WO2009113442A1 - マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 - Google Patents

マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 Download PDF

Info

Publication number
WO2009113442A1
WO2009113442A1 PCT/JP2009/054158 JP2009054158W WO2009113442A1 WO 2009113442 A1 WO2009113442 A1 WO 2009113442A1 JP 2009054158 W JP2009054158 W JP 2009054158W WO 2009113442 A1 WO2009113442 A1 WO 2009113442A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
antenna
chamber
introduction mechanism
slag
Prior art date
Application number
PCT/JP2009/054158
Other languages
English (en)
French (fr)
Inventor
太郎 池田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020107020542A priority Critical patent/KR101314485B1/ko
Priority to CN2009801089039A priority patent/CN101971302B/zh
Priority to US12/922,243 priority patent/US20110061814A1/en
Publication of WO2009113442A1 publication Critical patent/WO2009113442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • H01J37/32256Tuning means

Definitions

  • the present invention relates to a microwave introduction mechanism for introducing a microwave into a chamber for performing plasma processing, a microwave plasma source using such a microwave introduction mechanism, and a microwave plasma processing apparatus using the microwave plasma source. .
  • plasma processing such as a plasma etching apparatus or a plasma CVD film forming apparatus is performed in order to perform a plasma process such as an etching process or a film forming process on a target substrate such as a semiconductor wafer or a glass substrate A device is used.
  • a processing gas is supplied into a chamber in which parallel plate electrodes are arranged, predetermined power is supplied to the parallel plate electrodes, and plasma is generated by capacitive coupling between the electrodes. Electrons are accelerated by a method, an electric field generated by microwaves, and a magnetic field generated by a magnetic field generator disposed outside the chamber, and the electrons collide with neutral molecules in the process gas to ionize neutral molecules.
  • a method for generating plasma by the above.
  • a microwave with a predetermined power is supplied to the antenna disposed in the chamber through the waveguide / coaxial tube, and then from the antenna. Microwaves are radiated to the processing space in the chamber.
  • a conventional general microwave introducing device includes a magnetron that outputs a microwave adjusted to a predetermined power and a microwave oscillator having a microwave generating power source that supplies a direct current anode current to the magnetron.
  • the output microwave is radiated to the processing space in the chamber via the antenna.
  • the microwave introduction apparatus using such a magnetron since the lifetime of a magnetron is as short as about half a year, the microwave introduction apparatus using such a magnetron has a problem that the apparatus cost and the maintenance cost are high. Further, since the oscillation stability of the magnetron is about 1% and the output stability has a large variation of about 3%, it is difficult to oscillate a stable microwave.
  • Patent Document 2 discloses a technique for solving such a problem.
  • a technique has been proposed in which a plurality of antennas are used to amplify with an amplifier, and then radiate microwaves from a plurality of antennas without being synthesized by a synthesizer.
  • Patent Document 3 discloses a technique for distributing microwaves to a plurality of microwaves and guiding the microwaves into a chamber through a plurality of antenna modules.
  • a microwave plasma source which is a wave plasma source, in which a planar slot antenna and a slag tuner are integrally provided in each antenna module and an amplifier is provided close to the antenna module.
  • the microwave plasma source itself can be remarkably compact, and by providing the amplifier, the tuner and the antenna close to each other, in the antenna mounting portion where impedance mismatch exists.
  • the tuner can be tuned with high accuracy, and the influence of reflection can be reliably eliminated.
  • the portion of the quarter wavelength nearest to the antenna is a mismatch region, impedance It cannot be used for adjustment, and requires a length that is a quarter wavelength added to the movable range of the slag. For this reason, the entire length of the main body container of the microwave introduction mechanism in which the antenna and the tuner are integrally formed inevitably becomes long, and there is a limit to downsizing the microwave plasma source.
  • An object of the present invention is to provide a microwave introduction mechanism that can achieve further downsizing of a microwave plasma source, a microwave plasma source and a microwave plasma processing apparatus using the same.
  • a microwave introduction mechanism for use in a microwave plasma source for forming microwave plasma in a chamber, wherein the cylindrical main body container is coaxial with the main body container.
  • a cylindrical or rod-shaped inner conductor that forms a microwave transmission path between the main body container, a tuner that adjusts impedance in the microwave transmission path, and the microwave transmission path.
  • an antenna unit having a microwave radiation antenna for radiating microwaves into the chamber, and the tuner moves a slag composed of a pair of dielectrics movable along the inner conductor, and the slag.
  • a wave introduction mechanism is provided.
  • the pair of slags are preferably made of high-purity alumina.
  • the microwave radiating antenna is preferably a planar slot antenna in which slots for radiating microwaves are formed.
  • a microwave introduction mechanism for use in a microwave plasma source for forming microwave plasma in a chamber, wherein the cylindrical main body container is coaxial with the main body container.
  • a cylindrical or rod-shaped inner conductor that forms a microwave transmission path between the main body container, a tuner that adjusts impedance in the microwave transmission path, and the microwave transmission path.
  • a microwave radiation antenna for radiating microwaves into the chamber, and the microwave radiation antenna is a planar slot in which four or more slots for radiating microwaves are uniformly formed.
  • An antenna, and the tuner moves a slag composed of a pair of dielectrics movable along the inner conductor, and the slag And a actuator, the pair of slag microwave introduction mechanism is composed of high-purity alumina is provided.
  • a microwave introduction mechanism used in a microwave plasma source for forming microwave plasma in a chamber, wherein the cylindrical main body container is coaxial with the main body container.
  • a cylindrical or rod-shaped inner conductor that forms a microwave transmission path between the main body container, a tuner that adjusts impedance in the microwave transmission path, and the microwave transmission path.
  • a microwave radiation antenna for radiating microwaves into the chamber, and the microwave radiation antenna is a planar slot in which four or more slots for radiating microwaves are uniformly formed.
  • An antenna, and the tuner includes a pair of dielectric slag movable along the inner conductor and an antenna that moves the slag.
  • a controller for controlling the movement of the slag, the controller moving the pair of slags within a length range of a half wavelength of the microwave while maintaining the same interval, and the pair of slags.
  • a microwave introduction mechanism is provided that controls the actuator to move either one of the slags within a length of a quarter wavelength with respect to the other.
  • a microwave introduction mechanism for introducing a microwave for forming microwave plasma in a chamber
  • the main body container has a cylindrical shape
  • the main body container includes A coaxial or cylindrical inner conductor that forms a microwave transmission path with the main body container, a tuner that adjusts impedance in the microwave transmission path, and the microwave transmission path are transmitted.
  • An antenna unit having a microwave radiating antenna that radiates the microwaves into the chamber, and the microwave radiating antenna has a planar shape in which four or more slots that radiate microwaves are evenly formed.
  • a slot antenna, and the tuner includes a pair of dielectric slag movable along the inner conductor and an antenna for moving the slag.
  • a pair of slags made of high-purity alumina and the controller halves the microwave while keeping the pair of slags at the same interval.
  • a microwave introduction mechanism for controlling the actuator to move within a wavelength length range and to move one of the pair of slugs within a quarter wavelength length range with respect to the other.
  • the slot preferably has a fan shape.
  • the antenna unit is provided on a side opposite to the top plate made of a dielectric that transmits microwaves radiated from the antenna and the top plate of the antenna, and shortens the wavelength of the microwave reaching the antenna.
  • a slow wave material made of a dielectric material.
  • the tuner and the antenna constitute a lumped constant circuit.
  • the tuner and the antenna function as a resonator.
  • a microwave generation mechanism for generating a microwave and a microwave introduction mechanism for introducing the generated microwave into the chamber are provided, and the microwave is introduced into the chamber.
  • An antenna unit having a microwave radiation antenna, and the tuner is a slurry made of a pair of dielectrics movable along the inner conductor.
  • a microwave plasma source is provided that moves and controls the actuator to move either one of the pair of slugs within a length range of a quarter wavelength relative to the other.
  • a microwave generation mechanism for generating a microwave and a microwave introduction mechanism for introducing the generated microwave into the chamber, and the microwave is introduced into the chamber.
  • a microwave plasma source that converts the gas supplied into the chamber into plasma, wherein the microwave introduction mechanism is a cylindrical main body container, and is coaxially provided in the main body container.
  • a cylindrical or rod-shaped inner conductor forming a microwave transmission path between them, a tuner for adjusting impedance in the microwave transmission path, and radiating microwaves transmitted through the microwave transmission path into the chamber
  • An antenna unit having a microwave radiating antenna, and the microwave radiating antenna includes four or more slots that radiate microwaves.
  • the tuner includes a pair of dielectric slugs movable along the inner conductor and an actuator for moving the slugs, and the pair of slugs Is provided with a microwave plasma source composed of high purity alumina.
  • a microwave plasma apparatus that performs a process using microwave plasma on a substrate, a chamber that accommodates a substrate to be processed, and a gas supply mechanism that supplies a gas into the chamber.
  • a microwave generation mechanism for generating a microwave and a microwave introduction mechanism for introducing the generated microwave into the chamber, and the gas introduced into the chamber by introducing the microwave into the chamber
  • a microwave plasma source for converting the plasma into a plasma, and the microwave introduction mechanism is coaxially provided in the main body container, and a microwave transmission path between the main body container and the main body container
  • An antenna unit having a microwave radiating antenna that radiates the microwaves into the chamber, and the tuner moves a slag composed of a pair of dielectrics movable along the inner conductor, and the slag.
  • An actuator for controlling the movement of the slag, and the controller moves the pair of slags within a length range of a half wavelength of the microwave while maintaining the same distance.
  • a microwave plasma processing apparatus for controlling the actuator to move any one of the slugs within a length range of a quarter wavelength with respect to the other.
  • a microwave plasma apparatus that performs processing using microwave plasma on a substrate, a chamber that accommodates a substrate to be processed, and a gas supply mechanism that supplies a gas into the chamber.
  • a microwave generation mechanism for generating a microwave and a microwave introduction mechanism for introducing the generated microwave into the chamber, and the gas introduced into the chamber by introducing the microwave into the chamber
  • a microwave plasma source for converting the plasma into a plasma, and the microwave introduction mechanism is coaxially provided in the main body container, and a microwave transmission path between the main body container and the main body container
  • a microwave radiation antenna that radiates the microwaves into the chamber, and the microwave radiation antenna has a planar shape in which four or more slots that radiate microwaves are evenly formed.
  • a slot antenna, and the tuner includes a pair of dielectric slugs movable along the inner conductor and an actuator for moving the slugs, and the pair of slugs is made of high-purity alumina.
  • a microwave plasma processing apparatus is provided.
  • a slag composed of a pair of dielectrics movable along an inner conductor forming a microwave transmission path between the main body container and the slag is moved.
  • a controller that controls the movement of the slag, the controller moves the pair of slags within a length range of a half wavelength of the microwave while keeping the same distance, and Since the actuator is controlled to move either one of the pair of slags within the length range of 1 ⁇ 4 wavelength with respect to the other, the slag movement range is made 1 ⁇ 4 wavelength shorter than before. Therefore, the microwave introduction mechanism can be reduced in size, and this contributes to the downsizing of the microwave plasma source.
  • a slag composed of a pair of dielectrics movable along an inner conductor that forms a microwave transmission path between the main body container and the slag is moved.
  • the above-mentioned pair of slags are made of high-purity alumina, and the high-purity alumina has a high dielectric constant, so the thickness of the slag can be made thinner than quartz or resin.
  • the minute microwave introduction mechanism can be reduced in size.
  • the dielectric constant is high as described above, the load matching range can be widened.
  • tan ⁇ is small, there is an advantage that loss is reduced and distortion is also small.
  • the controller moves the pair of slags within a length range of a half wavelength of the microwave while maintaining the same interval.
  • the actuator is controlled so that one of the pair of slags is moved within a length range of a quarter wavelength with respect to the other, and four or more radiating microwaves are used as a microwave radiating antenna. Therefore, in addition to the fact that the slag movement range can be shortened by a quarter wavelength compared to the prior art, it is possible to eliminate the mismatched region in the immediate vicinity of the antenna. For this reason, the microwave introduction mechanism can be further reduced in size, which contributes to further downsizing of the microwave plasma source.
  • a planar slot antenna in which one slag is made of high-purity alumina and four or more slots for radiating microwaves are uniformly formed as a microwave radiating antenna.
  • the controller moves the pair of slags within a length range of a half wavelength of the microwave while keeping the pair of slags at the same interval, and either one of the pair of slags is 1 / Since the actuator is controlled to move within a length range of four wavelengths, the effects of the first and second aspects are combined, and the microwave introduction mechanism can be further downsized.
  • the microwave plasma source can be made even more compact.
  • FIG. 1 It is sectional drawing which shows schematic structure of the plasma processing apparatus by which the microwave plasma source which has a microwave introduction mechanism which concerns on one Embodiment of this invention is mounted.
  • FIG. 1 It is a block diagram which shows the structure of the microwave plasma source of FIG. It is a figure which shows the example of a circuit structure of a main amplifier.
  • FIG. 1 It is sectional drawing which shows the microwave introduction mechanism in the microwave plasma processing apparatus of FIG.
  • It is a Smith chart for demonstrating the movable range of the slag in the case of the impedance adjustment by the conventional slag.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus equipped with a microwave plasma source having a microwave introduction mechanism according to an embodiment of the present invention
  • FIG. 2 is a diagram of the microwave plasma source of FIG. It is a block diagram which shows a structure.
  • the plasma processing apparatus 100 is configured as a plasma etching apparatus that performs, for example, an etching process on a wafer, and is a substantially cylindrical grounded chamber made of a metal material such as aluminum or stainless steel that is hermetically configured. 1 and a microwave plasma source 2 for forming microwave plasma in the chamber 1. An opening 1 a is formed in the upper part of the chamber 1, and the microwave plasma source 2 is provided so as to face the inside of the chamber 1 from the opening 1 a.
  • a susceptor 11 for horizontally supporting a wafer W as an object to be processed is supported by a cylindrical support member 12 erected at the center of the bottom of the chamber 1 via an insulating member 12 a.
  • a susceptor 11 and the support member 12 include aluminum whose surface is anodized (anodized).
  • the susceptor 11 includes an electrostatic chuck for electrostatically attracting the wafer W, a temperature control mechanism, a gas flow path for supplying heat transfer gas to the back surface of the wafer W, and the wafer.
  • a high frequency bias power supply 14 is electrically connected to the susceptor 11 via a matching unit 13. By supplying high frequency power from the high frequency bias power source 14 to the susceptor 11, ions are attracted to the wafer W side.
  • An exhaust pipe 15 is connected to the bottom of the chamber 1, and an exhaust device 16 including a vacuum pump is connected to the exhaust pipe 15. Then, by operating the exhaust device 16, the inside of the chamber 1 is exhausted, and the inside of the chamber 1 can be decompressed at a high speed to a predetermined degree of vacuum. Further, on the side wall of the chamber 1, a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
  • a shower plate 20 that discharges a processing gas for plasma etching toward the wafer W is provided horizontally.
  • the shower plate 20 has a gas flow path 21 formed in a lattice shape and a large number of gas discharge holes 22 formed in the gas flow path 21. It is a space part 23.
  • a pipe 24 extending outside the chamber 1 is connected to the gas flow path 21 of the shower plate 20, and a processing gas supply source 25 is connected to the pipe 24.
  • a ring-shaped plasma gas introduction member 26 is provided along the chamber wall above the shower plate 20 of the chamber 1, and the plasma gas introduction member 26 has a number of gas discharge holes on the inner periphery. Is provided.
  • a plasma gas supply source 27 for supplying plasma gas is connected to the plasma gas introduction member 26 via a pipe 28.
  • the plasma gas a rare gas such as Ar gas is preferably used.
  • the plasma gas introduced into the chamber 1 from the plasma gas introduction member 26 is turned into plasma by the microwave introduced into the chamber 1 from the microwave plasma source 2, and this Ar plasma passes through the space 23 of the shower plate 20. Then, the processing gas discharged from the gas discharge holes 22 of the shower plate 20 is excited to form plasma of the processing gas.
  • the microwave plasma source 2 is supported by a support ring 29 provided at the upper part of the chamber 1, and the space between them is hermetically sealed. As shown in FIG. 2, the microwave plasma source 2 includes a microwave output unit 30 that outputs the microwaves distributed to a plurality of paths, and a microwave output from the microwave output unit 30 is guided to the chamber 1. 1 has an antenna unit 40 for radiation.
  • the microwave output unit 30 includes a power supply unit 31, a microwave oscillator 32, an amplifier 33 that amplifies the oscillated microwave, and a distributor 34 that distributes the amplified microwave into a plurality of parts.
  • the microwave oscillator 32 causes, for example, PLL oscillation of microwaves having a predetermined frequency (eg, 2.45 GHz).
  • the distributor 34 distributes the microwave amplified by the amplifier 33 while matching the impedance between the input side and the output side so that the loss of the microwave does not occur as much as possible.
  • the microwave frequency In addition to the 2.45 GHz, 8.35 GHz, 5.8 GHz, 1.98 GHz, or the like can be used as the microwave frequency.
  • the antenna unit 40 has a plurality of antenna modules 41 that guide the microwaves distributed by the distributor 34.
  • Each antenna module 41 includes an amplifier unit 42 that mainly amplifies the distributed microwave and a microwave introduction mechanism 43.
  • the microwave introduction mechanism 43 includes a tuner 44 for matching impedance and an antenna unit 45 that radiates the amplified microwave into the chamber 1. In this way, microwaves are emitted from the antenna portion 45 of the microwave introduction mechanism 43 into the chamber 1 to synthesize the microwaves in the chamber space.
  • the amplifier unit 42 includes a phase shifter 46, a variable gain amplifier 47, a main amplifier 48 constituting a solid state amplifier, and an isolator 49.
  • the phase shifter 46 is configured such that the phase of the microwave can be changed by the slag tuner, and the radiation characteristic can be modulated by adjusting this. For example, by adjusting the phase for each antenna module, the directivity is controlled to change the plasma distribution, and the circular polarization is obtained by shifting the phase by 90 ° between adjacent antenna modules as will be described later. be able to. However, the phase shifter 46 does not need to be provided when such modulation of the radiation characteristic is unnecessary.
  • the variable gain amplifier 47 is an amplifier for adjusting the power level of the microwave input to the main amplifier 48, adjusting the variation of individual antenna modules, or adjusting the plasma intensity. By changing the variable gain amplifier 47 for each antenna module, the generated plasma can be distributed.
  • the main amplifier 48 constituting the solid-state amplifier has an input matching circuit 61, a semiconductor amplifying element 62, an output matching circuit 63, and a high Q resonance circuit 64.
  • the semiconductor amplifying element 62 GaAs HEMT, GaN HEMT, and LD (Laterally Diffused) -MOS capable of class E operation can be used.
  • the variable gain amplifier 47 has a constant value, the power supply voltage of the class E operation amplifier is variable, and power control is performed.
  • the isolator 49 separates the reflected microwaves reflected by the antenna unit 45 and directed to the main amplifier 48, and includes a circulator and a dummy load (coaxial terminator).
  • the circulator guides the microwave reflected by the antenna unit 45 to the dummy load, and the dummy load converts the reflected microwave guided by the circulator into heat.
  • a plurality of antenna modules 41 are provided, and the microwaves introduced into the chamber 1 from the microwave introduction mechanism 43 of each antenna module are spatially synthesized. Adjacent to each other can be provided.
  • the microwave introduction mechanism 43 has a main body container 50.
  • the antenna unit 45 is disposed at the distal end portion of the main body container 50, and a portion closer to the base end side than the antenna unit 45 of the main body container 50 is an impedance adjustment range by the tuner 44.
  • the main body container 50 is made of metal and has a cylindrical shape, and constitutes an outer conductor of a coaxial tube.
  • An inner conductor 52 of a coaxial tube extends vertically in the main body container 50.
  • the inner conductor 52 is formed in a rod shape or a cylindrical shape.
  • a microwave transmission path is formed between the main body container 50 and the inner conductor 52.
  • the antenna unit 45 has a planar slot antenna 51 that is planar and has a slot 51 a, and the inner conductor 52 is connected to the center of the planar slot antenna 51.
  • a power supply conversion unit (not shown) is attached to the base end side of the main body container 50.
  • the power supply conversion unit is connected to the main amplifier 48 via a coaxial cable, and an isolator 49 is interposed in the middle of the coaxial cable.
  • the main amplifier 48 is a power amplifier and handles high power, it operates with high efficiency such as class E, but its heat is equivalent to several tens to several hundreds of watts, so it is attached in series to the antenna unit 45 from the viewpoint of heat dissipation. To do.
  • the antenna unit 45 has a slow wave material 55 provided on the upper surface of the planar slot antenna 51.
  • the slow wave material 55 has a dielectric constant larger than that of a vacuum, and is made of, for example, a fluorine resin or a polyimide resin such as quartz, ceramics, polytetrafluoroethylene, and the like. It has a function of adjusting the plasma by shortening its wavelength.
  • the slow wave material 55 can adjust the phase of the microwave depending on the thickness thereof, and the thickness thereof is adjusted so that the planar slot antenna 51 becomes a “wave” of a standing wave. Thereby, reflection can be minimized and the radiation energy of the planar slot antenna 51 can be maximized.
  • a dielectric member for vacuum sealing for example, a top plate 56 made of quartz or ceramics is disposed on the lower surface of the planar slot antenna 51. Then, the microwave amplified by the main amplifier 48 passes between the inner conductor 52 and the peripheral wall of the main body container 50, passes through the top plate 56 from the slot 51 a of the planar slot antenna 51, and is radiated to the space in the chamber 1. .
  • the top plate 56 preferably has a square shape (cuboid) or a round shape (column) having a diameter larger than that of the main body container 50. Thereby, a microwave can be efficiently radiated in the TE mode.
  • the tuner 44 has two slags 58 at the base end side portion of the antenna body 45 of the main body container 50 to constitute a slag tuner.
  • the slug 58 is configured as a plate-like body made of a dielectric, and is provided in an annular shape between the inner conductor 52 and the outer wall of the main body container 50.
  • the impedance is adjusted by moving the slugs 58 up and down by an actuator 59 based on a command from the controller 60.
  • the controller 60 performs impedance adjustment so that the termination is, for example, 50 ⁇ .
  • the operation of the slag 58 is controlled by an algorithm of the controller 60 as will be described later, and when the in-tube wavelength of the microwave is ⁇ , the range in which the pair of slags are moved simultaneously is ⁇ / 2, By setting the range in which one is fixed and the other is moved to ⁇ / 4, impedance adjustment can be performed in all regions. Thereby, as will be described later, the total movement range of the pair of slags 58 can be (3/4) ⁇ , and the movement range of the slags 58 can be made ⁇ / 4 smaller than the conventional one.
  • high-purity alumina is used as the dielectric constituting the slag 58.
  • High-purity alumina has a relative dielectric constant of 10, which is much higher than the conventionally used quartz 3.88 and Teflon (registered trademark) 2.03, so it can be made thinner. , Can expand the alignment range.
  • high-purity alumina has the advantage that tan ⁇ is small and loss can be reduced and distortion is small compared to quartz and Teflon (registered trademark).
  • high-purity alumina has the advantage of being resistant to heat.
  • the high-purity alumina is preferably an alumina sintered body having a purity of 99.9% or more.
  • SAPPHAL manufactured by Covalent Materials Co., Ltd.
  • Single crystal alumina may be used.
  • the main amplifier 48, the tuner 44, and the planar slot antenna 51 are arranged close to each other.
  • the tuner 44 and the planar slot antenna 51 constitute a lumped constant circuit existing within a half wavelength, and these function as a resonator.
  • the control unit 70 includes a storage unit that stores a process recipe, an input unit, a display, and the like, and controls the plasma processing apparatus in accordance with the selected recipe.
  • the wafer W is loaded into the chamber 1 and placed on the susceptor 11. Then, while introducing a plasma gas, for example, Ar gas, into the chamber 1 from the plasma gas supply source 27 through the pipe 28 and the plasma gas introduction member 26, a microwave is introduced into the chamber 1 from the microwave plasma source 2. A plasma is formed.
  • a plasma gas for example, Ar gas
  • a processing gas for example, an etching gas such as Cl 2 gas is discharged from the processing gas supply source 25 into the chamber 1 through the pipe 24 and the shower plate 20.
  • the discharged processing gas is excited by the plasma that has passed through the space 23 of the shower plate 20 to be converted into plasma, and the wafer W is subjected to plasma processing, for example, etching processing by the plasma of the processing gas thus formed.
  • the microwave oscillated from the microwave oscillator 32 of the microwave output unit 30 is amplified by the amplifier 33 and then distributed to a plurality of parts by the distributor 34.
  • the microwaves distributed in this way are individually amplified by the main amplifier 48 constituting the solid-state amplifier, passed through the microwave transmission path 53 of the microwave introduction mechanism 43, and the planar slot antenna. After individually radiating from 51 and introduced into the chamber 1, these are synthesized in space, so that a large isolator or synthesizer is not required.
  • the microwave introduction mechanism 43 is compact because the antenna unit 45 and the tuner 44 are integrally provided.
  • the main amplifier 48, the tuner 44, and the planar slot antenna 51 are provided close to each other.
  • the tuner 44 and the planar slot antenna 51 constitute a lumped constant circuit and function as a resonator, thereby preventing impedance mismatching.
  • Tuner 44 can be tuned with high accuracy including plasma in the existing planar slot antenna mounting portion, and the influence of reflection can be reliably eliminated.
  • the tuner 44 and the planar slot antenna 51 are close to each other, constitute a lumped constant circuit, and function as a resonator, thereby eliminating the impedance mismatch up to the planar slot antenna 51 with high accuracy.
  • the non-matching portion can be made a plasma space substantially, the tuner 44 enables high-precision plasma control.
  • the top plate 56 attached to the planar slot antenna 51 into a square shape or a cylindrical shape, microwaves can be radiated as TE waves with high efficiency.
  • the microwave introduction mechanism 43 needs to secure a length corresponding to the movement margin of the slag 58 because the impedance adjustment is performed by moving the slag 58 of the tuner 44.
  • the wavelength of the microwave in the tube is ⁇
  • the movable range of the other slag 58 relative to one slag 58 is halved to ⁇ / 4.
  • the controller 60 since the point A is outside the movable range of the circle C, for example, the controller 60 operates to select the circle C ′ as a circle passing through the point A and the origin. In this way, the point A can move to the origin along the movable range on the circle C ′, and the impedance can be adjusted within the movable range of ⁇ / 4. Therefore, as shown in FIG.
  • a quartz slag having a thickness of 16 mm can be made 10 mm. Therefore, as a result, the length of the main body container 50 of the microwave introduction mechanism 43 can be reduced by about 12 mm, and the microwave plasma source 2 can be made compact accordingly.
  • the matching range can be expanded by using a material having a high dielectric constant.
  • FIG. 11 is a Smith chart showing the load matching range when using the slag of each material calculated by the calculation method of the distributed constant circuit.
  • quartz or Teflon registered trademark
  • the dielectric constant of the slag 58 increases, so there is a concern that the loss increases.
  • the thickness of the slag itself can be reduced, so that the loss is offset.
  • the loss can be made smaller than quartz or Teflon (registered trademark) as a whole.
  • the matching standing wave ratio (VSWR) is about 20 at the maximum, but by using high-purity alumina for the slag, it can be raised to about 70. It becomes possible.
  • high-purity alumina has an advantage that it is more resistant to heat than quartz or Teflon (registered trademark), and deformation or the like does not occur even at a high temperature of 1500 ° C.
  • the four slots 51a of the slot antenna 51 are formed uniformly, microwaves can be radiated more evenly, and as a result, the mismatching region near the antenna unit 45 is reduced. Or can be eliminated. That is, when two slots are provided, the radiation uniformity of the microwave from the planar slot antenna 51 is not necessarily high, and as shown in FIG. The region becomes a mismatch region, and this mismatch region could not be used for impedance adjustment by the slug 58. However, by forming the four slots 51a evenly, this mismatch region can be reduced or eliminated. This region can be used for impedance adjustment by the slug 58. Therefore, the length of the main body container 50 of the microwave introduction mechanism 43 can be further shortened by the maximum ⁇ / 4, and the microwave plasma source 2 can be made compact accordingly.
  • the length of the main body container 50 of the microwave introduction mechanism 43 can be shortened by ⁇ / 4, and the material constituting the slag 58
  • the length of the main body container 50 can be shortened by about 12 mm as compared with the case of using a conventional quartz slag, and the four slots 51a of the planar slot antenna 51 are evenly distributed.
  • the main body container 50 By providing the main body container 50, the length of the main body container 50 can be shortened by a maximum of ⁇ / 4. Therefore, the microwave plasma source 2 can be made compact alone, and any one of these can be achieved.
  • the microwave plasma source 2 can be made more compact by combining these effects. can do.
  • is 12.2 cm
  • the length of the main body container 50 can be shortened by a maximum of 7.3 cm.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the idea of the present invention.
  • the circuit configuration of the microwave output unit 30 and the circuit configurations of the antenna unit 40 and the main amplifier 48 are not limited to the above embodiment. Specifically, when it is not necessary to control the directivity of the microwave radiated from the planar slot antenna or to make it circularly polarized, the phase shifter is unnecessary.
  • the antenna unit 40 does not necessarily need to be composed of a plurality of antenna modules 41, and one antenna module is sufficient when a small plasma source such as remote plasma is sufficient.
  • the length of the main body container 50 is shortened by controlling the movement of the slag 58 with the controller 60, and the length of the main body container 50 is shortened by using high-purity alumina as the material constituting the slag 58.
  • the length of the main body container 50 is all shortened by providing the four slots 51a of the planar slot antenna 51 equally, it is also possible to perform one of these or any two of them. Good. In these cases, the remaining requirements can be the same as in the prior art.
  • the slot formed in the planar slot antenna 51 is preferably a fan shape because the length of the slot itself can be reduced and the size can be reduced, but the present invention is not limited to this.
  • the etching processing apparatus is exemplified as the plasma processing apparatus.
  • the present invention is not limited to this and can be used for other plasma processing such as film formation processing, oxynitride film processing, and ashing processing.
  • the substrate to be processed is not limited to the semiconductor wafer W, and may be another substrate such as an FPD (flat panel display) substrate typified by an LCD (liquid crystal display) substrate or a ceramic substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 マイクロ波導入機構(43)は、筒状をなす本体容器(50)と、本体容器(50)内に同軸的に設けられ、本体容器(50)との間にマイクロ波伝送路(53)を形成する内側導体(52)と、インピーダンス調整を行うチューナ(44)と、マイクロ波伝送路(53)を伝送されたマイクロ波をチャンバ内に放射するアンテナ(51)を有するアンテナ部(45)とを具備し、チューナ(44)は、一対の誘電体からなるスラグ(58)と、これらスラグ(58)を移動させるアクチュエータ(59)と、コントローラ(60)とを有し、コントローラ(60)は、一対のスラグ(58)を同時に1/2波長の長さ範囲で移動させ、かつスラグ(58)の一方を他方のスラグ(58)に対して1/4波長の範囲で移動させるように制御する。

Description

マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
 本発明は、プラズマ処理を行うチャンバ内にマイクロ波を導入するマイクロ波導入機構、そのようなマイクロ波導入機構を用いたマイクロ波プラズマ源、およびマイクロ波プラズマ源を用いたマイクロ波プラズマ処理装置に関する。
 半導体デバイスや液晶表示装置の製造工程においては、半導体ウエハやガラス基板といった被処理基板にエッチング処理や成膜処理等のプラズマ処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられる。
 プラズマ処理装置におけるプラズマの発生方法としては、平行平板電極が配置されたチャンバ内に処理ガスを供給し、この平行平板電極に所定の電力を供給して、電極間の容量結合によってプラズマを発生させる方法や、マイクロ波によって発生する電場とチャンバ外に配置された磁場発生装置によって発生した磁場とによって電子を加速し、この電子が処理ガスの中性分子と衝突して中性分子を電離させることによってプラズマを発生させる方法等が知られている。
 後者のマイクロ波による電場と磁場発生装置による磁場のマグネトロン効果を利用する方法の場合には、所定電力のマイクロ波を導波管/同軸管を通してチャンバ内に配置されたアンテナに供給し、アンテナからマイクロ波をチャンバ内の処理空間に放射させている。
 従来の一般的なマイクロ波導入装置は、所定電力に調整されたマイクロ波を出力するマグネトロンおよびマグネトロンに直流のアノード電流を供給するマイクロ波発生電源を有するマイクロ波発振器を備え、このマイクロ波発振器から出力されたマイクロ波をアンテナを介してチャンバ内の処理空間に放射するように構成されている。
 しかしながら、マグネトロンの寿命は約半年と短いために、このようなマグネトロンを用いたマイクロ波導入装置では、装置コストおよびメンテナンスコストが高いという問題がある。また、マグネトロンの発振安定性は約1%あり、しかも出力安定性が3%程度とばらつきが大きいために、安定したマイクロ波を発振することが困難である。
 そこで、半導体増幅素子を用いたアンプ、いわゆるソリッドステートアンプで低電力のマイクロ波を増幅して必要な大電力のマイクロ波を生成し、装置寿命が長く、出力の安定したマイクロ波を得る技術が特開2004-128141号公報(特許文献1)に記載されている。この技術は、マイクロ波を分配器で分配した後、分配器から出力されたマイクロ波をソリッドステートアンプで増幅し、各ソリッドステートアンプにおいて増幅されたマイクロ波を合成器で合成するものである。
 また、特許文献1の技術では、合成器で精密なインピーダンス整合が求められること、合成器から出力された大電力のマイクロ波がアイソレータに伝送されるため、アイソレータとして大型なものが必要となること、アンテナの面内でマイクロ波の出力分布を調整することができないことから、このような点を解決する技術として、特開2004-128385号公報(特許文献2)には、マイクロ波を分配器で複数に分配した後にアンプで増幅し、その後合成器で合成せずに複数のアンテナからマイクロ波を放射し、空間で合成する技術が提案されている。
 しかしながら、このような技術では、分配された各チャンネルに2つ以上の大がかりなスタブチューナを組み込んで、不整合部のチューニングを行う必要があるため、装置が複雑なものとならざるを得ない。また、必ずしも不整合部のインピーダンス調整を高精度で行うことができないという問題もある。
 このような問題点を解決する技術として、国際公開第2008/013112号パンフレット(特許文献3)には、マイクロ波を複数に分配し、複数のアンテナモジュールを介してマイクロ波をチャンバ内に導くマイクロ波プラズマ源であって、各アンテナモジュールにおいて、平面状のスロットアンテナとスラグチューナを一体的に設けるとともにアンプを近接して設けたマイクロ波プラズマ源が開示されている。
 このようにアンテナとチューナを一体的に設けることにより、マイクロ波プラズマ源自体を著しくコンパクト化でき、また、アンプ、チューナおよびアンテナを近接して設けることにより、インピーダンス不整合が存在するアンテナ取り付け部分においてチューナにより高精度でチューニングすることができ、反射の影響を確実に解消することができる。
 しかしながら、特許文献3に開示された技術においては、スラグチューナの整合子として樹脂や石英等の誘電体からなる2つのスラグを用い、これらを移動させてインピーダンスを調整するが、スミスチャートの全域に亘って調整可能とするために、これらの可動範囲をマイクロ波の1/2波長とし、かつ2つのスラグの間を1/2波長の範囲で移動可能としており、また、スラグの厚さはマイクロ波の実効波長λgとするとλg/4であるが、材料によってはλgが大きくスラグを厚く形成する必要があり、さらに、アンテナの直近の1/4波長の部分は不整合領域となるため、インピーダンス調整には使えず、スラグの可動範囲にさらに1/4波長加えた長さが必要となる。このため、アンテナとチューナとを一体的に構成したマイクロ波導入機構の本体容器の全体の長さが結局長いものとならざるを得ず、マイクロ波プラズマ源のコンパクト化に限界がある。
発明の概要
 本発明の目的は、マイクロ波プラズマ源のさらなるコンパクト化を達成することができるマイクロ波導入機構、それを用いたマイクロ波プラズマ源およびマイクロ波プラズマ処理装置を提供することにある。
 本発明の第1の観点によれば、チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを具備し、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構が提供される。
 上記第1の観点において、前記一対のスラグは、高純度アルミナで構成されていることが好ましい。また、前記マイクロ波放射アンテナは、マイクロ波を放射するスロットが形成された平面状のスロットアンテナであることが好ましい。
 本発明の第2の観点によれば、チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを具備し、前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、前記一対のスラグは高純度アルミナで構成されているマイクロ波導入機構が提供される。
 本発明の第3の観点によれば、チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを具備し、前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構が提供される。
 本発明の第4の観点によれば、チャンバ内にマイクロ波プラズマを形成するためのマイクロ波を導入するためのマイクロ波導入機構であって、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを具備し、前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、前記一対のスラグは高純度アルミナで構成されており、前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構が提供される。
 上記第1~第4の観点において、前記スロットは扇形を有することが好ましい。また、前記アンテナ部は、前記アンテナから放射されたマイクロ波を透過する誘電体からなる天板と、前記アンテナの天板とは反対側に設けられ、前記アンテナに到達するマイクロ波の波長を短くする誘電体からなる遅波材とを有することが好ましい。さらに、前記チューナと前記アンテナとは集中定数回路を構成していることが好ましい。さらにまた、前記チューナと前記アンテナとは共振器として機能することが好ましい。
 本発明の第5の観点によれば、マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波をチャンバ内に導入するマイクロ波導入機構を具備し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源であって、前記マイクロ波導入機構は、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを有し、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御する、マイクロ波プラズマ源が提供される。
 本発明の第6の観点によれば、マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波をチャンバ内に導入するマイクロ波導入機構を具備し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源であって、前記マイクロ波導入機構は、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを有し、前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、前記一対のスラグは高純度アルミナで構成されている、マイクロ波プラズマ源が提供される。
 本発明の第7の観点によれば、基板に対してマイクロ波プラズマによる処理を施すマイクロ波プラズマ装置であって、被処理基板を収容するチャンバと、前記チャンバ内にガスを供給するガス供給機構と、マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波を前記チャンバ内に導入するマイクロ波導入機構を有し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源とを具備し、前記マイクロ波導入機構は、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを有し、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御する、マイクロ波プラズマ処理装置が提供される。
 本発明の第8の観点によれば、基板に対してマイクロ波プラズマによる処理を施すマイクロ波プラズマ装置であって、被処理基板を収容するチャンバと、前記チャンバ内にガスを供給するガス供給機構と、マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波を前記チャンバ内に導入するマイクロ波導入機構を有し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源とを具備し、前記マイクロ波導入機構は、筒状をなす本体容器と、前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを有し、前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、前記一対のスラグは高純度アルミナで構成されている、マイクロ波プラズマ処理装置が提供される。
 上記本発明の第1の観点によれば、スラグチューナとして、本体容器との間にマイクロ波伝送路を形成する内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有するものを用い、コントローラが、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するようにしたので、スラグの移動範囲を従来よりも1/4波長短くすることができ、その分マイクロ波導入機構を小型化することができ、マイクロ波プラズマ源のコンパクト化に寄与する。
 上記本発明の第2の観点によれば、スラグチューナとして、本体容器との間にマイクロ波伝送路を形成する内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有するものを用い、前記一対のスラグを高純度アルミナで構成したが、高純度アルミナは、誘電率が高いため、スラグの厚さを石英や樹脂よりも薄くすることができ、その分マイクロ波導入機構を小型化することができる。また、このように誘電率が高いため、負荷整合範囲を広くすることができる。また、tanδが小さいので、損失が少なくなり、しかも歪みも小さいという利点も得られる。
 上記本発明の第3の観点によれば、上記第1の観点と同様、コントローラが、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御した上で、マイクロ波放射アンテナとして、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナを用いるので、スラグの移動範囲を従来よりも1/4波長短くすることができることに加えて、アンテナ直近の不整合領域をなくすことができる。このため、マイクロ波導入機構をさらに小型化することができ、マイクロ波プラズマ源のさらなるコンパクト化に寄与する。
 上記本発明の第4の観点によれば、一つのスラグを高純度アルミナで構成し、マイクロ波放射アンテナとして、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナを用い、さらにコントローラが、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するので、上記第1の観点と第2の観点の効果が複合されたものとなり、マイクロ波導入機構をより一層小型化することができ、マイクロ波プラズマ源をさらに一層コンパクト化することができる。
本発明の一実施形態に係るマイクロ波導入機構を有するマイクロ波プラズマ源が搭載されたプラズマ処理装置の概略構成を示す断面図である。 図1のマイクロ波プラズマ源の構成を示す構成図である。 メインアンプの回路構成の例を示す図である。 図1のマイクロ波プラズマ処理装置におけるマイクロ波導入機構を示す断面図である。 平面スロットアンテナの好ましい形態を示す平面図である。 四角状の天板を有するアンテナ部を示す斜視図である。 従来のスラグによるインピーダンス調整の際のスラグの可動範囲を説明するためのスミスチャートである。 従来のスラグによるインピーダンス調整の際のスラグの可動範囲を示す図である。 本発明におけるスラグによるインピーダンス調整の際のスラグの可動範囲を説明するためのスミスチャートである。 本発明における、スラグによるインピーダンス調整の際のスラグの可動範囲を示す図である。 スラグの材質による整合範囲を示すスミスチャートである。 従来のマイクロ波導入機構におけるアンテナ部直近の不整合領域を示す図である。
発明を実施するための形態
 以下、添付図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明の一実施形態に係るマイクロ波導入機構を有するマイクロ波プラズマ源が搭載されたプラズマ処理装置の概略構成を示す断面図であり、図2は図1のマイクロ波プラズマ源の構成を示す構成図である。
 プラズマ処理装置100は、ウエハに対してプラズマ処理として例えばエッチング処理を施すプラズマエッチング装置として構成されており、気密に構成されたアルミニウムまたはステンレス鋼等の金属材料からなる略円筒状の接地されたチャンバ1と、チャンバ1内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源2とを有している。チャンバ1の上部には開口部1aが形成されており、マイクロ波プラズマ源2はこの開口部1aからチャンバ1の内部に臨むように設けられている。
 チャンバ1内には被処理体であるウエハWを水平に支持するためのサセプタ11が、チャンバ1の底部中央に絶縁部材12a介して立設された筒状の支持部材12により支持された状態で設けられている。サセプタ11および支持部材12を構成する材料としては、表面をアルマイト処理(陽極酸化処理)したアルミニウム等が例示される。
 また、図示はしていないが、サセプタ11には、ウエハWを静電吸着するための静電チャック、温度制御機構、ウエハWの裏面に熱伝達用のガスを供給するガス流路、およびウエハWを搬送するために昇降する昇降ピン等が設けられている。さらに、サセプタ11には、整合器13を介して高周波バイアス電源14が電気的に接続されている。この高周波バイアス電源14からサセプタ11に高周波電力が供給されることにより、ウエハW側にイオンが引き込まれる。
 チャンバ1の底部には排気管15が接続されており、この排気管15には真空ポンプを含む排気装置16が接続されている。そしてこの排気装置16を作動させることによりチャンバ1内が排気され、チャンバ1内が所定の真空度まで高速に減圧することが可能となっている。また、チャンバ1の側壁には、ウエハWの搬入出を行うための搬入出口17と、この搬入出口17を開閉するゲートバルブ18とが設けられている。
 チャンバ1内のサセプタ11の上方位置には、プラズマエッチングのための処理ガスをウエハWに向けて吐出するシャワープレート20が水平に設けられている。このシャワープレート20は、格子状に形成されたガス流路21と、このガス流路21に形成された多数のガス吐出孔22とを有しており、格子状のガス流路21の間は空間部23となっている。このシャワープレート20のガス流路21にはチャンバ1の外側に延びる配管24が接続されており、この配管24には処理ガス供給源25が接続されている。
 一方、チャンバ1のシャワープレート20の上方位置には、リング状のプラズマガス導入部材26がチャンバ壁に沿って設けられており、このプラズマガス導入部材26には内周に多数のガス吐出孔が設けられている。このプラズマガス導入部材26には、プラズマガスを供給するプラズマガス供給源27が配管28を介して接続されている。プラズマガスとしてはArガス等の希ガスが好適に用いられる。
 プラズマガス導入部材26からチャンバ1内に導入されたプラズマガスは、マイクロ波プラズマ源2からチャンバ1内に導入されたマイクロ波によりプラズマ化され、このArプラズマがシャワープレート20の空間部23を通過しシャワープレート20のガス吐出孔22から吐出された処理ガスを励起し、処理ガスのプラズマを形成する。
 マイクロ波プラズマ源2は、チャンバ1の上部に設けられた支持リング29により支持されており、これらの間は気密にシールされている。図2に示すように、マイクロ波プラズマ源2は、複数経路に分配してマイクロ波を出力するマイクロ波出力部30と、マイクロ波出力部30から出力されたマイクロ波をチャンバ1に導き、チャンバ1内に放射するためのアンテナユニット40とを有している。
 マイクロ波出力部30は、電源部31と、マイクロ波発振器32と、発振されたマイクロ波を増幅するアンプ33と、増幅されたマイクロ波を複数に分配する分配器34とを有している。
 マイクロ波発振器32は、所定周波数(例えば、2.45GHz)のマイクロ波を例えばPLL発振させる。分配器34では、マイクロ波の損失ができるだけ起こらないように、入力側と出力側のインピーダンス整合を取りながらアンプ33で増幅されたマイクロ波を分配する。なお、マイクロ波の周波数としては、2.45GHzの他に、8.35GHz、5.8GHz、1.98GHz等を用いることができる。
 アンテナユニット40は、分配器34で分配されたマイクロ波を導く複数のアンテナモジュール41を有している。各アンテナモジュール41は、分配されたマイクロ波を主に増幅するアンプ部42と、マイクロ波導入機構43とを有している。また、マイクロ波導入機構43は、インピーダンスを整合させるためのチューナ44と、増幅されたマイクロ波をチャンバ1内に放射するアンテナ部45とを有している。そして、このようにマイクロ波導入機構43のアンテナ部45からチャンバ1内にマイクロ波を放射してチャンバ内空間でマイクロ波を合成するようになっている。
 アンプ部42は、位相器46と、可変ゲインアンプ47と、ソリッドステートアンプを構成するメインアンプ48と、アイソレータ49とを有している。
 位相器46は、スラグチューナによりマイクロ波の位相を変化させることができるように構成されており、これを調整することにより放射特性を変調させることができる。例えば、各アンテナモジュール毎に位相を調整することにより指向性を制御してプラズマ分布を変化させることや、後述するように隣り合うアンテナモジュールにおいて90°ずつ位相をずらすようにして円偏波を得ることができる。ただし、このような放射特性の変調が不要な場合には位相器46は設ける必要はない。
 可変ゲインアンプ47は、メインアンプ48へ入力するマイクロ波の電力レベルを調整し、個々のアンテナモジュールのばらつきを調整またはプラズマ強度調整のためのアンプである。可変ゲインアンプ47を各アンテナモジュール毎に変化させることによって、発生するプラズマに分布を生じさせることもできる。
 ソリッドステートアンプを構成するメインアンプ48は、例えば、図3に示すように、入力整合回路61と、半導体増幅素子62と、出力整合回路63と、高Q共振回路64とを有する構成とすることができる。半導体増幅素子62としては、E級動作が可能となる、GaAsHEMT、GaNHEMT、LD(Laterally Diffused)-MOSを用いることができる。特に、半導体増幅素子62として、GaNHEMTを用いた場合には、可変ゲインアンプ47は一定値になり、E級動作アンプの電源電圧を可変とし、パワー制御を行う。
 アイソレータ49は、アンテナ部45で反射してメインアンプ48に向かう反射マイクロ波を分離するものであり、サーキュレータとダミーロード(同軸終端器)とを有している。サーキュレータは、アンテナ部45で反射したマイクロ波をダミーロードへ導き、ダミーロードはサーキュレータによって導かれた反射マイクロ波を熱に変換する。
 本実施形態では、複数のアンテナモジュール41を設け、各アンテナモジュールのマイクロ波導入機構43からチャンバ1内に導入したマイクロ波を空間合成するので、アイソレータ49は小型のものでよく、メインアンプ48に隣接して設けることが可能である。
 次に、マイクロ波導入機構43について、図4を参照しながら詳細に説明する。図4に示すように、このマイクロ波導入機構43は、本体容器50を有している。そして、本体容器50の先端部にアンテナ部45が配置され、本体容器50のアンテナ部45よりも基端側の部分がチューナ44によるインピーダンス調整範囲となっている。本体容器50は金属製であり円筒状をなしており、同軸管の外側導体を構成している。また、本体容器50内には同軸管の内側導体52が垂直に延びている。この内側導体52は棒状または筒状に形成されている。そして、本体容器50と内側導体52との間にマイクロ波伝送路が形成される。
 アンテナ部45は、平面状をなしスロット51aを有する平面スロットアンテナ51を有しており、上記内側導体52はこの平面スロットアンテナ51の中心部に接続されている。
 本体容器50の基端側には図示しない給電変換部が取り付けられており、給電変換部は同軸ケーブルを介してメインアンプ48に接続されており、同軸ケーブルの途中にはアイソレータ49が介在されている。メインアンプ48はパワーアンプであって大電力を取り扱うので、E級等高効率の動作をするが、その熱は数十~数百Wに相当するため放熱の観点からアンテナ部45に直列に装着する。
 アンテナ部45は、平面スロットアンテナ51の上面に設けられた遅波材55を有している。遅波材55は、真空よりも大きい誘電率を有しており、例えば、石英、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂により構成されており、真空中におけるマイクロ波の波長よりもその波長を短くしてプラズマを調整する機能を有している。遅波材55は、その厚さによりマイクロ波の位相を調整することができ、平面スロットアンテナ51が定在波の「はら」になるようにその厚さを調整する。これにより、反射が最小で、平面スロットアンテナ51の放射エネルギーが最大となるようにすることができる。
 また、平面スロットアンテナ51の下面には、真空シールのための誘電体部材、例えば石英やセラミックス等からなる天板56が配置されている。そして、メインアンプ48で増幅されたマイクロ波が内側導体52と本体容器50の周壁の間を通って平面スロットアンテナ51のスロット51aから天板56を透過してチャンバ1内の空間に放射される。
 本実施形態では、スロット51aは、図5に示すように分割された円弧の形状で4個均等に形成されている。これにより、円周方向にほぼ均一なスロット51aが形成されるので、伝搬してきたマイクロ波が平面スロットアンテナ51にて反射されることが抑制され、後述するように不整合領域を減少させるまたは実質的になくすことができる。このスロット51aは、それ自体の長さを低減できコンパクト化できることから扇形のものが好ましい。また、天板56は、図6に示すように、四角い形状(直方体)、あるいは本体容器50よりも径の大きな丸い形状(円柱)であることが好ましい。これにより、マイクロ波をTEモードで効率的に放射させることができる。
 図4に示すように、チューナ44は、本体容器50のアンテナ部45より基端側の部分に、2つのスラグ58を有し、スラグチューナを構成している。スラグ58は誘電体からなる板状体として構成されており、内側導体52と本体容器50の外壁の間に円環状に設けられている。そして、コントローラ60からの指令に基づいてアクチュエータ59によりこれらスラグ58を上下動させることによりインピーダンスを調整するようになっている。コントローラ60は、終端が例えば50Ωになるようにインピーダンス調整を実行させる。2つのスラグ58のうち一方のみを動かすと、スミスチャートの原点を通る円の軌跡を描き、両方同時に動かすと反射係数の位相のみが回転する。本実施形態では、後述のようにコントローラ60のアルゴリズムによりスラグ58の動作を制御することにより、マイクロ波の管内波長をλとした場合に、一対のスラグを同時に移動させる範囲をλ/2とし、一方を固定して他方を移動させる範囲をλ/4とすることにより、全ての領域においてインピーダンス調整を行うようにすることができる。これにより、後述するように一対のスラグ58のトータルの移動範囲を(3/4)λとすることができ、従来よりもスラグ58の移動範囲をλ/4小さくすることができる。
 本実施形態では、スラグ58を構成する誘電体として高純度アルミナを用いている。高純度アルミナは、比誘電率が10であり、従来から使用されている石英の3.88やテフロン(登録商標)の2.03よりも遙かに高いため、より薄いものとすることができ、整合範囲を拡げることができる。また、高純度アルミナは石英やテフロン(登録商標)に比べてtanδが小さく損失を小さくすることができ、歪みも小さいという利点が得られる。さらに、高純度アルミナは熱に強いという利点もある。高純度アルミナとしては、純度99.9%以上のアルミナ焼結体であることが好ましく。具体的な商品名としては、SAPPHAL(コバレントマテリアル株式会社製)を挙げることができる。単結晶アルミナ(サファイア)であってもよい。
 本実施形態において、メインアンプ48と、チューナ44と、平面スロットアンテナ51とは近接配置している。そして、チューナ44と平面スロットアンテナ51とは1/2波長内に存在する集中定数回路を構成しており、かつこれらは共振器として機能する。
 プラズマ処理装置100における各構成部は、マイクロプロセッサを備えた制御部70により制御されるようになっている。制御部70はプロセスレシピを記憶した記憶部や、入力手段およびディスプレイ等を備えており、選択されたレシピに従ってプラズマ処理装置を制御するようになっている。
 次に、以上のように構成されるプラズマ処理装置における動作について説明する。
 まず、ウエハWをチャンバ1内に搬入し、サセプタ11上に載置する。そして、プラズマガス供給源27から配管28およびプラズマガス導入部材26を介してチャンバ1内にプラズマガス、例えばArガスを導入しつつ、マイクロ波プラズマ源2からマイクロ波をチャンバ1内に導入してプラズマを形成する。
 次いで、処理ガス、例えばClガス等のエッチングガスが処理ガス供給源25から配管24およびシャワープレート20を介してチャンバ1内に吐出される。吐出された処理ガスは、シャワープレート20の空間部23を通過してきたプラズマにより励起されてプラズマ化し、このように形成された処理ガスのプラズマによりウエハWにプラズマ処理、例えばエッチング処理が施される。
 この場合に、マイクロ波プラズマ源2では、マイクロ波出力部30のマイクロ波発振器32から発振されたマイクロ波はアンプ33で増幅された後、分配器34により複数に分配され、分配されたマイクロ波はアンテナユニット40において複数のアンテナモジュール41に導かれる。アンテナモジュール41においては、このように複数に分配されたマイクロ波を、ソリッドステートアンプを構成するメインアンプ48で個別に増幅し、マイクロ波導入機構43のマイクロ波伝送路53を通って平面スロットアンテナ51から個別に放射し、チャンバ1内に導入した後、これらを空間で合成するので、大型のアイソレータや合成器が不要となる。また、マイクロ波導入機構43は、アンテナ部45とチューナ44とが一体となって設けられているのでコンパクトである。さらに、メインアンプ48、チューナ44および平面スロットアンテナ51が近接して設けられ、特にチューナ44と平面スロットアンテナ51とは集中定数回路を構成し、かつ共振器として機能することにより、インピーダンス不整合が存在する平面スロットアンテナ取り付け部分においてチューナ44によりプラズマを含めて高精度でチューニングすることができ、反射の影響を確実に解消することができる。
 さらに、このようにチューナ44と平面スロットアンテナ51とが近接し、集中定数回路を構成してかつ共振器として機能することにより、平面スロットアンテナ51に至るまでのインピーダンス不整合を高精度で解消することができ、実質的に不整合部分をプラズマ空間とすることができるので、チューナ44により高精度のプラズマ制御が可能となる。さらに平面スロットアンテナ51に装着する天板56を四角状または円柱状にすることにより、マイクロ波をTE波として高効率で放射することができる。
 ところで、マイクロ波導入機構43は、チューナ44のスラグ58を移動してインピーダンス調整を行う関係上、スラグ58の移動マージン分の長さを確保する必要がある。従来は、マイクロ波の管内波長をλとした場合に、一対のスラグ58を同時にλ/2の範囲内で移動させることにより、図7で示すように例えばスミスチャート上のA点の反射係数の位相を360°変化させることができ(破線で示す円Bの軌跡)、また、一方のスラグ58のみを他方に対してλ/2の範囲内で移動させることにより、原点およびA点を通る円Cを描かせることができるので、これらの組み合わせにより全ての点におけるインピーダンス調整を行っていた。したがって、図8に示すように、一対のスラグ58の可動範囲はλ/2+λ/2=λとなる。
 これに対して、本実施形態では、一方のスラグ58に対するもう一方のスラグ58の可動範囲をλ/4と半分にする。具体的には、例えば図7の円C上の可動範囲を図9の斜線に示す範囲とする。この場合に、A点は円Cの可動範囲外にあるから、例えばコントローラ60はA点と原点を通る円としてC′の円を選択するように動作する。このようにすればA点は円C′上の可動範囲に沿って原点まで移動可能であり、λ/4の可動範囲でインピーダンス調整することができる。したがって、図10に示すように、一対のスラグ58の可動範囲はλ/2+λ/4=(3/4)λとなり、従来よりもλ/4だけスラグ58の可動範囲を短くすることができる。このため、その分マイクロ波導入機構43の本体容器50の長さを短くすることができ、これにより、マイクロ波プラズマ源2のさらなるコンパクト化を達成することができる。
 また、本実施形態では、スラグ58を構成する誘電体として誘電率の高い高純度アルミナを用いているので、スラグ58をより薄いものとすることができる。すなわち、スラグ58の厚さdはマイクロ波の実効波長(スラグ58中でのマイクロ波の波長)をλgとするとd=λg/4であるが、空気中のマイクロ波の波長をλ、スラグの比誘電率をεとするとλg=λ/ε 1/2であるから、スラグ58は比誘電率が高いほど薄くすることができるが、高純度アルミナは、比誘電率が10であり、従来から使用されている石英の3.88やテフロン(登録商標)の2.03よりも遙かに高いため、薄いものとすることができ、従来の石英製のスラグの2/3程度の厚さとすることができる。具体的には石英製スラグでは厚さが16mmであったものを10mmとすることができる。このため、結果としてマイクロ波導入機構43の本体容器50の長さを12mm程度短くすることができ、その分マイクロ波プラズマ源2をコンパクト化することができる。
 また、このように誘電率の高い材料を用いることにより、整合範囲を拡げることができる。図11は分布定数回路の計算手法で計算した各材料のスラグを用いた場合の負荷整合範囲を示すスミスチャートであるが、高純度アルミナを用いた場合に、石英やテフロン(登録商標)を用いた場合よりも負荷整合範囲が大きくなり、調整マージンを広げることができる。
 スラグ58の誘電率が大きくなると減衰定数が大きくなるので、損失が大きくなる懸念があるが、スラグの厚さ自体を薄くすることができるので、これにより損失が相殺される。しかも、高純度アルミナはtanδが小さいので、全体として見れば、石英やテフロン(登録商標)よりも損失を小さくすることができる。具体的には、従来の石英製のスラグの場合、マッチング可能な定在波比(VSWR)が最大20程度であるのに対し、スラグに高純度アルミナを用いることにより70程度に上昇させることが可能となる。
 また、高純度アルミナは石英やテフロン(登録商標)に比べて熱に強いという利点もあり、1500℃という高温でも変形等が生じない。
 さらに、本実施形態においては、スロットアンテナ51のスロット51aが4個均等に形成されているので、マイクロ波をより均等に放射することができ、結果としてアンテナ部45直近の不整合領域を減少させるまたはなくすことができる。すなわち、2つのスロットを設けた場合には、平面スロットアンテナ51からのマイクロ波の放射均一性が必ずしも高くなく、図12に示すように、本体容器50のアンテナ部45の直近のλ/4の領域は不整合領域となり、この不整合領域はスラグ58によるインピーダンス調整には用いることができなかったが、スロット51aを4個均等に形成することにより、この不整合領域を減少させるまたはなくすことができ、その領域をスラグ58によるインピーダンス調整に用いることができる。したがって、マイクロ波導入機構43の本体容器50の長さをさらに最大λ/4短くすることができ、その分マイクロ波プラズマ源2をコンパクト化することができる。
 以上のように、スラグ58の移動をコントローラ60のアルゴリズムで制御することにより、マイクロ波導入機構43の本体容器50の長さをλ/4短くすることができ、また、スラグ58を構成する材料を高純度アルミナとすることにより、従来の石英製のスラグを用いた場合よりも本体容器50の長さを12mm程度短くすることができ、さらに、平面スロットアンテナ51のスロット51aを4個均等に設けることにより、本体容器50の長さを最大λ/4短くすることができるので、これらのうちの単独でマイクロ波プラズマ源2のコンパクト化を図ることができることはもちろんのこと、これらのいずれか2つまたは3つ全部を組み合わせることにより、これらの効果の組み合わせで、マイクロ波プラズマ源2をよりコンパクト化することができる。特に、これら3つを組み合わせた場合には、λが12.2cmであるから、本体容器50の長さを最大7.3cm短くすることができる。
 なお、本発明は上記実施形態に限定されることなく、本発明の思想の範囲内において種々変形可能である。例えば、マイクロ波出力部30の回路構成やアンテナユニット40、メインアンプ48の回路構成等は、上記実施形態に限定されるものではない。具体的には、平面スロットアンテナから放射されるマイクロ波の指向性制御を行ったり円偏波にしたりする必要がない場合には、位相器は不要である。また、アンテナユニット40は、必ずしも複数のアンテナモジュール41で構成する必要はなく、リモートプラズマ等、小さいプラズマ源で十分な場合には1個のアンテナモジュールで十分である。
 さらに、上記実施形態では、スラグ58の移動をコントローラ60で制御することによる本体容器50の長さの短縮、スラグ58を構成する材料を高純度アルミナとすることによる本体容器50の長さの短縮、平面スロットアンテナ51のスロット51aを4個均等に設けたことによる本体容器50の長さの短縮を全て行っているが、これらのうちの単独またはこれらのいずれか2つを行うようにしてもよい。これらの場合は、残余の要件は従来と同様とすることができる。
 また、上記実施形態ではアンテナ51のスロット51aを4個均等に設けた場合について示したが、5個以上均等に設けてもよいし、効率は若干低下するが1~3個設けてもよい。また、平面スロットアンテナ51に形成されるスロットは、それ自体の長さを低減できコンパクト化できることから扇形が好ましいが、これに限るものではない。
 さらに、上記実施形態においては、プラズマ処理装置としてエッチング処理装置を例示したが、これに限らず、成膜処理、酸窒化膜処理、アッシング処理等の他のプラズマ処理にも用いることができる。また、被処理基板は半導体ウエハWに限定されず、LCD(液晶ディスプレイ)用基板に代表されるFPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。

Claims (26)

  1.  チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を具備し、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、
     前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構。
  2.  前記一対のスラグは、高純度アルミナで構成されている請求項1に記載のマイクロ波導入機構。
  3.  前記マイクロ波放射アンテナは、マイクロ波を放射するスロットが形成された平面状のスロットアンテナである請求項1に記載のマイクロ波導入機構。
  4.  前記スロットは扇形を有する請求項3に記載のマイクロ波導入機構。
  5.  前記アンテナ部は、前記アンテナから放射されたマイクロ波を透過する誘電体からなる天板と、前記アンテナの天板とは反対側に設けられ、前記アンテナに到達するマイクロ波の波長を短くする誘電体からなる遅波材とを有する請求項1に記載のマイクロ波導入機構。
  6.  前記チューナと前記アンテナとは集中定数回路を構成している請求項1に記載のマイクロ波導入機構。
  7.  前記チューナと前記アンテナとは共振器として機能する請求項1に記載のマイクロ波導入機構。
  8.  チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を具備し、
     前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、
     前記一対のスラグは高純度アルミナで構成されているマイクロ波導入機構。
  9.  前記スロットは扇形を有する請求項8に記載のマイクロ波導入機構。
  10.  前記アンテナ部は、前記アンテナから放射されたマイクロ波を透過する誘電体からなる天板と、前記アンテナの天板とは反対側に設けられ、前記アンテナに到達するマイクロ波の波長を短くする誘電体からなる遅波材とを有する請求項8に記載のマイクロ波導入機構。
  11.  前記チューナと前記アンテナとは集中定数回路を構成している請求項8に記載のマイクロ波導入機構。
  12.  前記チューナと前記アンテナとは共振器として機能する請求項8に記載のマイクロ波導入機構。
  13.  チャンバ内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源に用いるマイクロ波導入機構であって、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を具備し、
     前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、
     前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構。
  14.  前記スロットは扇形を有する請求項13に記載のマイクロ波導入機構。
  15.  前記アンテナ部は、前記アンテナから放射されたマイクロ波を透過する誘電体からなる天板と、前記アンテナの天板とは反対側に設けられ、前記アンテナに到達するマイクロ波の波長を短くする誘電体からなる遅波材とを有する請求項13に記載のマイクロ波導入機構。
  16.  前記チューナと前記アンテナとは集中定数回路を構成している請求項13に記載のマイクロ波導入機構。
  17.  前記チューナと前記アンテナとは共振器として機能する請求項13に記載のマイクロ波導入機構。
  18.  チャンバ内にマイクロ波プラズマを形成するためのマイクロ波を導入するためのマイクロ波導入機構であって、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を具備し、
     前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、
     前記一対のスラグは高純度アルミナで構成されており、
     前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御するマイクロ波導入機構。
  19.  前記スロットは扇形を有する請求項18に記載のマイクロ波導入機構。
  20.  前記アンテナ部は、前記アンテナから放射されたマイクロ波を透過する誘電体からなる天板と、前記アンテナの天板とは反対側に設けられ、前記アンテナに到達するマイクロ波の波長を短くする誘電体からなる遅波材とを有する請求項18に記載のマイクロ波導入機構。
  21.  前記チューナと前記アンテナとは集中定数回路を構成している請求項18に記載のマイクロ波導入機構。
  22.  前記チューナと前記アンテナとは共振器として機能する請求項18に記載のマイクロ波導入機構。
  23.  マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波をチャンバ内に導入するマイクロ波導入機構を具備し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源であって、
     前記マイクロ波導入機構は、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を有し、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、
     前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御する、マイクロ波プラズマ源。
  24.  マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波をチャンバ内に導入するマイクロ波導入機構を具備し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源であって、
     前記マイクロ波導入機構は、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を有し、
     前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、
     前記一対のスラグは高純度アルミナで構成されている、マイクロ波プラズマ源。
  25.  基板に対してマイクロ波プラズマによる処理を施すマイクロ波プラズマ装置であって、
     被処理基板を収容するチャンバと、
     前記チャンバ内にガスを供給するガス供給機構と、
     マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波を前記チャンバ内に導入するマイクロ波導入機構を有し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源と
    を具備し、
     前記マイクロ波導入機構は、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を有し、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータと、スラグの移動を制御するコントローラとを有し、
     前記コントローラは、前記一対のスラグを同間隔に保ったままマイクロ波の1/2波長の長さ範囲内で移動させ、かつ前記一対のスラグの何れか一方を他方に対して1/4波長の長さ範囲内で移動させるように前記アクチュエータを制御する、マイクロ波プラズマ処理装置。
  26.  基板に対してマイクロ波プラズマによる処理を施すマイクロ波プラズマ装置であって、
     被処理基板を収容するチャンバと、
     前記チャンバ内にガスを供給するガス供給機構と、
     マイクロ波を生成するマイクロ波生成機構および生成されたマイクロ波を前記チャンバ内に導入するマイクロ波導入機構を有し、前記チャンバ内にマイクロ波を導入して前記チャンバ内に供給されたガスをプラズマ化するマイクロ波プラズマ源と
    を具備し、
     前記マイクロ波導入機構は、
     筒状をなす本体容器と、
     前記本体容器内に同軸的に設けられ、前記本体容器との間にマイクロ波伝送路を形成する筒状または棒状をなす内側導体と、
     前記マイクロ波伝送路におけるインピーダンス調整を行うチューナと、
     前記マイクロ波伝送路を伝送されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を有し、
     前記マイクロ波放射アンテナは、マイクロ波を放射する4つ以上のスロットが均等に形成された平面状のスロットアンテナであり、
     前記チューナは、前記内導体に沿って移動可能な一対の誘電体からなるスラグと、これらスラグを移動させるアクチュエータとを有し、
     前記一対のスラグは高純度アルミナで構成されている、マイクロ波プラズマ処理装置。
PCT/JP2009/054158 2008-03-14 2009-03-05 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置 WO2009113442A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107020542A KR101314485B1 (ko) 2008-03-14 2009-03-05 마이크로파 도입 기구, 마이크로파 플라즈마원 및 마이크로파 플라즈마 처리 장치
CN2009801089039A CN101971302B (zh) 2008-03-14 2009-03-05 微波导入机构、微波等离子体源和微波等离子体处理装置
US12/922,243 US20110061814A1 (en) 2008-03-14 2009-03-05 Microwave introducing mechanism, microwave plasma source and microwave plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008066277A JP5376816B2 (ja) 2008-03-14 2008-03-14 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP2008-066277 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009113442A1 true WO2009113442A1 (ja) 2009-09-17

Family

ID=41065111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054158 WO2009113442A1 (ja) 2008-03-14 2009-03-05 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置

Country Status (5)

Country Link
US (1) US20110061814A1 (ja)
JP (1) JP5376816B2 (ja)
KR (1) KR101314485B1 (ja)
CN (1) CN101971302B (ja)
WO (1) WO2009113442A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474974A (zh) * 2010-01-18 2012-05-23 东京毅力科创株式会社 电磁波供电机构以及微波导入机构
CN102832095A (zh) * 2009-11-24 2012-12-19 东京毅力科创株式会社 等离子处理装置
CN102918932A (zh) * 2010-09-09 2013-02-06 东京毅力科创株式会社 微波导入机构、微波等离子体源和微波等离子体处理装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698563B2 (ja) * 2011-03-02 2015-04-08 東京エレクトロン株式会社 表面波プラズマ発生用アンテナおよび表面波プラズマ処理装置
US9543123B2 (en) 2011-03-31 2017-01-10 Tokyo Electronics Limited Plasma processing apparatus and plasma generation antenna
JP5893865B2 (ja) 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
US8808496B2 (en) * 2011-09-30 2014-08-19 Tokyo Electron Limited Plasma tuning rods in microwave processing systems
US9728416B2 (en) 2011-09-30 2017-08-08 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
US9111727B2 (en) * 2011-09-30 2015-08-18 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
US9396955B2 (en) 2011-09-30 2016-07-19 Tokyo Electron Limited Plasma tuning rods in microwave resonator processing systems
KR101310806B1 (ko) 2011-12-28 2013-09-25 한국원자력연구원 고주파 가속기의 장 분포 튜닝 방법
JP5836144B2 (ja) * 2012-01-31 2015-12-24 東京エレクトロン株式会社 マイクロ波放射機構および表面波プラズマ処理装置
JP5916467B2 (ja) * 2012-03-27 2016-05-11 東京エレクトロン株式会社 マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6037688B2 (ja) * 2012-07-09 2016-12-07 東京エレクトロン株式会社 マイクロ波導入モジュールにおける異常検知方法
JP2014154421A (ja) * 2013-02-12 2014-08-25 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法、および高周波発生器
US20150118416A1 (en) * 2013-10-31 2015-04-30 Semes Co., Ltd. Substrate treating apparatus and method
WO2015074544A1 (zh) * 2013-11-19 2015-05-28 王宏兴 微波等离子体化学气相沉积装置
JP6444782B2 (ja) * 2015-03-17 2018-12-26 東京エレクトロン株式会社 チューナおよびマイクロ波プラズマ源
JP2016177997A (ja) * 2015-03-20 2016-10-06 東京エレクトロン株式会社 チューナ、マイクロ波プラズマ源、およびインピーダンス整合方法
US10522384B2 (en) * 2015-09-23 2019-12-31 Tokyo Electron Limited Electromagnetic wave treatment of a substrate at microwave frequencies using a wave resonator
JP6541623B2 (ja) * 2016-06-20 2019-07-10 東京エレクトロン株式会社 プラズマ処理装置、及び波形補正方法
US10748745B2 (en) * 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
US10707058B2 (en) 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
JP6579587B2 (ja) * 2017-09-20 2019-09-25 住友理工株式会社 プラズマ処理装置
US11081317B2 (en) 2018-04-20 2021-08-03 Applied Materials, Inc. Modular high-frequency source
US10943768B2 (en) * 2018-04-20 2021-03-09 Applied Materials, Inc. Modular high-frequency source with integrated gas distribution
US10504699B2 (en) 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
US11393661B2 (en) 2018-04-20 2022-07-19 Applied Materials, Inc. Remote modular high-frequency source
MX2021009329A (es) * 2019-03-01 2021-09-08 Mark Tarasov Oscilador de microondas y oscilador de microondas de tipo matriz basado en el mismo.
JP7221115B2 (ja) * 2019-04-03 2023-02-13 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP7253985B2 (ja) * 2019-06-12 2023-04-07 東京エレクトロン株式会社 マイクロ波供給機構、プラズマ処理装置およびプラズマ処理方法
US20210370743A1 (en) * 2020-05-26 2021-12-02 R S Young, JR. Microwave heat converter and systems
US11887815B2 (en) * 2021-02-03 2024-01-30 Tokyo Electron Limited Plasma processing system and method using radio frequency (RF) and microwave power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234327A (ja) * 2002-02-06 2003-08-22 Tokyo Electron Ltd プラズマ処理装置
JP2007109457A (ja) * 2005-10-12 2007-04-26 Nagano Japan Radio Co プラズマ処理装置用自動整合器の制御方法
WO2008013112A1 (fr) * 2006-07-28 2008-01-31 Tokyo Electron Limited Source de plasma à micro-ondes et appareil de traitement plasma

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193880A (ja) * 1989-08-03 1991-08-23 Mikakutou Seimitsu Kogaku Kenkyusho:Kk 高圧力下でのマイクロ波プラズマcvdによる高速成膜方法及びその装置
EP0702393A3 (en) * 1994-09-16 1997-03-26 Daihen Corp Plasma processing apparatus for introducing a micrometric wave from a rectangular waveguide, through an elongated sheet into the plasma chamber
US5621331A (en) * 1995-07-10 1997-04-15 Applied Science And Technology, Inc. Automatic impedance matching apparatus and method
JP3310957B2 (ja) * 1999-08-31 2002-08-05 東京エレクトロン株式会社 プラズマ処理装置
TW492040B (en) * 2000-02-14 2002-06-21 Tokyo Electron Ltd Device and method for coupling two circuit components which have different impedances
JP4504511B2 (ja) * 2000-05-26 2010-07-14 忠弘 大見 プラズマ処理装置
CN100573827C (zh) * 2001-09-27 2009-12-23 东京毅力科创株式会社 电磁场供给装置及等离子体处理装置
JP4837854B2 (ja) * 2001-09-28 2011-12-14 東京エレクトロン株式会社 整合器およびプラズマ処理装置
US7445690B2 (en) * 2002-10-07 2008-11-04 Tokyo Electron Limited Plasma processing apparatus
JP4159845B2 (ja) * 2002-10-07 2008-10-01 東京エレクトロン株式会社 プラズマ処理装置
US20060137613A1 (en) * 2004-01-27 2006-06-29 Shigeru Kasai Plasma generating apparatus, plasma generating method and remote plasma processing apparatus
JP4149427B2 (ja) * 2004-10-07 2008-09-10 東京エレクトロン株式会社 マイクロ波プラズマ処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234327A (ja) * 2002-02-06 2003-08-22 Tokyo Electron Ltd プラズマ処理装置
JP2007109457A (ja) * 2005-10-12 2007-04-26 Nagano Japan Radio Co プラズマ処理装置用自動整合器の制御方法
WO2008013112A1 (fr) * 2006-07-28 2008-01-31 Tokyo Electron Limited Source de plasma à micro-ondes et appareil de traitement plasma

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832095A (zh) * 2009-11-24 2012-12-19 东京毅力科创株式会社 等离子处理装置
US9275837B2 (en) 2009-11-24 2016-03-01 Tokyo Electron Limited Plasma processing apparatus
CN102474974A (zh) * 2010-01-18 2012-05-23 东京毅力科创株式会社 电磁波供电机构以及微波导入机构
CN102918932A (zh) * 2010-09-09 2013-02-06 东京毅力科创株式会社 微波导入机构、微波等离子体源和微波等离子体处理装置
JPWO2012032942A1 (ja) * 2010-09-09 2014-01-20 東京エレクトロン株式会社 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置

Also Published As

Publication number Publication date
US20110061814A1 (en) 2011-03-17
CN101971302A (zh) 2011-02-09
KR20100113171A (ko) 2010-10-20
KR101314485B1 (ko) 2013-10-07
CN101971302B (zh) 2012-11-21
JP2009224493A (ja) 2009-10-01
JP5376816B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5376816B2 (ja) マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP5161086B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
KR101560122B1 (ko) 표면파 플라즈마 처리 장치
US9543123B2 (en) Plasma processing apparatus and plasma generation antenna
KR101774089B1 (ko) 마이크로파 플라즈마원 및 플라즈마 처리 장치
WO2010021382A1 (ja) マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP6144902B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6509049B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
US8945342B2 (en) Surface wave plasma generating antenna and surface wave plasma processing apparatus
US20120090782A1 (en) Microwave plasma source and plasma processing apparatus
US20110018651A1 (en) Power combiner and microwave introduction mechanism
JP2010170974A (ja) プラズマ源およびプラズマ処理装置
JP2018006718A (ja) マイクロ波プラズマ処理装置
US20220223380A1 (en) Microwave supply mechanism, plasma treatment apparatus, and plasma treatment method
JP6283438B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP6444782B2 (ja) チューナおよびマイクロ波プラズマ源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108903.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12922243

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09719380

Country of ref document: EP

Kind code of ref document: A1