WO2011087094A1 - 電磁波給電機構およびマイクロ波導入機構 - Google Patents

電磁波給電機構およびマイクロ波導入機構 Download PDF

Info

Publication number
WO2011087094A1
WO2011087094A1 PCT/JP2011/050562 JP2011050562W WO2011087094A1 WO 2011087094 A1 WO2011087094 A1 WO 2011087094A1 JP 2011050562 W JP2011050562 W JP 2011050562W WO 2011087094 A1 WO2011087094 A1 WO 2011087094A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
antenna
wave
power
microwave
Prior art date
Application number
PCT/JP2011/050562
Other languages
English (en)
French (fr)
Inventor
池田 太郎
長田 勇輝
河西 繁
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020127020891A priority Critical patent/KR101490572B1/ko
Priority to CN201180002577.0A priority patent/CN102474974B/zh
Publication of WO2011087094A1 publication Critical patent/WO2011087094A1/ja
Priority to US13/551,122 priority patent/US9072158B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32293Microwave generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the present invention relates to an electromagnetic wave feeding mechanism and a microwave introduction mechanism.
  • plasma processing such as a plasma etching apparatus or a plasma CVD film forming apparatus is performed in order to perform a plasma process such as an etching process or a film forming process on a target substrate such as a semiconductor wafer or a glass substrate.
  • a device is used.
  • an RLSA Random Line Slot Antenna microwave plasma processing apparatus capable of uniformly forming a high-density, low-electron-temperature surface wave plasma has been attracting attention (for example, a special feature). No. 2007-109457).
  • the RLSA microwave plasma processing apparatus is provided with a planar antenna (Radial Line Slot Antenna) in which slots are formed in a predetermined pattern at the top of the chamber, and the microwave guided from a microwave source through a coaxial waveguide Are radiated into the chamber from the slot of the planar antenna, and the gas introduced into the chamber by the microwave electric field is turned into plasma, and the object to be processed such as a semiconductor wafer is subjected to plasma processing.
  • a planar antenna Ring Line Slot Antenna
  • the microwave guided from a microwave source through a coaxial waveguide Are radiated into the chamber from the slot of the planar antenna, and the gas introduced into the chamber by the microwave electric field is turned into plasma, and the object to be processed such as a semiconductor wafer is subjected to plasma processing.
  • the microwaves are distributed to a plurality of parts, amplified by a solid-state amplifier, and the microwaves are introduced into the chamber through a plurality of antenna modules each having a waveguide having a coaxial structure and a planar antenna having slots as described above.
  • a microwave plasma processing apparatus having a microwave plasma source for spatially synthesizing microwaves in a guiding chamber has also been proposed (International Publication No. WO 2008/013112).
  • a feeding port is usually provided on an extension of the axis of the waveguide having a coaxial structure. Installed and powered from there.
  • An object of the present invention is to provide an electromagnetic wave feeding mechanism capable of effectively feeding electromagnetic wave power to a waveguide having a coaxial structure even when electromagnetic wave power cannot be fed from an extension line of the axis of the waveguide having the coaxial structure, and such electromagnetic wave feeding.
  • An object is to provide a microwave introduction mechanism using the mechanism.
  • an electromagnetic wave power supply mechanism that supplies electromagnetic power to a waveguide having a coaxial structure, the power introduction being provided at a side portion of the waveguide having the coaxial structure and connected to a power supply line.
  • a power supply antenna connected to the power supply line and radiating electromagnetic wave power inside the waveguide, the power supply antenna including a first pole connected to the power supply line;
  • An antenna body having a second pole in contact with the inner conductor, and a reflecting portion extending from both sides of the antenna body along the outside of the inner conductor and formed in a ring shape, and is incident on the antenna body
  • a standing wave is formed by the reflected electromagnetic wave and the electromagnetic wave reflected by the reflecting portion, and electromagnetic wave power propagates through the waveguide by a chain action of an induced magnetic field and an induced electric field generated by the standing wave.
  • Electromagnetic power feeding Structure is provided.
  • the first aspect further includes a reflector provided on the side opposite to the feeding direction of the waveguide, and the electromagnetic wave power supplied from the feeding antenna is reflected by the reflector and propagates through the waveguide. be able to.
  • a microwave introduction mechanism used for a surface wave plasma source for forming surface wave plasma in a chamber, the waveguide having a coaxial structure, and the waveguide having the coaxial structure.
  • a power introduction port connected to a power supply line, a power supply antenna connected to the power supply line and radiating electromagnetic power into the waveguide, and a microwave supplied to the waveguide
  • An antenna unit having a microwave radiation antenna that radiates into the chamber, wherein the feed antenna includes a first pole connected to the feed line and a second pole contacting the inner conductor of the waveguide
  • a microwave introduction mechanism is provided in which a standing wave is formed by reflected electromagnetic waves, and electromagnetic power propagates through the waveguide by a chain action of an induced magnetic field and an induced electric field generated by the standing waves.
  • the directional coupling is provided in the waveguide and extracts a current based on any of an incident wave directed to the chamber and a reflected wave returning by reflection among the microwaves passing through the waveguide.
  • an incident wave reflected wave monitor having a detector and a detector for detecting the current taken out by the directional coupler.
  • the directional coupler includes a pair of slits formed in the outer conductor of the coaxial waveguide, a plate-like conductor provided in the slit, and a pair of currents that flow through the plate-like conductor.
  • a tuner that is provided between the power introduction port and the antenna unit and matches the impedance of a load in the chamber to a characteristic impedance of a microwave power source mounted on the surface wave plasma source, The tuner is provided between the outer conductor and the inner conductor, and has an annular slag made of a dielectric material that can move along the longitudinal direction of the inner conductor.
  • the directional coupler includes the power directional coupler. It can be set as the structure provided between the introduction port and the said slug, or / and between the said slug and the said antenna part.
  • FIG. 1 It is sectional drawing which shows schematic structure of the surface wave plasma processing apparatus which has a microwave introduction mechanism with which the electromagnetic wave electric power feeding mechanism which concerns on one Embodiment of this invention was applied.
  • FIG. 1 It is a schematic diagram which shows the structural example for introduce
  • FIG. 14A It is a figure which expands and shows a part of reflected wave of FIG. 14A. It is a figure which shows the relationship between the distance D of an incident wave and a reflected wave, and a monitor current at the time of using the conventional incident wave reflected wave monitor. It is a figure which shows the relationship between the distance D at the time of using the conventional incident wave reflected wave monitor, and an attenuation factor.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a surface wave plasma processing apparatus having a microwave introduction mechanism to which an electromagnetic wave feeding mechanism according to an embodiment of the present invention is applied
  • FIG. 2 is a microwave as a surface wave plasma source. It is a block diagram which shows the structure of the microwave plasma source which has an introduction mechanism.
  • the surface wave plasma processing apparatus 100 is configured as a plasma etching apparatus that performs, for example, an etching process as a plasma process on a wafer, and is grounded in a substantially cylindrical shape made of an airtight metal material such as aluminum or stainless steel.
  • An opening 1 a is formed in the upper part of the chamber 1, and the microwave plasma source 2 is provided so as to face the inside of the chamber 1 from the opening 1 a.
  • a susceptor 11 for horizontally supporting a wafer W which is an object to be processed
  • a cylindrical support member 12 erected at the center of the bottom of the chamber 1 via an insulating member 12a Is provided.
  • Examples of the material constituting the susceptor 11 and the support member 12 include aluminum whose surface is anodized (anodized).
  • the susceptor 11 includes an electrostatic chuck for electrostatically attracting the wafer W, a temperature control mechanism, a gas flow path for supplying heat transfer gas to the back surface of the wafer W, and the wafer.
  • a high frequency bias power supply 14 is electrically connected to the susceptor 11 via a matching unit 13. By supplying high frequency power from the high frequency bias power source 14 to the susceptor 11, ions in the plasma are attracted to the wafer W side.
  • An exhaust pipe 15 is connected to the bottom of the chamber 1, and an exhaust device 16 including a vacuum pump is connected to the exhaust pipe 15. Then, by operating the exhaust device 16, the inside of the chamber 1 is exhausted, and the inside of the chamber 1 can be decompressed at a high speed to a predetermined degree of vacuum. Further, on the side wall of the chamber 1, a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
  • a shower plate 20 that discharges a processing gas for plasma etching toward the wafer W is provided horizontally.
  • the shower plate 20 has a gas flow path 21 formed in a lattice shape and a large number of gas discharge holes 22 formed in the gas flow path 21. It is a space part 23.
  • a pipe 24 extending outside the chamber 1 is connected to the gas flow path 21 of the shower plate 20, and a processing gas supply source 25 is connected to the pipe 24.
  • a ring-shaped plasma gas introduction member 26 is provided along the chamber wall above the shower plate 20 of the chamber 1, and the plasma gas introduction member 26 has a number of gas discharge holes on the inner periphery. Is provided.
  • a plasma gas supply source 27 for supplying plasma gas is connected to the plasma gas introduction member 26 via a pipe 28. Ar gas or the like is preferably used as the plasma generating gas.
  • the plasma gas introduced into the chamber 1 from the plasma gas introduction member 26 is turned into plasma by the microwave introduced into the chamber 1 from the microwave plasma source 2, and this plasma passes through the space 23 of the shower plate 20.
  • the processing gas discharged from the gas discharge hole 22 of the shower plate 20 is excited to form plasma of the processing gas.
  • the microwave plasma source 2 is supported by a support ring 29 provided at the upper part of the chamber 1, and the space between them is hermetically sealed. As shown in FIG. 2, the microwave plasma source 2 includes a microwave output unit 30 that distributes the microwaves to a plurality of paths and outputs microwaves, and transmits the microwaves output from the microwave output unit 30 to enter the chamber 1. And a microwave supply unit 40 for radiating.
  • the microwave output unit 30 includes a power supply unit 31, a microwave oscillator 32, an amplifier 33 that amplifies the oscillated microwave, and a distributor 34 that distributes the amplified microwave into a plurality of parts.
  • the microwave oscillator 32 causes, for example, a PLL oscillation of a microwave having a predetermined frequency (for example, 915 MHz).
  • the distributor 34 distributes the microwave amplified by the amplifier 33 while matching the impedance between the input side and the output side so that the loss of the microwave does not occur as much as possible.
  • the microwave frequency in the range of 700 MHz to 3 GHz can be used.
  • the microwave supply unit 40 includes a plurality of amplifier units 42 that mainly amplifies the microwaves distributed by the distributor 34, and a microwave introduction mechanism 41 connected to each of the plurality of amplifier units 42. .
  • the amplifier unit 42 includes a phase shifter 45, a variable gain amplifier 46, a main amplifier 47 constituting a solid state amplifier, and an isolator 48.
  • the phase shifter 45 is configured to be able to change the phase of the microwave, and by adjusting this, the radiation characteristic can be modulated. For example, by adjusting the phase for each antenna module, the directivity is controlled to change the plasma distribution, and the circular polarization is obtained by shifting the phase by 90 ° between adjacent antenna modules as will be described later. be able to.
  • the phase shifter 45 can be used for the purpose of spatial synthesis in the tuner by adjusting the delay characteristics between the components in the amplifier. However, the phase shifter 45 need not be provided when such modulation of radiation characteristics and adjustment of delay characteristics between components in the amplifier are not required.
  • the variable gain amplifier 46 is an amplifier for adjusting the power level of the microwave input to the main amplifier 47, adjusting the variation of individual antenna modules, or adjusting the plasma intensity. By changing the variable gain amplifier 46 for each antenna module, the generated plasma can be distributed.
  • the main amplifier 47 constituting the solid state amplifier can be configured to include, for example, an input matching circuit, a semiconductor amplifying element, an output matching circuit, and a high Q resonance circuit.
  • the isolator 48 separates reflected microwaves reflected by the microwave introduction mechanism 41 and directed to the main amplifier 47, and has a circulator and a dummy load (coaxial terminator).
  • the circulator guides the microwave reflected by the antenna unit 43 of the microwave introduction mechanism 41 described later to the dummy load, and the dummy load converts the reflected microwave guided by the circulator into heat.
  • FIG. 3 is a longitudinal sectional view of the microwave introduction mechanism 41
  • FIG. 4 is a transverse sectional view showing a power feeding mechanism of the microwave introduction mechanism 41.
  • the microwave introduction mechanism 41 includes a coaxial waveguide 44 that transmits a microwave, and an antenna unit 43 that radiates the microwave transmitted through the waveguide 44 into the chamber 1.
  • the microwaves radiated from the microwave introduction mechanism 41 into the chamber 1 are combined in the space in the chamber 1, and surface wave plasma is formed in the chamber 1.
  • the waveguide 44 is configured by coaxially arranging a cylindrical outer conductor 52 and a rod-shaped inner conductor 53 provided at the center thereof, and an antenna portion 43 is provided at the tip of the waveguide 44.
  • the inner conductor 53 is a power supply side
  • the outer conductor 52 is a ground side.
  • the upper end of the outer conductor 52 and the inner conductor 53 is a reflection plate 58.
  • a feeding mechanism 54 that feeds microwaves (electromagnetic waves) is provided on the proximal end side of the waveguide 44.
  • the power feeding mechanism 54 has a microwave power introduction port 55 for introducing microwave power provided on a side surface of the waveguide 44 (outer conductor 52).
  • a coaxial line 56 including an inner conductor 56 a and an outer conductor 56 b is connected to the microwave power introduction port 55 as a feed line for supplying the microwave amplified from the amplifier unit 42.
  • a feeding antenna 90 extending horizontally toward the inside of the outer conductor 52 is connected to the tip of the inner conductor 56 a of the coaxial line 56.
  • the feeding antenna 90 is formed as a microstrip line on a PCB substrate which is a printed circuit board, for example.
  • a slow wave material 59 made of a dielectric material such as Teflon (registered trademark) for shortening the effective wavelength of the reflected wave is provided between the reflector 58 and the feeding antenna 90. In the case of using a microwave with a high frequency such as 2.45G, the slow wave material 59 may not be provided.
  • the electromagnetic wave radiated from the power feeding antenna 90 is reflected by the reflection plate 58, so that the maximum electromagnetic wave is transmitted into the waveguide 44 having the coaxial structure. In that case, the distance from the feeding antenna 90 to the reflector 58 is set to a half wavelength multiple of about ⁇ g / 4.
  • the feeding antenna 90 is connected to the inner conductor 56a of the coaxial line 56 at the microwave power introduction port 55, and the first pole 92 to which microwaves (electromagnetic waves) are supplied and the supplied microwaves.
  • the antenna body 91 has a second pole 93 that radiates (electromagnetic waves), and a reflecting portion 94 that extends from both sides of the antenna body 91 along the outside of the inner conductor 53 and forms a ring shape.
  • the standing electromagnetic wave is formed by the electromagnetic wave incident on the electromagnetic wave and the electromagnetic wave reflected by the reflecting portion 94.
  • the second pole 93 of the antenna body 91 is in contact with the inner conductor 53 of the waveguide 44.
  • the microwave power is fed into the space between the outer conductor 52 and the inner conductor 53 by the feed antenna 90 radiating microwaves (electromagnetic waves). Then, the microwave power supplied to the power feeding mechanism 54 propagates toward the antenna unit 43.
  • a tuner 60 is provided in the waveguide 44.
  • the tuner 60 matches the impedance of the load (plasma) in the chamber 1 with the characteristic impedance of the microwave power source in the microwave output unit 30, and moves up and down between the outer conductor 52 and the inner conductor 53 2.
  • Two slags 61a and 61b, and a slag driving unit 70 provided on the outer side (upper side) of the reflection plate 58.
  • the slag 61a is provided on the slag drive unit 70 side, and the slag 61b is provided on the antenna unit 43 side. Further, in the inner space of the inner conductor 53, two slag moving shafts 64a and 64b for slag movement are provided along a longitudinal direction of the inner conductor 53.
  • the slag 61a has an annular shape made of a dielectric, and a sliding member 63 made of a resin having slipperiness is fitted inside the slag 61a.
  • the sliding member 63 is provided with a screw hole 65a into which the slag moving shaft 64a is screwed and a through hole 65b into which the slag moving shaft 64b is inserted.
  • the slag 61b has a screw hole 65a and a through hole 65b as in the case of the slag 61a.
  • the screw hole 65a is screwed to the slag moving shaft 64b and is connected to the through hole 65b. The slag moving shaft 64a is inserted.
  • the slag 61a moves up and down by rotating the slag movement shaft 64a
  • the slag 61b moves up and down by rotating the slag movement shaft 64b. That is, the slugs 61a and 61b are moved up and down by a screw mechanism including the slug moving shafts 64a and 64b and the sliding member 63.
  • the inner conductor 53 has three slits 53a formed at equal intervals along the longitudinal direction.
  • the sliding member 63 is provided with three protrusions 63a at equal intervals so as to correspond to the slits 53a. Then, the sliding member 63 is fitted into the slags 61a and 61b in a state where the protruding portions 63a are in contact with the inner circumferences of the slags 61a and 61b.
  • the outer peripheral surface of the sliding member 63 comes into contact with the inner peripheral surface of the inner conductor 53 without play, and the sliding member 63 slides up and down the inner conductor 53 by rotating the slug movement shafts 64a and 64b. It is supposed to be.
  • the inner peripheral surface of the inner conductor 53 functions as a sliding guide for the slugs 61a and 61b.
  • the width of the slit 53a is preferably 5 mm or less.
  • a resin material constituting the sliding member 63 a resin having good sliding property and relatively easy to process, for example, a polyphenylene sulfide (PPS) resin can be mentioned as a suitable material.
  • PPS polyphenylene sulfide
  • the slag moving shafts 64 a and 64 b extend through the reflecting plate 58 to the slag driving unit 70.
  • a bearing (not shown) is provided between the slug moving shafts 64a and 64b and the reflection plate 58. Further, a bearing portion 67 made of a conductor is provided at the lower end of the inner conductor 53, and the lower ends of the slag movement shafts 64 a and 64 b are pivotally supported by the bearing portion 67.
  • the slag drive unit 70 has a casing 71, slag moving shafts 64a and 64b extend into the casing 71, and gears 72a and 72b are attached to the upper ends of the slag moving shafts 64a and 64b, respectively.
  • the slag drive unit 70 is provided with a motor 73a that rotates the slag movement shaft 64a and a motor 73b that rotates the slag movement shaft 64b.
  • a gear 74a is attached to the shaft of the motor 73a, and a gear 74b is attached to the shaft of the motor 73b.
  • the gear 74a meshes with the gear 72a, and the gear 74b meshes with the gear 72b.
  • the slag movement shaft 64a is rotated by the motor 73a via the gears 74a and 72a
  • the slag movement shaft 64b is rotated by the motor 73b via the gears 74b and 72b.
  • the motors 73a and 73b are, for example, stepping motors.
  • the slag moving shaft 64b is longer than the slag moving shaft 64a and reaches the upper side. Therefore, the positions of the gears 72a and 72b are vertically offset, and the motors 73a and 73b are also vertically offset. Thereby, the space of a power transmission mechanism such as a motor and gears can be reduced, and the casing 71 that accommodates them can have the same diameter as the outer conductor 52.
  • increment type encoders 75a and 75b for detecting the positions of the slugs 61a and 61b are provided so as to be directly connected to these output shafts.
  • the absolute position is determined by the following procedure. First, the slag moving shaft 64a is slowly rotated to move the slag 61a at a constant speed while looking at the counter of the encoder 75a. When the slag 61a reaches a mechanical stop (not shown), the motor 73a steps out and stops.
  • Stopping can be detected by the fact that the count of the encoder 75a does not change, and the position of the slug 61a at that time or the position offset by a predetermined pulse from that position is used as the origin.
  • the absolute position of the slag 61a can be detected by counting the number of pulses from the origin with this origin position as a reference.
  • the slag 61b can detect the absolute position by grasping the origin.
  • the positions of the slags 61a and 61b are controlled by the slag controller 68.
  • the slag controller 68 controls the motors 73a and 73b based on the impedance value of the input end detected by an impedance detector (not shown) and the positional information of the slags 61a and 61b detected by the encoders 75a and 75b.
  • the impedance is adjusted by sending a signal and controlling the positions of the slugs 61a and 61b.
  • the slug controller 68 performs impedance matching so that the termination is, for example, 50 ⁇ . When only one of the two slugs is moved, a trajectory passing through the origin of the Smith chart is drawn, and when both are moved simultaneously, only the phase rotates.
  • the antenna unit 43 has a planar slot antenna 81 that functions as a microwave radiation antenna and has a planar shape and has a slot 81a.
  • the antenna unit 43 includes a slow wave material 82 provided on the upper surface of the planar slot antenna 81.
  • a cylindrical member 82 a made of a conductor passes through the center of the slow wave member 82 to connect the bearing portion 67 and the planar slot antenna 81. Therefore, the inner conductor 53 is connected to the planar slot antenna 81 via the bearing portion 67 and the cylindrical member 82a.
  • the lower end of the outer conductor 52 extends between the planar slot antennas 81, and the periphery of the slow wave material 82 is covered with the outer conductor 52.
  • the periphery of the planar slot antenna 81 and a top plate 83 to be described later is covered with a covered conductor 84.
  • the slow wave material 82 has a dielectric constant larger than that of vacuum, and is made of, for example, fluorine resin or polyimide resin such as quartz, ceramics, polytetrafluoroethylene, etc. Therefore, the antenna has a function of shortening the wavelength of the microwave to make the antenna smaller.
  • the slow wave material 82 can adjust the phase of the microwave depending on the thickness thereof, and the thickness thereof is adjusted so that the planar slot antenna 81 becomes a “wave” of a standing wave. Thereby, reflection can be minimized and the radiation energy of the planar slot antenna 81 can be maximized.
  • a dielectric member for vacuum sealing for example, a top plate 83 made of quartz, ceramics, or the like is disposed on the tip end side of the planar slot antenna 81. Then, the microwave amplified by the main amplifier 47 passes between the peripheral walls of the inner conductor 53 and the outer conductor 52, passes through the top plate 83 from the slot 81 a of the planar slot antenna 81, and is radiated to the space in the chamber 1. .
  • the slot 81a is preferably a sector as shown in FIG. 7, and it is preferable to provide two or four slots as shown. Thereby, a microwave can be efficiently transmitted in TEM mode.
  • the main amplifier 47, the tuner 60, and the planar slot antenna 81 are arranged close to each other.
  • the tuner 60 and the planar slot antenna 81 constitute a lumped constant circuit existing within a half wavelength, and the combined resistance of the planar slot antenna 81, the slow wave material 82, and the top plate 83 is set to 50 ⁇ . Therefore, the tuner 60 is directly tuned with respect to the plasma load, and can efficiently transmit energy to the plasma.
  • the control unit 110 includes a storage unit that stores a process sequence of the surface wave plasma processing apparatus 100 and a process recipe that is a control parameter, an input unit, a display, and the like, and controls the plasma processing apparatus according to the selected process recipe. It has become.
  • the operation in the surface wave plasma processing apparatus 100 configured as described above will be described.
  • the wafer W is loaded into the chamber 1 and placed on the susceptor 11.
  • a plasma gas for example, Ar gas
  • a microwave is introduced into the chamber 1 from the microwave plasma source 2.
  • a surface wave plasma is generated.
  • a processing gas for example, an etching gas such as Cl 2 gas is discharged from the processing gas supply source 25 into the chamber 1 through the pipe 24 and the shower plate 20.
  • the discharged processing gas is excited by plasma that has passed through the space 23 of the shower plate 20 to be converted into plasma, and plasma processing, for example, etching processing is performed on the wafer W by the plasma of the processing gas.
  • the microwave power oscillated from the microwave oscillator 32 of the microwave output unit 30 is amplified by the amplifier 33 and then distributed to a plurality by the distributor 34.
  • the distributed microwave power is guided to the microwave supply unit 40.
  • the microwave power distributed in plural is individually amplified by the main amplifier 47 constituting the solid-state amplifier, and is supplied to the waveguide 44 of the microwave introduction mechanism 41, so that the tuner
  • the impedance is automatically matched at 60 and is radiated into the chamber 1 via the planar slot antenna 81 and the top plate 83 of the antenna unit 43 in a state where there is substantially no power reflection, and is spatially synthesized.
  • the slag driving unit 70 is provided in the portion corresponding to the extension line of the axis of the waveguide 44 having the coaxial structure, the microwave power supply to the waveguide 44 is normally performed. It cannot be performed on the extension of the axis of the waveguide 44.
  • the microwave power introduction port 55 provided on the side surface of the waveguide 44 and the inner conductor 56a of the feeding coaxial line 56 connected to the microwave power introduction port 55 are connected to the inside of the waveguide 44.
  • a feeding mechanism 54 having a feeding antenna 90 that radiates electromagnetic waves is provided.
  • the microwave (electromagnetic wave) propagating from the coaxial line 56 reaches the first pole 92 of the feeding antenna 90 at the microwave power introduction port 55, the microwave (electromagnetic wave) is generated along the antenna body 91. Propagating and radiating microwaves (electromagnetic waves) from the second pole 93 at the tip of the antenna body 91. Further, the microwave (electromagnetic wave) propagating through the antenna main body 91 is reflected by the reflecting portion 94 and is combined with the incident wave to generate a standing wave. When a standing wave is generated at the position where the feed antenna 90 is disposed, an induced magnetic field is generated along the outer wall of the inner conductor 53, and an induced electric field is generated by being induced thereby. By these chain actions, microwaves (electromagnetic waves) propagate in the waveguide 44 and are guided to the antenna unit 43.
  • the microwave (electromagnetic wave) power can be supplied to the waveguide 44.
  • a microwave power introduction port 55 that is a power introduction port provided on the side surface of the waveguide 44 and a coaxial line 56 that is a feed line connected to the microwave power introduction port 55 are guided.
  • a feed mechanism 54 having a feed antenna 90 that radiates microwave power (electromagnetic power) is provided inside the waveguide 44, and the feed antenna 90 is connected to an inner conductor 56a of a coaxial line 56 as a feed line.
  • An antenna body 91 having a pole 92 and a second pole 93 in contact with the inner conductor 53 of the waveguide 44, and a reflection formed in a ring shape along the outside of the inner conductor 53, extending from both sides of the antenna body 91.
  • a standing wave is formed by the microwave (electromagnetic wave) incident on the antenna body 91 and the microwave (electromagnetic wave) reflected by the reflecting portion,
  • the electromagnetic wave power is propagated through the waveguide by the chain action of the induced magnetic field and the induced electric field generated by the standing wave, so that even when the electromagnetic wave power cannot be fed from the extension of the axis of the coaxial waveguide, Electromagnetic power can be supplied to the waveguide.
  • the maximum microwave (electromagnetic wave) power can be transmitted to the coaxially structured waveguide 44 by reflecting the microwave (electromagnetic wave) radiated from the feeding antenna 90 by the reflection plate 58.
  • the distance from the feeding antenna 90 to the reflection plate 58 may be set to be approximately half the wavelength of ⁇ g / 4 in order to effectively combine the reflected wave.
  • the antinode of the electromagnetic wave generated from the power feeding antenna 90 is not the power feeding antenna 90 but the power feeding.
  • the distance from the feeding antenna to the reflector can be reduced.
  • the effective wavelength can be shortened by providing a slow wave material 59 made of a dielectric such as Teflon (registered trademark) between the feeding antenna 90 and the reflector 58. It is valid.
  • the diameter of the outer conductor 52 of the waveguide 44 is 45 mm
  • the distance from the reflector 58 to the feeding antenna 90 is 32.3 mm
  • the effective wavelength is shortened there.
  • a slow wave material 59 made of Teflon (registered trademark) was provided.
  • a microwave having a frequency of 915 MHz was introduced from the coaxial line 56 through the feeding antenna 90. In this way, a microwave having a sufficient power can be supplied from one place by a microwave having a low frequency.
  • the microwave can be efficiently obtained.
  • the antinode of the electromagnetic wave transmitted from the feed antenna 90 is generated above the feed antenna 90 by about ⁇ g / 8, and the effective wavelength in the slow wave material 59 is about ⁇ g / 8.
  • the length from the antinode of the electromagnetic wave to the reflector 58 is about ⁇ g / 4.
  • the microwaves distributed in plural are individually amplified by the main amplifier 47 constituting the solid-state amplifier, individually radiated using the planar slot antenna 81, and then synthesized in the chamber 1, so that the large size No isolator or synthesizer is required.
  • the microwave introduction mechanism 41 is extremely compact because the antenna unit 43 and the tuner 60 are integrated. For this reason, the microwave plasma source 2 itself can be made compact.
  • the main amplifier 47, the tuner 60 and the planar slot antenna 81 are provided close to each other.
  • the tuner 60 and the planar slot antenna 81 can be configured as a lumped constant circuit, and the planar slot antenna 81 and the slow wave member 82 are provided.
  • the tuner 60 can tune the plasma load with high accuracy.
  • the tuner 60 constitutes a slag tuner that can perform impedance matching only by moving the two slags 61a and 61b, the tuner 60 is compact and has low loss.
  • the tuner 60 and the planar slot antenna 81 are close to each other, constitute a lumped constant circuit, and function as a resonator, thereby eliminating the impedance mismatch up to the planar slot antenna 81 with high accuracy.
  • the non-matching portion can be made a plasma space substantially, the tuner 60 enables high-precision plasma control.
  • the directivity of the microwave can be controlled, and the distribution of plasma or the like can be easily adjusted.
  • the parts corresponding to the drive transmission part, the drive guide part, and the holding part are provided inside the inner conductor 53, the weight and moment of the machine elements are reduced as compared with the case where they are provided outside the outer conductor 52.
  • the drive mechanism of the slugs 61a and 61b can be made smaller than before, and the microwave introduction mechanism 41 can be made smaller.
  • a sliding member 63 made of a resin having slipperiness is attached to the slags 61a, 61b themselves, and a screw mechanism is configured by screwing the slag moving shaft 64a or 64b into the screw hole 65a of the sliding member 63 to constitute a motor 73a.
  • 73b rotate the slag moving shafts 64a, 64b so that the outer periphery of the sliding member 63 is guided so as to slide along the inner periphery of the inner conductor 53, so that the slags 61a, 61b move. Since 64a and 64b have three functions of a drive transmission mechanism, a drive guide mechanism, and a holding mechanism, the drive mechanism can be remarkably compact, and the tuner 60 can be further downsized.
  • the through hole 65b is provided in the sliding member 63, and the slag moving shaft that is not screwed into the screw hole 65a is passed through the through hole 65b, the slags 61a and 61b are driven in the inner conductor 53, respectively.
  • the two slag moving shafts 64a and 64b can be provided, and the two slags 61a and 61b can be independently moved by the screw mechanism.
  • the motors 73a and 73b and the gears 72a and 72b which are power transmission mechanisms, are vertically offset, so the space for the power transmission mechanism such as the motor and gears can be reduced.
  • the casing 71 that accommodates them can have the same diameter as the outer conductor 52. Therefore, the tuner 60 can be made more compact.
  • the incremental encoders 75a and 75b are provided so as to be directly connected to the output shafts of the motors 73a and 73b and the positions of the slugs 61a and 61b are detected, a conventionally used sensor for position detection becomes unnecessary. It is inexpensive because there is no need to use an expensive absolute encoder.
  • the incident wave reflected wave monitor monitors an incident wave guided from the microwave supply unit 40 to the chamber 1 and a reflected wave returning to the microwave supply unit 40 by reflection without contributing to plasma generation. Usually, it is provided in a plasma processing apparatus using a microwave. As shown in FIG. 10, in the present embodiment, the incident wave reflected wave monitor 120 includes a directional coupler 121 that can extract a current from either the incident wave or the reflected wave, and a directional characteristic. It has a detector 122 for detecting the current taken out by the coupler 121.
  • the directional coupler used in the incident wave reflection wave monitor is generally connected as an independent member when the apparatus is completed.
  • the number of members increases. This is against the demand for downsizing.
  • the directional coupler is provided in the microwave waveguide and can also be provided in the waveguide 44 of the microwave introduction mechanism 41. Therefore, in the present embodiment, the directional coupler 121 is incorporated into the microwave introduction mechanism 41 and integrated to eliminate the above-described disadvantage.
  • the directional coupler 121 includes a slit 124 formed in the outer conductor 52 of the microwave introduction mechanism 41 and a rectangular having a length of about ⁇ g / 4 provided in the slit 124.
  • a plate-like conductor 125 having a shape, two conductive pins 126a and 126b connected to the vicinity of both ends in the length direction of the plate-like conductor 125 and extending outward of the outer conductor 52, and between these conductive pins 126a and 126b
  • a regulator 127 made of a conductor provided so that the position of the plate-like conductor 125 can be adjusted by screws.
  • An induced magnetic field is formed by incident waves and reflected waves transmitted through the waveguide 44, and a current generated by the induced magnetic field flows through the plate-like conductor 125.
  • the current caused by the incident wave is canceled by the magnetic field generated by the periodic electric field formed in the plate conductor 125 and the regulator 127 so that the current caused by the reflected wave flows mainly.
  • the current caused by the reflected wave is canceled by the magnetic field generated by the periodic electric field formed on the plate-like conductor 125 and the regulator 127, and the current mainly caused by the incident wave flows.
  • the current caused by the reflected wave is canceled by the magnetic field generated by the periodic electric field formed on the plate-like conductor 125 and the regulator 127, and the current mainly caused by the incident wave flows.
  • the current flowing through the plate-like conductor 125 is taken out by the conductive pins 126a and 126b, and the current is detected by the detector 122.
  • the current value detected by the detector 122 is converted into a voltage signal and sent to the control unit 110.
  • the control unit 110 By monitoring the reflected wave, the reflected power from the plasma can be detected. Similarly, the incident power actually input to the plasma can be detected by monitoring the incident wave. Further, by calculating the signals of the incident wave and the reflected wave, the value and phase of the reflection coefficient can be calculated, and this is sent to the control unit 110 and fed back to the slag controller 68 to perform impedance matching. . Note that when the reflection coefficient calculated by the detector 122 exceeds a predetermined value / predetermined time, the control unit 110 can send an output stop signal to the microwave oscillator 32 to stop the supply of the microwave.
  • the directional coupler 121 When monitoring the incident wave, as shown in FIG. 10, the directional coupler 121 is provided in a portion between the microwave power introduction port 55 of the outer conductor 52 and the slug 61a, so that the disturbance factor is small. Impedance matching can be performed in the situation.
  • the directional coupler 121 may be at the position shown in FIG. 10, but by providing it between the slag 61b and the antenna unit 43, the reflection from the plasma is directly performed. Since it can be monitored, the reflected wave can be detected with high accuracy.
  • a directional coupler for monitoring an incident wave may be provided at the position shown in FIG. 10, and a directional coupler for monitoring a reflected wave may be provided between the slag 61 b and the antenna unit 43.
  • the adjuster 127 can adjust the distance D from the plate conductor with a screw from the outside in order to cancel the mounting error and the design error of the incident wave reflected wave monitor, but conventionally the adjustment width is narrow. That is, there is a disadvantage that the attenuation rate is small.
  • the slit 124 ′ formed in the outer conductor has a length and width substantially corresponding to the plate-like conductor 125 ′. It has been found that this is caused by insufficient coupling between the induced magnetic field and the regulator 127 '.
  • the slit 124 has a shape that is widened so that the portion facing the adjuster 127 corresponds to the adjuster 127.
  • the number of coupling portions between the induced magnetic field and the regulator 127 can be increased, and the fluctuation range of the induced current due to the adjustment of the distance D by the regulator 127 can be increased, so that the adjustment width by the regulator 127 can be widened.
  • the width of the slit 124 is too wide, the leakage current increases, which is not preferable. Therefore, it is necessary that the portion of the slit 124 corresponding to the adjuster 127 does not become too large.
  • FIGS. 13A to 13D show the results of using the incident wave reflected wave monitor according to the present embodiment of FIG. 12B.
  • FIG. 13A shows the relationship between the phase of the incident wave and the reflected wave and the current value
  • FIG. 13A is an enlarged view showing a part of the reflected wave
  • FIG. 13C is a view showing the relationship between the distance D between the incident wave and the reflected wave and the monitor current
  • FIG. 13A shows the relationship between the phase of the incident wave and the reflected wave and the current value
  • FIG. 13C is a view showing the relationship between the distance D between the incident wave and the reflected wave and the monitor current
  • FIG. 13D is a view showing the relationship between the distance D and the attenuation rate.
  • 14A to 14D show the results of using the conventional incident wave reflected wave monitor of FIG. 12A
  • FIG. 14A shows the relationship between the phase of the incident wave and reflected wave
  • FIG. 14B shows the result of FIG. 14A
  • FIG. 14C is a diagram illustrating a relationship between the distance D between the incident wave and the reflected wave and the monitor current
  • FIG. 14D is a diagram illustrating the relationship between the distance D and the attenuation rate.
  • A is the current value of the incident wave
  • B is the current value of the reflected wave.
  • the attenuation rate ⁇ is expressed by the following equation.
  • ⁇ 20 log (I A / I B )
  • the fluctuation range of the attenuation ratio when the distance D between the adjuster 127 and the plate-like conductor 125 is changed is larger than the conventional case, and the adjustment range by the adjuster is increased. Was confirmed to spread significantly.
  • the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the idea of the present invention.
  • the circuit configuration of the microwave output unit 30, the circuit configuration of the microwave supply unit 40, the main amplifier 47, and the like are not limited to the above embodiment.
  • the microwave supply unit 40 is not necessarily configured by a plurality of microwave introduction mechanisms 41, and the number of microwave introduction mechanisms 41 may be one.
  • the present invention is not limited to this, and various slot patterns can be adopted depending on conditions.
  • the etching processing apparatus is exemplified as the plasma processing apparatus.
  • the present invention is not limited to this and can be used for other plasma processing such as film formation processing, oxynitride film processing, and ashing processing.
  • the substrate to be processed is not limited to a semiconductor wafer, and may be another substrate such as an FPD (flat panel display) substrate typified by an LCD (liquid crystal display) substrate or a ceramic substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 同軸構造の導波路(44)の側部に設けられ、給電線としての同軸線路(56)が接続されるマイクロ波電力導入ポート(55)と、同軸線路(56)に接続され、導波路(44)の内部に電磁波電力を放射する給電アンテナ(90)とを具備する。給電アンテナ(90)は、同軸線路(56)に接続された第1の極(92)と、導波路(44)の内側導体(53)に接触する第2の極(93)とを有するアンテナ本体(91)と、前記アンテナ本体(91)の両側から延びリング状に形成された反射部(94)とを有する。

Description

電磁波給電機構およびマイクロ波導入機構
 本発明は、電磁波給電機構およびマイクロ波導入機構に関する。
 半導体デバイスや液晶表示装置の製造工程においては、半導体ウエハやガラス基板といった被処理基板にエッチング処理や成膜処理等のプラズマ処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられる。
 近時、このようなプラズマ処理装置としては、高密度で低電子温度の表面波プラズマを均一に形成することができるRLSA(Radial Line Slot Antenna)マイクロ波プラズマ処理装置が注目されている(例えば特開2007-109457号公報)。
 RLSAマイクロ波プラズマ処理装置は、チャンバの上部に所定のパターンでスロットが形成された平面アンテナ(Radial Line Slot Antenna)を設け、マイクロ波発生源から同軸構造の導波路を通って導かれたマイクロ波を、平面アンテナのスロットからチャンバ内に放射し、マイクロ波電界によりチャンバ内に導入されたガスをプラズマ化し、半導体ウエハ等の被処理体をプラズマ処理するものである。
また、マイクロ波を複数に分配し、ソリッドステートアンプで増幅し、同軸構造の導波路と上述のようなスロットが形成された平面アンテナとを有する複数のアンテナモジュールを介してマイクロ波をチャンバ内に導きチャンバ内でマイクロ波を空間合成するマイクロ波プラズマ源を有するマイクロ波プラズマ処理装置も提案されている(国際公開第2008/013112号パンフレット)。
 マイクロ波電力のような電磁波電力を同軸構造の導波路に給電するためには、上記特許文献2にも記載されているように、通常、同軸構造の導波路の軸の延長線上に給電ポートを設け、そこから給電している。
 しかし、装置の設計上、同軸構造の導波路の軸の延長線上に対応する部分に駆動機構や他の部材を配したい場合もあり、そのような場合に有効な給電方式は存在しない。
 本発明の目的は、同軸構造の導波路の軸の延長線上から電磁波電力を給電できない場合でも、同軸構造の導波路に有効に電磁波電力を給電することができる電磁波給電機構およびそのような電磁波給電機構を用いたマイクロ波導入機構を提供することにある。
 本発明の第1の観点によれば、同軸構造の導波路へ電磁波電力を供給する電磁波給電機構であって、前記同軸構造の導波路の側部に設けられ、給電線が接続される電力導入ポートと、前記給電線に接続され、前記導波路の内部に電磁波電力を放射する給電アンテナとを具備し、前記給電アンテナは、前記給電線に接続された第1の極と、前記導波路の内側導体に接触する第2の極とを有するアンテナ本体と、前記アンテナ本体の両側から前記内側導体の外側に沿って延び、リング状に形成された反射部とを有し、前記アンテナ本体に入射された電磁波と前記反射部で反射された電磁波とで定在波を形成し、その定在波により発生する誘導磁界および誘導電界の連鎖作用により電磁波電力が前記導波路を伝播することを特徴とする電磁波給電機構が提供される。
 上記第1の観点において、前記導波路の給電方向と反対側に設けられた反射板をさらに有し、前記給電アンテナから供給された電磁波電力を前記反射板で反射させて前記導波路を伝播させることができる。また、前記反射板と前記給電アンテナとの間に設けられた遅波材をさらに有するようにし、電磁波の実効波長を短くすることもできる。
 本発明の第2の観点によれば、チャンバ内に表面波プラズマを形成するための表面波プラズマ源に用いるマイクロ波導入機構であって、同軸構造をなす導波路と、前記同軸構造の導波路の側部に設けられ、給電線が接続される電力導入ポートと、前記給電線に接続され、前記導波路の内部に電磁波電力を放射する給電アンテナと、前記導波路に供給されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部とを具備し、前記給電アンテナは、前記給電線に接続された第1の極と、前記導波路の内側導体に接触する第2の極とを有するアンテナ本体と、前記アンテナ本体の両側から前記内側導体の外側に沿って延び、リング状に形成された反射部とを有し、前記アンテナ本体に入射された電磁波と前記反射部で反射された電磁波とで定在波を形成し、その定在波により発生する誘導磁界および誘導電界の連鎖作用により電磁波電力が前記導波路を伝播することを特徴とするマイクロ波導入機構が提供される。
 上記第2の観点において、前記導波路に設けられ、前記導波路を通るマイクロ波のうち、前記チャンバに向かう入射波と、反射により戻ってくる反射波のいずれかに基づく電流を取り出す方向性結合器と、前記方向性結合器が取り出した電流を検出する検出器とを有する入射波反射波モニターをさらに具備する構成とすることができる。この場合に、前記方向性結合器は、前記同軸構造の導波路の外側導体に形成されたスリットと、前記スリット内に設けられた板状導体と、前記板状導体に流れる電流を取り出す一対の導電ピンと、前記外側導体の外側に前記板状導体に対向するように、かつ前記板状導体との距離を調節可能に設けられた導電体からなる調整器とを有し、前記スリットは、前記調整器に対向する部分が前記調整器に対応するように広がった形状をなすことが好ましい。また、前記電力導入ポートと前記アンテナ部との間に設けられ、前記チャンバ内の負荷のインピーダンスを前記表面波プラズマ源に搭載されたマイクロ波電源の特性インピーダンスに整合させるチューナをさらに具備し、前記チューナは、前記外側導体と前記内側導体の間に設けられ、内側導体の長手方向に沿って移動可能な、環状をなし、誘電体からなるスラグを有し、前記方向性結合器は、前記電力導入ポートと前記スラグとの間、または/および前記スラグと前記アンテナ部の間に設けられている構成とすることができる。
本発明の一実施形態に係る電磁波給電機構が適用されたマイクロ波導入機構を有する表面波プラズマ処理装置の概略構成を示す断面図である。 図1のマイクロ波導入機構を有するマイクロ波プラズマ源の構成を示す構成図である。 図1のマイクロ波導入機構を示す断面図である。 マイクロ波導入機構の給電機構を示す横断面図である。 チューナの本体におけるスラグと滑り部材を示す平面図である。 チューナの本体における内側導体を示す斜視図である。 マイクロ波導入機構に搭載された平面スロットアンテナを示す平面図である。 本発明の電磁波給電機構の一例として周波数が915MHzのマイクロ波を導入するための構成例を示す模式図である。 図8の電磁波給電機構を用いた場合の電磁界解析の結果を示す図である。 入射波反射波モニターを搭載したマイクロ波導入機構を示す断面図である。 入射波反射波モニターに用いられる方向性結合器の構造を模式的に示す断面図である。 従来の方向性結合器を模式的に示す正面図である。 図11の方向性結合器を模式的に示す正面図である。 実施形態に係る入射波反射波モニターを用いた場合における入射波および反射波の位相と電流値の関係を示す図である。 図13Aの反射波の一部を拡大して示す図である。 実施形態に係る入射波反射波モニターを用いた場合における入射波および反射波の距離Dとモニター電流の関係を示す図である。 実施形態に係る入射波反射波モニターを用いた場合における距離Dと減衰率との関係を示す図である。 従来の入射波反射波モニターを用いた場合における入射波および反射波の位相と電流値の関係を示す図である。 図14Aの反射波の一部を拡大して示す図である。 従来の入射波反射波モニターを用いた場合における入射波および反射波の距離Dとモニター電流の関係を示す図である。 従来の入射波反射波モニターを用いた場合における距離Dと減衰率との関係を示す図である。
 以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
 <表面波プラズマ処理装置の構成>
 図1は、本発明の一実施形態に係る電磁波給電機構が適用されたマイクロ波導入機構を有する表面波プラズマ処理装置の概略構成を示す断面図であり、図2は表面波プラズマ源としてマイクロ波導入機構を有するマイクロ波プラズマ源の構成を示す構成図である。
 表面波プラズマ処理装置100は、ウエハに対してプラズマ処理として例えばエッチング処理を施すプラズマエッチング装置として構成されており、気密に構成されたアルミニウムまたはステンレス鋼等の金属材料からなる略円筒状の接地されたチャンバ1と、チャンバ1内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源2とを有している。チャンバ1の上部には開口部1aが形成されており、マイクロ波プラズマ源2はこの開口部1aからチャンバ1の内部に臨むように設けられている。
 チャンバ1内には被処理体であるウエハWを水平に支持するためのサセプタ11が、チャンバ1の底部中央に絶縁部材12aを介して立設された筒状の支持部材12により支持された状態で設けられている。サセプタ11および支持部材12を構成する材料としては、表面をアルマイト処理(陽極酸化処理)したアルミニウム等が例示される。
 また、図示はしていないが、サセプタ11には、ウエハWを静電吸着するための静電チャック、温度制御機構、ウエハWの裏面に熱伝達用のガスを供給するガス流路、およびウエハWを搬送するために昇降する昇降ピン等が設けられている。さらに、サセプタ11には、整合器13を介して高周波バイアス電源14が電気的に接続されている。この高周波バイアス電源14からサセプタ11に高周波電力が供給されることにより、ウエハW側にプラズマ中のイオンが引き込まれる。
 チャンバ1の底部には排気管15が接続されており、この排気管15には真空ポンプを含む排気装置16が接続されている。そしてこの排気装置16を作動させることによりチャンバ1内が排気され、チャンバ1内が所定の真空度まで高速に減圧することが可能となっている。また、チャンバ1の側壁には、ウエハWの搬入出を行うための搬入出口17と、この搬入出口17を開閉するゲートバルブ18とが設けられている。
 チャンバ1内のサセプタ11の上方位置には、プラズマエッチングのための処理ガスをウエハWに向けて吐出するシャワープレート20が水平に設けられている。このシャワープレート20は、格子状に形成されたガス流路21と、このガス流路21に形成された多数のガス吐出孔22とを有しており、格子状のガス流路21の間は空間部23となっている。このシャワープレート20のガス流路21にはチャンバ1の外側に延びる配管24が接続されており、この配管24には処理ガス供給源25が接続されている。
 一方、チャンバ1のシャワープレート20の上方位置には、リング状のプラズマガス導入部材26がチャンバ壁に沿って設けられており、このプラズマガス導入部材26には内周に多数のガス吐出孔が設けられている。このプラズマガス導入部材26には、プラズマガスを供給するプラズマガス供給源27が配管28を介して接続されている。プラズマ生成ガスとしてはArガスなどが好適に用いられる。
 プラズマガス導入部材26からチャンバ1内に導入されたプラズマガスは、マイクロ波プラズマ源2からチャンバ1内に導入されたマイクロ波によりプラズマ化され、このプラズマがシャワープレート20の空間部23を通過しシャワープレート20のガス吐出孔22から吐出された処理ガスを励起し、処理ガスのプラズマを形成する。
 マイクロ波プラズマ源2は、チャンバ1の上部に設けられた支持リング29により支持されており、これらの間は気密にシールされている。図2に示すように、マイクロ波プラズマ源2は、複数経路に分配してマイクロ波を出力するマイクロ波出力部30と、マイクロ波出力部30から出力されたマイクロ波を伝送しチャンバ1内に放射するためのマイクロ波供給部40とを有している。
 マイクロ波出力部30は、電源部31と、マイクロ波発振器32と、発振されたマイクロ波を増幅するアンプ33と、増幅されたマイクロ波を複数に分配する分配器34とを有している。
 マイクロ波発振器32は、所定周波数(例えば、915MHz)のマイクロ波を例えばPLL発振させる。分配器34では、マイクロ波の損失ができるだけ起こらないように、入力側と出力側のインピーダンス整合を取りながらアンプ33で増幅されたマイクロ波を分配する。なお、マイクロ波の周波数としては、915MHzの他に、700MHzから3GHzの範囲のものを用いることができる。
 マイクロ波供給部40は、分配器34で分配されたマイクロ波を主に増幅する複数のアンプ部42と、複数のアンプ部42のそれぞれに接続されたマイクロ波導入機構41とを有している。
 アンプ部42は、位相器45と、可変ゲインアンプ46と、ソリッドステートアンプを構成するメインアンプ47と、アイソレータ48とを有している。
 位相器45は、マイクロ波の位相を変化させることができるように構成されており、これを調整することにより放射特性を変調させることができる。例えば、各アンテナモジュール毎に位相を調整することにより指向性を制御してプラズマ分布を変化させることや、後述するように隣り合うアンテナモジュールにおいて90°ずつ位相をずらすようにして円偏波を得ることができる。また、位相器45は、アンプ内の部品間の遅延特性を調整し、チューナ内での空間合成を目的として使用することができる。ただし、このような放射特性の変調やアンプ内の部品間の遅延特性の調整が不要な場合には位相器45は設ける必要はない。
 可変ゲインアンプ46は、メインアンプ47へ入力するマイクロ波の電力レベルを調整し、個々のアンテナモジュールのばらつきを調整またはプラズマ強度調整のためのアンプである。可変ゲインアンプ46を各アンテナモジュール毎に変化させることによって、発生するプラズマに分布を生じさせることもできる。
 ソリッドステートアンプを構成するメインアンプ47は、例えば、入力整合回路と、半導体増幅素子と、出力整合回路と、高Q共振回路とを有する構成とすることができる。
 アイソレータ48は、マイクロ波導入機構41で反射してメインアンプ47に向かう反射マイクロ波を分離するものであり、サーキュレータとダミーロード(同軸終端器)とを有している。サーキュレータは、後述するマイクロ波導入機構41のアンテナ部43で反射したマイクロ波をダミーロードへ導き、ダミーロードはサーキュレータによって導かれた反射マイクロ波を熱に変換する。
 次に、マイクロ波導入機構41について詳細に説明する。
 図3はマイクロ波導入機構41の縦断面図、図4はマイクロ波導入機構41の給電機構を示す横断面図である。マイクロ波導入機構41は、マイクロ波を伝送する同軸構造の導波路44と、導波路44を伝送されたマイクロ波をチャンバ1内に放射するアンテナ部43とを有している。そして、マイクロ波導入機構41からチャンバ1内に放射されたマイクロ波がチャンバ1内の空間で合成され、チャンバ1内で表面波プラズマが形成されるようになっている。
 導波路44は、筒状の外側導体52およびその中心に設けられた棒状の内側導体53が同軸状に配置されて構成されており、導波路44の先端にアンテナ部43が設けられている。導波路44は、内側導体53が給電側、外側導体52が接地側となっている。外側導体52および内側導体53の上端は反射板58となっている。
 導波路44の基端側にはマイクロ波(電磁波)を給電する給電機構54が設けられている。給電機構54は、導波路44(外側導体52)の側面に設けられたマイクロ波電力を導入するためのマイクロ波電力導入ポート55を有している。マイクロ波電力導入ポート55には、アンプ部42から増幅されたマイクロ波を供給するための給電線として、内側導体56aおよび外側導体56bからなる同軸線路56が接続されている。そして、同軸線路56の内側導体56aの先端には、外側導体52の内部に向けて水平に伸びる給電アンテナ90が接続されている。
 給電アンテナ90は、例えば、プリント基板であるPCB基板上にマイクロストリップラインとして形成される。反射板58から給電アンテナ90までの間には、反射波の実効波長を短くするためのテフロン(登録商標)等の誘電体からなる遅波材59が設けられている。なお、2.45G等の周波数の高いマイクロ波を用いた場合には、遅波材59は設けなくてもよい。このとき、給電アンテナ90から放射される電磁波を反射板58で反射させることで、最大の電磁波を同軸構造の導波路44内に電送させる。その場合、給電アンテナ90から反射板58までの距離を約λg/4の半波長倍に設定する。ただし、周波数の低いマイクロ波では、径方向の制約のため、これに当てはまらない場合もある。この場合は、アンテナから反射板58までの距離を約λg/4の半波長倍に設定しても電磁波を伝送することができない。その場合には、給電アンテナ90より発生させる電磁波の腹を給電アンテナ90ではなく、給電アンテナ90の下方に誘起させるように、給電アンテナの形状を最適化することが好ましい。
 給電アンテナ90は、図4に示すように、マイクロ波電力導入ポート55において同軸線路56の内側導体56aに接続され、マイクロ波(電磁波)が供給される第1の極92および供給されたマイクロ波(電磁波)を放射する第2の極93を有するアンテナ本体91と、アンテナ本体91の両側から、内側導体53の外側に沿って延び、リング状をなす反射部94とを有し、アンテナ本体91に入射された電磁波と反射部94で反射された電磁波とで定在波を形成するように構成されている。アンテナ本体91の第2の極93は導波路44の内側導体53に接触している。
 給電アンテナ90がマイクロ波(電磁波)を放射することにより、外側導体52と内側導体53との間の空間にマイクロ波電力が給電される。そして、給電機構54に供給されたマイクロ波電力がアンテナ部43に向かって伝播する。
 また、導波路44にはチューナ60が設けられている。チューナ60は、チャンバ1内の負荷(プラズマ)のインピーダンスをマイクロ波出力部30におけるマイクロ波電源の特性インピーダンスに整合させるものであり、外側導体52と内側導体53との間を上下に移動する2つのスラグ61a,61bと、反射板58の外側(上側)に設けられたスラグ駆動部70とを有している。
 これらスラグのうち、スラグ61aはスラグ駆動部70側に設けられ、スラグ61bはアンテナ部43側に設けられている。また、内側導体53の内部空間には、その長手方向に沿って例えば台形ネジが形成された螺棒からなるスラグ移動用の2本のスラグ移動軸64a,64bが設けられている。
 スラグ61aは、図5に示すように、誘電体からなる円環状をなし、その内側に滑り性を有する樹脂からなる滑り部材63が嵌め込まれている。滑り部材63にはスラグ移動軸64aが螺合するねじ穴65aとスラグ移動軸64bが挿通される通し穴65bが設けられている。一方、スラグ61bは、スラグ61aと同様、ねじ穴65aと通し穴65bとを有しているが、スラグ61aとは逆に、ねじ穴65aはスラグ移動軸64bに螺合され、通し穴65bにはスラグ移動軸64aが挿通されるようになっている。これによりスラグ移動軸64aを回転させることによりスラグ61aが昇降移動し、スラグ移動軸64bを回転させることによりスラグ61bが昇降移動する。すなわち、スラグ移動軸64a,64bと滑り部材63とからなるねじ機構によりスラグ61a,61bが昇降移動される。
 図6に示すように、内側導体53には長手方向に沿って等間隔に3つのスリット53aが形成されている。一方、滑り部材63は、これらスリット53aに対応するように3つの突出部63aが等間隔に設けられている。そして、これら突出部63aがスラグ61a,61bの内周に当接した状態で滑り部材63がスラグ61a,61bの内部に嵌め込まれる。滑り部材63の外周面は、内側導体53の内周面と遊びなく接触するようになっており、スラグ移動軸64a,64bが回転されることにより、滑り部材63が内側導体53を滑って昇降するようになっている。すなわち内側導体53の内周面がスラグ61a,61bの滑りガイドとして機能する。なお、スリット53aの幅は5mm以下とすることが好ましい。これにより、後述するように内側導体53の内部へ漏洩するマイクロ波電力を実質的になくすことができ、マイクロ波電力の放射効率を高く維持することができる。
滑り部材63を構成する樹脂材料としては、良好な滑り性を有し、加工が比較的容易な樹脂、例えばポリフェニレンサルファイド(PPS)樹脂を好適なものとして挙げることができる。
 上記スラグ移動軸64a,64bは、反射板58を貫通してスラグ駆動部70に延びている。スラグ移動軸64a,64bと反射板58との間にはベアリング(図示せず)が設けられている。また、内側導体53の下端には、導体からなる軸受け部67が設けられており、スラグ移動軸64a,64bの下端はこの軸受け部67に軸支されている。
 スラグ駆動部70は筐体71を有し、スラグ移動軸64aおよび64bは筐体71内に延びており、スラグ移動軸64aおよび64bの上端には、それぞれ歯車72aおよび72bが取り付けられている。また、スラグ駆動部70には、スラグ移動軸64aを回転させるモータ73aと、スラグ移動軸64bを回転させるモータ73bが設けられている。モータ73aの軸には歯車74aが取り付けられ、モータ73bの軸には歯車74bが取り付けられており、歯車74aが歯車72aに噛合し、歯車74bが歯車72bに噛合するようになっている。したがって、モータ73aにより歯車74aおよび72aを介してスラグ移動軸64aが回転され、モータ73bにより歯車74bおよび72bを介してスラグ移動軸64bが回転される。なお、モータ73a,73bは例えばステッピングモータである。
 なお、スラグ移動軸64bはスラグ移動軸64aよりも長く、より上方に達しており、したがって、歯車72aおよび72bの位置が上下にオフセットしており、モータ73aおよび73bも上下にオフセットしている。これにより、モータおよび歯車等の動力伝達機構のスペースを小さくすることができ、これらを収容する筐体71を外側導体52と同じ径にすることが可能となる。
 モータ73aおよび73bの上には、これらの出力軸に直結するように、それぞれスラグ61aおよび61bの位置を検出するためのインクリメント型のエンコーダ75aおよび75bが設けられている。インクリメント型のエンコーダを用いて、以下の手順で絶対的な位置を把握する。まず、スラグ移動軸64aをゆっくり回転させてスラグ61aを一定速度でエンコーダ75aのカウンターを見ながら移動させる。スラグ61aがメカニカルストップ(図示せず)に到達すると、モータ73aは脱調し、停止する。停止したことは、エンコーダ75aのカウントが変化しないことで検知することができ、そのときのスラグ61aの位置、またはそこから所定パルス分オフセットした位置を原点とする。この原点位置を基準として原点からのパルス数をカウントすることによりスラグ61aの絶対的な位置を検知することができる。スラグ61bも同様に原点を把握することにより絶対的な位置を検知することができる。
 スラグ61aおよび61bの位置は、スラグコントローラ68により制御される。具体的には、図示しないインピーダンス検出器により検出された入力端のインピーダンス値と、エンコーダ75aおよび75bにより検知されたスラグ61aおよび61bの位置情報に基づいて、スラグコントローラ68がモータ73aおよび73bに制御信号を送り、スラグ61aおよび61bの位置を制御することにより、インピーダンスを調整するようになっている。スラグコントローラ68は、終端が例えば50Ωになるようにインピーダンス整合を実行させる。2つのスラグのうち一方のみを動かすと、スミスチャートの原点を通る軌跡を描き、両方同時に動かすと位相のみが回転する。
 アンテナ部43は、マイクロ波放射アンテナとして機能する、平面状をなしスロット81aを有する平面スロットアンテナ81を有している。アンテナ部43は、平面スロットアンテナ81の上面に設けられた遅波材82を有している。遅波材82の中心には導体からなる円柱部材82aが貫通して軸受け部67と平面スロットアンテナ81とを接続している。したがって、内側導体53が軸受け部67および円柱部材82aを介して平面スロットアンテナ81に接続されている。なお、外側導体52の下端は平面スロットアンテナ81間で延びており、遅波材82の周囲は外側導体52で覆われている。また、平面スロットアンテナ81および後述する天板83の周囲は被覆導体84で覆われている。
 遅波材82は、真空よりも大きい誘電率を有しており、例えば、石英、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂により構成されており、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてアンテナを小さくする機能を有している。遅波材82は、その厚さによりマイクロ波の位相を調整することができ、平面スロットアンテナ81が定在波の「はら」になるようにその厚さを調整する。これにより、反射が最小で、平面スロットアンテナ81の放射エネルギーが最大となるようにすることができる。
 また、平面スロットアンテナ81のさらに先端側には、真空シールのための誘電体部材、例えば石英やセラミックス等からなる天板83が配置されている。そして、メインアンプ47で増幅されたマイクロ波が内側導体53と外側導体52の周壁の間を通って平面スロットアンテナ81のスロット81aから天板83を透過してチャンバ1内の空間に放射される。スロット81aは、図7に示すように扇形のものが好ましく、図示している2個、または4個設けることが好ましい。これにより、マイクロ波をTEMモードで効率的に伝達させることができる。
 本実施形態において、メインアンプ47と、チューナ60と、平面スロットアンテナ81とは近接配置している。そして、チューナ60と平面スロットアンテナ81とは1/2波長内に存在する集中定数回路を構成しており、かつ平面スロットアンテナ81、遅波材82、天板83は合成抵抗が50Ωに設定されているので、チューナ60はプラズマ負荷に対して直接チューニングしていることになり、効率良くプラズマへエネルギーを伝達することができる。
 表面波プラズマ処理装置100における各構成部は、マイクロプロセッサを備えた制御部110により制御されるようになっている。制御部110は表面波プラズマ処理装置100のプロセスシーケンスおよび制御パラメータであるプロセスレシピを記憶した記憶部や、入力手段およびディスプレイ等を備えており、選択されたプロセスレシピに従ってプラズマ処理装置を制御するようになっている。
 <表面波プラズマ処理装置の動作>
 次に、以上のように構成される表面波プラズマ処理装置100における動作について説明する。
 まず、ウエハWをチャンバ1内に搬入し、サセプタ11上に載置する。そして、プラズマガス供給源27から配管28およびプラズマガス導入部材26を介してチャンバ1内にプラズマガス、例えばArガスを導入しつつ、マイクロ波プラズマ源2からマイクロ波をチャンバ1内に導入して表面波プラズマを生成する。
 このようにして表面波プラズマを生成した後、処理ガス、例えばClガス等のエッチングガスが処理ガス供給源25から配管24およびシャワープレート20を介してチャンバ1内に吐出される。吐出された処理ガスは、シャワープレート20の空間部23を通過してきたプラズマにより励起されてプラズマ化し、この処理ガスのプラズマによりウエハWにプラズマ処理、例えばエッチング処理が施される。
 上記表面波プラズマを生成するに際し、マイクロ波プラズマ源2では、マイクロ波出力部30のマイクロ波発振器32から発振されたマイクロ波電力はアンプ33で増幅された後、分配器34により複数に分配され、分配されたマイクロ波電力はマイクロ波供給部40へ導かれる。マイクロ波供給部40においては、このように複数に分配されたマイクロ波電力は、ソリッドステートアンプを構成するメインアンプ47で個別に増幅され、マイクロ波導入機構41の導波路44に給電され、チューナ60でインピーダンスが自動整合され、電力反射が実質的にない状態で、アンテナ部43の平面スロットアンテナ81および天板83を介してチャンバ1内に放射されて空間合成される。
 このとき、同軸構造の導波路44の軸の延長線上に対応する部分には、スラグ駆動部70が設けられているから、導波路44へのマイクロ波電力の給電は、通常行われている導波路44の軸の延長線上から行うことはできない。
 そこで、本実施形態では、導波路44の側面に設けられたマイクロ波電力導入ポート55と、マイクロ波電力導入ポート55に接続された給電用の同軸線路56の内側導体56aから導波路44の内部に電磁波を放射する給電アンテナ90とを有する給電機構54を設けた。
 この場合に、同軸線路56から伝播してきたマイクロ波(電磁波)が、マイクロ波電力導入ポート55において給電アンテナ90の第1の極92に到達すると、アンテナ本体91に沿ってマイクロ波(電磁波)が伝播して行き、アンテナ本体91の先端の第2の極93からマイクロ波(電磁波)を放射する。また、アンテナ本体91を伝播するマイクロ波(電磁波)が反射部94で反射し、それが入射波と合成されることにより定在波を発生させる。給電アンテナ90の配置位置で定在波が発生すると、内側導体53の外壁に沿って誘導磁界が生じ、それに誘導されて誘導電界が発生する。これらの連鎖作用により、マイクロ波(電磁波)が導波路44内を伝播し、アンテナ部43へ導かれる。
 このようにして、同軸構造の導波路44の軸の延長線上からマイクロ波(電磁波)電力を給電できない場合でも、導波路44にマイクロ波(電磁波)電力を給電することができる。
 すなわち、本実施形態によれば、導波路44の側面に設けられた電力導入ポートであるマイクロ波電力導入ポート55と、マイクロ波電力導入ポート55に接続された給電線としての同軸線路56から導波路44の内部にマイクロ波電力(電磁波電力)を放射する給電アンテナ90とを有する給電機構54を設け、給電アンテナ90を、給電線としての同軸線路56の内側導体56aに接続された第1の極92と、導波路44の内側導体53に接触する第2の極93とを有するアンテナ本体91と、アンテナ本体91の両側から延び、内側導体53の外側に沿ってリング状に形成された反射部94とを有する構造とし、アンテナ本体91に入射されたマイクロ波(電磁波)と反射部で反射されたマイクロ波(電磁波)とで定在波を形成し、その定在波により発生する誘導磁界および誘導電界の連鎖作用により電磁波電力が前記導波路を伝播するようにしたので、同軸構造の導波路の軸の延長線上から電磁波電力を給電できない場合でも、導波路に電磁波電力を給電することができる。
 このとき、給電アンテナ90の第2の極93が導波路44の内側導体53に接しており、また、反射部94がリング状をなしているので、継ぎ目がなく、継ぎ目で強電界が発生することがない。このため、マイクロ波(電磁波)電力を効率良くかつ均一に供給することができる。
 また、導波路44において、給電アンテナ90から放射されるマイクロ波(電磁波)を反射板58で反射させることで最大のマイクロ波(電磁波)電力を同軸構造の導波路44に伝送することができるが、その場合、反射波との合成を効果的に行うために給電アンテナ90から反射板58までの距離が約λg/4の半波長倍になるようにすればよい。
 ただし、周波数の低いマイクロ波では、径方向の制約のため、これに当てはまらない場合もあるがこのような場合には、例えば、給電アンテナ90より発生させる電磁波の腹を給電アンテナ90ではなく、給電アンテナ90の下方に誘起させるように、給電アンテナの形状を最適化することで給電アンテナから反射板までの距離を縮めることができる。また、マイクロ波の周波数が低い場合には、給電アンテナ90と反射板58との間にテフロン(登録商標)等の誘電体からなる遅波材59を設けることにより、実効波長を短くすることが有効である。
 一例を示すと、図8に示すように、導波路44の外側導体52の直径が45mmで反射板58から給電アンテナ90までの距離を32.3mmとし、実効波長を短くするために、そこにテフロン(登録商標)製の遅波材59を設けた。そして、同軸線路56から給電アンテナ90を介して周波数が915MHzのマイクロ波を導入した。このように低い周波数のマイクロ波により1箇所から十分な電力のマイクロ波を給電することができる。
 電磁界解析の結果、図9に示すように、このように周波数が低い場合、給電アンテナ90から反射板58までの距離が約λg/4の半波長倍になるようにしても効率良くマイクロ波を伝送することができないが、この例では、給電アンテナ90から伝送する電磁波の腹が給電アンテナ90より約λg/8上部に発生しており、遅波材59中の実効波長は約λg/8となっており、電磁波の腹から反射板58までの長さが約λg/4となっている。これにより反射板58での反射が最大となり、最大の電力が導波路44に伝送されることとなる。
 本実施形態では、複数に分配されたマイクロ波を、ソリッドステートアンプを構成するメインアンプ47で個別に増幅し、平面スロットアンテナ81を用いて個別に放射した後にチャンバ1内で合成するので、大型のアイソレータや合成器が不要となる。
 また、マイクロ波導入機構41は、アンテナ部43とチューナ60とが一体となっているので、極めてコンパクトである。このため、マイクロ波プラズマ源2自体をコンパクト化することができる。さらに、メインアンプ47、チューナ60および平面スロットアンテナ81が近接して設けられ、特にチューナ60と平面スロットアンテナ81とは集中定数回路として構成することができ、かつ平面スロットアンテナ81、遅波材82、天板83の合成抵抗を50Ωに設計することにより、チューナ60により高精度でプラズマ負荷をチューニングすることができる。また、チューナ60は2つのスラグ61a,61bを移動するだけでインピーダンス整合を行うことができるスラグチューナを構成しているのでコンパクトで低損失である。
 さらに、このようにチューナ60と平面スロットアンテナ81とが近接し、集中定数回路を構成してかつ共振器として機能することにより、平面スロットアンテナ81に至るまでのインピーダンス不整合を高精度で解消することができ、実質的に不整合部分をプラズマ空間とすることができるので、チューナ60により高精度のプラズマ制御が可能となる。
 さらにまた、位相器45により、各アンテナモジュールの位相を変化させることにより、マイクロ波の指向性制御を行うことができ、プラズマ等の分布の調整を容易に行うことができる。
 さらにまた、駆動伝達部、駆動ガイド部、保持部に相当するものを内側導体53の内部に設けたので、これらを外側導体52の外部に設ける場合と比較して機械要素の重量およびモーメントを小さくすることができ、また外側導体52に保持機構が移動するためのスリットを設ける必要がなく、電磁波漏洩を防止するためのシールド機構が不要となる。このため、スラグ61a,61bの駆動機構を従来よりも小型化することができ、マイクロ波導入機構41を小型化することができる。
 また、スラグ61a,61b自体に滑り性を有する樹脂からなる滑り部材63が取り付けられ、この滑り部材63のねじ穴65aにスラグ移動軸64aあるいは64bを螺合させてねじ機構を構成し、モータ73a,73bによりスラグ移動軸64a,64bを回転させることにより、滑り部材63の外周が内側導体53の内周を滑るようにガイドされてスラグ61a,61bが移動するので、滑り部材63およびスラグ移動軸64a,64bが駆動伝達機構、駆動ガイド機構、保持機構の3つの機能を兼ね備えることとなり、駆動機構を著しくコンパクトにすることができ、チューナ60を一層小型化することができる。
 さらに、滑り部材63に通し穴65bを設け、ねじ穴65aに螺合されない方のスラグ移動軸をこの通し穴65bに通すようにしたので、内側導体53内にスラグ61aおよび61bをそれぞれ駆動するための2つのスラグ移動軸64aおよび64bを設けることができ、ねじ機構により2つのスラグ61aおよび61bを独立して移動させることが可能となる。さらにまた、スラグ駆動部70において、モータ73aおよび73b、ならびに動力伝達機構である歯車72aおよび72bが上下にオフセットしているので、モータおよび歯車等の動力伝達機構のスペースを小さくすることができ、これらを収容する筐体71を外側導体52と同じ径にすることが可能となる。したがって、チューナ60をより一層コンパクトにすることができる。
 さらにまた、モータ73a,73bの出力軸に直結するようにインクリメント型のエンコーダ75a,75bを設けて、スラグ61a,61bの位置検出を行うので、従来用いていた位置検出のためのセンサが不要となり、高価なアブソリュート型エンコーダを用いる必要もないので安価である。
 <入射波反射波モニターを設けた実施形態>
 次に、入射波反射波モニターを設けた実施形態について説明する。
 入射波反射波モニターは、マイクロ波供給部40からチャンバ1に導かれる入射波と、プラズマ発生に寄与することなく反射によりマイクロ波供給部40に戻ってくる反射波とをモニターするものであり、通常、マイクロ波を用いたプラズマ処理装置には設けられている。図10に示すように、本実施形態においては、入射波反射波モニター120は、入射波と反射波のいずれか一方のマイクロ波による電流を取り出すことが可能な方向性結合器121と、方向性結合器121が取り出した電流を検出する検出器122とを有している。
 このような入射波反射波モニターに用いられる方向性結合器は、従来、独立した部材として、装置完成時に連結されるのが一般的であったが、その場合には、部材の点数が多くなり小型化の要請に反するものとなる。一方、方向性結合器はマイクロ波の導波路に設けられるものであり、マイクロ波導入機構41の導波路44にも設けることができる。そこで、本実施形態では、方向性結合器121をマイクロ波導入機構41に組み込んで一体化し、上記不都合を解消している。
 方向性結合器121の具体的な構成を図11を参照して説明する。図11に示すように、方向性結合器121は、マイクロ波導入機構41の外側導体52に形成されたスリット124と、このスリット124内に設けられた、約λg/4の長さを有する矩形状の板状導体125と、板状導体125の長さ方向の両端部近傍にそれぞれ接続され、外側導体52の外方に延びる2つの導電ピン126a,126bと、これら導電ピン126a,126bの間に板状導体125に対してねじにより位置調節可能に設けられた導電体からなる調整器127とを有している。そして、導波路44を伝送される入射波および反射波によって誘導磁界が形成され、その誘導磁界により生じた電流が板状導体125に流れる。反射波を検出する場合には、板状導体125と調整器127に形成される周期的な電界によって生じる磁界で、入射波による電流をキャンセルするようにし、主に反射波による電流が流れるようにする。一方、入射波を検出する場合には、板状導体125と調整器127に形成される周期的な電界によって生じる磁界で、反射波による電流をキャンセルするようにし、主に入射波による電流が流れるようにする。
 板状導体125に流れる電流は導電ピン126a,126bで取り出され、その電流が検出器122で検出される。検出器122で検出された電流値は、電圧信号に変換されて制御部110に送られる。反射波をモニターすることにより、プラズマからの反射電力を検出することができる。同様に、入射波をモニターすることにより、実際にプラズマへ入力されている入射電力を検出することができる。さらに、入射波と反射波の信号を演算することで、反射係数の値と位相とを算出することができ、これを制御部110へ送り、スラグコントローラ68へフィードバックすることで、インピーダンスマッチングを行う。なお、検出器122で算出される反射係数が所定値・所定時間以上になった場合に、制御部110はマイクロ波発振器32に出力停止信号を送り、マイクロ波の供給を停止することができる。
 入射波をモニターする場合には、図10に示すように、方向性結合器121を、外側導体52のマイクロ波電力導入ポート55とスラグ61aとの間の部分に設けることにより、外乱要因の少ない状況でインピーダンスマッチングを行うことができる。一方、反射波のモニターの場合には、方向性結合器121が図10の位置であってもよいが、スラグ61bとアンテナ部43との間に設けることにより、プラズマからの反射を直接的にモニターすることができるので、高精度で反射波を検出することができる。図10の位置に入射波モニター用の方向性結合器を設け、スラグ61bとアンテナ部43との間に反射波モニター用の方向性結合器を設けるようにしてもよい。
 ところで、調整器127は、入射波反射波モニターの取り付け誤差や設計誤差を相殺するために、板状導体との距離Dを外部からねじにより調整可能となっているが、従来は調整幅が狭い、すなわち減衰率(attenuation rate)が小さいという不都合があった。その理由を検討した結果、図12Aに示すように、従来の方向性結合器121′は、外側導体に形成されるスリット124′が、板状導体125′とほぼ対応する長さおよび幅を有しており、誘導磁界と調整器127′との間の結合が十分とれないことに起因していることが判明した。
 そこで、本実施形態では、図12Bに示すように、スリット124を、調整器127に対向する部分が調整器127に対応するように広がった形状をなすようにした。これにより、誘導磁界と調整器127との結合部を増やすことができ、調整器127による距離Dの調整による誘導電流の変動幅を大きくして、調整器127による調整幅を広げることが可能となる。ただし、スリット124の幅を広げすぎると漏れ電流が多くなり好ましくないので、スリット124の調整器127に対応する部分は大きくなりすぎないことが必要である。
 実際に、本実施形態の入射波反射波モニターと従来の入射波反射波モニターを導波路に取り付け、導波路に1000Wのマイクロ波を入力した際の入射波および反射波によるモニター電流および減衰率を測定した。図13A~13Dは図12Bの本実施形態に係る入射波反射波モニターを用いた結果を示すものであり、図13Aは入射波および反射波の位相と電流値の関係を示す図、図13Bは図13Aの反射波の一部を拡大して示す図、図13Cは入射波および反射波の距離Dとモニター電流の関係を示す図、図13Dは距離Dと減衰率との関係を示す図である。図14A~14Dは図12Aの従来の入射波反射波モニターを用いた結果を示すものであり、図14Aは入射波および反射波の位相と電流値の関係を示す図、図14Bは図14Aの反射波の一部を拡大して示す図、図14Cは入射波および反射波の距離Dとモニター電流の関係を示す図、図14Dは距離Dと減衰率との関係を示す図である。これらの図において、Aは入射波の電流値であり、Bは反射波の電流値である。また、Aの電流値をI、Bの電流値をIと表したとき、減衰率γは以下の式で示される。
   γ=-20log(I/I
 これらの図に示すように、本実施形態の場合には、従来よりも調整器127と板状導体125との距離Dを変更したときにおける減衰比の変動幅が大きくなり、調整器による調整幅が著しく広がることが確認された。
 <他の適用>
 なお、本発明は上記実施形態に限定されることなく、本発明の思想の範囲内において種々変形可能である。例えば、マイクロ波出力部30の回路構成やマイクロ波供給部40、メインアンプ47の回路構成等は、上記実施形態に限定されるものではない。具体的には、平面スロットアンテナから放射されるマイクロ波の指向性制御を行ったり円偏波にしたりする必要がない場合には、位相器は不要である。また、マイクロ波供給部40は、必ずしも複数のマイクロ波導入機構41で構成する必要はなく、マイクロ波導入機構41は1個であってもよい。さらに、平面スロットアンテナ81のスロット81aとして扇形のもの2個または4個設けた場合について示したが、これに限らず、条件に応じて種々のスロットパターンを採用することが可能である。
 さらに、上記実施形態においては、プラズマ処理装置としてエッチング処理装置を例示したが、これに限らず、成膜処理、酸窒化膜処理、アッシング処理等の他のプラズマ処理にも用いることができる。また、被処理基板は半導体ウエハに限定されず、LCD(液晶ディスプレイ)用基板に代表されるFPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。

Claims (9)

  1.  同軸構造の導波路へ電磁波電力を供給する電磁波給電機構であって、
     前記同軸構造の導波路の側部に設けられ、給電線が接続される電力導入ポートと、
     前記給電線に接続され、前記導波路の内部に電磁波電力を放射する給電アンテナと
    を具備し、
     前記給電アンテナは、前記給電線に接続された第1の極と、前記導波路の内側導体に接触する第2の極とを有するアンテナ本体と、前記アンテナ本体の両側から前記内側導体の外側に沿って延び、リング状に形成された反射部とを有し、
     前記アンテナ本体に入射された電磁波と前記反射部で反射された電磁波とで定在波を形成し、その定在波により発生する誘導磁界および誘導電界の連鎖作用により電磁波電力が前記導波路を伝播する、電磁波給電機構。
  2.  前記導波路の給電方向と反対側に設けられた反射板をさらに有し、前記給電アンテナから供給された電磁波電力を前記反射板で反射させて前記導波路を伝播させる、請求項1に記載の電磁波給電機構。
  3.  前記反射板と前記給電アンテナとの間に設けられた遅波材をさらに有し、電磁波の実効波長を短くする、請求項2に記載の電磁波給電機構。
  4.  チャンバ内に表面波プラズマを形成するための表面波プラズマ源に用いるマイクロ波導入機構であって、
     同軸構造をなす導波路と、
     前記同軸構造の導波路の側部に設けられ、前記同軸線路が接続される電力導入ポートと、
     前記同軸線路の内側導体に接続され、前記導波路の内部に電磁波電力を放射する給電アンテナと、
     前記導波路に供給されたマイクロ波を前記チャンバ内に放射するマイクロ波放射アンテナを有するアンテナ部と
    を具備し、
     前記給電アンテナは、前記給電線に接続された第1の極と、前記導波路の内側導体に接触する第2の極とを有するアンテナ本体と、前記アンテナ本体の両側から前記内側導体の外側に沿って延び、リング状に形成された反射部とを有し、
     前記アンテナ本体に入射された電磁波と前記反射部で反射された電磁波とで定在波を形成し、その定在波により発生する誘導磁界および誘導電界の連鎖作用により電磁波電力が前記導波路を伝播する、マイクロ波導入機構。
  5.  前記導波路の給電方向と反対側に設けられた反射板をさらに有し、前記給電アンテナから供給された電磁波電力を前記反射板で反射させて前記導波路を伝播させる、請求項4に記載のマイクロ波導入機構。
  6.  前記反射板と前記給電アンテナとの間に設けられた遅波材をさらに有し、電磁波の実効波長を短くする、請求項5に記載のマイクロ波導入機構。
  7.  前記導波路に設けられ、前記導波路を通るマイクロ波のうち、前記チャンバに向かう入射波と、反射により戻ってくる反射波のいずれかに基づく電流を取り出す方向性結合器と、前記方向性結合器が取り出した電流を検出する検出器とを有する入射波反射波モニターをさらに具備する、請求項4に記載のマイクロ波導入機構。
  8.  前記方向性結合器は、前記同軸構造の導波路の外側導体に形成されたスリットと、前記スリット内に設けられた板状導体と、前記板状導体に流れる電流を取り出す一対の導電ピンと、前記外側導体の外側に前記板状導体に対向するように、かつ前記板状導体との距離を調節可能に設けられた導電体からなる調整器とを有し、前記スリットは、前記調整器に対向する部分が前記調整器に対応するように広がった形状をなす、請求項7に記載のマイクロ波導入機構。
  9.  前記電力導入ポートと前記アンテナ部との間に設けられ、前記チャンバ内の負荷のインピーダンスを前記表面波プラズマ源に搭載されたマイクロ波電源の特性インピーダンスに整合させるチューナをさらに具備し、前記チューナは、前記外側導体と前記内側導体の間に設けられ、内側導体の長手方向に沿って移動可能な、環状をなし、誘電体からなるスラグを有し、前記方向性結合器は、前記電力導入ポートと前記スラグとの間、または/および前記スラグと前記アンテナ部の間に設けられている、請求項7に記載のマイクロ波導入機構。
PCT/JP2011/050562 2010-01-18 2011-01-14 電磁波給電機構およびマイクロ波導入機構 WO2011087094A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127020891A KR101490572B1 (ko) 2010-01-18 2011-01-14 전자파 급전 기구 및 마이크로파 도입 기구
CN201180002577.0A CN102474974B (zh) 2010-01-18 2011-01-14 电磁波供电机构以及微波导入机构
US13/551,122 US9072158B2 (en) 2010-01-18 2012-07-17 Electromagnetic-radiation power-supply mechanism for exciting a coaxial waveguide by using first and second poles and a ring-shaped reflection portion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010008510 2010-01-18
JP2010-008510 2010-01-18
JP2010-241142 2010-10-27
JP2010241142A JP5710209B2 (ja) 2010-01-18 2010-10-27 電磁波給電機構およびマイクロ波導入機構

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/551,122 Continuation US9072158B2 (en) 2010-01-18 2012-07-17 Electromagnetic-radiation power-supply mechanism for exciting a coaxial waveguide by using first and second poles and a ring-shaped reflection portion

Publications (1)

Publication Number Publication Date
WO2011087094A1 true WO2011087094A1 (ja) 2011-07-21

Family

ID=44304363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050562 WO2011087094A1 (ja) 2010-01-18 2011-01-14 電磁波給電機構およびマイクロ波導入機構

Country Status (6)

Country Link
US (1) US9072158B2 (ja)
JP (1) JP5710209B2 (ja)
KR (1) KR101490572B1 (ja)
CN (1) CN102474974B (ja)
TW (1) TWI523584B (ja)
WO (1) WO2011087094A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118520A1 (ja) * 2012-02-06 2013-08-15 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US20150348758A1 (en) * 2014-06-02 2015-12-03 Tokyo Electron Limited Impedance matching slug, impedance matching device, electromagnetic wave transmission device, electromagnetic wave radiation device, and plasma processing apparatus
US20180226255A1 (en) * 2013-06-19 2018-08-09 Tokyo Electron Limited Microwave plasma device

Families Citing this family (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
JP2014241673A (ja) * 2013-06-11 2014-12-25 株式会社東芝 電磁波漏洩防止装置
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
JP2015079677A (ja) * 2013-10-17 2015-04-23 東京エレクトロン株式会社 マイクロ波プラズマ処理装置及びマイクロ波供給方法
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) * 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
JP6336107B2 (ja) * 2014-10-30 2018-06-06 三菱電機株式会社 アレイアンテナ装置およびその製造方法
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
JP2016170940A (ja) * 2015-03-12 2016-09-23 東京エレクトロン株式会社 マイクロ波自動整合器及びプラズマ処理装置
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
JP2016177997A (ja) * 2015-03-20 2016-10-06 東京エレクトロン株式会社 チューナ、マイクロ波プラズマ源、およびインピーダンス整合方法
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
JP6482390B2 (ja) * 2015-06-05 2019-03-13 東京エレクトロン株式会社 電力合成器およびマイクロ波導入機構
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10340124B2 (en) 2015-10-29 2019-07-02 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
JP6700127B2 (ja) * 2016-07-07 2020-05-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) * 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US11923176B2 (en) 2017-02-09 2024-03-05 Lyten, Inc. Temperature-controlled chemical processing reactor
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
JP7026498B2 (ja) 2017-12-12 2022-02-28 東京エレクトロン株式会社 アンテナ及びプラズマ成膜装置
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
KR102207959B1 (ko) * 2018-03-30 2021-01-25 박영준 전자기파를 이용한 레벨 측정유닛, 이를 포함하는 아스팔트 콘크리트 제조장치 및 아스팔트 콘크리트 제조방법
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
CN108594182B (zh) * 2018-07-17 2024-06-18 南京俊禄科技有限公司 旋转灵活的新式雷达
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
WO2020091744A1 (en) * 2018-10-30 2020-05-07 Hewlett-Packard Development Company, L.P. Feedback control of microwave energy emitters
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
CN112343780B (zh) * 2019-08-09 2021-08-13 哈尔滨工业大学 微波同轴谐振会切场推力器
AT523626B1 (de) * 2020-05-22 2021-10-15 Anton Paar Gmbh Hohlleiter-Einkoppeleinheit
WO2022046296A1 (en) * 2020-08-31 2022-03-03 Lyten, Inc. Temperature-controlled chemical processing reactor
TW202233887A (zh) * 2021-02-03 2022-09-01 美商Mks儀器公司 利用微波輻射能量對原子層沉積製程進行微波輔助表面化學退火的微波系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310918A (ja) * 1993-04-23 1994-11-04 Toshiba Corp 真空気密型方向性結合器
JPH1025583A (ja) * 1996-07-09 1998-01-27 Yuzo Mori 形状創成装置
JPH10229000A (ja) * 1997-02-14 1998-08-25 Nissin Electric Co Ltd プラズマ発生装置およびそれを用いたイオン源
JP2004007056A (ja) * 2002-05-30 2004-01-08 Nagano Japan Radio Co 同軸型インピーダンス整合器
WO2008013112A1 (fr) * 2006-07-28 2008-01-31 Tokyo Electron Limited Source de plasma à micro-ondes et appareil de traitement plasma
JP2009230915A (ja) * 2008-03-19 2009-10-08 Tokyo Electron Ltd 電力合成器およびマイクロ波導入機構
WO2010004836A1 (ja) * 2008-07-09 2010-01-14 東京エレクトロン株式会社 プラズマ処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789796B1 (ko) * 2000-03-30 2007-12-31 동경 엘렉트론 주식회사 플라즈마 처리 장치
JP4062928B2 (ja) 2002-02-06 2008-03-19 東京エレクトロン株式会社 プラズマ処理装置
US20030178143A1 (en) * 2002-03-25 2003-09-25 Applied Materials, Inc. Plasma reactor with plural independently driven concentric coaxial waveguides
US6856211B2 (en) * 2002-05-21 2005-02-15 Nagano Japan Radio Co., Ltd. Coaxial type impedance matching device
US20060137613A1 (en) * 2004-01-27 2006-06-29 Shigeru Kasai Plasma generating apparatus, plasma generating method and remote plasma processing apparatus
JP2007528585A (ja) * 2003-06-13 2007-10-11 株式会社荏原製作所 測定装置
US6791274B1 (en) * 2003-07-15 2004-09-14 Advanced Energy Industries, Inc. RF power control device for RF plasma applications
JP5089032B2 (ja) 2005-10-12 2012-12-05 長野日本無線株式会社 プラズマ処理装置用自動整合器の制御方法
JP4677918B2 (ja) * 2006-02-09 2011-04-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5376816B2 (ja) * 2008-03-14 2013-12-25 東京エレクトロン株式会社 マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310918A (ja) * 1993-04-23 1994-11-04 Toshiba Corp 真空気密型方向性結合器
JPH1025583A (ja) * 1996-07-09 1998-01-27 Yuzo Mori 形状創成装置
JPH10229000A (ja) * 1997-02-14 1998-08-25 Nissin Electric Co Ltd プラズマ発生装置およびそれを用いたイオン源
JP2004007056A (ja) * 2002-05-30 2004-01-08 Nagano Japan Radio Co 同軸型インピーダンス整合器
WO2008013112A1 (fr) * 2006-07-28 2008-01-31 Tokyo Electron Limited Source de plasma à micro-ondes et appareil de traitement plasma
JP2009230915A (ja) * 2008-03-19 2009-10-08 Tokyo Electron Ltd 電力合成器およびマイクロ波導入機構
WO2010004836A1 (ja) * 2008-07-09 2010-01-14 東京エレクトロン株式会社 プラズマ処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118520A1 (ja) * 2012-02-06 2013-08-15 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP2013161960A (ja) * 2012-02-06 2013-08-19 Tokyo Electron Ltd プラズマ処理方法及びプラズマ処理装置
US20180226255A1 (en) * 2013-06-19 2018-08-09 Tokyo Electron Limited Microwave plasma device
US20150348758A1 (en) * 2014-06-02 2015-12-03 Tokyo Electron Limited Impedance matching slug, impedance matching device, electromagnetic wave transmission device, electromagnetic wave radiation device, and plasma processing apparatus

Also Published As

Publication number Publication date
TWI523584B (zh) 2016-02-21
TW201204186A (en) 2012-01-16
CN102474974A (zh) 2012-05-23
JP5710209B2 (ja) 2015-04-30
US20120299671A1 (en) 2012-11-29
CN102474974B (zh) 2015-05-13
KR20120104429A (ko) 2012-09-20
JP2011166740A (ja) 2011-08-25
KR101490572B1 (ko) 2015-02-05
US9072158B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
JP5710209B2 (ja) 電磁波給電機構およびマイクロ波導入機構
JP5502070B2 (ja) チューナおよびマイクロ波プラズマ源
JP6010406B2 (ja) マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置
JP5836144B2 (ja) マイクロ波放射機構および表面波プラズマ処理装置
JP5698563B2 (ja) 表面波プラズマ発生用アンテナおよび表面波プラズマ処理装置
JP5823399B2 (ja) マイクロ波導入機構、マイクロ波プラズマ源およびマイクロ波プラズマ処理装置
JP6144902B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
WO2013047000A1 (ja) マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置
WO2011040328A1 (ja) 表面波プラズマ発生用アンテナ、マイクロ波導入機構、および表面波プラズマ処理装置
US9704693B2 (en) Power combiner and microwave introduction mechanism
JP2016177997A (ja) チューナ、マイクロ波プラズマ源、およびインピーダンス整合方法
WO2013105358A1 (ja) 表面波プラズマ処理装置
KR102387618B1 (ko) 플라스마 밀도 모니터, 플라스마 처리 장치, 및 플라스마 처리 방법
KR102387621B1 (ko) 플라스마 전계 모니터, 플라스마 처리 장치, 및 플라스마 처리 방법
WO2014010317A1 (ja) プラズマ処理装置
WO2020250506A1 (ja) マイクロ波供給機構、プラズマ処理装置およびプラズマ処理方法
JP5916467B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP5890204B2 (ja) スラグチューナ、それを用いたマイクロ波プラズマ源、およびマイクロ波プラズマ処理装置
WO2012121289A1 (ja) 表面波プラズマ処理装置、マイクロ波プラズマ源、およびそれに用いるマイクロ波導入機構
JP6283438B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6444782B2 (ja) チューナおよびマイクロ波プラズマ源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002577.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127020891

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11732964

Country of ref document: EP

Kind code of ref document: A1