁芯移动轴64a以及64b,可以通过螺旋机构使2个铁芯61a以及61b独立地移动。进而,在铁芯驱动部70中,电动机73a及73b、以及作为动力传递机构的齿轮72a及72b上下地偏离,因此能够减小电动机以及齿轮等动力传递机构的空间,可以使收纳他们的框体71与外侧导体52为相同直径。因此,能够使调谐器60更进一步变得紧凑。
进而,以与电动机73a、73b的输出轴直接连结的方式设置增量型的编码器75a、75b来进行铁芯61a、61b的位置检测,因此不需要以往使用的用于位置检测的传感器,也不必使用昂贵的绝对型编码器,因此可以变得廉价。
<设置了入射波反射波监视器的实施方式>
接下来,对设置了入射波反射波监视器的实施方式进行说明。
入射波反射波监视器监视从微波供给部40导入处理室1中的入射波和不对等离子体发生产生贡献的通过反射返回到微波供给部40的反射波,通常,被设置于使用微波的等离子体处理装置中。如图10所示,在本实施方式中,入射波反射波监视器120具有可以取出入射波与反射波的任意一方微波的电流的定向耦合器121和检测定向耦合器121取出的电流的检测器122。
在这样的入射波反射波监视器中使用的定向耦合器以往作为独立的部件,一般在装置完成时被连结,在该情况下,部件的个数变多,会违反小型化的要求。另一方面,定向耦合器被设置于微波的波导中,也可以设置于微波导入机构41的波导44中。于是,在本实施方式中,在微波导入机构41中组装入定向耦合器121来进行一体化,消除了上述不恰当的情况。
参照图11说明定向耦合器121的具体的构成。如图11所示,定向耦合器121具有在微波导入机构41的外侧导体52上形成的缝隙124;在该缝隙124内设置的具有约λg/4的长度的矩形形状的板状导体125;分别连接于板状导体125的长度方向的两端部附近,向外侧导体52的外方延伸的2个导电柱126a、126b;和由导电体构成的调整器127,其被设置于这些导电柱126a、126b之间,可以通过螺丝进行对板状导体125的位置调节。而且,由在波导44中传输的入射波以及反射波形成感应磁场,由该感应磁场产生的电流在板状导体125中流动。当检测反射波时,通过由板状导体125与调整器127中形成的周期性的电场产生的磁场抵消入射波的电流,主要是反射波的电流在流动。另一方面,当检测入射波时,通过由板状导体125与调整器127中形成的周期性的电场产生的磁场抵消反射波的电流,主要是入射波的电流在流动。
在板状导体125中流动的电流通过导电柱126a、126b取出,用检测器122检测该电流。用检测器122检测出的电流值被变换为电压信号并送至控制部110。通过监视反射波,能够检测来自等离子体的反射电力。同样地,通过监视入射波,能够检测实际上输入等离子体中的入射电力。此外,通过运算入射波与反射波的信号,能够算出反射系数的值与相位,将这些送入控制部110来向铁芯控制器68反馈,从而进行阻抗匹配。此外,当有检测器122算出的反射系数在规定值/规定时间以上时,控制部110能够向微波振荡器32输送输出停止信号,停止微波的供给。
当监视入射波时,如图10所示,通过将定向耦合器121设置于外侧导体52的微波电力导入端口55与铁芯61a之间的部分,可以在外界干扰因素少的状况下进行阻抗匹配。另一方面,当监视反射波时,定向耦合器121可以配置于图10的位置,但通过将其设置于铁芯61b与天线部43之间,可以直接监视来自等离子体的反射,因此能够以高精度检测反射波。也可以在图10的位置设置入射波监视器用的定向耦合器,在铁芯61b与天线部43之间设置反射波监视器用的定向耦合器。
此外,调整器127为了抵消入射波反射波监视器的安装误差、设计误差,可以从外部通过螺丝调整与板状导体的距离D,以往存在调整幅度窄,即衰减率(attenuation rate)小的不适当的情况。研究其原因的结果,明确了这是起因于:如图12A所示,对于以往的定向耦合器121′,在外侧导体上形成的缝隙124′具有与板状导体125′几乎对应的长度以及宽度,不能充分取得感应磁场与调整器127′之间的耦合。
于是,在本实施方式中,如图12B所示,使缝隙124的与调整器127相对置的部分形成与调整器127对应地扩宽的形状。由此,可以增加感应磁场与调整器127的耦合部分,可以增大因调整器127对距离D的调整引起的感应电流的变化幅度,可以拓宽调整器127的调整幅度。但是,若使缝隙124的宽度过宽,则漏电流变大而并不优选,因此缝隙124的与调整器127对应的部分一定不能过大。
实际上,在波导中安装了本实施方式的入射波反射波监视器和以往的入射波反射波监视器,测量了输入1000W的微波时的入射波以及反射波引起的监视电流以及衰减率。图13A~13D表示使用了图12B的本实施方式的入射波反射波监视器的结果,图13A是表示入射波以及反射波的相位与电流值的关系的图,图13B是放大地表示图13A的反射波的一部分的图,图13C是表示入射波以及反射波的距离D与监视电流的关系的图,图13D是表示距离D与衰减率的关系的图。图14A~14D表示使用了图12A的以往的入射波反射波监视器的结果,图14A是表示入射波以及反射波的相位与电流值的关系的图,图14B是放大地表示图14A的反射波的一部分的图,图14C是表示入射波以及反射波的距离D与监视电流的关系的图,图14D是表示距离D与衰减率的关系的图。在这些图中,A是入射波的电流值,B是反射波的电流值。另外,当将A的电流值表示为IA,B的电流值表示为IB时,衰减率γ用下式表示。
γ=-20log(IA/IB)
如这些图所示,可以确认:在本实施方式的情况与以往相比,改变调整器127与板状导体125的距离D时的衰减比的变化幅度变大,调整器的调整幅度显著地变宽。
<其他的应用>
此外,本发明不限于上述实施方式,在本发明的思想的范围内可以进行各种变形。例如,微波输出部30的电路构成、微波供给部40、主放大器47的电路构成等不限于上述实施方式。具体而言,当不需要进行从平面缝隙天线辐射的微波的指向性控制或者不需要形成圆偏振波时,不需要相位器。另外,微波供给部40不需要一定由多个微波导入机构41构成,微波导入机构41也可以是1个。此外,表示了扇形的2个或者4个缝隙作为平面缝隙天线81的缝隙81a的情况,但不限于此,可以根据条件采用各种缝隙图案。
此外,在上述实施方式中,例示了蚀刻处理装置作为等离子体处理装置,但不限于此,也可以在成膜处理、氮氧化膜处理、灰化处理等其他等离子体处理中使用。另外,被处理基板不限于半导体晶片,也可以是以LCD(液晶显示器)用基板为代表的FPD(平板显示器)基板、陶瓷基板等其他基板。
Claims (9)
1.一种电磁波供电机构,其向同轴构造的波导供给电磁波电力,该电磁波供电机构具备:
电力导入端口,该电力导入端口被设置在所述同轴构造的波导的侧部,并连接有供电线;及
供电天线,该供电天线与所述供电线连接,用于向所述波导的内部辐射电磁波电力,
所述供电天线具有:天线本体,该天线本体具有与所述供电线连接的第1极和与所述波导的内侧导体接触的第2极;和形成为环状的反射部,该形成为环状的反射部从所述天线本体的两侧沿着所述内侧导体的外侧延伸,
由射入到所述天线本体的电磁波与被所述反射部反射的电磁波形成驻波,电磁波电力通过该驻波产生的感应磁场以及感应电场的连锁作用在所述波导中传播。
2.根据权利要求1所述的电磁波供电机构,其特征在于,
还具有在所述波导的供电方向的相反侧设置的反射板,
使由所述供电天线供给的电磁波电力被所述反射板反射而在所述波导中传播。
3.根据权利要求2所述的电磁波供电机构,其特征在于,
还具备在所述反射板与所述供电天线之间设置的滞波部件,该滞波部件缩短电磁波的有效波长。
4.一种微波导入机构,其用于在处理室内形成表面波等离子体的表面波等离子体源,该微波导入机构具备:
呈同轴构造的波导;
电力导入端口,该电力导入端口被设置于所述同轴构造的波导的侧部,并连接有所述同轴线路;
供电天线,该供电天线与所述同轴线路的内侧导体连接,用于向所述波导的内部辐射电磁波电力;
天线部,该天线部具有微波辐射天线,该微波辐射天线用于向所述处理室内辐射被供给到所述波导的微波,
所述供电天线具有:天线本体,该天线本体具有与所述供电线连接的第1极和与所述波导的内侧导体接触的第2极;和形成为环状的反射部,该形成为环状的反射部从所述天线本体的两侧沿着所述内侧导体的外侧延伸,
由射入到所述天线本体的电磁波与被所述反射部反射的电磁波形成驻波,电磁波电力通过该驻波产生的感应磁场以及感应电场的连锁作用在所述波导中传播。
5.根据权利要求4所述的微波导入机构,其特征在于,
还具有在所述波导的供电方向的相反侧设置的反射板,
使由所述供电天线供给的电磁波电力被所述反射板反射而在所述波导中传播。
6.根据权利要求5所述的微波导入机构,其特征在于,
还具备在所述反射板与所述供电天线之间设置的滞波部件,该滞波部件缩短电磁波的有效波长。
7.根据权利要求4所述的微波导入机构,其特征在于,
还具备入射波反射波监视器,该入射波反射波监视器具有:定向耦合器,该定向耦合器被设置于所述波导中,用于取出由通过所述波导的微波中的朝向所述处理室的入射波和被反射而返回来的反射波的任意一方所引起的电流;和检测器,该检测器检测所述定向耦合器所取出的电流。
8.根据权利要求7所述的微波导入机构,其特征在于,
所述定向耦合器具有:缝隙,其被形成于所述同轴构造的波导的外侧导体;板状导体,其被设置于所述缝隙内;一对导电柱,其取出在所述板状导体中流动的电流;和由导电体构成的调整器,该由导电体构成的调整器被设置于所述外侧导体的外侧,按照与所述板状导体相对置的方式设置,并且可以调节与所述板状导体之间的距离,所述缝隙的与所述调整器相对置的部分形成与所述调整器对应地扩宽的形状。
9.根据权利要求7所述的微波导入机构,其特征在于,
还具备调谐器,该调谐器被设置于所述电力导入端口与所述天线部之间,用于使所述处理室内的负载的阻抗与装载于所述表面波等离子体源的微波电源的特性阻抗相匹配,
所述调谐器具有呈环状的由电介质构成的铁芯,该呈环状的由电介质构成的铁芯被设置于所述外侧导体与所述内侧导体之间,沿内侧导体的长度方向可以移动,
所述定向耦合器被设置于所述电力导入端口与所述铁芯之间,或者/以及被设置于所述铁芯与所述天线部之间。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010008510 | 2010-01-18 | ||
JP2010-008510 | 2010-01-18 | ||
JP2010241142A JP5710209B2 (ja) | 2010-01-18 | 2010-10-27 | 電磁波給電機構およびマイクロ波導入機構 |
JP2010-241142 | 2010-10-27 | ||
PCT/JP2011/050562 WO2011087094A1 (ja) | 2010-01-18 | 2011-01-14 | 電磁波給電機構およびマイクロ波導入機構 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102474974A true CN102474974A (zh) | 2012-05-23 |
CN102474974B CN102474974B (zh) | 2015-05-13 |
Family
ID=44304363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180002577.0A Active CN102474974B (zh) | 2010-01-18 | 2011-01-14 | 电磁波供电机构以及微波导入机构 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9072158B2 (zh) |
JP (1) | JP5710209B2 (zh) |
KR (1) | KR101490572B1 (zh) |
CN (1) | CN102474974B (zh) |
TW (1) | TWI523584B (zh) |
WO (1) | WO2011087094A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104242480A (zh) * | 2013-06-11 | 2014-12-24 | 株式会社东芝 | 电磁波泄露防护设备 |
CN110021514A (zh) * | 2017-12-12 | 2019-07-16 | 东京毅力科创株式会社 | 天线和等离子体成膜装置 |
CN111868484A (zh) * | 2018-03-30 | 2020-10-30 | 朴永俊 | 利用电磁波的水平高度测量单元、包括其的沥青混凝土制造装置及沥青混凝土制造方法 |
CN112343780A (zh) * | 2019-08-09 | 2021-02-09 | 哈尔滨工业大学 | 微波同轴谐振会切场推力器 |
Families Citing this family (295)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
JP5953057B2 (ja) * | 2012-02-06 | 2016-07-13 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9934974B2 (en) * | 2013-06-19 | 2018-04-03 | Tokyo Electron Limited | Microwave plasma device |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
JP2015079677A (ja) * | 2013-10-17 | 2015-04-23 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置及びマイクロ波供給方法 |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299538B2 (en) * | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) * | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
JP2015228331A (ja) * | 2014-06-02 | 2015-12-17 | 東京エレクトロン株式会社 | インピーダンス整合用スラグ |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) * | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
GB2546654B (en) * | 2014-10-30 | 2021-06-02 | Mitsubishi Electric Corp | Array antenna apparatus and method for manufacturing the same |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
JP2016170940A (ja) * | 2015-03-12 | 2016-09-23 | 東京エレクトロン株式会社 | マイクロ波自動整合器及びプラズマ処理装置 |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
JP2016177997A (ja) * | 2015-03-20 | 2016-10-06 | 東京エレクトロン株式会社 | チューナ、マイクロ波プラズマ源、およびインピーダンス整合方法 |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
JP6482390B2 (ja) | 2015-06-05 | 2019-03-13 | 東京エレクトロン株式会社 | 電力合成器およびマイクロ波導入機構 |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10340124B2 (en) | 2015-10-29 | 2019-07-02 | Applied Materials, Inc. | Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
JP6700127B2 (ja) * | 2016-07-07 | 2020-05-27 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置 |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) * | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US11923176B2 (en) | 2017-02-09 | 2024-03-05 | Lyten, Inc. | Temperature-controlled chemical processing reactor |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
CN108594182B (zh) * | 2018-07-17 | 2024-06-18 | 南京俊禄科技有限公司 | 旋转灵活的新式雷达 |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
WO2020091744A1 (en) * | 2018-10-30 | 2020-05-07 | Hewlett-Packard Development Company, L.P. | Feedback control of microwave energy emitters |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
AT523626B1 (de) * | 2020-05-22 | 2021-10-15 | Anton Paar Gmbh | Hohlleiter-Einkoppeleinheit |
WO2022046296A1 (en) * | 2020-08-31 | 2022-03-03 | Lyten, Inc. | Temperature-controlled chemical processing reactor |
TW202233887A (zh) * | 2021-02-03 | 2022-09-01 | 美商Mks儀器公司 | 利用微波輻射能量對原子層沉積製程進行微波輔助表面化學退火的微波系統 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1025583A (ja) * | 1996-07-09 | 1998-01-27 | Yuzo Mori | 形状創成装置 |
US6060836A (en) * | 1997-02-14 | 2000-05-09 | Nissin Electric Co., Ltd. | Plasma generating apparatus and ion source using the same |
US6856211B2 (en) * | 2002-05-21 | 2005-02-15 | Nagano Japan Radio Co., Ltd. | Coaxial type impedance matching device |
CN101347051A (zh) * | 2006-02-09 | 2009-01-14 | 东京毅力科创株式会社 | 等离子体处理装置和等离子体处理方法 |
CN101385129A (zh) * | 2006-07-28 | 2009-03-11 | 东京毅力科创株式会社 | 微波等离子体源和等离子体处理装置 |
WO2009113442A1 (ja) * | 2008-03-14 | 2009-09-17 | 東京エレクトロン株式会社 | マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 |
JP2009230915A (ja) * | 2008-03-19 | 2009-10-08 | Tokyo Electron Ltd | 電力合成器およびマイクロ波導入機構 |
WO2010004836A1 (ja) * | 2008-07-09 | 2010-01-14 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06310918A (ja) * | 1993-04-23 | 1994-11-04 | Toshiba Corp | 真空気密型方向性結合器 |
EP1276356B1 (en) * | 2000-03-30 | 2007-08-15 | Tokyo Electron Limited | Apparatus for plasma processing |
JP4062928B2 (ja) | 2002-02-06 | 2008-03-19 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US20030178143A1 (en) * | 2002-03-25 | 2003-09-25 | Applied Materials, Inc. | Plasma reactor with plural independently driven concentric coaxial waveguides |
JP3899288B2 (ja) * | 2002-05-30 | 2007-03-28 | 長野日本無線株式会社 | 同軸型インピーダンス整合器 |
US20060137613A1 (en) * | 2004-01-27 | 2006-06-29 | Shigeru Kasai | Plasma generating apparatus, plasma generating method and remote plasma processing apparatus |
JP2007528585A (ja) * | 2003-06-13 | 2007-10-11 | 株式会社荏原製作所 | 測定装置 |
US6791274B1 (en) * | 2003-07-15 | 2004-09-14 | Advanced Energy Industries, Inc. | RF power control device for RF plasma applications |
JP5089032B2 (ja) | 2005-10-12 | 2012-12-05 | 長野日本無線株式会社 | プラズマ処理装置用自動整合器の制御方法 |
-
2010
- 2010-10-27 JP JP2010241142A patent/JP5710209B2/ja active Active
-
2011
- 2011-01-14 CN CN201180002577.0A patent/CN102474974B/zh active Active
- 2011-01-14 KR KR1020127020891A patent/KR101490572B1/ko active IP Right Grant
- 2011-01-14 WO PCT/JP2011/050562 patent/WO2011087094A1/ja active Application Filing
- 2011-01-17 TW TW100101645A patent/TWI523584B/zh active
-
2012
- 2012-07-17 US US13/551,122 patent/US9072158B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1025583A (ja) * | 1996-07-09 | 1998-01-27 | Yuzo Mori | 形状創成装置 |
US6060836A (en) * | 1997-02-14 | 2000-05-09 | Nissin Electric Co., Ltd. | Plasma generating apparatus and ion source using the same |
US6856211B2 (en) * | 2002-05-21 | 2005-02-15 | Nagano Japan Radio Co., Ltd. | Coaxial type impedance matching device |
CN101347051A (zh) * | 2006-02-09 | 2009-01-14 | 东京毅力科创株式会社 | 等离子体处理装置和等离子体处理方法 |
CN101385129A (zh) * | 2006-07-28 | 2009-03-11 | 东京毅力科创株式会社 | 微波等离子体源和等离子体处理装置 |
WO2009113442A1 (ja) * | 2008-03-14 | 2009-09-17 | 東京エレクトロン株式会社 | マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 |
JP2009230915A (ja) * | 2008-03-19 | 2009-10-08 | Tokyo Electron Ltd | 電力合成器およびマイクロ波導入機構 |
WO2010004836A1 (ja) * | 2008-07-09 | 2010-01-14 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104242480A (zh) * | 2013-06-11 | 2014-12-24 | 株式会社东芝 | 电磁波泄露防护设备 |
CN110021514A (zh) * | 2017-12-12 | 2019-07-16 | 东京毅力科创株式会社 | 天线和等离子体成膜装置 |
CN111868484A (zh) * | 2018-03-30 | 2020-10-30 | 朴永俊 | 利用电磁波的水平高度测量单元、包括其的沥青混凝土制造装置及沥青混凝土制造方法 |
CN111868484B (zh) * | 2018-03-30 | 2022-10-18 | 朴永俊 | 利用电磁波的水平高度测量单元、包括其的沥青混凝土制造装置及沥青混凝土制造方法 |
CN112343780A (zh) * | 2019-08-09 | 2021-02-09 | 哈尔滨工业大学 | 微波同轴谐振会切场推力器 |
CN112343780B (zh) * | 2019-08-09 | 2021-08-13 | 哈尔滨工业大学 | 微波同轴谐振会切场推力器 |
Also Published As
Publication number | Publication date |
---|---|
CN102474974B (zh) | 2015-05-13 |
KR101490572B1 (ko) | 2015-02-05 |
US20120299671A1 (en) | 2012-11-29 |
JP5710209B2 (ja) | 2015-04-30 |
KR20120104429A (ko) | 2012-09-20 |
US9072158B2 (en) | 2015-06-30 |
TW201204186A (en) | 2012-01-16 |
WO2011087094A1 (ja) | 2011-07-21 |
TWI523584B (zh) | 2016-02-21 |
JP2011166740A (ja) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102474974A (zh) | 电磁波供电机构以及微波导入机构 | |
CN103227089B (zh) | 微波放射机构和表面波等离子体处理装置 | |
CN102365785B (zh) | 调谐器和微波等离子体源 | |
TWI790538B (zh) | 模組式微波電漿源及電漿處理工具 | |
CN102655708B (zh) | 表面波等离子体产生用天线及表面波等离子体处理装置 | |
JP6010406B2 (ja) | マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置 | |
CN101971302B (zh) | 微波导入机构、微波等离子体源和微波等离子体处理装置 | |
CN101385129B (zh) | 微波等离子体源和等离子体处理装置 | |
KR101813619B1 (ko) | 튜너, 마이크로파 플라즈마원 및 임피던스 정합 방법 | |
WO2011040328A1 (ja) | 表面波プラズマ発生用アンテナ、マイクロ波導入機構、および表面波プラズマ処理装置 | |
WO2020250506A1 (ja) | マイクロ波供給機構、プラズマ処理装置およびプラズマ処理方法 | |
KR101722307B1 (ko) | 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치 | |
WO2012121289A1 (ja) | 表面波プラズマ処理装置、マイクロ波プラズマ源、およびそれに用いるマイクロ波導入機構 | |
JP2014220046A (ja) | マイクロ波プラズマ処理装置およびマイクロ波プラズマ源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |