CN102458366A - 靶向pcsk9基因的脂质配制的dsrna - Google Patents
靶向pcsk9基因的脂质配制的dsrna Download PDFInfo
- Publication number
- CN102458366A CN102458366A CN2010800321021A CN201080032102A CN102458366A CN 102458366 A CN102458366 A CN 102458366A CN 2010800321021 A CN2010800321021 A CN 2010800321021A CN 201080032102 A CN201080032102 A CN 201080032102A CN 102458366 A CN102458366 A CN 102458366A
- Authority
- CN
- China
- Prior art keywords
- lipid
- compositions
- dsrna
- pcsk9
- people
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C1(*)OC(CCN(*)*)CO1 Chemical compound *C1(*)OC(CCN(*)*)CO1 0.000 description 3
- PHAADKIAVZTTNS-PSKQMDEUSA-N CCOC(CCN(CC(OCC)=O)C(CCCCCNC(O[C@@H]1CC2=CCC(C(CC3)[C@](C)(CC4)[C@H]3C(C)CCCC(C)C)C4[C@@]2(C)CC1)=O)=O)=O Chemical compound CCOC(CCN(CC(OCC)=O)C(CCCCCNC(O[C@@H]1CC2=CCC(C(CC3)[C@](C)(CC4)[C@H]3C(C)CCCC(C)C)C4[C@@]2(C)CC1)=O)=O)=O PHAADKIAVZTTNS-PSKQMDEUSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/545—Heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/55—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6911—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1273—Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/322—2'-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3515—Lipophilic moiety, e.g. cholesterol
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Marine Sciences & Fisheries (AREA)
- Dermatology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Diabetes (AREA)
Abstract
本发明涉及使用靶向PCSK9基因的脂质配制的siRNA的组合物和方法。
Description
技术领域
本发明涉及包含靶向PCSK9基因的脂质配制的dsRNA的组合物和治疗由PCSK9基因表达引起的疾病的方法。
相关申请的交叉引用
本申请要求于2009年6月15日提交的美国临时申请第61/187,169号、于2009年6月18日提交的美国临时申请第61/218,350号、于2009年9月22日提交的美国临时申请第61/244,790号、于2009年12月11日提交的美国临时申请第61/285,598号、于2010年1月8日提交的美国临时申请第61/293,474号和于2010年3月12日提交的美国临时申请第61/313,578号的优先权,所有这些临时申请的内容均为了所有目的通过引用整体并入本文。
序列表引用
本申请包括以2010年X月XX日创建的、大小为XXX,XXX字节、名称为16733US_sequencelisting.txt的文本文件形式电子提交的序列表。该序列表通过引用并入本文。
背景技术
枯草溶菌素前蛋白转化酶9(Proprotein convertase subtilisin kexin 9,PCSK9)是枯草溶菌素丝氨酸蛋白酶家族的成员。其它8个哺乳动物枯草溶菌素蛋白酶PCSK1-PCSK8(也被称为PC1/3、PC2、弗林蛋白酶、PC4、PC5/6、PACE4、PC7和S1P/SKI-1)是加工分泌通路中的多种蛋白质并在多种生物进程中发挥作用的前蛋白转化酶(Bergeron,F.(2000)J.Mol.Endocrinol.24,1-22,Gensberg,K.,(1998)Semin.Cell Dev.Biol.9,11-17,Seidah,N.G.(1999)Brain Res.848,45-62,Taylor,N.A.,(2003)FASEB J.17,1215-1227,和Zhou,A.,(1999)J.Biol.Chem.274,20745-20748)。现已提出PCSK9在胆固醇代谢中发挥作用。PCSK9mRNA的表达在小鼠中由于胆固醇膳食饲养而下调(Maxwell,K.N.,(2003)J.Lipid Res.44,2109-2119),在HepG2细胞中被他汀类药物上调(Dubuc,G.,(2004)Arterioscler.Thromb.Vasc.Biol.24,1454-1459),而在固醇调节元件结合蛋白(SREBP)转基因小鼠中上调(Horton,J.D.,(2003)Proc.Natl.Acad.Sci.USA 100,12027-12032),这类似于胆固醇生物合成酶以及低密度脂蛋白受体(LDLR)。此外,现已发现PCSK9错义突变与常染色体显性高胆固醇血症形式(Hchola3)相关(Abifadel,M.等人(2003)Nat.Genet.34,154-156,Timms,K.M.,(2004)Hum.Genet.114,349-353,Leren,T.P.(2004)Clin.Genet.65,419-422)。因为现已在日本人群体中发现单核苷酸多态性(SNP)与胆固醇水平相关,因此PCSK9可能还在决定普通人群的LDL胆固醇水平中起作用(Shioji,K.,(2004)J.Hum.Genet.49,109-114)。
常染色体显性高胆固醇血症(ADH)是单基因疾病,其患者表现为升高的总胆固醇水平和LDL胆固醇水平、肌腱黄色瘤和过早的动脉粥样硬化(Rader,D.J.,(2003)J.Clin.Invest.111,1795-1803)。ADH及隐性形式——常染色体隐性高胆固醇血症(ARH)(Cohen,J.C.,(2003)Curr.Opin.Lipidol.14,121-127)的发病机理是由于肝脏对LDL吸收的缺陷。阻碍LDL吸收的LDLR突变或LDL上与LDLR结合的载脂蛋白B的突变均可导致ADH。ARH是由ARH蛋白质中的突变造成的,ARH蛋白质是通过与网格蛋白相互作用而胞吞LDLR-LDL复合物所必需的。因此,如果PCSK9突变是Hchola3家族病的病因,那么PCSK9很可能在受体介导的LDL吸收中起作用。
过表达研究指出PCSK9在控制LDLR水平并因此在控制肝脏对LDL的吸收中的作用(Maxwell,K.N.(2004)Proc.Natl.Acad.Sci.USA101,7100-7105,Benjannet,S.等人(2004)J.Biol.Chem.279,48865-48875,Park,S.W.,(2004)J.Biol.Chem.279,50630-50638)。小鼠中由腺病毒介导的小鼠或人PCSK9过表达3或4天可导致总胆固醇水平和LDL胆固醇水平的升高,而在LDLR敲除动物中则未发现此作用(Maxwell,K.N.(2004)Proc.Natl.Acad.Sci.USA 101,7100-7105,Benjannet,S.,et al.(2004)J.Biol.Chem.279,48865-48875,Park,S.W.,(2004)J.Biol.Chem.279,50630-50638)。此外,PCSK9过表达造成肝脏LDLR蛋白质的大量减少,但不影响LDLR mRNA水平、SREBP蛋白质水平或SREBP蛋白的细胞核/细胞质比例。
PCSK9功能缺失突变已在小鼠模型中设计出来(Rashid等人,(2005)PNAS,102,5374-5379),并在人类个体中得到鉴定(Cohen等人,(2005),Nature Genetics.,37,161-165)。在这两种情况下,PCSK9功能缺失均导致总胆固醇水平和LDLc胆固醇水平的降低。回顾过去15年的研究成果发现,缺失一个拷贝的PCSK9可降低LDLc水平,并导致对抗心血管疾病风险的能力提高(Cohen等人,2006N.Engl.J.Med.,354.,1264-1272)。
最近已发现双链RNA分子(dsRNA)通过被称为RNA干扰(RNAi)的高度保守的调控机制来阻断基因表达。WO 99/32619(Fire等人)公开了长度为至少25个核苷酸的dsRNA在抑制秀丽隐杆线虫(C.elegans)基因表达中的应用。现还发现dsRNA在其它生物体中降解靶RNA,其中所述生物体包括植物(参见,例如WO 99/53050,Waterhouse等人和WO99/61631,Heifetz等人)、果蝇(参见,例如Yang,D.等人,Curr.Biol.(2000)10:1191-1200)和哺乳动物(参见WO 00/44895,Limmer和DE 101 00 586.5,Kreutzer等人)。这种天然机制现已成为开发用于治疗因基因异常或有害调控而引发的疾病的新型药物的研发热点。
关于靶向PCSK9的siRNA的说明可见美国专利7,605,251和WO2007/134161。其他公开内容可见美国专利申请公开第2010/0010066和WO 2009/134487。
发明内容
如以下详述,本文公开了包含靶向PCSK9的脂质配制的siRNA(例如靶向PCSK9的MC3配制的siRNA)的组合物。还公开了使用该组合物抑制PCSK9表达和治疗与PCSK9表达相关的疾病例如高脂血症的方法。
因此,本发明的一个方面是包含核酸脂质颗粒的组合物,该核酸脂质颗粒包含用于抑制细胞中人PCSK9基因表达的双链核糖核酸(dsRNA),其中该核酸脂质颗粒包含脂质制剂,该脂质制剂包含45-65mol%的阳离子脂质、5mol%至大约10mol%的非阳离子脂质、25-40mol%的固醇和0.5-5mol%的PEG或PEG修饰的脂质,所述dsRNA由有义链和反义链组成,并且有义链包含第一序列且反义链包含与SEQ ID NO:1523(5’-UUCUAGACCUGUUUUGCUU-3’)的至少15个连续核苷酸互补的第二序列,其中所述第一序列与第二序列互补,并且其中所述dsRNA的长度为15-30个碱基对。
如本文所述,所述组合物包含阳离子脂质。在一个实施方案中,阳离子脂质包含MC3(((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯。例如,脂质制剂可选自下组:
在其他实施方案中,阳离子脂质包含式A,其中式A是
其中R1和R2独立为烷基、烯基或炔基,各自可以任选地被取代,R3和R4独立为低级烷基,或者R3和R4可以一起形成任选取代的杂环。在一些实施方案中,阳离子脂质包含式A并且是XTC(2,2-二亚油基(dilinoleyl)-4-二甲基氨基乙基-[1,3]-二氧戊环)。该脂质制剂可以包含阳离子脂质XTC、非阳离子脂质DSPC、固醇胆固醇和PEG脂质PEG-DMG。在其他实施方案中,阳离子脂质包含XTC并且该制剂选自下组:
在再进一步的实施方案中,阳离子脂质包含ALNY-100((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺))。例如,阳离子脂质包含ALNY-100且制剂由比例为50/10/38.5/1.5的ALNY-100/DSPC/胆固醇/PEG-DMG组成。
所述组合物包含靶向PCSK9的dsRNA。在一些实施方案中,有义链包含SEQ ID NO:1227,且反义链包含SEQ ID NO:1228。在其他实施方案中,有义链由SEQ ID NO:1227组成且反义链由SEQ ID NO:1228组成。一条或两条链可以被修饰,例如,各条链如下修饰以包括如小写字母“c”或“u”所示的2’-O-甲基核糖核苷酸和如小写字母“s”所示的硫代磷酸酯:
dsRNA由有义链和反义链组成,有义链由SEQ ID NO:1229(5’-uucuAGAccuGuuuuGcuuTsT-3’)组成,反义链由SEQ ID NO:1230(5’-AAGcAAAAcAGGUCuAGAATsT-3’)组成。
在其他实施方案中,dsRNA包含至少一个修饰核苷酸,例如选自下组的修饰核苷酸:2′-O-甲基修饰的核苷酸、包含5′-硫代磷酸酯基团的核苷酸以及与胆固醇基衍生物或十二烷酸双癸酰胺基团相连接的末端核苷酸,和/或,例如,所述修饰核苷酸选自下组:2′-脱氧-2′-氟代修饰核苷酸、2′-脱氧-修饰核苷酸、锁核苷酸、无碱基核苷酸、2′-氨基-修饰核苷酸、2′-烷基-修饰核苷酸、吗啉代核苷酸、氨基磷酸酯和含有非天然碱基的核苷酸。在一个实施方案中,dsRNA包含至少一个2′-O-甲基修饰的核糖核苷酸和至少一个含5′-硫代磷酸酯基团的核苷酸。
所述组合物包含长度为15-30个碱基对的dsRNA。在一个实施方案中,dsRNA的各链的长度为19-23个碱基,或者,例如,长度为21-23个碱基,或者,例如,长度为21个碱基。
一方面,所述组合物包含脂蛋白,例如载脂蛋白E(ApoE)。在一些实施方案中,所述组合物包含脂蛋白,且dsRNA偶联到亲脂体例如胆固醇上。ApoE可以用至少一种两亲性试剂例如磷脂重构,例如选自下组的磷脂:二肉豆蔻酰磷脂酰胆碱(DMPC)、二油酰磷脂酰乙醇胺(DOPE)、棕榈酰油酰磷脂酰胆碱(POPC)、卵磷脂酰胆碱(EPC)、二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、-磷脂酰乙醇胺(POPE)、二油酰磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-1-羧酸酯(DOPE-mal)及其组合。在一些实施方案中,ApoE是重构的高密度脂蛋白(rHDL)。
所述组合物,例如靶向PCSK9的脂质配制的dsRNA,可以施用于细胞或受试者,例如灵长类动物,例如人。在一个方面,施用所述组合物与施用对照物相比抑制PCSK9表达至少40%,和/或与施用对照物相比减少哺乳动物中的PCSK9蛋白质水平,和/或与施用对照物相比减少哺乳动物中的LDLc水平,和/或在小于0.1mg/kg的剂量下与施用对照物相比减少PCSK9肝mRNA和总血清胆固醇,和/或与施用对照物相比以大约0.2mg/kg的ED50减少PCSK9肝mRNA和以大约0.08mg/kg的ED50减少总血清胆固醇,和/或与施用对照物相比使血清LDL颗粒数减少90%以上或使血清HDL颗粒数减少75%以上。
本发明还提供包括施用本文所述的脂质配制的PCSK9靶向dsRNA组合物的方法。在一个实施方案中,本发明包括用于抑制细胞中PCSK9表达的方法,包括向该细胞施用该组合物。在另一个实施方案中,本发明包括用于降低需要治疗的哺乳动物中的LDLc水平的方法,包括向该哺乳动物施用该组合物。
如下面更详细地描述的,所述方法可包括任何合适的剂量,例如0.25mg/kg至4mg/kg的dsRNA,或者,例如大约0.01、0.1、0.5、1.0、2.5或5.0mg/kg的dsRNA。
本文还描述了用于抑制受试者中PCSK9基因表达的方法,包括以大约3mg/kg的第一剂量向受试者施用本文所述的脂质配制的PCSK9靶向dsRNA组合物,然后一周一次施用至少一个后续剂量,其中该后续剂量低于第一剂量。受试者可以是,例如,大鼠或非人灵长类动物或人。后续剂量可以是大约1.0mg/kg或大约0.3mg/kg。在一些实施方案中,后续剂量一周施用一次,持续四周。在一些实施方案中,第一剂量的施用使总胆固醇水平降低大约15-60%。
本发明的一个或多个实施方案的细节在附图和下面的描述中说明。通过说明书和附图和通过权利要求书,本发明的其他特征、目的和优点将是显然的。
附图说明
前缀“AD-”、“DP-”和“AL-DP-”可互换使用,例如,AL-DP-9327和AD-9237。
图1显示ND-98脂质的结构。
图2显示针对PCSK9mRNA的不同ORF区域(图中指示出对应于ORF位置的第一个核苷酸)的16种小鼠特异性PCSK9siRNA(AL-DP-9327至AL-DP-9342)在C57/BL6小鼠(每组5只)中体内筛选的结果。计算各处理组的肝细胞裂解液中PCSK9mRNA与GAPDH mRNA比例的平均值,并与使用PBS处理的对照组或使用不相关siRNA(凝血因子VII)处理的对照组进行比较。
图3显示针对PCSK9mRNA的不同ORF区域(图中指示出对应于ORF位置的第一个核苷酸)的16种人/小鼠/大鼠交叉反应性PCSK9siRNA(AL-DP-9311至AL-DP-9326)在C57/BL6小鼠(每组5只)中的体内筛选结果。计算各处理组的肝细胞裂解液中PCSK9mRNA与GAPDHmRNA比例的平均值,并与使用PBS处理的对照组或使用不相关siRNA(凝血因子VII)处理的对照组进行比较。
图4显示16种小鼠特异性PCSK9siRNA(AL-DP-9327至AL-DP-9342)在C57/BL6小鼠(每组5只)中体内筛选的结果。计算各处理组的血清总胆固醇水平的平均值,并与使用PBS处理的对照组或使用不相关siRNA(凝血因子VII)处理的对照组进行比较。
图5显示16种人/小鼠/大鼠交叉反应性PCSK9siRNA(AL-DP-9311至AL-DP-9326)在C57/BL6小鼠(每组5只)中体内筛选的结果。计算各处理组的血清总胆固醇水平的平均值,并与使用PBS处理的对照组或使用不相关siRNA(凝血因子VII)处理的对照组进行比较。
图6A和6B比较了分别用于沉默化PCSK9的体外和体内结果。
图7A和图7B是使用猴原代肝细胞在体外沉默化PCSK9的结果。
图7C显示使用AL-DP-9680和AL-DP-9680的化学修饰形式在猴原代肝细胞中沉默化PCSK9的结果。
图8显示LNP-01配制的对于PCSK-9的siRNA的体内活性。
图9A和9B显示LNP-01配制的化学修饰的9314和具有化学修饰的衍生物如AD-10792、AD-12382、AD-12384、AD-12341在小鼠中单剂量后不同时间的体内活性。
图10A显示在单剂量施用配制的AD-10792后,PCSK9siRNA对大鼠中PCSK9转录本水平和血清总胆固醇水平的影响。图10B显示在如10A的实验中PCSK9siRNA对血清总胆固醇水平的影响。单剂的配制的AD-10792在大鼠中导致大约60%的总胆固醇降低,到大约3-4周回复到基线水平。图10C显示在如10A相同的实验中PCSK9siRNA对肝胆固醇和甘油三酯水平的影响。
图11是Western印迹,显示大鼠在施用PCSK9siRNA后肝LDL受体水平上调。
图12A-12D显示非人灵长类动物在单剂量施用配制的AD-10792或AD-9680后,PCSK9siRNA分别对LDLc和ApoB蛋白质水平、总胆固醇/HDLc比和PCSK9蛋白质水平的影响。
图13A显示未修饰的siRNA-AD-A1A(AD-9314)在人原代血液单核细胞中诱导IFN-α,而2’OMe修饰的siRNA-AD-1A2(AD-10792)不诱导IFN-α。图13B显示未修饰的siRNA-AD-A1A(AD-9314)也在人原代血液单核细胞中诱导TNF-α,而2’OMe修饰的siRNA-AD-1A2(AD-10792)不诱导TNF-α。
图14A显示PCSK9siRNA siRNA-AD-1A2(又称LNP-PCS-A2或者又称“配制的AD-10792”)以剂量依赖性的方式降低小鼠肝脏中的PCSK9mRNA水平。图14B显示小鼠单次施用5mg/kg siRNA-AD-1A2在48小时内降低血清总胆固醇水平。
图15A显示靶向人和猴PCSK9的PCSK9siRNA(LNP-PCS-C2)(又称“配制的AD-9736”)和靶向小鼠PCSK9的PCSK9siRNA(LNP-PCS-A2)(又称“配制的AD-10792”)降低表达人PCSK9的转基因小鼠中的肝PCSK9水平。图15B显示LNP-PCS-C2和LNP-PCS-A2降低相同转基因小鼠中的血浆PCSK9水平。
图16显示在3’末端通过磷酸酯键偶联到Chol-p-(GalNAc)3上的siRNA的结构。
图17显示偶联到LCO(GalNAc)3上的siRNA((GalNAc)3-3’-石胆酸-油酰基siRNA偶联物)的结构。
图18显示偶联的siRNA对小鼠中的PCSK9转录本水平和血清总胆固醇的结果。
图19显示脂质配制的siRNA对大鼠中的PCSK9转录本水平和血清总胆固醇的结果。
图20显示使用AD-9680和如表6所示的AD-9680变体时,siRNA转染对HeLa细胞中的PCSK9转录本水平的结果。
图21显示使用AD-14676和如表6所述的AD-14676变体时,siRNA转染对HeLa细胞中的PCSK9转录本水平的结果。
图22显示用PCSK9靶向siRNA转染Hep3B细胞的结果和对PCSK9和脱靶基因(off-target gene)水平的影响。
图23显示用维持剂量的PCSK9靶向siRNA处理大鼠的结果。
图24是用修饰的siRNA处理HeLa细胞的剂量响应曲线。
图25是siRNA的平均IC50相对于人PCSK9转录本中的靶位置的图。大的蓝点表示IC50和AD-9680的定位。
图26显示施用rEHDL配制的胆固醇偶联的siRNA的结果。
图27A显示向非人灵长类动物施用第二代LNP配制的PCSK9靶向siRNA(LNP11中的AD-9680)的结果,证明PCSK9蛋白质和LDLc水平都降低。LDLc:低密度脂蛋白胆固醇;mpk:mg/kg。
图27B是一张条形图,显示用LNP配制的靶向PCSK9的siRNA处理后,非人灵长类动物中剂量依赖性的PCSK mRNA沉默。
图27C显示向非人灵长类动物施用第二代LNP配制的PCSK9靶向siRNA(AD-9680)的结果,证明HDLc水平没有变化。
图28显示阳离子脂质MC3和ALNY-100的化学结构。
图29显示大鼠在施用LNP-09配制的AD-10792(一种靶向啮齿动物PCSK9的siRNA)后对PCSK9mRNA和血清胆固醇水平的效果。
图30显示CETP/ApoB tg小鼠在施用LNP-09配制的AD-10792(一种靶向啮齿动物PCSK9的siRNA)后对PCSK9mRNA和LDL/HDL颗粒数的效果。
具体实施方式
本发明提供了通过使用双链核糖核酸(dsRNA)沉默PCSK9基因解决治疗可通过下调PCSK9基因调节的疾病如高脂血症的问题的解决方案。
本发明提供了使用dsRNA抑制受试者中PCSK9基因表达的组合物和方法。本发明还提供了用于治疗可通过下调PCSK9基因表达调节的病症和疾病(如高脂血症)的组合物和方法。通过被称为RNA干扰(RNAi)的过程,dsRNA指导序列特异性的mRNA降解。
可用于本发明的组合物和方法的dsRNA包括具有长度小于30个核苷酸且通常长度为19-24个核苷酸的区域的RNA链(反义链),并且所述区域基本上与PCSK9基因的mRNA转录本的至少一部分互补。使用这些dsRNA使得能够靶向降解参与LDL受体和循环胆固醇水平调节的mRNA。使用基于细胞的试验以及动物试验,本发明人已证明极低剂量的这些dsRNA可特异性和高效地介导RNAi,造成PCSK9基因表达的显著抑制。因此,包含这些dsRNA的方法和组合物可用于治疗可受PCSK9下调介导的病理过程,例如高脂血症的治疗。
下文的详细说明公开了如何制备和使用dsRNA和包含dsRNA的组合物来抑制靶PCSK9基因的表达,以及用于治疗如高脂血症的可通过下调PCSK9表达调节的疾病的组合物和方法。本发明的药物组合物包含dsRNA和药学上可接受的载体,其中所述dsRNA具有长度小于30个核苷酸,通常长度为19-24个核苷酸的互补区域的反义链,且所述互补区域与PCSK9基因RNA转录本的至少一部分互补。
因此,本发明的某些方面提供了包含靶向PCSK9的dsRNA和药学上可接受的载体的药物组合物,使用所述组合物抑制PCSK9基因表达的方法,和使用所述药物组合物治疗通过下调PCSK9表达治疗疾病的方法。
定义
为了方便起见,下文提供了本说明书、实施例和权利要求书中使用的特定术语和短语的含义。如果某术语在本说明书其它部分中的用法与本节中提供的其定义之间有明显差异,应以本节中的定义为准。
“G”、“C”、“A”和“U”通常分别代表包含鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶作为碱基的核苷酸。“T”和“dT”在本文中可互换使用,是指其中核碱基为胸腺嘧啶的脱氧核糖核苷酸,例如脱氧核糖胸腺嘧啶。然而,应理解术语“核糖核苷酸”或“核苷酸”或“脱氧核糖核苷酸”也可指如下文详述的修饰核苷酸,或用于替换的替代部分。技术人员熟知可将鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶替换成其它部分而基本不改变包含带有此类替代部分的核苷酸的寡核苷酸的碱基配对性质。例如但不限于:包含肌苷作为其碱基的核苷酸可与包含腺嘌呤、胞嘧啶或尿嘧啶的核苷酸进行碱基配对。因此,本发明的核苷酸序列中包含尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可被替换成包含如肌苷的核苷酸。包含此类替代部分的序列是本发明的实施方案。
本文所使用的“PCSK9”是指枯草溶菌素前蛋白转化酶9基因或蛋白质(也被称为FH3、HCHOLA3、NARC-1、NARC1)。PCSK9的mRNA序列的例子包括但不限于:人类:NM_174936;小鼠:NM_153565;和大鼠:NM_199253。PCSK9mRNA序列的其它例子例如可使用GenBank方便地获得。
本文所使用的“靶序列”是指PCSK9基因转录过程中形成的mRNA分子的核苷酸序列的连续部分,包括作为初级转录产物的RNA加工产物的mRNA。
本文所用术语“包含序列的链”是指包含核苷酸链的寡核苷酸,该寡核苷酸链通过利用标准核苷酸命名法表示的序列进行阐述。
除非另有说明,否则在用于描述第一核苷酸序列和第二核苷酸序列的关系时,本文所用术语“互补”是指包含所述第一核苷酸序列的寡核苷酸或多核苷酸在特定条件下与包含所述第二核苷酸序列的寡核苷酸或多核苷酸杂交并形成双链体结构的能力,本领域技术人员可理解这一点。例如,此类条件可以是严格条件,其中所述严格条件可包括:400mMNaCl、40mM PIPES pH 6.4、1mM EDTA,在50℃或70℃下持续12-16小时,随后进行洗涤。也可应用其它条件,例如可能在生物体内遇到的生理相关条件。本领域技术人员能够根据杂交核苷酸的最终应用决定最适合于两序列互补试验的系列条件。
这包括包含所述第一核苷酸序列的寡核苷酸或多核苷酸与包含所述第二核苷酸序列的寡核苷酸或多核苷酸在第一和第二核苷酸序列的全长范围内的碱基配对。本文中这些序列可被称为彼此“完全互补”。然而,在本文中当提到所述第一序列与所述第二序列“基本互补”时,所述两个序列可完全互补或在杂交时形成一个或多个,但通常不超过4个、3个或2个错配碱基对,同时保留在与其最终应用最相关的条件下杂交的能力。但是,当两个寡核苷酸经设计以在杂交时形成一个或多个单链悬端时,这种悬端不应该在涉及互补的定义时被认为是错配。例如,在包含一条长度为21个核苷酸的寡核苷酸和另一条长度为23个核苷酸的寡核苷酸的dsRNA中,较长寡核苷酸包含与较短寡核苷酸完全互补的21个核苷酸的序列,这种情况也可以被称为“完全互补”。
只要关于其杂交能力的上述需求能够满足,本文所用“互补”序列也可以包含或完全由非Watson-Crick碱基对形成和/或由非天然和修饰核苷酸形成的碱基对形成。这些非Watson-Crick碱基对包括但不限于G:UWobble或Hoogstein碱基配对。
本文中对于dsRNA的有义链与反义链之间的碱基匹配,或dsRNA的反义链与靶序列之间的碱基匹配,可使用术语“互补”、“完全互补”和“基本互补”,所述术语可根据其所处上下文进行理解。
本文所用的与信使RNA(mRNA)的“至少一部分基本互补”的多核苷酸是指与包括5’UTR、开放阅读框(ORF)或3’UTR的目标mRNA(例如,编码PCSK9的mRNA)的连续部分基本互补的多核苷酸。例如,如果多核苷酸的序列与编码PCSK9的mRNA中的非中断部分基本互补,那么所述多核苷酸与PCSK9mRNA的至少一部分互补。
本文所用术语“双链RNA”或“dsRNA”是指包含两条反平行且如上所述的基本互补的核酸链的双链体结构。通常,各链的大部分核苷酸是核糖核苷酸,但是如本文中详述的,各链或两条链也可以包含至少一个非核糖核苷酸,例如脱氧核糖核苷酸和/或修饰核苷酸。另外,在本说明书中使用的“dsRNA”可包括对核糖核苷酸的化学修饰,包括在多个核苷酸处的实质修饰,并包括本文公开或本领域已知的所有修饰类型。对于本说明书和权利要求书的目的,“dsRNA”涵盖用于siRNA型分子中的所有此类修饰。
形成双链体结构的两条链可以是同一条较大RNA分子的不同部分,或者它们可以是单独的RNA分子。如果所述两条链为单独的RNA分子,此类dsRNA在文献中常被称为siRNA(“短干扰RNA”)。如果所述两条链为一个较大分子的部分并且通过形成双链体结构的一条链的3′-末端与另一条链的5′-末端之间的非中断核苷酸链连接,那么所述相连接的RNA链被称为“发夹环”、“短发夹RNA”或“shRNA”。如果所述两条链通过形成双链体结构的一条链的3′-末端与另一条链的5′-末端之间的非中断链之外的方式共价连接,那么所述连接结构被称为“接头(linker)”。所述RNA链可具有相同或不同数量的核苷酸。碱基对的最大数目是dsRNA中的最短链减去双链体中存在的任何悬端后的核苷酸数目。除双链体结构之外,dsRNA可包含一个或多个核苷酸悬端。通常,各链的大部分核苷酸是核糖核苷酸,但是如本文详细描述的,各链或两条链也可以包含至少一个非核糖核苷酸,例如,脱氧核糖核苷酸和/或修饰核苷酸。另外,在本说明书中使用的“dsRNA”可包括对核糖核苷酸的化学修饰,包括在多个核苷酸处的实质修饰,并包括本文公开或本领域已知的所有修饰类型。基于本说明书和权利要求书的目的,“dsRNA”涵盖用于siRNA型分子中的所有此类修饰。
本文所用“核苷酸悬端”是指当dsRNA的一条链的3’末端超过另一条链的5’末端或反之时从dsRNA的双链体结构突出的一个或多个未配对核苷酸。“平端”或“平末端”是指在dsRNA的末端没有未配对的核苷酸,即没有核苷酸悬端。“平末端化的”dsRNA是指在其全长范围均为双链的dsRNA,即在此分子任一个末端均没有核苷酸悬端。为清楚起见,在确定siRNA是具有悬端还是为平端时,不考虑偶联到siRNA的3′-末端或5′-末端的化学帽或非核苷酸化学部分。
术语“反义链”是指dsRNA中包含与靶序列基本互补的区域的一条链。本文所用术语“互补区”是指反义链上与本文所定义的序列(例如靶序列)基本互补的区域。如果互补区与靶序列不完全互补,则错配可以位于分子的内部或末端区域。通常,最能容许的错配位于末端区域,例如5′和/或3′末端的6、5、4、3或2个核苷酸之内。
本文所用术语“有义链”是指dsRNA中包含与所述反义链区域基本互补的区域的一条链。
如本领域技术人员所理解的,所述“引入到细胞中”在用于dsRNA时,是指便于摄取或吸收进入细胞。dsRNA的吸收或摄取可通过非辅助性扩散或主动的细胞过程发生,或者通过辅助试剂或装置发生。此术语的含义不限于体外细胞;也可以将dsRNA“引入到细胞中”,其中所述细胞是活生物体的一部分。在此情况下,引入到细胞中将包括向生物体的递送。例如,在体内递送中,可将dsRNA注射到组织部位或进行全身施用。向体外细胞的引入包括本领域已知的方法,例如电穿孔法和脂质体转染法(1ipofection)。
当术语“沉默”和“抑制表达”、“下调表达”、“阻抑表达”等在针对PCSK9基因时,它们在本文中是指至少部分抑制PCSK9基因的表达,这通过与第二细胞或细胞群相比可以从第一细胞或细胞群中分离的PCSK9mRNA数量的减少来表示,其中所述第一细胞或细胞群中的PCSK9基因被转录且其已经被处理以致PCSK9基因的表达被抑制,所述第二细胞或细胞群与所述第一细胞或细胞群基本相同但其没有作此处理(对照细胞)。抑制程度通常用以下方式表示:
或者,抑制程度可以表示为与PCSK9基因转录在功能上相关的参数的减小,例如由细胞产生的PCSK9基因编码蛋白质的量,或显示特定表型的细胞数。原则上,可以在组成型地或通过基因工程表达靶标的任何细胞中以及通过任意合适的试验测定靶基因沉默。然而,当需要参考以确定给定dsRNA是否在特定程度上抑制PCSK9基因的表达并因此包括在本发明的范围之内时,以下实施例中提供的试验可作为这样的基准。
如本文在PCSK9表达的上下文中所使用的,术语“治疗”、“处理”等是指可由下调PCSK9基因介导的病理过程的缓解或减轻。在本发明的上下文中只要它涉及下文陈述的其它任意病症(除可通过下调PCSK9基因介导的病理过程之外),术语“治疗”、“处理”等表示缓解或减轻至少一种与所述病症相关的症状,或者减缓或逆转所述病症的进程。例如,对于高脂血症,治疗包括降低血脂水平。
本文所用短语“治疗有效量”和“预防有效量”是指在可通过PCSK9基因下调介导的病理过程或在可通过PCSK9基因下调介导的病理过程的明显症状的治疗、预防或控制中产生治疗效果的量。治疗有效的具体量可轻易地由普通医务工作者来确定,并可根据本领域已知的因素进行改变,例如可通过下调PCSK9基因介导的病理过程的类型、患者的病史和年龄、可通过下调PCSK9基因表达介导的病理过程的阶段以及其它对抗可通过下调PCSK9基因表达介导的病理过程的药物的施用。
本文所用“药物组合物”包含药理学有效量的dsRNA和药学上可接受的载体。本文所用“药理学有效量”、“治疗有效量”或简称“有效量”是指有效产生预期药理学、治疗性或预防性结果的RNA量。例如,如果认为使疾病或病变相关的可测量参数下降至少25%的给定临床治疗为有效治疗,那么用于治疗所述疾病或病变的药物的治疗有效量是将所述参数减少至少25%时所必需的量。
术语“药学上可接受的载体”是指用于施用治疗剂的载体。此类载体包括但不限于盐水、缓冲盐溶液、葡萄糖、水、甘油、乙醇和其组合,并在下文中有详细描述。所述术语明确地排除了细胞培养基。
本文所用“转化的细胞”是指其中已引入载体的细胞,其中所述载体可表达dsRNA分子。
双链核糖核酸(dsRNA)
如下面更详细描述的,本发明提供了具有用于抑制细胞或哺乳动物中PCSK9基因表达的双链核糖核酸(dsRNA)分子的方法和组合物,其中所述dsRNA包含具有互补区的反义链,所述互补区与PCSK9基因表达过程中形成的mRNA的至少一部分互补,并且所述互补区的长度小于30个核苷酸,通常为19-24个核苷酸。在一些实施方案中,所述dsRNA在与表达PCSK9基因的细胞接触时,抑制所述PCSK9基因的表达,例如通过本文所述的试验所测定的。例如,PCSK9基因在细胞培养物如HepB3细胞中的表达可以通过测定PCSK9mRNA水平来分析,例如通过bDNA或TaqMan试验,或通过测定蛋白质水平来分析,例如通过ELISA试验。本发明的dsRNA可以进一步包括一个或多个单链核苷酸悬端。
dsRNA可以通过如下面进一步讨论的本领域已知的标准方法合成,例如,通过使用自动DNA合成仪(例如,可商购自如Biosearch,AppliedBiosystems,Inc.)。所述dsRNA包含两条充分互补从而杂交形成双链体结构的核酸链。所述dsRNA中的一条链(反义链)可以具有与靶序列基本互补(通常为完全互补)的互补区,该靶序列衍生自PCSK9基因表达过程中形成的mRNA的序列。另一条链(有义链)包含与所述反义链互补的区域,这样当在适当的条件下混合时所述两条链就会杂交并形成双链体结构。通常,所述双链体结构的长度为15-30个碱基对,或25-30个,或18-25个,或19-24个,或19-21个,或19、20或21个碱基对。在一个实施方案中,双链体的长度为19个碱基对。在另一个实施方案中,双链体的长度为21个碱基对。当组合使用两种不同的siRNA时,双链体长度可以相同或可以不同。
本发明的dsRNA的各条链的长度通常为15-30或18-25或18、19、20、21、22、23、24或25个核苷酸。在其它实施方案中,各条链的长度为25-30个核苷酸。双链体的各条链可以具有相同的长度或者不同的长度。当组合使用两种不同的siRNA时,各siRNA的各条链的长度可以相同或不同。
本发明的dsRNA可以包括一个或多个核苷酸的一个或多个单链悬端。在一个实施方案中,dsRNA的至少一个末端具有1-4个,通常1或2个核苷酸的单链核苷酸悬端。在另一个实施方案中,dsRNA的反义链各在3’端和5’端具有超出有义链的1-10个核苷酸的悬端。在进一步的实施方案中,dsRNA的有义链各在3’端和5’端具有超出反义链的1-10个核苷酸的悬端。
与其平端对应物相比,具有至少一个核苷酸悬端的dsRNA具有意想不到的较好的抑制特性。在一些实施方案中,仅一个核苷酸悬端的存在增强dsRNA的干扰活性,而不影响其整体稳定性。已证明仅具有一个悬端的dsRNA在体内以及在多种细胞、细胞培养基、血液和血清中尤其稳定和有效。通常,单链悬端位于反义链的3′-末端,或者有义链的3′-末端。所述dsRNA也可以具有平端,通常位于反义链的5′-末端。此类dsRNA可具有改进的稳定性和抑制活性,因此能够以低剂量施用,即小于每天5mg/kg接受者体重。通常,所述dsRNA的反义链在3′-末端具有核苷酸悬端,而5′-末端为平端。在另一个实施方案中,悬端中的一个或多个核苷酸被替代为核苷硫代磷酸酯。
dsRNA可以通过下文进一步讨论的本领域已知的标准方法合成,例如使用自动DNA合成仪(例如,可商购自如Biosearch,Applied Biosystems,Inc.)。在一个实施方案中,所述PCSK9基因是人PCSK9基因。在其它实施方案中,所述dsRNA的反义链包含选自表1a、表2a和表5a的有义序列的第一链和选自表1a、表2a和表5a的反义序列的第二链。可使用靶序列和侧翼PCSK9序列容易地确定靶向表1a、表2a和表5a提供的靶序列中其它位置的替代反义试剂。
例如,dsRNAAD-9680(来自表1a)靶向PCSK 9基因的3530-3548;因此靶序列如下:5’UUCUAGACCUGUUUUGCUU 3’(SEQ ID NO:1523)。dsRNA AD-10792(来自表1a)靶向PCSK9基因的1091-1109;因此靶序列如下:5’GCCUGGAGUUUAUUCGGAA 3’(SEQ ID NO:1524)。本发明包括具有互补于SEQ ID NO:1523和SEQ ID NO:1524的互补区的dsRNA。
在另一个实施方案中,所述dsRNA包含至少一条选自由表1a、表2a和表5a提供的序列组成的组的核苷酸序列。在其它实施方案中,所述dsRNA包含至少两条选自该组的序列,其中所述至少两条序列中的一条与所述至少两条序列中的另一条互补,并且所述至少两条序列中的一条与在PCSK9基因表达过程中产生的mRNA序列基本互补。通常,所述dsRNA包含两个寡核苷酸,其中将一个寡核苷酸描述为表1a、表2a和表5a中的有义链,而将第二寡核苷酸描述为表1a、表2a和表5a中的反义链。
本领域技术人员清楚地知道,目前广泛认为具有20-23个,特别是21个碱基对的双链体结构的dsRNA可特别有效地诱导RNA干扰(Elbashir等人,EMBO 2001,20:6877-6888)。然而,其他人也发现较短或较长的dsRNA也可同样有效。在上述实施方案中,借助于表1a、表2a和表5a提供的寡核苷酸的性质,本发明的dsRNA可包含至少一条长度最短为21nt的链。可以合理地预期,具有仅在一端或两端缺失少数核苷酸的表1a、表2a和表5a的一个序列的较短dsRNA可与上述dsRNA类似地有效。因此,本发明包括以下描述的dsRNA:其具有来自表1a、表2a和表5a的一个序列的至少15、16、17、18、19、20或更多个连续核苷酸的部分序列,且在下文所述的FACS试验中与包含全长序列的dsRNA抑制PCSK9基因表达能力的差异不超过5、10、15、20、25或30%。可使用所提供的PCSK9序列和靶序列容易地制备在表1a、表2a和表5a中提供的靶序列内部进行切割的其它dsRNA。
此外,表1a、表2a和表5a中提供的RNAi试剂确认PCSK9mRNA内对基于RNAi的切割敏感的位点。因此,本发明还包括靶向于被本发明的一种试剂所靶向的序列内部的RNAi试剂。如本文所使用的,如果第二RNAi试剂在与第一RNAi试剂反义链互补的mRNA中任意位点切割信使RNA,则第二RNAi试剂可被称为靶向所述第一RNAi试剂的序列内部。此类第二试剂通常由来自表1a、表2a和表5a提供的一个序列的至少15个连续核苷酸组成,该连续核苷酸连接至与取自PCSK9基因中的选定序列相邻的区域的其它核苷酸序列。例如,将SEQ ID NO:1(减去添加的AA序列)的最后15个核苷酸与靶PCSK9基因的随后6个核苷酸结合产生基于表1a、表2a和表5a提供的一个序列且长度为21个核苷酸的单链试剂。
本发明的dsRNA可以包含与靶序列的一个或多个错配。在一个实施方案中,本发明的dsRNA包含不超过1个、不超过2个或不超过3个错配。在一个实施方案中,所述dsRNA的反义链包含与靶序列的错配,并且所述错配区域不位于互补区域的中心。在另一个实施方案中,所述dsRNA的反义链包含与靶序列的错配,并且所述错配限于距任一末端的5个核苷酸,例如互补区5′-或3′-末端的5、4、3、2或1个核苷酸。例如,对于与PCSK9基因中一个区域互补的23个核苷酸的dsRNA链而言,dsRNA在其中心的13个核苷酸内不包含任何错配。本发明所述的方法可用于确定包含与靶序列的错配的dsRNA是否能有效抑制PCSK9基因的表达。对带有错配的dsRNA在抑制PCSK9基因表达中的效力的考虑非常重要,特别是在已知PCSK9基因中的特定互补区域在群体中具有多态性序列变异的情况下。
在一个实施方案中,dsRNA的至少一个末端具有1-4个,通常1或2个核苷酸的单链核苷酸悬端。与其平端对应物相比,具有至少一个核苷酸悬端的dsRNA具有意想不到的较高的抑制特性。此外,本发明人还发现仅一个核苷酸悬端的存在可增强dsRNA的干扰活性,而不影响其整体稳定性。已证明仅具有一个悬端的dsRNA在体内以及在多种细胞、细胞培养基、血液和血清中特别稳定和有效。通常,单链悬端位于反义链的3′-末端,或者有义链的3′-末端。所述dsRNA也可以具有平端,通常位于反义链的5′-末端。此类dsRNA具有改进的稳定性和抑制活性,因此能够以低剂量施用,即小于每天5mg/kg接受者体重。通常,所述dsRNA的反义链在3′-末端具有核苷酸悬端,而5′-末端为平端。在另一个实施方案中,悬端中的一个或多个核苷酸被替代为核苷硫代磷酸酯。
化学修饰和偶联物
在再另一个实施方案中,对所述dsRNA进行化学修饰以增强稳定性。可通过本领域的常规方法合成和/或修饰本发明的核酸,例如那些描述于″Current protocols in nucleic acid chemistry″,Beaucage,S.L.等人(Edrs.),John Wiley&Sons,Inc.,New York,NY,USA中的方法,以上文献通过引用并入本文。化学修饰可包括但不限于2′-修饰,在寡核苷酸的糖或碱基的其它位点的修饰,向寡核苷酸链中引入非天然碱基,与配体或化学部分的共价连接,以及将核苷酸间磷酸酯键替换成如硫代磷酸酯的其它连接键。可使用一种以上的此类修饰。
可通过任意的多种熟知技术完成两条单独dsRNA链的化学连接,例如通过引入共价键、离子键或氢键、疏水相互作用、范德华或堆积相互作用;通过金属离子配位或通过使用嘌呤类似物完成所述化学连接。通常,可用来修饰dsRNA的化学基团包括但不限于亚甲基蓝;双官能团,通常为双-(2-氯乙基)胺;N-乙酰-N′-(p-乙醛酰苯甲酰基)胱胺;4-硫尿嘧啶;和补骨脂素。在一个实施方案中,所述接头是六乙二醇接头。在这种情况下,可通过固相合成制备所述dsRNA,并根据标准方法(例如,Williams,D.J.,and K.B.Hall,Biochem.(1996)35:14665-14670)并入六乙二醇接头。在特定的实施方案中,通过六乙二醇接头化学连接反义链的5′-末端和有义链的3′-末端。在另一个实施方案中,所述dsRNA中的至少一个核苷酸包含硫代磷酸酯或二硫代磷酸酯基团。所述dsRNA末端的化学键通常通过三股螺旋键形成。表1a、表2a和表5a提供了本发明的修饰RNAi试剂的实例。
在再另一个实施方案中,可对两条单链中的一个或两个的核苷酸进行修饰以防止或抑制细胞酶(例如,但不限于某些核酸酶)的降解活性。抑制细胞酶对核酸降解活性的技术在本领域中是已知的,包括但不限于2′-氨基修饰、2′-氨基糖修饰、2′-F糖修饰、2′-F修饰、2′-烷基糖修饰、无电荷骨架修饰、吗啉代修饰、2′-O-甲基修饰和氨基磷酸酯(参见,例如Wagner,Nat.Med.(1995)1:1116-8)。因此,所述dsRNA中核苷酸的至少一个2′-羟基基团被化学基团取代,通常被2′-氨基或2′-甲基取代。同样可对至少一个核苷酸进行修饰以形成锁核苷酸。此类锁核苷酸包含连接核糖的2′-氧和核糖的4′-碳的亚甲基桥。包含锁核苷酸的寡核苷酸描述于Koshkin,A.A.等人,Tetrahedron(1998),54:3607-3630和Obika,S.等人,Tetrahedron Lett.(1998),39:5401-5404。向寡核苷酸中引入锁核苷酸可改进对互补序列的亲和力,并将解链温度提高几度(Braasch,D.A.and D.R.Corey,Chem.Biol.(2001),8:1-7)。
将配体与dsRNA偶联可增强其细胞吸收以及对特定组织的靶向性或被特定类型的细胞(例如,肝细胞)摄取。在某些情况下,使疏水性配体与dsRNA偶联从而促进对细胞膜的直接穿透和/或经肝细胞的吸收。或者,与dsRNA偶联的配体是受体介导的胞吞作用的底物。这些方法已用于促进反义寡核苷酸和dsRNA试剂的细胞穿透。例如,已将胆固醇与多种反义寡核苷酸偶联,从而产生与其非偶联类似物相比更具活性的化合物。参见M.Manoharan Antisense&Nucleic Acid Drug Development2002,12,103。与寡核苷酸偶联的其它亲脂性化合物包括1-芘丁酸、1,3-双-O-(十六烷基)甘油和甲醇。用于受体介导的胞吞作用的配体的一个实例是叶酸。叶酸通过叶酸受体介导的胞吞作用进入细胞。带有叶酸的dsRNA化合物可通过叶酸受体介导的胞吞作用有效地被运输到细胞中。Li及其同事报道了将叶酸连接到寡核苷酸的3′-末端导致所述寡核苷酸的细胞吸收增加8倍(Li,S.;Deshmukh,H.M.;Huang,L Pharm.Res.1998,15,1540)。与寡核苷酸偶联的其它配体包括聚乙二醇、糖簇(carbohydratecluster)、交联剂、卟啉偶联物、运载肽和例如胆固醇和消胆胺(cholesterylamine)的脂类。糖簇的例子包括Chol-p-(GalNAc)3(N-乙酰基半乳糖胺胆固醇)和LCO(GalNAc)3(N-乙酰基半乳糖胺-3’-石胆酸油酰基)。
在某些情况下,阳离子配体与寡核苷酸的偶联导致对核酸酶的抗性提高。阳离子配体的代表性实例是丙基铵和二甲基丙基铵。令人感兴趣的是,有报道称当阳离子配体分散于整个反义寡核苷酸时,所述寡核苷酸保持了其对mRNA的高结合亲和力。参见M.Manoharan Antisense&Nucleic Acid Drug Development 2002,12,103及其参考文献。
在某些情况下,配体可以是多官能的和/或dsRNA可以偶联到一个以上的配体上。例如,dsRNA可以偶联到一个用于改善摄取的配体上和偶联到用于改善释放的第二配体上。
可使用具有反应性官能团侧链的dsRNA(例如,将连接分子连接到dsRNA而得到的dsRNA)来合成与配体偶联的本发明dsRNA。这种反应性寡核苷酸可直接与以下配体反应:商购的配体,经合成而具有任意多种保护基团的配体,或具有与其结合的连接部分的配体。在一些优选实施方案中,本发明的方法通过使用已经适当地与配体偶联并且可进一步结合至固体支持物的核苷单体来促进与配体偶联的dsRNA的合成。可根据本发明方法的一些优选实施方案通过选定的血清结合配体与位于核苷或寡核苷酸的5′-位的连接部分之间的反应来制备此类任选结合到固体支持物上的配体-核苷偶联物。在某些情况下,首先通过长链氨烷基基团将单体结构块共价结合到可控孔度玻璃支持物上,从而制备带有与dsRNA 3′-末端连接的芳烷基配体的dsRNA。随后,通过标准固相合成技术使核苷酸与结合至固体支持物的单体结构块相键合。所述单体结构块可以是核苷或适合于固相合成的其它有机化合物。
可通过熟知的固相合成技术便捷且常规地制备用于本发明偶联物的dsRNA。有多个供货商销售用于此类合成的设备,包括例如AppliedBiosystems(Foster City,CA)。可额外地或替代地采用任何其它本领域已知的合成手段。还已知使用类似技术制备其它寡核苷酸,例如硫代磷酸酯和烷基化衍生物。
合成
可在以下美国专利中找到关于合成特定修饰寡核苷酸的教导:美国专利第5,138,045号和第5,218,105号,涉及多胺偶联的寡核苷酸;美国专利第5,212,295号,涉及用于制备具有手性磷连接的寡核苷酸的单体;美国专利第5,378,825号和第5,541,307号,涉及具有修饰骨架的寡核苷酸;美国专利第5,386,023号,涉及骨架修饰的寡核苷酸和其通过还原性偶联的制备方法;美国专利第5,457,191号,涉及基于3-脱氮杂嘌呤环系统的修饰核碱基及其合成方法;美国专利第5,459,255号,涉及基于N-2取代嘌呤的修饰核碱基;美国专利第5,521,302号,涉及具有手性磷连接的寡核苷酸的制备方法;美国专利第5,539,082号,涉及肽核酸;美国专利第5,554,746号,涉及具有β-内酰胺骨架的寡核苷酸;美国专利第5,571,902号,涉及合成寡核苷酸的方法和材料;美国专利第5,578,718号,涉及具有烷硫基基团的核苷,其中所述基团可用作与结合至核苷多个位点中任一个的其它部分的接头;美国专利第5,587,361号和第5,599,797号,涉及具有高手性纯度的硫代磷酸酯键的寡核苷酸;美国专利第5,506,351号,涉及制备2′-O-烷基鸟嘌呤核苷和包括2,6-二氨基嘌呤化合物的相关化合物的方法;美国专利第5,587,469号,涉及具有N-2取代嘌呤的寡核苷酸;美国专利第5,587,470号,涉及具有3-脱氮杂嘌呤的寡核苷酸;美国专利第5,223,168号和美国专利第5,608,046号,均涉及偶联的4′-去甲基核苷类似物;美国专利第5,602,240号和第5,610,289号,涉及骨架修饰的寡核苷酸类似物;美国专利第6,262,241号和第5,459,255号,特别涉及合成2′-氟-寡核苷酸的方法。
在本发明的配体偶联的dsRNA以及具有序列特异性连接核苷的配体分子中,可使用标准核苷酸或核苷前体,或者已经具有连接部分的核苷酸或核苷偶联物前体,已经具有配体分子的配体-核苷酸或核苷-偶联物前体,或者具有非核苷配体的结构块,在合适的DNA合成仪上组装寡核苷酸和寡聚核苷。
在使用已经具有连接部分的核苷酸偶联物前体时,通常要完成序列特异性连接核苷的合成,随后使配体分子与连接部分反应以形成配体偶联的寡核苷酸。先前已描述过具有多种分子(例如,类固醇、维生素、脂质和报告分子)的寡核苷酸偶联物(参见Manoharan等人,PCT申请WO93/07883)。在一个实施方案中,通过使用衍生自配体-核苷偶联物的亚磷酰胺以及可商购并常规用于寡核苷酸合成的标准亚磷酰胺和非标准亚磷酰胺在自动合成仪上合成本发明的寡核苷酸或连接核苷。
向寡核苷酸的核苷中引入2′-O-甲基、2′-O-乙基、2′-O-丙基、2′-O-烯丙基、2′-O-氨烷基或2′-脱氧-2′-氟代基团可增强所述寡核苷酸的杂交性质。此外,包含硫代磷酸酯骨架的寡核苷酸具有增强的核酸酶稳定性。因此,本发明的官能化的连接核苷可被加强以包括硫代磷酸酯骨架和2′-O-甲基、2′-O-乙基、2′-O-丙基、2′-O-氨烷基、2′-O-烯丙基或2′-脱氧-2′-氟代基团中的一种或两种。例如,可在PCT公开WO 200370918中找到本领域已知的一些寡核苷酸修饰的总结列表。
在一些实施方案中,使用DNA合成仪制备在5′-末端具有氨基基团的本发明的官能化核苷序列,并随后与选定配体的活性酯衍生物反应。所述活性酯衍生物为本领域技术人员所熟知。代表性的活性酯包括N-羟基琥珀酰亚胺酯、四氟酚酯、五氟酚酯和五氯酚酯。所述氨基基团与所述活性酯的反应生成寡核苷酸,其中所选定的配体通过连接基团结合到5′-位点。5′-末端的氨基基团可使用5′-氨基-修饰剂C6试剂制备。在一个实施方案中,可通过使用配体-核苷亚磷酰胺将配体分子偶联到寡核苷酸的5′-位点,其中所述配体直接地或通过接头间接地连接到5′-羟基基团。通常在自动合成程序结束时使用此类配体-核苷亚磷酰胺以获得在5′-末端具有配体的配体偶联的寡核苷酸。
修饰的核苷间连接键或骨架的实例包括,例如,硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其它烷基膦酸酯(包括3′-亚烷基膦酸酯和手性膦酸酯)、亚膦酸酯、氨基磷酸酯(包括3′-氨基氨基磷酸酯和氨基烷基氨基磷酸酯)、硫羰基氨基磷酸酯(thionophosphoramidate)、硫羰基烷基膦酸酯(thionoalkylphosphonate)、硫羰基烷基磷酸三酯(thionoalkylphosphotriester)和具有正常3′-5′连接键的硼烷磷酸酯及其2′-5′连接的类似物,以及具有反极性的那些类似物(其中相邻核苷单元对的连接由3′-5′变成5′-3′或由2′-5′变成5′-2′)。还包括各种盐、混合盐和游离酸形式。
涉及制备上述含磷原子连接键的代表性美国专利包括但不限于美国专利3,687,808、4,469,863、4,476,301、5,023,243、5,177,196、5,188,897、5,264,423、5,276,019、5,278,302、5,286,717、5,321,131、5,399,676、5,405,939、5,453,496、5,455,233、5,466,677、5,476,925、5,519,126、5,536,821、5,541,306、5,550,111、5,563,253、5,571,799、5,587,361、5,625,050和5,697,248,所述各专利均通过引用并入本文。
其中(即,寡聚核苷中)不包含磷原子的修饰核苷间连接键或骨架的实例具有通过短链烷基或环烷基糖间连接键、混合的杂原子和烷基或环烷基糖间连接键或者一个或多个短链杂原子或杂环糖间连接键形成的骨架。其包括具有吗啉代连接键(部分由核苷的糖部分形成)的骨架;硅氧烷骨架;硫化物、亚砜和砜骨架;甲酰基(formacetyl)和硫代甲酰基(thioformacetyl)骨架;亚甲基甲酰基和硫代甲酰基骨架;含有烯烃的骨架;氨基磺酸酯骨架;亚甲基亚氨基和亚甲基肼基骨架;磺酸酯和磺酰胺骨架;酰胺骨架;和其它具有混合的N、O、S和CH2组成部分的骨架。
涉及制备上述寡聚核苷的代表性美国专利包括但不限于美国专利5,034,506、5,166,315、5,185,444、5,214,134、5,216,141、5,235,033、5,264,562、5,264,564、5,405,938、5,434,257、5,466,677、5,470,967、5,489,677、5,541,307、5,561,225、5,596,086、5,602,240、5,610,289、5,602,240、5,608,046、5,610,289、5,618,704、5,623,070、5,663,312、5,633,360、5,677,437和5,677,439,所述各专利均通过引用并入本文。
在某些情况下,可用非配体基团修饰寡核苷酸。已将多种非配体分子与寡核苷酸偶联以增强所述寡核苷酸的活性、细胞分布或细胞摄取,而且可从科技文献中获得进行此类结合的方法。这些非配体部分包括脂质部分,例如胆固醇(Letsinger等人,Proc.Natl.Acad.Sci.USA,1989,86:6553);胆酸(Manoharan等人,Bioorg.Med.Chem.Lett.,1994,4:1053);硫醚,例如己基-S-三苯甲基硫醇(Manoharan等人,Ann.N.Y.Acad.Sci.,1992,660:306;Manoharan等人,Bioorg.Med.Chem.Let.,1993,3:2765);硫代胆固醇(Oberhauser等人,Nucl.Acids Res.,1992,20:533);脂肪族链,例如,十二烷基二醇或十一烷基残基(Saison-Behmoaras等人,EMBO J.,1991,10:111;Kabanov等人,FEBS Lett.,1990,259:327;Svinarchuk等人,Biochimie,1993,75:49);磷脂,例如二-十六烷基-外消旋-甘油或三乙基铵1,2-二-O-十六烷基-外消旋-甘油-3-H-磷酸酯(Manoharan等人,Tetrahedron Lett.,1995,36:3651;Shea等人,Nucl.Acids Res.,1990,18:3777);多胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides,1995,14:969)或金刚烷乙酸(Manoharan等人,Tetrahedron Lett.,1995,36:3651);棕榈基部分(Mishra等人,Biochim.Biophys.Acta,1995,1264:229)或十八胺或己氨基-羰基氧基胆固醇部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996,277:923)。上文已经列出了教导此类寡核苷酸偶联物的制备方法的代表性美国专利。典型的偶联方法包括合成在序列中的一个或多个位点具有氨基接头的寡核苷酸。随后,使用合适的偶联或活化试剂使氨基基团与将要被偶联的分子反应。所述偶联反应可在寡核苷酸仍结合在固体支持物上时进行,或者在寡核苷酸被切割至溶液相中后进行。通过HPLC纯化寡聚核苷酸偶联物通常获得纯的偶联物。特别优选使用胆固醇偶联物,因为此部分能够增强对肝细胞(PCSK9表达的位点)的靶向。
载体编码的RNAi试剂
在本发明的另一方面,调节PCSK9基因表达活性的PCSK9特异性dsRNA分子由插入到DNA或RNA载体中的转录单元表达(参见,例如,Couture,A等人,TIG.(1996),12:5-10;Skillern,A.等人,国际PCT公开No.WO 00/22113,Conrad,国际PCT公布WO 00/22114,和Conrad,美国专利6,054,299)。这些转基因可以作为线性构建体、环形质粒或病毒载体引入,它们可以作为整合到宿主基因组内的转基因并入和遗传。转基因也可以构建为使其能够作为染色体外质粒遗传(Gassmann等人,Proc.Natl.Acad.Sci.USA(1995)92:1292)。
dsRNA的单条链可以由两个单独表达载体上的启动子转录,并且共转染到靶细胞中。或者,dsRNA的各单条链可以由均位于同一表达质粒上的启动子转录。在一个实施方案中,dsRNA被表达为由接头多核苷酸序列连接的反向重复序列,使得dsRNA具有茎环结构。
重组dsRNA表达载体通常是DNA质粒或病毒载体。表达dsRNA的病毒载体可以基于但不限于腺伴随病毒(综述参见Muzyczka等人,Curr.Topics Micro.Immunol.(1992)158:97-129))、腺病毒(参见,例如,Berkner等人,BioTechniques(1998)6:616),Rosenfeld等人(1991,Science252:431-434)和Rosenfeld等人(1992),Cell 68:143-155))或甲病毒以及本领域已知的其他病毒构建。逆转录病毒已经用来在体外和/或体内将多种基因引入多种不同的细胞类型,包括上皮细胞(参见,例如,Eglitis等人,Science(1985)230:1395-1398;Danos和Mulligan,Proc.NatI.Acad.Sci.USA(1998)85:6460-6464;Wilson等人,1988,Proc.NatI.Acad.Sci.USA85:3014-3018;Armentano等人,1990,Proc.Natl.Acad.Sci.USA87:61416145;Huber等人,1991,Proc.NatI.Acad.Sci.USA 88:8039-8043;Ferry等人,1991,Proc.Natl.Acad.Sci.USA 88:8377-8381;Chowdhury等人,1991,Science 254:1802-1805;van Beusechem.等人,1992,Proc.Nad.Acad.Sci.USA 89:7640-19;Kay等人,1992,Human Gene Therapy3:641-647;Dai等人,1992,Proc.Natl.Acad.Sci.USA 89:10892-10895;Hwu等人,1993,J.Immunol.150:4104-4115;美国专利4,868,116;美国专利4,980,286;PCT申请WO 89/07136;PCT申请WO 89/02468;PCT申请WO 89/05345;和PCT申请WO 92/07573)。能够转导和表达插入细胞基因组中的基因的重组逆转录病毒载体可以通过将重组逆转录病毒基因组转染到合适的包装细胞系如PA317和Psi-CRIP中而产生(Comette等人,1991,Human Gene Therapy 2:5-10;Cone等人,1984,Proc.Natl.Acad.Sci.USA 81:6349)。重组腺病毒载体可以用来感染易感宿主(例如大鼠、仓鼠、狗和黑猩猩)中的多种细胞和组织(Hsu等人,1992,J.Infectious Disease,166:769),并且也具有其感染不需要有丝分裂活性细胞的优点。
可以使用能够接受待表达dsRNA分子的编码序列的任何病毒载体,例如衍生自腺病毒(AV)、腺伴随病毒(AAV)、逆转录病毒(如慢病毒(LV)、棒状病毒、鼠白血病病毒)、疱疹病毒和类似病毒的载体。可通过使用来自其它病毒的包膜蛋白或其它表面抗原对病毒载体进行假型化或通过取代不同的病毒衣壳蛋白,从而改变病毒载体的趋向性。
例如,可使用来自于水疱性口炎病毒(VSV)、狂犬病毒、埃博拉病毒、Mokola病毒和类似病毒的表面蛋白对本发明的慢病毒载体进行假型化。可通过对载体进行基因改造以表达不同的衣壳蛋白血清型而使本发明的AAV载体靶向不同的细胞。例如,表达2型血清型基因组上的2型血清型衣壳蛋白的AAV载体被称为AAV 2/2。可以由5型血清型的衣壳蛋白基因取代AAV 2/2载体中的该2型血清型衣壳蛋白基因以产生AAV 2/5载体。构建表达不同衣壳蛋白血清型的AAV载体的技术属于本领域的技术范围;参见,例如Rabinowitz J E等人(2002),J Virol76:791-801,其公开的全文通过引用并入本文。
适合本发明使用的重组病毒载体的选择、将表达dsRNA的核酸序列插入载体内的方法和将病毒载体递送至目标细胞的方法都属于本领域的技术范围。参见,例如Dornburg R(1995),Gene Therap.2:301-310;Eglitis M A(1988),Biotechniques 6:608-614;Miller A D(1990),Hum GeneTherap.1:5-14;Anderson W F(1998),Nature 392:25-30;和Rubinson D A等人,Nat.Genet.33:401-406,其公开的全文通过引用并入本文。
优选的病毒载体是那些衍生自AV和AAV的载体。在尤其优选的实施方案中,本发明的dsRNA可以由重组AAV载体表达为两个单独且互补的单链RNA分子,其中所述重组AAV载体包含例如U6或H1 RNA启动子,或巨细胞病毒(CMV)启动子。
适合于表达本发明dsRNA的AV载体、构建重组AV载体的方法和将所述载体递送至靶标细胞的方法描述于Xia H等人,(2002),Nat.Biotech.20:1006-1010中。
适合于表达本发明dsRNA的AAV载体、构建重组AV载体的方法和将所述载体递送至靶标细胞的方法描述于Samulski R等人(1987),J.Virol.61:3096-3101;Fisher K J等人(1996),J.Virol,70:520-532;Samulski R等人(1989),J.Virol.63:3822-3826;美国专利第5,252,479号;美国专利第5,139,941号;国际专利申请WO 94/13788和国际专利申请WO 93/24641中,其公开内容的全文通过引用并入本文。
在本发明的DNA质粒或病毒载体中驱动dsRNA表达的启动子可以是真核RNA聚合酶I(例如,核糖体RNA启动子)、RNA聚合酶II(例如,CMV早期启动子或肌动蛋白启动子或U1snRNA启动子)或一般地为RNA聚合酶III启动子(例如,U6snRNA或7SK RNA启动子)或者原核启动子(例如,T7启动子,前提是该表达质粒还编码T7启动子转录所需的T7RNA聚合酶)。所述启动子还可以引导转基因在胰腺的表达(参见,例如胰腺的胰岛素调控序列(Bucchini等人,1986,Proc.Natl.Acad.Sci.USA 83:2511-2515))。
另外,可以通过利用如可诱导的调控序列和表达系统精确调控转基因的表达,例如通过使用对某些生理调节因子(例如,循环系统葡萄糖浓度或激素)敏感的调控序列进行调控(Docherty等人,1994,FASEB J.8:20-24)。适合在细胞或哺乳动物中控制转基因表达的这类可诱导表达系统包括通过蜕皮激素、雌激素、孕酮、四环素、二聚化的化学诱导剂和异丙基-β-D1-硫代吡喃半乳糖糖苷(EPTG)进行的调控。本领域技术人员能够根据dsRNA转基因的期望用途选择适当的调控/启动子序列。
通常,如下文所述将能够表达dsRNA分子的重组载体递送到并保持在靶细胞中。或者,可使用提供dsRNA分子瞬时表达的病毒载体。如果需要,可以重复施用此类载体。所述dsRNA一经表达即与靶RNA结合并调节其功能或表达。dsRNA表达载体的递送可以是全身的,例如通过静脉内或肌肉内施用,通过施用于来自患者的外植靶细胞且随后将其重新引入到患者体内,或通过可将dsRNA表达载体引入到所需靶细胞的其它任何方式进行递送。
通常将表达dsRNA的DNA质粒作为与阳离子脂质载体(例如,Oligofectamine)或基于非阳离子脂质的载体(例如,Transit-TKOTM)的复合体转染到靶细胞中。本发明也包括用于在一周或更长的时间内靶向于单个PCSK9基因或多个PCSK9基因的不同区域进行dsRNA介导的下调的多重脂质转染。可使用多种已知方法监测本发明载体向宿主细胞的成功引入。例如,瞬时转染可使用报告子,例如荧光标记(例如,绿色荧光蛋白(GFP))指示。可使用向转染细胞提供对特定环境因素(例如,抗生素和药物)的抗性(例如,潮霉素B抗性)的标记,从而确保离体细胞的稳定转染。
也可将PCSK9特异性dsRNA分子插入到载体中并作为基因治疗载体用于人类患者。例如,可以通过静脉注射、局部施用(参见美国专利第5,328,470号),或者通过立体定位注射(参见,例如Chen等人(1994)Proc.Natl.Acad.Sci.USA 91:3054-3057)将基因治疗载体递送至受试者。基因治疗载体的药物制剂可以在可接受的稀释剂中包括基因治疗载体,或者可以包括包埋有基因递送载体的缓释基质。或者,在可以完整地从重组细胞中产生完全基因递送载体(例如,逆转录病毒载体)时,所述药物制剂可以包含一种或多种产生该基因递送系统的细胞。
含有dsRNA的药物组合物
在一个实施方案中,本发明提供了包含如本文所述的dsRNA和药学可接受的载体的药物组合物及其施用方法。所述含有dsRNA的药物组合物可用于治疗与PCSK9基因的表达或活性相关的疾病或障碍,例如,由PCSK9表达介导的病理过程,例如高脂血症。此类药物组合物根据递送方式进行配制。
剂量
本文记载的药物组合物以足够抑制PCSK9基因表达的剂量施用。通常,dsRNA的合适剂量是每天0.01至200.0mg/kg接受者体重,通常为每天1-50mg/kg体重。例如,dsRNA可以以每单一剂量0.01mg/kg、0.05mg/kg、0.5mg/kg、1mg/kg、1.5mg/kg、2.0mg/kg、3.0mg/kg、5.0mg/kg、10mg/kg、20mg/kg、30mg/kg、40mg/kg或50mg/kg施用。
在另一个实施方案中,剂量为0.01-0.2mg/kg。例如,dsRNA可以以0.01mg/kg、0.02mg/kg、0.03mg/kg、0.04mg/kg、0.05mg/kg、0.06mg/kg、0.07mg/kg、0.08mg/kg、0.09mg/kg、0.10mg/kg、0.11mg/kg、0.12mg/kg、0.13mg/kg、0.14mg/kg、0.15mg/kg、0.16mg/kg、0.17mg/kg、0.18mg/kg、0.19mg/kg或0.20mg/kg的剂量施用。
在一个实施方案中,剂量为0.2mg/kg至1.5mg/kg。例如,dsRNA可以以0.2mg/kg、0.3mg/kg、0.4mg/kg、0.5mg/kg、0.6mg/kg、0.7mg/kg、0.8mg/kg、0.9mg/kg、1mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg或1.5mg/kg的剂量施用。
dsRNA可以以0.03、0.1、0.3或1.3或3.0mg/kg的剂量施用。
所述药物组合物可以每天施用一次,或者可以在一天内以适当的间隔分两个、三个或多个亚剂量施用dsRNA。单剂量对PCSK9水平的影响是持久的,使得以不超过7天的间隔或者不超过1、2、3或4周的间隔施用后续剂量。
在一个实施方案中,脂质配制的PCSK9靶向dsRNA以大约3mg/kg的第一剂量施用,然后一周一次施用至少一个后续剂量,其中该后续剂量低于第一剂量,例如,后续剂量是大约1.0mg/kg或大约0.3mg/kg。后续剂量可以例如一周施用一次,持续四周。
在一些实施方案中,dsRNA通过连续输注或通过控释制剂递送施用。在这种情况下,各个亚剂量中所包含的dsRNA必须相应较小以达到总的日剂量。也可将剂量单位组合以用于数天的递送,例如使用常规持续释放制剂以在数天内提供dsRNA的持续释放。持续释放制剂是本领域所熟知的,并且尤其可用于在特定部位递送药剂,例如可以用于本发明的药剂。在该实施方案中,剂量单位含有相应的多个日剂量。
熟练的技术人员可以理解某些因素可能影响有效治疗受试者所需要的剂量和时机,所述因素包括但不限于疾病或病变的严重程度、先期治疗、受试者的一般健康和/或年龄以及存在的其它疾病。此外,使用治疗有效量的组合物对受试者进行的治疗可以包括单次治疗或系列治疗。如本文其它部分所述,可以使用常规方法学或者在使用合适的动物模型体内检测的基础上评估本发明所涵盖的各dsRNA的有效剂量和体内半衰期。
随着小鼠遗传学的进展,已经产生了用于研究多种人类疾病(例如,由PCSK9表达介导的病理过程)的多种小鼠模型。这些模型可用于dsRNA的体内检测以及确定治疗有效剂量。合适的小鼠模型是,例如,含有表达人PCSK9的质粒的小鼠。另外一种合适的小鼠模型是携带表达人PCSK9的转基因的转基因小鼠。
这类化合物的毒性和治疗效果可以通过细胞培养物或实验动物中的标准药学程序确定,例如,用于确定LD50(使群体中的50%致死的剂量)和ED50(在群体的50%中治疗有效的剂量)。毒性和治疗效果之间的剂量比是治疗指数,并且可以表示为LD50/ED50比。优选的是表现高治疗指数的化合物。
从细胞培养试验和动物研究获得的数据可用于设计用于人类的多种剂量。本发明所述的组合物的剂量通常在包括ED50并且没有毒性或具有极低毒性的循环浓度的范围内。剂量可随使用的剂型和使用的施用途径在该范围内变化。对于本发明所述方法中使用的任何化合物,最初可以从细胞培养试验估计治疗有效剂量。可以在动物模型中调整剂量,以达到化合物的循环血浆浓度范围,或者在适当时,达到靶序列的多肽产物的循环血浆浓度范围(例如,达到降低的多肽浓度),其包括在细胞培养中测定的IC50(即,达到症状半数最大抑制的测试化合物的浓度)。该信息可用于更精确地确定在人类中有用的剂量。例如,利用高效液相色谱法可以测定血浆水平。
除了如上所述的施用以外,本发明所述的dsRNA可以与其它已知的有效治疗由靶基因表达介导的病理过程的药剂联合施用。在任何情况下,主治医生可以根据使用本领域已知或本文所述的标准效果测定观察到的结果来调整dsRNA施用的量和时机。
施用
本发明的药物组合物可以使用多种方式施用,取决于是希望局部治疗还是全身治疗以及所治疗的区域。施用可以是局部、经肺,例如通过吸入或吹入粉末或气雾剂,包括通过喷雾器;气管内、鼻内、表皮和透皮,以及真皮下、口服或肠胃外,例如皮下。
通常,在治疗患有高脂血症的哺乳动物时,通过肠胃外途径全身施用dsRNA分子。肠胃外施用包括静脉内、动脉内、皮下、腹膜内或肌肉内注射或输注;或颅内如脑实质内、鞘内或心室内施用。例如,可以经静脉向患者施用偶联或未偶联的或者使用或不使用脂质体配制的dsRNA。因此,可将dsRNA分子配制成组合物,例如灭菌和非灭菌的水溶液、非水溶液(如在常规溶剂(例如,醇类)中的非水溶液)、或者在液态或固态油基质中的溶液。此类溶液也可包含缓冲剂、稀释剂和其它适合的添加剂。在经肠胃外、鞘内或心室内施用时,可将dsRNA分子配制成组合物例如灭菌水溶液,所述组合物也可包含缓冲剂、稀释剂和其它适合的添加剂(例如,渗透增强剂、载体化合物和其它药学上可接受的载体)。制剂在本文中更详细地描述。
可以使用靶向特定组织如肝脏(例如,肝脏的肝细胞)的方式递送dsRNA。
制剂
本发明的药物制剂可以方便地以单位剂量形式呈现,可以按照制药工业中公知的常规技术制备。这些技术包括使活性成分与药物载体或赋形剂结合的步骤。通常,通过均匀且密切地使活性成分与液体载体或细碎的固体载体或两者结合,然后在必要时使产品成形从而制备制剂。
本发明的组合物可以配制成许多可能的剂型中的任何一种,例如但不限于片剂、胶囊、凝胶胶囊、液体糖浆、软凝胶、栓剂和灌肠剂。本发明的组合物也可以配制为在水性、非水或混合介质中的悬浮液。水性悬浮液可进一步含有提高悬浮液粘度的物质,包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。悬浮液也可含有稳定剂。
本发明的药物组合物包括但不限于溶液、乳剂和含有脂质体的制剂。这些组合物可以由多种成分产生,这些成分包括但不限于预形成的液体、自乳化固体和自乳化半固体。一个方面是当治疗肝功能障碍如高脂血症时靶向肝脏的制剂。
另外,靶向PCSK9基因的dsRNA可以配制为组合物,其中含有与其它分子、分子结构或核酸混合物混合、包封、偶联或以其它方式结合的dsRNA。例如,含有一种或多种靶向PCSK9基因的dsRNA剂的组合物可含有其它治疗剂,如其它癌症治疗剂,或一种或多种靶向非PCSK9基因的dsRNA化合物。
口服、肠胃外、局部和生物制剂
用于口服施用的组合物和制剂包括粉末或颗粒、微颗粒、纳米颗粒、在水或非水性介质中的悬浮液或溶液、胶囊、凝胶胶囊、囊剂、片剂或小片。增稠剂、矫味剂、稀释剂、乳化剂、分散助剂或粘合剂可以能是需要的。在一些实施方案中,口服制剂是其中本发明所述的dsRNA与一种或多种渗透增强剂、表面活性剂和螯合剂联合施用的制剂。合适的表面活性剂包括脂肪酸和/或其酯或盐、胆汁酸和/或其盐。合适的胆汁酸/盐包括鹅脱氧胆酸(CDCA)和乌索脱氧鹅脱氧胆酸(UDCA)、胆酸、去氢胆酸、去氧胆酸、glucholic acid、甘氨胆酸(glycholic acid)、甘氨脱氧胆酸、牛磺胆酸、牛磺脱氧胆酸、牛磺-24,25-二氢-夫西地酸钠和甘油二氢夫西地酸钠。合适的脂肪酸包括花生四烯酸、十一酸、油酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸盐、三癸酸盐、甘油单油酸酯、甘油二月桂酸酯、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱或甘油单酯、甘油二酯或其药学可接受的盐(例如钠盐)。在一些实施方案中,使用渗透增强剂的组合,例如,与胆汁酸/盐组合的脂肪酸/盐。一种示例性的组合是月桂酸、癸酸和UDCA的钠盐。其它渗透增强剂包括聚氧乙烯-9-月桂醚、聚氧乙烯-20-鲸蜡醚。本发明所述的dsRNA可以以颗粒形式口服递送,包括喷雾干燥的颗粒,或者复合形成微米或纳米颗粒。dsRNA复合剂包括聚氨基酸;聚亚胺;聚丙烯酸酯;聚烷基丙烯酸酯、聚氧杂环丁烷(polyoxethanes)、聚烷基氰基丙烯酸酯;阳离子化明胶、白蛋白、淀粉、丙烯酸酯、聚乙二醇(PEG)和淀粉;聚烷基氰基丙烯酸酯;DEAE-衍生的聚亚胺、短梗霉多糖(pollulans)、纤维素和淀粉。合适的复合剂包括壳聚糖、N-三甲基壳聚糖、聚-L-赖氨酸、聚组氨酸、聚鸟氨、聚精胺、鱼精蛋白、聚乙烯吡啶、聚硫代二乙基氨基甲基乙烯P(TDAE)、聚氨苯乙烯(例如p-氧基)、聚(甲基氰基丙烯酸酯)、聚(乙基氰基丙烯酸酯)、聚(丁基氰基丙烯酸酯)、聚(异丁基氰基丙烯酸酯)、聚(异己基氰基丙烯酸酯)、DEAE-甲基丙烯酸酯、DEAE-己基丙烯酸酯、DEAE-丙烯酰胺、DEAE-白蛋白和DEAE-葡聚糖、聚甲基丙烯酸酯、聚己基丙烯酸酯、聚(D,L-乳酸)、DL-乳酸-乙醇酸共聚物(PLGA)、藻酸盐和聚乙二醇(PEG)。对于dsRNA的口服制剂及其制备在美国专利6,887,906、美国专利公开20030027780和美国专利6,747,014中进行了详细描述,其均通过引用并入本文。
用于肠胃外、实质内(向脑内)、鞘内、心室内或肝内施用的组合物和制剂可以包括无菌水溶液,其也可含有缓冲剂、稀释剂和其它合适的添加剂,例如但不限于渗透增强剂、载体化合物和其它药学上可接受的载体或赋形剂。
用于局部施用的药物组合物和制剂可以包括透皮贴剂、软膏、洗剂、乳膏、凝胶、滴剂、栓剂、喷剂、液体和粉末。常规药物载体、水性的、粉末或油状基质、增稠剂等可以是必要的或希望的。合适的局部制剂包括其中本发明所述的dsRNA与局部递送剂如脂质、脂质体、脂肪酸、脂肪酸酯、类固醇、螯合剂和表面活性剂混合的制剂。合适的液体和脂质体包括中性的(例如二油酰磷脂酰基乙醇胺DOPE、二肉豆蔻酰磷酯酰胆碱DMPC、二硬脂酰磷酯酰胆碱)、阴性的(例如二肉豆蔻酰磷酯酰甘油DMPG)和阳离子的(例如二油酰四甲基氨丙基DOTAP和二油酰磷酯酰乙醇胺DOTMA)。本发明所述的dsRNA可以包封在脂质体内,或者可以与之形成复合物,特别是与阳离子脂质体形成复合物。或者,dsRNA可以与脂质复合,特别是与阳离子脂质复合。合适的脂肪酸和酯包括但不限于花生四烯酸、油酸、花生酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、油酸单甘油酯、甘油二月桂酸酯、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱或C1-10烷基酯(例如异丙基肉豆蔻酸酯IPM)、甘油单酯、甘油二酯或其药学可接受的盐。局部制剂在美国专利6,747,014中有详述,其通过引用并入本文。此外,可通过如美国专利第6,271,359号所述的生物或非生物方式向哺乳动物施用dsRNA分子。非生物递送可通过多种方法完成,包括但不限于(1)将本发明提供的dsRNA酸分子负载到脂质体,和(2)将dsRNA分子与脂质或脂质体复合以形成核酸-脂质或核酸-脂质体复合物。所述脂质体可由常用于体外细胞转染的阳离子脂质和中性脂质组成。阳离子脂质可与带负电的核酸复合(例如,电荷缔合)以形成脂质体。阳离子脂质体的实例包括但不限于:lipofectin、lipofectamine、lipofectace和DOTAP。形成脂质体的方法是本领域熟知的。例如,可由磷脂酰胆碱、二肉豆蔻酰磷脂酰胆碱、二棕榈酰磷脂酰胆碱、二肉豆蔻酰磷脂酰甘油或二油酰磷脂酰乙醇胺形成脂质体组合物。多种亲脂性试剂可商购,包括LipofectinTM(Invitrogen/LifeTechnologies,Carlsbad,Calif.)和EffecteneTM(Qiagen,Valencia,Calif.)。此外,可使用商购的阳离子脂质(例如,DDAB或DOTAP)优化全身性递送方法,这些阳离子脂质各自可与中性脂质(例如,DOPE或胆固醇)相混合。在一些情况下,可使用如Templeton等人(Nature Biotechnology,15:647-652(1997))中所述的那些脂质体。在其它实施方案中,可使用如聚乙烯亚胺的聚阳离子完成体内和离体递送(Boletta等人,J.Am Soc.Nephrol.7:1728(1996))。关于使用脂质体递送核酸的其它信息可在美国专利第6,271,359号、PCT公开WO 96/40964和Morrissey,D.等人2005.Nat Biotechnol.23(8):1002-7中找到。
生物递送可通过多种方法完成,包括但不限于使用病毒载体。例如,可使用病毒载体(例如,腺病毒和疱疹病毒载体)向肝细胞递送dsRNA分子。可使用标准分子生物学技术将一种或多种本文所提供的dsRNA引入到先前开发用于向细胞递送核酸的许多种不同病毒载体之一中。可使用这些所得的病毒载体通过例如转染将一种或多种dsRNA递送到细胞中。
脂质体制剂
除了已经研究并用于药物制剂的微乳剂以外,还有许多组织化的表面活性剂结构。它们包括单层、胶束、双层和囊泡。由于其特异性和从药物递送观点来看的作用持续时间,囊泡(如脂质体)得到了极大的关注。用于本发明的术语“脂质体”是指由排列成一个或多个球形双层的两亲性脂质组成的囊泡。
脂质体是单层或多层囊泡,具有由亲脂性材料形成的膜和水性内部。水性部分含有待递送的组合物。阳离子脂质体具有能够与细胞壁融合的优点。非阳离子脂质体尽管不能与细胞壁有效融合,但是在体内被巨噬细胞摄取。
为了穿过完整的哺乳动物皮肤,脂质囊泡必须在适当的透皮梯度作用下通过一系列各直径小于50nm的细孔。因此,希望使用高度可变形并且能够穿过这些细孔的脂质体。
脂质体的其它优点包括:由天然磷脂获得的脂质体是生物相容的和生物可降解的;脂质体可引入大量的水和脂溶性药物;并且脂质体可保护包封在其内部隔室中的药物不被代谢和降解(Rosoff,in PharmaceuticalDosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.245)。制备脂质体制剂中重要的考虑是脂质表面电荷、囊泡大小和脂质体的含水体积。
脂质体可用于将活性成分转移和递送至作用部位。由于脂质体膜在结构上类似于生物膜,当脂质体应用于组织时,脂质体开始与细胞膜融合,并且随着脂质体和细胞的融合的进展,脂质体内容物被排空到活性剂可能在其中起作用的细胞中。
脂质体制剂作为许多种药物的递送模式已经成为大量研究的焦点。有越来越多的证据表明对于局部施用,脂质体具有优于其它制剂的几个优点。这些优点包括与所施用药物全身高吸收相关的副作用减少、所施用药物在希望靶标处的积聚增加以及能够将多种亲水性和疏水性药物施用到皮肤内。
有几篇报告已经详细记载了脂质体将包括高分子量DNA在内的药剂递送到皮肤内的能力。包括镇痛药、抗生素、激素和高分子量DNA在内的化合物已经施用至皮肤。大多数应用导致上表皮的靶向。
脂质体分成两大类。阳离子脂质体是带有正电荷的脂质体,它与带负电荷的DNA分子相互作用以形成稳定的复合物。带正电荷的DNA/脂质体复合物结合至带负电荷的细胞表面,并且内化到内体中。由于内体中为酸性pH,脂质体破裂,从而将其内容物释放到细胞质中(Wang等人,Biochem.Biophys.Res.Commun.,1987,147,980-985)。
pH敏感或带负电荷的脂质体圈闭DNA而不是与之复合。由于DNA和脂质具有类似的电荷,发生排斥而不是形成复合。但是,一些DNA被圈闭在这些脂质体的水性内部。pH敏感的脂质体已经用于将编码胸苷激酶基因的DNA递送至培养的细胞单层。检测外源基因在靶细胞中的表达(Zhou等人,Journal of Controlled Release,1992,19,269-274)。
脂质体组合物的一个主要类型包括天然衍生的磷脂酰胆碱之外的磷脂。中性脂质体组合物,例如,可以由二肉豆蔻酰磷脂酰胆碱(DMPC)或二棕榈酰磷脂酰胆碱(DPPC)形成。阴离子脂质体组合物通常由二肉豆蔻酰磷脂酰甘油形成,而阴离子融合脂质体主要由二油酰磷脂酰乙醇胺(DOPE)形成。另一种类型的脂质体组合物由磷脂酰胆碱(PC)(诸如大豆PC和卵PC)形成。另一种类型由磷脂和/或磷脂酰胆碱和/或胆固醇的混合物形成。
有几项研究已经评估了脂质体药物制剂向皮肤的局部递送。向豚鼠皮肤应用含有干扰素的脂质体导致皮肤疱疹溃疡减少,而通过其它手段(例如作为溶液或作为乳液)递送干扰素是无效的(Weiner等人,Journal ofDrug Targeting,1992,2,405-410)。此外,另一项研究测试了作为脂质体制剂的一部分施用的干扰素相对于使用水性系统施用干扰素的有效性,结论是脂质体制剂优于水性系统施用(du Plessis等人,Antiviral Research,1992,18,259-265)。
也已检验了非离子脂质体体系以确定它们在向皮肤递送药物方面的应用,特别是包含非离子表面活性剂和胆固醇的体系。利用包含NovasomeTM I(甘油二月桂酸酯/胆固醇/聚氧乙烯-10-硬脂基醚)和NovasomeTM II(甘油二硬脂酸酯/胆固醇/聚氧乙烯-10-硬脂基醚)的非离子脂质体制剂用于将环孢菌素A递送到小鼠皮肤的真皮内。结果表明这些非离子脂质体体系有效促进环孢菌素A沉积到皮肤的不同层(Hu等人,S.T.P.Pharma.Sci.,1994,4,6,466)。
脂质体也包括“空间稳定的”脂质体,本文使用的该术语是指包含一种或多种专用脂质的脂质体,当该专用脂质被引入脂质体时,导致循环寿命比缺乏这些专用脂质的脂质体延长。空间稳定的脂质体的例子包括脂质体的囊泡形成脂质部分的一部分(A)包含一种或多种糖脂如单唾液酸神经节苷酯GM1或者(B)用一种或多种亲水聚合物如聚乙二醇(PEG)部分衍生化的脂质体。不希望被任何特定理论所约束,本领域认为至少对于含有神经节苷酯、鞘磷脂或PEG衍生脂质的空间稳定的脂质体来说,这些空间稳定的脂质体的延长的循环半衰期是由于进入网状内皮系统(RES)细胞的摄取减少(Allen等人,FEBS Letters,1987,223,42;Wu等人,Cancer Research,1993,53,3765)。
含有一种或多种糖脂的各种脂质体是本领域已知的。Papahadjopoulos等人(Ann.N.Y.Acad.Sci.,1987,507,64)报告了单唾液酸神经节苷酯GM1、半乳糖脑苷脂硫酸酯和磷脂酰肌醇改善脂质体的血液半衰期的能力。这些发现由Gabizon等人(Proc.Natl.Acad.Sci.U.S.A.,1988,85,6949)详细说明。Allen等人的美国专利4,837,028和WO88/04924公开了包含(1)鞘磷脂和(2)神经节苷酯GM1或半乳糖脑苷脂硫酸酯的脂质体。美国专利5,543,152(Webb等人)公开了包含鞘磷脂的脂质体。包含1,2-sn-二肉豆蔻酰磷脂酰胆碱的脂质体在WO 97/13499(Lim等人)中公开。
多种包含用一种或多种亲水聚合物衍生的脂质的脂质体及其制备方法在本领域中是已知的。Sunamoto等人(Bull.Chem.Soc.Jpn.,1980,53,2778)描述了包含含有PEG部分的非离子去污剂2C1215G的脂质体。Illum等人(FEBS Lett.,1984,167,79)指出含有聚二醇类的聚苯乙烯颗粒的亲水性包层导致血液半衰期显著延长。Sears(美国专利4,426,330和4,534,899)描述了通过连接聚亚烷基二醇(例如PEG)的羧基修饰的合成磷脂。Klibanov等人(FEBS Lett.,1990,268,235)描述的实验证明了包含用PEG或PEG硬脂酸酯衍生化的磷脂酰乙醇胺(PE)的脂质体显著延长血液循环半衰期。Blume等人(Biochimica et Biophysica Acta,1990,1029,91)将这些发现扩展到其它PEG-衍生化的磷脂,例如,由二硬脂酰磷脂酰乙醇胺(DSPE)和PEG结合形成的DSPE-PEG。在其外表面上具有共价结合的PEG部分的脂质体在Fisher的欧洲专利EP 0 445 131 B1和WO90/04384中记载。Woodle等人(美国专利5,013,556和5,356,633)和Martin等人(美国专利5,213,804和欧洲专利EP 0 496 813 B1)记载了含有1-20摩尔%PEG衍生化的PE的脂质体组合物及其使用方法。WO 91/05545和美国专利5,225,212(均属于Martin等人)和WO 94/20073(Zalipsky等人)中公开了包含多种其它脂质-聚合物偶联物的脂质体。WO 96/10391(Choi等人)记载了包含PEG-修饰的神经酰胺脂质的脂质体。美国专利5,540,935(Miyazaki等人)和美国专利5,556,948(Tagawa等人)记载了可以在其表面上用功能性部分进一步衍生化的含PEG的脂质体。
多种包含核酸的脂质体是本领域已知的。Thierry等人的WO96/40062公开了在脂质体中包封高分子量核酸的方法。Tagawa等人的美国专利5,264,221公开了蛋白质键合的脂质体,并且断言这些脂质体的内容物可包括dsRNA。Rahman等人的美国专利5,665,710记载了在脂质体中包封寡脱氧核苷酸的某些方法。Love等人的WO 97/04787公开了包含靶向raf基因的dsRNA的脂质体。
传递体(Transfersome)是再另一种类型的脂质体,并且是高度可变形的脂质聚集物,其是药物递送工具的有力的候选者。传递体可以被描述为脂质小滴,它们是高度可变形的因而能够容易地穿过小于小滴的孔。传递体能适应它们的使用环境,例如,它们是自优化的(适应皮肤中孔的形状)、自修复的,在不破碎的情况下通常到达它们的靶标,并且常常是自装载的。为了制备传递体,可能需要向标准脂质体组合物中添加表面边缘活化剂,通常是表面活性剂。传递体已经用于向皮肤递送血清白蛋白。已经表明传递体介导的血清白蛋白递送象皮下注射含有血清白蛋白的溶液一样有效。
表面活性剂在诸如乳剂(包括微乳剂)和脂质体的制剂中具有广泛应用。对多种不同类型的表面活性剂(天然的和合成的)性质进行分类和排序的最常用方法是利用亲水/亲油平衡(HLB)。亲水性基团(也被称为“头部”)的性质提供了对制剂中使用的不同表面活性剂进行分类的最有用的手段(Rieger,in Pharmaceutical Dosage Forms,Marcel Dekker,Inc.,New York,N.Y.,1988,p.285)。
如果表面活性剂分子没有离子化,它被分类为非离子型表面活性剂。非离子型表面活性剂在药物和化妆品产品中具有多种应用,并且可以在宽pH值范围上使用。通常,它们的HLB值范围从2到大约18,这取决于它们的结构。非离子型表面活性剂包括非离子酯,如乙二醇酯、丙二醇酯、甘油酯、聚甘油酯、山梨聚糖酯、蔗糖酯和乙氧基化酯。非离子型烷醇酰胺和醚如乙氧基化脂肪醇、丙氧基化醇和乙氧基化/丙氧基化嵌段聚合物也包括在该类别中。聚氧乙烯表面活性剂是非离子型表面活性剂类别中最常见的成员。
如果表面活性剂分子在溶解或分散于水中时携带负电荷,则该表面活性剂被分类为阴离子型。阴离子型表面活性剂包括羧酸酯类如皂类、酰基乳酸酯、氨基酸的酰基酰胺、硫酸的酯如烷基硫酸酯和乙氧基化烷基硫酸酯、磺酸酯如烷基苯磺酸酯、酰基羟乙基磺酸酯、酰基牛磺酸酯和磺基琥珀酸酯及磷酸酯。阴离子型表面活性剂类别中最重要的成员是烷基硫酸酯和皂类。
如果表面活性剂分子在溶解或分散于水中时携带正电荷,则该表面活性剂被分类为阳离子型。阳离子型表面活性剂包括季铵盐和乙氧基化胺。季铵盐是该类别中最常用的成员。
如果表面活性剂具有携带正电荷或负电荷的能力,则该表面活性剂被分类为两性表面活性剂。两性表面活性剂包括丙烯酸衍生物、取代的烷基酰胺、N-烷基甜菜碱和磷脂(phosphatide)。
表面活性剂在药品、制剂和乳剂中的应用已经综述(Rieger,inPharmaceutical Dosage Forms,Marcel Dekker,Inc.,New York,N.Y.,1988,p.285)。
核酸脂质颗粒
在一个实施方案中,本发明所述的dsRNA完全包封在脂质制剂中,例如,形成核酸-脂质颗粒。核酸-脂质颗粒一般含有阳离子脂质、非阳离子脂质、固醇和防止颗粒聚集的脂质(例如PEG-脂质偶联物)。核酸-脂质颗粒特别可用于全身应用,因为它们在静脉内注射(i.v.)后表现出延长的循环寿命并且在远端部位(例如,与施用部分物理上分离的部位)积累。另外,当核酸存在于本发明的核酸-脂质颗粒中时,其在水溶液中对核酸酶降解具有抗性。例如,美国专利5,976,567、5,981,501、6,534,484、6,586,410、6,815,432和PCT公布WO 96/40964中公开了核酸-脂质颗粒及其制备方法。
核酸-脂质颗粒可以进一步包含一种或多种额外的脂质和/或其它成分如胆固醇。其它脂质可以包含在用于多种目的的脂质体组合物中,例如防止脂质氧化或将配体结合到脂质体表面上。可以存在多种脂质中的任一种,包括两亲性、中性、阳离子和阴离子脂质。这些脂质可以单独使用或者组合使用。可以存在的额外脂质成分的具体例子在本文中描述。
可以存在于核酸-脂质颗粒中的额外成分包括双层稳定成分,如聚酰胺寡聚体(参见,例如,美国专利6,320,017)、肽、蛋白质、去污剂、脂质衍生物,如偶联到磷脂酰乙醇胺上的PEG和偶联到神经酰胺上的PEG(参见美国专利5,885,613)。
核酸-脂质颗粒可以含有一种或多种第二氨基脂质或阳离子脂质、中性脂质、固醇和选择用于减少脂质颗粒形成过程中的聚集的脂质,这可能是由于防止形成过程中由电荷诱导的聚集的颗粒空间稳定化引起的。
核酸-脂质颗粒包括,例如,SPLP、pSPLP和SNALP。术语“SNALP”是指稳定的核酸-脂质颗粒,包括SPLP。术语“SPLP”是指包含包封在脂质囊泡中的质粒DNA的核酸-脂质颗粒。SPLP包括“pSPLP”,后者包括如PCT公布WO 00/03683所述的包封的缩合剂-核酸复合物。
本发明颗粒的平均直径一般为大约50nm至大约150nm,更优选大约60nm至大约130nm,更优选大约70nm至大约110nm,最优选大约70nm至大约90nm,并且基本上是无毒的。
在一个实施方案中,脂质∶药物比(质量/质量比)(例如脂质∶dsRNA比)为大约1∶1至大约50∶1,大约1∶1至大约25∶1,大约3∶1至大约15∶1,大约4∶1至大约10∶1,大约5∶1至大约9∶1,或大约6∶1至大约9∶1,或大约6∶1、7∶1、8∶1、9∶1、10∶1、11∶1、12∶1或33∶1。
阳离子脂质
本发明的核酸-脂质颗粒一般包含阳离子脂质。阳离子脂质可以是,例如,N,N-二油基-N,N-二甲基氯化铵(DODAC)、N,N-二硬脂基-N,N-二甲基溴化铵(DDAB)、N-(1-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP)、N-(1-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA)、(N,N-二甲基-2,3-二油基氧基)丙胺(DODMA)、1,2-二亚油氧基-N,N-二甲氨基丙烷(DLinDMA)、1,2-二亚麻基氧基-N,N-二甲氨基丙烷(DLenDMA)、1,2-二亚油基氨甲酰氧基-3-二甲氨基丙烷(DLin-C-DAP)、1,2-二亚油基氧基-3-(二甲氨基)乙酰氧基丙烷(DLin-DAC)、1,2-二亚油基氧基-3-吗啉代丙烷(DLin-MA)、1,2-二亚油酰基-3-二甲氨基丙烷(DLinDAP)、1,2-二亚油基硫基-3-二甲氨基丙烷(DLin-S-DMA)、1-亚油酰基-2-亚油基氧基-3-二甲氨基丙烷(DLin-2-DMAP)、1,2-二亚油基氧基-3-三甲基氨基丙烷氯化物盐(DLin-TMA.Cl)、1,2-二亚油酰基-3-三甲基氨基丙烷氯化物盐(DLin-TAP.Cl)、1,2-二亚油基氧基-3-(N-甲基哌嗪基)丙烷(DLin-MPZ)或3-(N,N-二亚油基氨基)-1,2-丙二醇(DLinAP)、3-(N,N-二油基氨基)-1,2-丙二醇(DOAP)、1,2-二亚油基氧代-3-(2-N,N-二甲氨基)乙氧基丙烷(DLin-EG-DMA)、1,2-二亚麻基氧基-N,N-二甲氨基丙烷(DLinDMA)、2,2-二亚油基-4-二甲氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)或其类似物、(3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺(ALNY-100)、(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲氨基)丁酸酯(MC3)或其混合物。
除了以上具体描述的那些以外,在大致生理pH下携带净正电荷的其它阳离子脂质也可以包含在本发明的脂质颗粒中。这些阳离子脂质包括但不限于N,N-二油基-N,N-二甲基氯化铵(“DODAC”)、N-(2,3-二油基氧基)丙基-N,N,N-三乙基氯化铵(“DOTMA”)、N,N-二硬脂基-N,N-二甲基溴化铵(“DDAB”)、N-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(″DOTAP″)、1,2-二油基氧基-3-三甲氨基丙烷氯化物盐(“DOTAP.Cl”)、3β-(N-(N′,N′-二甲氨基乙烷)-氨甲酰基)胆固醇(“DC-Chol”)、N-(1-(2,3-二油基氧基)丙基)-N-2-(精胺甲酰氨基)乙基)-N,N-二甲基铵三氟乙酸盐(“DOSPA”)、二(十八烷基)酰氨基甘氨酰基羧基精胺(“DOGS”)、1,2-二油酰基-sn-3-磷酸乙醇胺(“DOPE”)、1,2-二油酰基-3-二甲基铵丙烷(“DODAP”)、N,N-二甲基-2,3-二油基氧基)丙胺(“DODMA”)和N-(1,2-二肉豆蔻基氧基丙-3-基)-N,N-二甲基-N-羟乙基溴化铵(“DMRIE”)。另外,可以使用众多的商品阳离子脂质制剂,例如,LIPOFECTIN(包含DOTMA和DOPE,可获自GIBCO/BRL)和LIPOFECTAMINE(包含DOSPA和DOPE,可获自GIBCO/BRL)。在特定实施方案中,阳离子脂质是氨基脂质。
本文使用的术语“氨基脂质”意指包括那些具有一个或两个脂肪酸或脂肪族烷基链和氨基头部基团(包括烷基氨基或二烷基氨基)的脂质,其在生理pH下可以质子化以形成阳离子脂质。
其它氨基脂质包括那些具有可选的脂肪酸基团和其它二烷基氨基基团的脂质,包括那些其中烷基取代基不同(例如N-乙基-N-甲氨基-、N-丙基-N-乙氨基-等)的脂质。对于其中R11和R12均为长链烷基或酰基的这些实施方案,它们可能相同或不同。通常,具有较低饱和酰基链的氨基脂质更容易调整大小,特别是在为了过滤除菌的目的必须将复合物的大小调整到低于大约0.3微米时。优选含有碳链长度为C14至C22的不饱和脂肪酸的氨基脂质。其它支架也可以用于分隔氨基脂质的氨基与脂肪酸或脂肪族烷基部分。合适的支架是本领域技术人员已知的。
在某些实施方案中,本发明的氨基脂质或阳离子脂质具有至少一个可质子化的或可去质子化的基团,使得该脂质在等于或低于生理pH的pH(例如pH 7.4)时带正电荷,并且在第二pH(优选在等于或高于生理pH)时为中性。当然应当理解,随pH的变化添加或除去质子是一平衡过程,并且所称带电或中性脂质是指优势种类的性质,而不需要所有脂质都以带电或中性形式存在。本发明的应用中不排除具有一个以上可质子化或可去质子化基团的脂质,或两性离子脂质。
在某些实施方案中,本发明的可质子化脂质中可质子化基团的pKa为大约4至大约11。最优选的是pKa为大约4至大约7,因为这些脂质在较低pH的制剂阶段为阳离子,而颗粒在pH 7.4左右的生理pH时大部分(尽管不是完全)被表面中和。该pKa的一个优点是至少一些与颗粒外表面结合的核酸在生理pH时将失去其静电相互作用,并且通过简单透析去除;因此大大降低了颗粒对清除的敏感性。
阳离子脂质的一个例子是1,2-二亚麻基氧基-N,N-二甲氨基丙烷(DLinDMA)。包括DLinDMA的核酸-脂质颗粒的合成和制备在2009年4月15日提交的国际申请PCT/CA2009/00496中记载。
在一个实施方案中,利用阳离子脂质XTC(2,2-二亚油基-4-二甲氨基乙基-[1,3]-二氧戊环)制备核酸-脂质颗粒。XTC的合成在2008年10月23日提交的美国临时专利申请61/107,998中记载,该申请通过引用并入本文。
一方面,所述阳离子脂质具有结构
及其盐或异构体,其中R1和R2在各次出现时各自独立地为任选取代的C10-C30烷基、任选取代的C10-C30烯基、任选取代的C10-C30炔基、任选取代的C10-C30酰基或-接头-配体;R3为H、任选取代的C1-C10烷基、任选取代的C2-C10烯基、任选取代的C2-C10炔基、烷基杂环、烷基磷酸酯、烷基硫代磷酸酯、烷基二硫代磷酸酯、烷基膦酸酯、烷基胺、羟烷基、ω-氨基烷基、ω-(取代的)氨基烷基、ω-磷酸烷基、ω-硫代磷酸烷基、任选取代的聚乙二醇(PEG,mw 100-40K)、任选取代的mPEG(mw120-40K)、杂芳基、杂环或接头-配体;并且E为C(O)O或OC(O)。该脂质家族的合成和应用在2009年11月10日提交的WO 2010/054401(PCT/US2009/063927)中记载。阳离子脂质MC3是该阳离子脂质家族的一个实施方案。
在另一个实施方案中,使用阳离子脂质MC3((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲氨基)丁酸酯)(例如DLin-M-C3-DMA)制备核酸-脂质颗粒。MC3的合成和包含MC3的制剂在2009年9月22日提交的美国临时申请61/244,834、2009年6月10日提交的美国临时申请61/185,800和2010年6月10日提交的美国专利申请12/813,448中记载,所述申请均通过引用并入本文。
在另一个实施方案中,使用阳离子脂质ALNY-100((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺)制备核酸-脂质颗粒。ALNY-100的合成在2009年11月10日提交的国际专利申请PCT/US09/63933中记载,该申请通过引用并入本文。
图28显示ALNY-100和MC3的结构。
阳离子脂质可以包含存在于颗粒中的总脂质的大约20mol%至大约70mol%或大约45-65mol%或大约10、20、30、40、50、60或70mol%。
非阳离子脂质
本发明的核酸-脂质颗粒可以包含非阳离子脂质。非阳离子脂质可以是阴离子脂质或中性脂质。实例包括但不限于二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰-磷脂酰乙醇胺(DOPE)、棕榈酰油酰磷脂酰胆碱(POPC)、棕榈酰油酰磷脂酰乙醇胺(POPE)、二油酰-磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-1-羧酸酯(DOPE-mal)、二棕榈酰磷脂酰乙醇胺(DPPE)、二肉豆蔻酰磷脂酰乙醇胺(DMPE)、二硬脂酰磷脂酰乙醇胺(DSPE)、16-O-单甲基PE、16-O-二甲基PE、18-1-反式PE、1-硬脂酰-2-油酰-磷脂酰乙醇胺(SOPE)、胆固醇或其混合物。
适用于本发明脂质颗粒的阴离子脂质包括但不限于磷脂酰甘油、心磷脂、二酰基磷脂酰丝氨酸、二酰基磷脂酸、N-十二酰基磷脂酰乙醇胺、N-琥珀酰磷脂酰乙醇胺、N-戊二酰磷脂酰乙醇胺、赖氨酰磷脂酰甘油和其它连接至中性脂质的阴离子修饰基团。
中性脂质在存在于脂质颗粒中时可以是在生理pH时以不带电或中性两性离子形式存在的众多脂质种类中的任一种。这些脂质包括,例如二酰基磷脂酰胆碱、二酰基磷脂酰乙醇胺、神经酰胺、鞘磷脂、二氢鞘磷脂、脑磷脂和脑苷脂。用于此处所述颗粒中的中性脂质的选择通常取决于例如脂质体大小和脂质体在血流中的稳定性的考虑。优选地,中性脂质成分是具有两个酰基基团的脂质(即二酰基磷脂酰胆碱和二酰基磷脂酰乙醇胺)。具有多个不同链长和饱和度的酰基链基团的脂质是可以获得的,或者可以通过众所周知的技术分离或合成。在一组实施方案中,优选含有碳链长度为C14至C22的饱和脂肪酸的脂质。在另一组实施方案中,使用具有碳链长度为C14至C22的单或二不饱和脂肪酸的脂质。另外,也可以使用具有混合的饱和和不饱和脂肪酸链的脂质。优选地,本发明使用的中性脂质是DOPE、DSPC、POPC或任何有关的磷脂酰胆碱。本发明中有用的中性脂质也可以由鞘磷脂、二氢鞘磷脂或具有诸如丝氨酸和肌醇等其它头部基团的磷脂构成。
在一个实施方案中,非阳离子脂质是二硬脂酰磷脂酰胆碱(DSPC)。在另一个实施方案中,非阳离子脂质是二棕榈酰磷脂酰胆碱(DPPC)。
如果包含胆固醇,非阳离子脂质可以为颗粒中存在的总脂质的大约5mol%至大约90mol%,大约5mol%至大约10mol%、大约10mol%或大约58mol%。
偶联的脂质
偶联的脂质可以用于核酸-脂质颗粒中以防止聚集,包括聚乙二醇(PEG)-修饰的脂质、单唾液酸神经节苷脂Gm1和聚酰胺聚合物(“PAO”)(如美国专利6,320,017所述)。其它具有防止形成过程中聚集的不带电荷、亲水性、空间障碍的部分的化合物如PEG、Gm1或ATTA也可以偶联到用于本发明的方法和组合物的脂质上。ATTA-脂质例如在美国专利6,320,017中描述,PEG-脂质偶联物例如在美国专利5,820,873、5,534,499和5,885,613中描述。通常,选择脂质成分的浓度以将聚集减少大约1-15%(脂质的摩尔百分比)。
可用于本发明的PEG-修饰的脂质(或脂质-聚氧乙烯偶联物)的具体例子可以具有多个“锚定”脂质部分,以将PEG部分固定至脂质囊泡表面。合适的PEG-修饰脂质的例子包括PEG-修饰的磷脂酰乙醇胺和磷脂酸、在通过引用并入本文的共同未决的USSN 08/486,214中描述的PEG-神经酰胺偶联物(例如PEG-CerC14或PEG-CerC20)、PEG-修饰的二烷基胺和PEG-修饰的1,2-二酰氧基丙-3-胺。特别优选的是PEG-修饰的二酰基甘油和二烷基甘油。
在诸如PEG或ATTA的空间上较大的部分偶联到脂质锚部分上的实施方案中,脂质锚部分的选择取决于偶联物与脂质颗粒具有何种类型的结合。众所周知,mePEG(mw2000)-二硬脂酰磷脂酰乙醇胺(PEG-DSPE)将保持与脂质体结合直到颗粒从循环中清除,可能需要数天。其它偶联物,如PEG-CerC20,具有类似的保持能力。然而,PEG-CerC14在接触血清后快速交换到制剂以外,在某些试验中T1/2短于60分钟。如美国专利申请SN 08/486,214所述,至少三个特性影响交换速率:酰基链的长度、酰基链的饱和度以及空间屏障头部基团的大小。具有这些特征的适当变型的化合物可用于本发明。对于某些治疗应用,PEG-修饰的脂质在体内从核酸-脂质颗粒中快速丢失可能是优选的,因此PEG-修饰的脂质将具有相对较短的脂质锚部分。在其它治疗应用中,核酸-脂质颗粒表现出较长的血浆循环寿命可能是优选的,因此PEG-修饰的脂质将具有相对较长的脂质锚部分。示例性的脂质锚部分包括那些长度为大约C14至大约C22,优选大约C14至大约C16的脂质锚部分。在一些实施方案中,PEG部分,例如mPEG-NH2,具有大约1000、2000、5000、10,000、15,000或20,000道尔顿的大小。
应当指出防止聚集的化合物不一定需要脂质偶联才能正确发挥功能。溶液中的游离PEG或游离ATTA可能足以防止聚集。如果颗粒在配制后稳定,则在施用于受试者之前可以透析除去PEG或ATTA。
抑制颗粒聚集的偶联脂质可以是,例如,聚乙二醇(PEG)-脂质,包括但不限于PEG-二酰基甘油(DAG)、PEG-二烷氧基丙基(DAA)、PEG-磷脂、PEG-神经酰胺(Cer)或其混合物。PEG-DAA偶联物可以是,例如,PEG-二月桂基氧基丙基(Ci2)、PEG-二肉豆蔻基氧基丙基(Ci4)、PEG-二棕榈基氧基丙基(Ci6)或PEG-二硬脂基氧基丙基(Ci8)。其它的偶联脂质包括聚乙二醇-二二肉豆蔻酰甘油(C14-PEG或PEG-C14,其中PEG的平均分子量为2000Da)(PEG-DMG);(R)-2,3-二(十八烷氧基)丙基1-(甲氧基聚(乙二醇)2000)丙基氨基甲酸酯)(PEG-DSG);PEG-氨甲酰基-1,2-二肉豆蔻基氧基丙胺,其中PEG的平均分子量为2000Da(PEG-cDMA);N-乙酰半乳糖胺-((R)-2,3-二(十八烷氧基)丙基-1-(甲氧基聚(乙二醇)2000)丙基氨基甲酸酯))(GalNAc-PEG-DSG);和聚乙二醇-二棕榈酰甘油(PEG-DPG)。
在一个实施方案中,偶联脂质是PEG-DMG。在另一个实施方案中,偶联脂质是PEG-cDMA。在再另一个实施方案中,偶联脂质是PEG-DPG。或者,偶联脂质是GalNAc-PEG-DSG。
防止颗粒聚集的偶联脂质可以占颗粒中存在的总脂质的0mol%至大约20mol%或大约0.5至大约5.0mol%或大约2mol%。
脂质混合物的固醇成分在存在时可以是脂质体、脂质囊泡或脂质颗粒制剂领域常用的固醇中的任一种。一种优选的固醇是胆固醇。
在一些实施方案中,核酸-脂质颗粒进一步包含固醇(例如,胆固醇),例如,为颗粒中存在的总脂质的大约10mol%至大约60mol%或大约25至大约40mol%或大约48mol%。
脂蛋白
在一个实施方案中,本发明的制剂进一步包含载脂蛋白。如本文所述的术语“载脂蛋白”或“脂蛋白”是指本领域技术人员熟知的载脂蛋白及其变体和片段,以及以下所述的载脂蛋白激动剂、其类似物或片段。
合适的载脂蛋白包括但不限于ApoA-I、ApoA-II、ApoA-IV、ApoA-V和ApoE,和活性的多形形式、同工型、变体和突变体以及其片段或截短形式。在某些实施方案中,载脂蛋白是含硫醇的载脂蛋白。“含硫醇的载脂蛋白”是指含有至少一个半胱氨酸残基的载脂蛋白、变体、片段或同工型。最常见的含硫醇载脂蛋白是含有一个半胱氨酸残基的ApoA-IMilano(ApoA-IM)和ApoA-I Paris(ApoA-IP)(Jia等人,2002,Biochem.Biophys.Res.Comm.297:206-13;Bielicki和Oda,2002,Biochemistry 41:2089-96)。ApoA-II、ApoE2和ApoE3也是含硫醇的载脂蛋白。分离的ApoE和/或其活性片段和多肽类似物,包括其重组产生的形式,在美国专利5,672,685、5,525,472、5,473,039、5,182,364、5,177,189、5,168,045、5,116,739中记载,它们的公开内容通过引用并入本文。ApoE3记载在Weisgraber等人,″Human E apoprotein heterogeneity:cysteine-arginineinterchanges in the amino acid sequence of the apo-E isoforms,″J.Biol.Chem.(1981)256:9077-9083;和Rall等人″Structural basis for receptorbinding heterogeneity of apolipoprotein E from type IIIhyperlipoproteinemic subjects,″Proc.Nat.Acad.Sci.(1982)79:4696-4700中。(也参见GenBank登录号K00396。)
在某些实施方案中,载脂蛋白可以是其成熟形式,其前原载脂蛋白形式或其原载脂蛋白形式。原形式和成熟形式的ApoA-I(Duverger等人,1996,Arterioscler.Thromb.Vasc.Biol.16(12):1424-29)、ApoA-I Milano(Klon等人,2000,Biophys.J.79:(3)1679-87;Franceschini等人,1985,J.Biol.Chem.260:1632-35)、ApoA-I Paris(Daum等人,1999,J.Mol.Med.77:614-22)、ApoA-II(Shelness等人,1985,J.Biol.Chem.260(14):8637-46;Shelness等人,1984,J.Biol.Chem.259(15):9929-35),ApoA-IV(Duverger等人,1991,Euro.J.Biochem.201(2):373-83)和ApoE(McLean等人,1983,J.Biol.Chem.258(14):8993-9000)的同型二聚体和异二聚体(可行的话)也能够在本发明的范围内使用。
在某些实施方案中,载脂蛋白可以是载脂蛋白的片段、变体或同工型。术语“片段”是指氨基酸序列短于天然载脂蛋白并且其片段保留天然载脂蛋白活性(包括脂质结合性质)的任何载脂蛋白。“变体”是指载脂蛋白氨基酸序列的置换或变化,该置换或变化,例如,氨基酸残基的添加和缺失,不消除天然载脂蛋白的活性,包括脂质结合性质。因此,变体可以包含与本文提供的天然载脂蛋白具有基本相同的氨基酸序列的蛋白质或肽,其中一个或多个氨基酸残基已经被化学相似的氨基酸保守置换。保守置换的例子包括至少一个疏水性残基如异亮氨酸、缬氨酸、亮氨酸或甲硫氨酸置换另一个疏水性残基。同样,本发明涉及例如至少一个亲水性残基的置换,例如,精氨酸和赖氨酸之间、谷氨酰胺和天冬酰胺之间、甘氨酸和丝氨酸之间的置换(参见美国专利6,004,925、6,037,323和6,046,166)。术语“同工型”是指具有相同、更多或部分功能和具有相似、相同或部分序列的蛋白质,且可以是或者不是同一基因的产物,并且通常是组织特异性的(参见Weisgraber 1990,J.Lipid Res.31(8):1503-11;Hixson和Powers 1991,J.Lipid Res.32(9):1529-35;Lackner等人,1985,J.Biol.Chem.260(2):703-6;Hoeg等人,1986,J.Biol.Chem.261(9):3911-4;Gordon等人,1984,J.Biol.Chem.259(1):468-74;Powell等人,1987,Cell50(6):831-40;Aviram等人,1998,Arterioscler.Thromb.Vase.Biol.18(10):1617-24;Aviram等人,1998,J.Clin.Invest.101(8):1581-90;Billecke等人,2000,Drug Metab.Dispos.28(11):1335-42;Draganov等人,2000,J.Biol.Chem.275(43):33435-42;Steinmetz和Utermann 1985,J.Biol.Chem.260(4):2258-64;Widler等人,1980,J.Biol.Chem.255(21):10464-71;Dyer等人,1995,J.Lipid Res.36(1):80-8;Sacre等人,2003,FEBS Lett.540(1-3):181-7;Weers等人,2003,Biophys.Chem.100(1-3):481-92;Gong等人,2002,J.Biol.Chem.277(33):29919-26;Ohta等人,1984,J.Biol.Chem.259(23):14888-93和美国专利6,372,886)。
在某些实施方案中,本发明的方法和组合物包括载脂蛋白的嵌合构建体的应用。例如,载脂蛋白的嵌合构建体可以由与含有缺血再灌注保护性质的载脂蛋白域结合的具有高脂质结合能力的载脂蛋白域组成。载脂蛋白的嵌合构建体可以是在载脂蛋白内包括分隔区域的构建体(即同源构建体),或者嵌合构建体可以是在不同载脂蛋白之间包括分隔区域的构建体(即异源构建体)。包含嵌合构建体的组合物也可以包括是设计为具有特定性质(例如脂质结合、受体结合、酶促、酶活化、抗氧化或还原-氧化性质)的载脂蛋白变体或片段的片段(参见Weisgraber 1990,J.LipidRes.31(8):1503-11;Hixson和Powers 1991,J.Lipid Res.32(9):1529-35;Lackner等人,1985,J.Biol.Chem.260(2):703-6;Hoeg等人,1986,J.Biol.Chem.261(9):3911-4;Gordon等人,1984,J.Biol.Chem.259(1):468-74;Powell等人,1987,Cell 50(6):831-40;Aviram等人,1998,Arterioscler.Thromb.Vasc.Biol.18(10):1617-24;Aviram等人,1998,J.Clin.Invest.101(8):1581-90;Billecke等人,2000,Drug Metab.Dispos.28(11):1335-42;Draganov等人,2000,J.Biol.Chem.275(43):33435-42;Steinmetz和Utermann 1985,J.Biol.Chem.260(4):2258-64;Widler等人,1980,J.Biol.Chem.255(21):10464-71;Dyer等人,1995,J.Lipid Res.36(1):80-8;Sorenson等人,1999,Arterioscler.Thromb.Vasc.Biol.19(9):2214-25;Palgunachari 1996,Arterioscler.Throb.Vasc.Biol.16(2):328-38:Thurberg等人,J.Biol.Chem.271(11):6062-70;Dyer 1991,J.Biol.Chem.266(23):150009-15;Hill 1998,J.Biol.Chem.273(47):30979-84)。
用于本发明的载脂蛋白也包括重组、合成、半合成或纯化的载脂蛋白。本发明采用的获得载脂蛋白或其等效物的方法在本领域中是公知的。例如,载脂蛋白可以通过例如密度梯度离心或免疫亲和色谱法从血浆或天然产物中分离,或者合成、半合成或使用本领域技术人员公知的重组DNA技术产生(参见,例如,Mulugeta等人,1998,J.Chromatogr.798(1-2):83-90;Chung等人,1980,J.Lipid Res.21(3):284-91;Cheung等人,1987,J.Lipid Res.28(8):913-29;Persson等人,1998,J.Chromatogr.711:97-109;美国专利5,059,528,5,834,596,5,876,968和5,721,114;和PCT公布WO 86/04920和WO 87/02062)。
本发明使用的载脂蛋白进一步包括载脂蛋白激动剂,如模拟ApoA-I、ApoA-I Milano(ApoA-IM)、ApoA-I Paris(ApoA-IP)、ApoA-II、ApoA-IV和ApoE活性的肽和肽类似物。例如,载脂蛋白可以是美国专利6,004,925、6,037,323、6,046,166和5,840,688中描述的载脂蛋白中的任意一种,这些专利的内容通过引用整体并入本文。
载脂蛋白激动剂肽或肽类似物可以使用本领域公知的任何肽合成技术合成或制备,包括,例如,美国专利6,004,925、6,037,323和6,046,166中所描述的技术。例如,肽可以使用固相合成技术制备,该技术最初由Merrifield(1963,J.Am.Chem.Soc.85:2149-2154)描述。其它肽合成技术可见于Bodanszky等人,Peptide Synthesis,John Wiley&Sons,2d Ed.,(1976)和其它本领域技术人员容易获得的参考文献。多肽合成技术的总结可见于Stuart和Young,Solid Phase Peptide.Synthesis,Pierce ChemicalCompany,Rockford,Ill.,(1984)。肽也可以通过如The Proteins,Vol.II,3dEd.,Neurath等人,Eds.,p.105-237,Academic Press,New York,N.Y.(1976)所述的溶液法合成。用于不同肽合成的合适的保护基在以上提到的文件中以及在McOmie,Protective Groups in Organic Chemistry,Plenum Press,New York,N.Y.(1973)中描述。本发明的肽也可以通过从例如载脂蛋白A-I的较大部分上化学或酶切割而制备。
在某些实施方案中,载脂蛋白可以是载脂蛋白的混合物。在一个实施方案中,载脂蛋白可以是均质混合物,即,单一类型的载脂蛋白。在另一个实施方案中,载脂蛋白可以是载脂蛋白的异质混合物,即,两种或多种不同载脂蛋白的混合物。载脂蛋白的异质混合物的实施方案可包括,例如,来自动物来源的载脂蛋白和来自半合成来源的载脂蛋白的混合物。在某些实施方案中,异质混合物可以包括,例如,ApoA-I和ApoA-IMilano的混合物。在某些实施方案中,异质混合物可以包括,例如,ApoA-I Milano和ApoA-I Paris的混合物。用于本发明方法和组合物的合适的混合物对于本领域技术人员来说是显然的。
如果载脂蛋白从天然来源获得,那么它可以从植物或动物来源获得。如果载脂蛋白从动物来源获得,那么载脂蛋白可以来自任何物种。在某些实施方案中,载脂蛋白可以从动物来源获得。在某些实施方案中,载脂蛋白可以从人类来源获得。在本发明的优选实施方案中,载脂蛋白来源于与施用载脂蛋白的个体相同的物种。
其它成分
在许多实施方案中,本发明的脂质颗粒中包含两亲性脂质。“两亲性脂质”是指其中脂质材料的疏水性部分定向于疏水相中而亲水部分定向于水相中的任何合适的材料。这些化合物包括但不限于磷脂、氨基脂质和鞘脂。代表性的磷脂包括鞘磷脂、磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酸、棕榈酰油酰磷脂酰胆碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、二棕榈酰磷脂酰胆碱、二油酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱或二亚油酰磷脂酰胆碱。也可以使用其它不含磷的化合物,如鞘脂、糖鞘脂家族、二酰基甘油和β-酰氧基酸。另外,这些两亲性脂质可以容易地与其它脂质如甘油三酯和固醇混合。
可编程融合的脂质也适合包含在本发明的脂质颗粒中。这样的脂质颗粒几乎没有与细胞膜融合的倾向,并且递送其有效负载直到发生给定的信号事件。这使得脂质颗粒在注射到生物体内或病变部位后能够在开始与细胞融合之前更均匀地分布。信号事件可以是,例如,pH的变化、温度、离子环境或时间。在后一情况下,融合延迟或“掩蔽(cloaking)”成分,如ATTA-脂质偶联物或PEG-脂质偶联物,可以随着时间推移简单地交换到脂质颗粒膜以外。示例性的脂质锚部分包括那些长度为大约C14至大约C22,优选大约C14至大约C16的脂质锚部分。在一些实施方案中,PEG部分,例如mPEG-NH2,具有大约1000、2000、5000、10,000、15,000或20,000道尔顿的大小。
偶联到核酸试剂的脂质颗粒也可以包括靶向部分,例如,对于细胞类型或组织特异性的靶向部分。使用多种靶向部分如配体、细胞表面受体、糖蛋白、维生素(例如核黄素)和单克隆抗体的靶向脂质颗粒以前已有记载(参见,例如,美国专利4,957,773和4,603,044)。靶向部分可以包括完整蛋白质或其片段。靶向机制通常需要靶向剂以一种使得靶向部分可用于与靶标例如细胞表面受体相互作用的方式定位于脂质颗粒的表面上。多种不同的靶向剂和方法是本领域已知的和可以获得的,包括例如在Sapra,P.和Allen,TM,Prog.Lipid Res.42(5):439-62(2003)和Abra,RM等人,J.Liposome Res.12:1-3,(2002)中所述的那些。
已经提出了应用具有亲水性聚合物链(如聚乙二醇(PEG)链)表面包层的脂质颗粒(即脂质体)进行靶向(Allen等人,Biochimica et BiophysicaActa 1237:99-108(1995);DeFrees等人,Journal of the American ChemistrySociety 118:6101-6104(1996);Blume等人,Biochimica et Biophysica Acta1149:180-184(1993);Klibanov等人,Journal of Liposome Research 2:321-334(1992);美国专利5,013556;Zalipsky,Bioconjugate Chemistry 4:296-299(1993);Zalipsky,FEBS Letters 353:71-74(1994);Zalipsky,inStealth Liposomes Chapter 9(Lasic和Martin,Eds)CRC Press,Boca RatonFl(1995)。在一种方法中,用于靶向脂质颗粒的配体如抗体连接到形成脂质颗粒的脂质的极性头部基团上。在另一方法中,靶向配体连接到形成亲水性聚合物包层的PEG链的远端(Klibanov等人,Journal ofLiposome Research 2:321-334(1992);Kirpotin等人,FEBS Letters 388:115-118(1996))。
可以使用标准方法偶联靶向剂。例如,可以使用磷脂酰乙醇胺,它可以被活化用于靶向剂的连接,或者衍生的亲脂性化合物,如脂质衍生的博来霉素。抗体靶向的脂质体可以使用例如引入蛋白A的脂质体构建(参见,Renneisen等人,J.Bio.Chem.,265:16337-16342(1990)和Leonetti等人,Proc.Natl.Acad.Sci.(USA),87:2448-2451(1990)。抗体偶联的其它实例在美国专利6,027,726中公开,其教导通过引用并入本文。靶向部分的例子也可以包括其它对细胞成分特异性的蛋白质,包括与赘生物或肿瘤相关的抗原。用作靶向部分的蛋白质可以通过共价键连接到脂质体上(参见,Heath,Covalent Attachment of Proteins to Liposomes,149Methods in Enzymology 111-119(Academic Press,Inc.1987))。其它靶向方法包括生物素-抗生物素蛋白体系。
核酸-脂质颗粒的产生
在一个实施方案中,本发明的核酸-脂质颗粒制剂通过挤出法或在线混合法产生。
挤出法(也被称为预成形法或分批法)是这样一种方法,其中首先制备空脂质体(即不含核酸),然后向空脂质体中加入核酸。通过小孔聚碳酸酯膜或不对称陶瓷膜挤出脂质体组合物导致相对明确的大小分布。一般来说,悬浮液通过膜循环一次或多次,直到达到希望的脂质体复合物大小分布。脂质体可以连续通过较小孔的膜挤出,以实现脂质体大小的逐渐减小。在某些情况下,形成的脂质-核酸组合物可以在不进行任何大小调整的情况下使用。这些方法公开在US 5,008,050;US 4,927,637;US4,737,323;Biochim Biophys Acta.1979 Oct 19;557(1):9-23;BiochimBiophys Acta.1980 Oct 2;601(3):559-7;Biochim Biophys Acta.1986 Jun 13;858(1):161-8和Biochim.Biophys.Acta 1985 812,55-65中,它们均通过引用整体并入本文。
在线混合法是这样一种方法,其中脂质和核酸被平行添加到混合室中。混合室可以是简单的T形连接器或本领域技术人员已知的任何其它混合室。这些方法公开在美国专利6,534,018和US 6,855,277、US公布2007/0042031和Pharmaceuticals Research,Vol.22,No.3,Mar.2005,p.362-372中,它们均通过引用整体并入本文。
进一步理解,可以通过本领域技术人员已知的任何方法制备本发明的制剂。
核酸-脂质颗粒的鉴定
可以用相似的方式鉴定经标准方法或无挤出方法制备的制剂。例如,一般通过目视检查来鉴定制剂。所述制剂应该是没有聚集或沉积的略带白色的半透明溶液。使用例如Malvern Zetasizer Nano ZS(Malvern,USA)通过光散射测定脂质-纳米颗粒的粒径和粒径分布。颗粒应该为20-300nm,如40-100nm大小。粒径分布应该为单峰分布。采用染料排阻试验评估制剂中总siRNA浓度以及圈闭分数。在存在或不存在破坏制剂的表面活性剂例如0.5%Triton-X100的条件下,配制的siRNA样品可以与RNA结合染料如Ribogreen(Molecular Probes)一起温育。通过将由包含表面活性剂的样品产生的信号与标准曲线相比较来测定制剂中的总siRNA。从总siRNA含量中减去“游离”siRNA含量(由不存在表面活性剂时的信号所测定)确定圈闭分数。圈闭siRNA的百分比通常>85%。在一个实施方案中,本发明的制剂被圈闭至少75%、至少80%或至少90%。
对于核酸-脂质颗粒制剂,粒径为至少30nm、至少40nm、至少50nm、至少60nm、至少70nm、至少80nm、至少90nm、至少100nm、至少110nm和至少120nm。合适的范围一般是大约至少50nm至大约至少110nm,大约至少60nm至大约至少100nm,或大约至少80nm至大约至少90nm。
核酸-脂质颗粒的制剂
LNP01
核酸-脂质颗粒合成的一个实例如下。核酸-脂质颗粒使用类脂质(lipidoid)ND98·4HCl(MW 1487)(式1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(Avanti Polar Lipids)合成。该核酸-脂质颗粒有时被称为LNP01颗粒。各自在乙醇中的原液可以如下制备:ND98,133mg/ml;胆固醇,25mg/ml,PEG-神经酰胺C16,100mg/ml。ND98、胆固醇和PEG-神经酰胺C16原液然后可以以例如42∶48∶10的摩尔比混合。混合的脂质溶液可以与水性siRNA(例如在pH 5的乙酸钠中)混合,使得最终乙醇浓度为大约35-45%,并且最终乙酸钠浓度为大约100-300mM。脂质-siRNA纳米颗粒一般在混合时自发形成。取决于希望的粒径分布,得到的纳米颗粒混合物可以通过聚碳酸酯膜(例如100nm截留值)挤出,例如使用热桶挤出机(thermobarrel extruder)如Lipex挤出机(Northern Lipids,Inc)。在一些情况下,挤出步骤可以省略。乙醇去除和同时的缓冲液交换可以通过例如透析或切向流过滤实现。缓冲液可以交换为例如大约pH 7,如大约pH 6.9、大约pH 7.0、大约pH 7.1、大约pH 7.2、大约pH 7.3或大约pH 7.4的磷酸盐缓冲液。
LNP01制剂例如在国际申请公布WO 2008/042973中记载,该申请通过引用并入本文。
另外的示例性核酸-脂质颗粒制剂在下表中给出。应当理解,表中核酸-脂质颗粒的名称并非意在限制。例如,本文使用的术语SNALP是指包含阳离子脂质DLinDMA的制剂。
包含XTC的制剂例如在2009年9月3日提交的美国临时申请61/239,686中记载,该申请通过引用并入本文。
包含MC3的制剂例如在2009年9月22日提交的美国临时申请61/244,834和2009年6月10日提交的美国临时申请61/185,800中记载,所述申请通过引用并入本文。
包含ALNY-100的制剂例如在2009年11月10日提交的国际专利申请PCT/US09/63933中记载,该申请通过引用并入本文。
另外的代表性制剂在表11和表12中给出。脂质是指阳离子脂质。
表11:通过挤出法制备的示例性核酸-脂质颗粒的组成(摩尔%)
表12:通过在线混合制备的示例性核酸-脂质颗粒的组成
阳离子脂质的合成
本发明核酸-脂质颗粒中使用的任何化合物,例如阳离子脂质等,可以通过已知的有机合成技术制备,包括实施例中更详细描述的方法。除非另外说明,所有取代基如以下所定义。
“烷基”是指含有1-24个碳原子的直链或支链的、非环状或环状的饱和脂肪族烃。代表性饱和直链烷基包括甲基、乙基、正丙基、正丁基、正戊基、正己基等;而饱和支链烷基包括异丙基、仲丁基、异丁基、叔丁基、异戊基等。代表性的饱和环烷基包括环丙基、环丁基、环戊基、环己基等;而不饱和环烷基包括环戊烯基和环己烯基等。
“烯基”是指在相邻碳原子之间含有至少一个双键的如上定义的烷基。烯基包括顺式和反式异构体。代表性的直链和支链烯基包括乙烯基、丙烯基、1-丁烯基、2-丁烯基、异丁烯基、1-戊烯基、2-戊烯基、3-甲基-1-丁烯基、2-甲基-2-丁烯基、2,3-二甲基-2-丁烯基等。
“炔基”是指在相邻碳之间含有至少一个叁键的如上定义的烷基或烯基。代表性的直链和支链炔基包括乙炔基、丙炔基、1-丁炔基、2-丁炔基、1-戊炔基、2-戊炔基、3-甲基-1-丁炔基等。
“酰基”是指其中连接点上的碳被氧代基取代的任何烷基、烯基或炔基,如下所述。例如,-C(=O)烷基、-C(=O)烯基和-C(=O)炔基是酰基。
“杂环”是指5-7元单环的或7-10元双环的杂合环,它是饱和、不饱和或芳香族的,并且含有1或2个独立选自氮、氧和硫的杂原子,并且其中氮和硫杂原子可以被任选地氧化,并且氮杂原子可以任选地被季铵化,包括其中任何上述杂环与苯环稠合的双环。杂环可以通过任何杂原子或碳原子连接。杂环包括以下定义的杂芳基。杂环包括吗啉基、吡咯烷酮基(pyrrolidinonyl)、吡咯烷基、哌啶基、哌嗪基、乙内酰脲基(hydantoinyl)、戊内酰胺基(valerolactamyl)、氧杂环丙烷基(oxiranyl)、氧杂环丁烷基(oxetanyl)、四氢呋喃基、四氢吡喃基、四氢吡啶基、四氢嘧啶基、四氢苯硫基、四氢硫代吡喃基、四氢嘧啶基、四氢苯硫基、四氢硫代吡喃基等。
术语“任选取代的烷基”、“任选取代的烯基”、“任选取代的炔基”、“任选取代的酰基”和“任选取代的杂环”的意思是,当被取代时,至少一个氢原子被取代基替代。在氧取代基(=O)的情况下,两个氢原子被替代。在这一点上,取代基包括氧、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy,其中n为0、1或2,Rx和Ry相同或不同并且独立地为氢、烷基或杂环,并且所述烷基和杂环取代基的可以各自进一步被一个或多个氧、卤素、-OH、-CN、烷基、-ORx、杂环、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy取代。
“卤素”是指氟、氯、溴和碘。
在一些实施方案中,本发明的方法可能需要使用保护基。保护基方法是本领域技术人员公知的(参见,例如,PROTECTIVE GROUPS IN ORGANICSYNTHESIS,Green,T.W.等人,Wiley-Interscience,New York City,1999)。简要地说,本发明范围内的保护基是降低或消除不希望的官能团反应性的任何基团。保护基可以被加到官能团上以在某些反应过程中掩蔽其反应性,然后被除去以暴露原官能团。在一些实施方案中,使用“醇保护基”。“醇保护基”是降低或消除醇官能团的不希望的反应性的任何基团。保护基可以利用本领域公知的技术添加和去除。
MC3的合成
DLin-M-C3-DMA(即((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯)的制备如下。将((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-醇(0.53g)、4-N,N-二甲氨基丁酸盐酸盐(0.51g)、4-N,N-二甲氨基吡啶(0.61g)和1-乙基-3-(3-二甲氨基丙基)碳二亚胺盐酸盐(0.53g)在二氯甲烷(5mL)中的溶液在室温下搅拌过夜。该溶液用稀盐酸洗涤,然后用稀碳酸氢钠水溶液洗涤。有机部分在无水硫酸镁上干燥,过滤并在旋转蒸发器(rotovap)上除去溶剂。残余物通过硅胶柱(20g),使用1-5%甲醇/二氯甲烷洗脱梯度。将含有纯化产物的级分合并起来,并且除去溶剂,产生无色油(0.54g)。进一步的描述在2009年11月10日提交的WO 2010/054401(PCT/US2009/063927)和2010年6月10日提交的美国专利申请No.12/813,448中提供。
式A脂质的合成
在一个实施方案中,本发明的核酸-脂质颗粒使用式A的阳离子脂质配制:
其中R1和R2独立为烷基、烯基或炔基,各自可以任选被取代,且R3和R4独立为低级烷基,或者R3和R4可以一起形成任选取代的杂环。在一些实施方案中,所述阳离子脂质为XTC(2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环)。通常,上述式A的脂质可以通过以下反应路线1或2制备,其中除非另外说明,所有取代基如上所定义。
路线1
脂质A(其中R1和R2独立为烷基、烯基或炔基,各自可以任选被取代,且R3和R4独立为低级烷基,或者R3和R4可以一起形成任选取代的杂环)能够按照路线1制备。酮1和溴化物2可以购买或按照本领域技术人员已知的方法制备。1和2的反应生成缩酮3。用胺4处理缩酮3生成式A的脂质。使用式5的有机盐可以将式A的脂质转化为相应的铵盐,其中X是选自卤素、氢氧根、磷酸根、硫酸根等的阴离子抗衡离子。
路线2
或者,酮1起始材料可以按照路线2制备。格氏试剂6和氰化物7可以购买或按照本领域技术人员已知的方法制备。6和7的反应生成酮1。酮1转化为相应的式A的脂质如路线1所述。
ALNY-100的合成
利用以下路线3进行缩酮519[ALNY-100]的合成:
路线3
515的合成:
在0℃和氮气氛下,在双颈RBF(1L)中,向搅拌的LiAlH4(3.74g,0.09852mol)在200ml无水THF中的悬浮液中缓慢加入514(10g,0.04926mol)在70mL THF中的溶液。添加完成后,使反应混合物升温至室温,然后加热至回流4小时。通过TLC监测反应进程。反应完全后(根据TLC),将混合物冷却至0℃,并通过小心添加饱和Na2SO4溶液淬灭。于室温下搅拌反应混合物4小时,并过滤。残余物用THF充分洗涤。混合滤液和洗液,并用400mL二噁烷和26mL浓HCl稀释,于室温下搅拌20分钟。在真空下汽提除去挥发物,得到515的盐酸盐,为白色固体。产率:7.12g。1H-NMR(DMSO,400MHz):δ=9.34(宽,2H),5.68(s,2H),3.74(m,1H),2.66-2.60(m,2H),2.50-2.45(m,5H)。
516的合成:
在250mL双颈RBF中,向搅拌的化合物515在100mL干DCM中的溶液中添加NEt3(37.2mL,0.2669mol),并在氮气氛下冷却至0℃。缓慢加入N-(苯甲氧基-羰氧基)-琥珀酰亚胺(20g,0.08007mol)在50mL干DCM中的溶液后,使反应混合物升温至室温。反应完全后(2-3小时,根据TLC),相继用1N HCl溶液(1x100mL)和饱和NaHCO3溶液(1x50mL)洗涤混合物。有机层然后用无水Na2SO4干燥,蒸发溶剂得到粗物质,将其通过硅胶柱色谱法纯化,得到为粘性物质的516。产率:11g(89%)。1H-NMR(CDCl3,400MHz):δ=7.36-7.27(m,5H),5.69(s,2H),5.12(s,2H),4.96(br.,1H),2.74(s,3H),2.60(m,2H),2.30-2.25(m,2H).LC-MS[M+H]-232.3(96.94%)。
517A和517B的合成:
在单颈500mL RBF中,将环戊烯516(5g,0.02164mol)溶解在220mL丙酮和水(10∶1)的溶液中,并在室温下向其中加入N-甲基吗啉-N-氧化物(7.6g,0.06492mol),随后添加4.2mL的7.6%OsO4(0.275g,0.00108mol)的叔丁醇溶液。反应完全后(约3小时),通过添加固体Na2SO3淬灭混合物,将得到的混合物在室温下搅拌1.5小时。反应混合物用DCM(300mL)稀释,并用水(2x100mL)洗涤,随后用饱和NaHCO3(1x50mL)溶液、水(1x30mL)洗涤,最后用盐水(1x50mL)洗涤。有机相用无水Na2SO4干燥,并在真空中除去溶剂。对粗物质进行硅胶柱色谱纯化,得到非对映体的混合物,其通过制备型HPLC将其拆分。产率:-6g粗品
517A-峰-1(白色固体),5.13g(96%)。1H-NMR(DMSO,400MHz):δ=7.39-7.31(m,5H),5.04(s,2H),4.78-4.73(m,1H),4.48-4.47(d,2H),3.94-3.93(m,2H),2.71(s,3H),1.72-1.67(m,4H)。LC-MS-[M+H]-266.3,[M+NH4+]-283.5存在,HPLC-97.86%。立体化学通过X-射线证实。
518的合成:
使用类似于合成化合物505所述的程序,获得化合物518(1.2g,41%),其为无色油。1H-NMR(CDCl3,400MHz):δ=7.35-7.33(m,4H),7.30-7.27(m,1H),5.37-5.27(m,8H),5.12(s,2H),4.75(m,1H),4.58-4.57(m,2H),2.78-2.74(m,7H),2.06-2.00(m,8H),1.96-1.91(m,2H),1.62(m,4H),1.48(m,2H),1.37-1.25(br m,36H),0.87(m,6H)。HPLC-98.65%。
合成化合物519的一般程序:
将化合物518(1当量)的己烷(15mL)溶液逐滴加入到冰冷的LAH在THF中的溶液(1M,2当量)中。添加完成后,将混合物在40℃下加热0.5小时,然后再在冰浴上冷却。该混合物用饱和Na2SO4水溶液小心水解,然后通过硅藻土(celite)过滤,并稀释为油。柱色谱法得到纯519(1.3g,68%),其作为白色油状物获得。13C NMR=130.2,130.1(x2),127.9(x3),112.3,79.3,64.4,44.7,38.3,35.4,31.5,29.9(x2),29.7,29.6(x2),29.5(x3),29.3(x2),27.2(x3),25.6,24.5,23.3,22.6,14.1;电喷射MS(+ve):C44H80NO2的分子量(M+H)+计算为654.6,实测为654.6。
治疗剂-脂质颗粒组合物和制剂
本发明包括包含本发明的脂质颗粒和活性剂的组合物,其中该活性剂与脂质颗粒结合。在特定实施方案中,活性剂是治疗剂。在特定实施方案中,活性剂被包封在脂质颗粒的水性内部中。在其它实施方案中,活性剂存在于脂质颗粒的一个或多个脂质层内。在其它实施方案中,活性剂与脂质颗粒的外部或内部脂质表面结合。
本文使用的“完全包封”表示颗粒中的核酸在暴露于显著降解游离DNA的血清或核酸酶试验后不显著降解。在通常降解100%游离核酸的处理下,完全包封的体系中优选少于25%的颗粒核酸被降解,更优选少于10%,最优选少于5%的颗粒核酸被降解。或者,完全包封可以通过Oligreen试验确定。Oligreen是一种超灵敏的荧光核酸染料(可从Invitrogen Corporation,Carlsbad,CA获得),用于定量溶液中的寡核苷酸和单链DNA。完全包封也表示颗粒是血清稳定的,即,它们在体内施用后不会快速分解为其成分部分。
本文使用的活性剂包括能够对细胞、组织、器官或受试者发挥希望的效应的任何分子或化合物。这类效应可以是例如生物学、生理学或美容性效应。活性剂可以是任何类型的分子或化合物,包括例如核酸;肽和多肽,包括例如抗体如多克隆抗体、单克隆抗体、抗体片段,人源化抗体、重组抗体、重组人抗体和PrimatizedTM抗体;细胞因子;生长因子;细胞凋亡因子;分化诱导因子;细胞表面受体及其配体;激素;和小分子,包括小的有机分子或化合物。
在一个实施方案中,活性剂是治疗剂,或其盐或衍生物。治疗剂衍生物可以本身是治疗有效的,或者它们可以是前药,在进一步修饰后成为活性的。因此,在一个实施方案中,治疗剂衍生物与未修饰的试剂相比保留一些或全部治疗活性,而在另一个实施方案中,治疗剂衍生物缺乏治疗活性。
在各种实施方案中,治疗剂包括任何治疗有效的试剂或药物,如抗炎化合物、抗抑郁药、刺激物、止痛剂、抗生素、避孕药物、解热药、血管扩张剂、抗血管生成剂、细胞管剂(cytovascular agents)、信号转导抑制剂、心血管药物,例如抗心律不齐药、血管收缩药、激素和固醇。
在某些实施方案中,治疗剂是肿瘤学药物,也可被称为抗肿瘤药、抗癌药、肿瘤药物、抗肿瘤剂等。根据本发明可以使用的肿瘤学药物的例子包括但不限于亚德里亚霉素、爱克兰、别嘌呤醇、六甲蜜胺、氨磷汀、阿那曲唑、araC、三氧化二砷、咪唑硫嘌呤、贝沙罗汀、biCNU、博来霉素、静脉注射白消安、口服白消安、卡培他滨(Xeloda)、卡铂、卡莫司汀、CCNU、塞来昔布、苯丁酸氮芥、顺铂、克拉屈滨、环孢菌素A、阿糖胞苷、胞嘧啶阿糖核苷、柔红霉素、环磷酰胺、正定霉素、地塞米松、右雷佐生(dexrazoxane)、多西他赛、多柔比星、阿霉素、DTIC、表柔比星、雌氮芥、磷酸依托泊苷、依托泊苷和VP-16、依西美坦、FK506、氟达拉滨、氟尿嘧啶、5-FU、吉西他滨(Gemzar)、吉妥珠单抗-奥佐米星、醋酸戈舍瑞林、羟脲(hydrea)、羟基脲、伊达比星、异环磷酰胺、甲磺酸伊马替尼、干扰素、伊立替康(Camptostar、CPT-111)、来曲唑、甲酰四氢叶酸、乐司他丁(leustatin)、亮丙瑞林、左旋咪唑、litretinoin、甲地孕酮(megastrol)、美法仑、L-PAM、巯乙磺酸钠(mesna)、甲氨蝶呤、甲氧沙林、光辉霉素、丝裂霉素、米托蒽醌、氮芥、紫杉醇、帕米膦酸、培加酶、喷司他丁、卟吩姆钠、强的松、美罗华(rituxan)、链脲菌素、STI-571、他莫昔芬、泰索帝、替莫唑胺(temozolamide)、替尼泊苷、VM-26、托泊替康(Hycamtin)、托瑞米芬、维甲酸、ATRA、戊柔比星、长春碱(velban)、长春花碱、长春新碱、VP16和长春瑞滨。根据本发明可使用的肿瘤学药物的其它例子是玫瑰树碱(ellipticin)和玫瑰树碱类似物或衍生物、埃博霉素(epothilone)、细胞内激酶抑制剂和喜树碱。
其它制剂
乳剂
本发明的组合物可以制备和配制为乳剂。乳剂一般是一种液体以直径通常超过0.1μm的小滴的形式分散在另一种液体中的非均相体系(Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199;Rosoff,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,Volume 1,p.245;Block inPharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 2,p.335;Higuchi等人,inRemington′s Pharmaceutical Sciences,Mack Publishing Co.,Easton,Pa.,1985,p.301)。乳剂通常是两相体系,包含彼此紧密混合并分散的两种不能混溶的液相。通常,乳剂可以是油包水(w/o)或水包油(o/w)种类。当水相被细分为小滴并分散到大团的油相中时,得到的组合物被称为油包水型(w/o)乳剂。或者,当油相被细分为小滴并分散到大团的水相中时,得到的组合物被称为水包油型(o/w)乳剂。乳剂除分散相以外还可以含有另外的成分,且活性药物可以作为溶液存在于水相、油相中或本身作为单独的相。需要时乳剂中也可以存在药物赋形剂如乳化剂、稳定剂、染料和抗氧化剂。药用乳剂也可以是由两个以上的相组成的多重乳剂,例如,在油包水包油(o/w/o)和水包油包水(w/o/w)乳剂的情况中。这样复杂的制剂通常具有简单的二元乳剂所不具有的某些优点。其中o/w乳剂的单个小油滴包裹小水滴的多重乳剂构成w/o/w乳剂。同样,在连续油相中稳定的小水球中包裹小油滴的体系提供o/w/o乳剂。
乳剂的特征在于具有极低的或没有热力学稳定性。通常,利用乳化剂或制剂的粘性,乳剂的分散相或不连续相良好地分散在外部或连续相中,并且保持在这种形式中。乳剂的任一相可以是半固体或固体,如乳剂型软膏基质和乳膏就是这样。稳定乳剂的其它手段需要使用可以引入乳剂任一相中的乳化剂。乳化剂可以大致被分为四类:合成表面活性剂、天然存在的乳化剂、吸收基质和精细分散的固体(Idson,in PharmaceuticalDosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199)。
合成表面活性剂也被称为表面活性试剂,已广泛应用于乳剂的配制中,并且已在文献中综述(Rieger,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.285;Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),Marcel Dekker,Inc.,New York,N.Y.,1988,volume1,p.199)。表面活性剂一般是两亲性的,并且包含亲水性和疏水性部分。表面活性剂的亲水性与疏水性性质之比被称为亲水/亲油平衡(HLB),且是在制剂的制备中分类和选择表面活性剂的一个有价值的工具。表面活性剂可以根据亲水基团的性质被分为不同的类别:非离子型、阴离子型、阳离子型和两性型(Rieger,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume1,p.285)。
在乳剂制剂中使用的天然存在的乳化剂包括羊毛脂、蜂蜡、磷脂、卵磷脂和阿拉伯胶。吸收基质具有亲水性,以使得它们能够吸取水以形成w/o乳剂而仍保持其半固体稠度,如无水羊毛脂和亲水矿脂。细碎的固体也已用作良好的乳化剂,特别是与表面活性剂组合和在粘性制剂中。它们包括极性无机固体,如重金属氢氧化物,非溶胀粘土如膨润土、硅镁土、锂蒙脱石、高岭土、蒙脱土、胶体硅酸铝和胶体硅酸镁铝,色素和非极性固体如碳或三硬脂酸甘油酯。
多种非乳化材料也可以包含在乳剂制剂中并且形成乳剂的性质。它们包括脂肪、油、蜡、脂肪酸、脂肪醇、脂肪酯、湿润剂、亲水胶体、防腐剂和抗氧化剂(Block,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume1,p.335;Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199)。
亲水胶体或水状胶体包括天然存在的树胶和合成聚合物如多糖(例如,阿拉伯胶、琼脂、藻酸、角叉菜胶、瓜尔胶、刺梧桐树胶和黄蓍胶)、纤维素衍生物(例如,羧甲基纤维素和羧丙基纤维素)和合成聚合物(例如,卡波姆、纤维素醚和羧乙烯基聚合物)。它们在水中分散或溶胀以形成胶体溶液,其通过在分散相小滴周围形成强界面膜以及通过提高外相的粘性来稳定乳剂。
由于乳剂常常含有多种可容易地支持微生物生长的成分(诸如碳水化合物、蛋白质、固醇和磷脂),这些制剂中常常加入防腐剂。乳剂制剂中包含的常用防腐剂包括尼泊金甲酯、尼泊金丙酯、季铵盐、苯扎氯铵、对羟基苯甲酸的酯和硼酸。通常也向乳剂制剂中添加抗氧化剂以防止制剂变质。使用的抗氧化剂可以是自由基清除剂如生育酚、烷基没食子酸酯、丁基化羟基茴香醚、丁基化羟基甲苯,或还原剂如抗坏血酸和焦亚硫酸钠,和抗氧化剂增效剂如柠檬酸、酒石酸和卵磷脂。
乳剂制剂经皮肤、口腔和肠胃外途径的施用及其制备方法已经在文献中综述(Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199)。用于经口递送的乳剂制剂已经非常广泛地使用,由于配制方便性并且吸收和生物利用度方面的效力(Rosoff,in Pharmaceutical DosageForms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.245;Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199)。矿物油基质轻泻剂、油溶性维生素和高脂营养制剂是常常作为o/w乳剂口服施用的材料。
在本发明的一个实施方案中,dsRNA和核酸的组合物被配制为微乳剂。微乳剂可被定义为水、油和两亲性物质的体系,它是单一光学各向同性和热力学稳定的液体溶液(Rosoff,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.245)。微乳剂一般是如下制备的体系:首先将油分散在表面活性剂水溶液中,然后加入足量的第四成分,通常是中等链长的醇,以形成透明体系。因此,微乳剂也被描述为两种不可混溶的液体通过表面活性的分子界面膜来稳定的热力学稳定的、各向同性的透明分散体(Leung和Shah,in:Controlled Release of Drugs:Polymers and AggregateSystems,Rosoff,M.,Ed.,1989,VCH Publishers,New York,185-215页)。微乳剂通常通过3-5种成分的组合制备,该成分包括油、水、表面活性剂、助表面活性剂和电解质。微乳剂是油包水型(w/o)还是水包油型(o/w)取决于所用的油和表面活性剂的性质和表面活性剂分子的极性头部和烃尾部的结构和几何包装(Schott,in Remington′s Pharmaceutical Sciences,Mack Publishing Co.,Easton,Pa.,1985,p.271)。
利用相图的现象学研究方法已经广泛研究,并且本领域技术人员获得了关于如何配制微乳剂的全面知识(Rosoff,in Pharmaceutical DosageForms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,NewYork,N.Y.,volume 1,p.245;Block,in Pharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.335)。与传统乳剂相比,微乳剂具有在自发形成的热力学稳定的小滴制剂中增溶水不溶性药物的优点。
在微乳剂制备中使用的表面活性剂包括但不限于离子型表面活性剂、非离子型表面活性剂、Brij 96、聚氧乙烯油基醚、聚甘油脂肪酸酯、四甘油单月桂酸酯(ML310)、四甘油单油酸酯(MO310)、六甘油单油酸酯(PO310)、六甘油五油酸酯(PO500)、十甘油单癸酸酯(MCA750)、十甘油单油酸酯(MO750)、十甘油倍半油酸酯(sequioleate)(SO750)、十甘油十油酸酯(DAO750),它们单独使用或与助表面活性剂结合使用。助表面活性剂通常是短链醇如乙醇、1-丙醇和1-丁醇,用来通过渗透到表面活性剂膜内并因此生成无序膜来提高界面流动性,这是由于在表面活性剂分子之间产生了孔隙空间。然而,微乳剂可以不使用助表面活性剂制备,并且不含醇的自乳化微乳剂体系是本领域已知的。水相一般可以是但不限于水、药物的水溶液、甘油、PEG300、PEG400、聚甘油、丙二醇和乙二醇的衍生物。油相可以包括但不限于诸如Captex 300、Captex 355、Capmul MCM、脂肪酸酯、中链(C8-C12)单、二和三甘油酯、聚氧乙基化甘油基脂肪酸酯、脂肪醇、聚乙二醇化(polyglycolized)甘油酯、饱和聚乙二醇化C8-C10甘油酯、植物油和硅油的物质。
从药物增溶和增强药物吸收的观点出发,微乳剂是特别有利的。已经提出基于脂质的微乳剂(o/w和w/o)可增强药物(包括肽)的口服生物利用度(Constantinides等人,Pharmaceutical Research,1994,11,1385-1390;Ritschel,Meth.Find.Exp.Clin.Pharmacol.,1993,13,205)。微乳剂具有改善药物增溶、保护药物不被酶水解、由于表面活性剂诱导的膜流动性和通透性的改变而可能增强药物吸收、易于制备、固体剂型易于口服、改善临床效果和降低毒性等优点(Constantinides等人,PharmaceuticalResearch,1994,11,1385;Ho等人,J.Pharm.Sci.,1996,85,138-143)。微乳剂通常可以在其成分在环境温度下混合时自发形成。在配制不耐热的药物、肽或dsRNA时,这可能是特别有利的。微乳剂在化妆品和制药应用中对于活性成分的透皮递送也是有效的。预期本发明的微乳剂组合物和制剂将有利于提高dsRNA和核酸从胃肠道的系统吸收,以及改善dsRNA和核酸的局部细胞摄取。
本发明的微乳剂也可以含有其它成分和添加剂如失水山梨糖醇单硬脂酸酯(Grill 3)、Labrasol和渗透增强剂以改善制剂的性质和增强本发明dsRNA和核酸的吸收。用于本发明微乳剂的渗透增强剂可以归类为属于以下5大类之一:表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合非表面活性剂(Lee等人,Critical Reviews in Therapeutic Drug CarrierSystems,1991,p.92)。这些类别中的每一个都已在上面讨论。
渗透增强剂
在一个实施方案中,本发明使用多种渗透增强剂来实现核酸,特别是dsRNA,向动物皮肤的有效递送。大多数药物以离子化和非离子化形式存在于溶液中。然而,通常仅有脂溶性或亲脂性药物容易穿过细胞膜。已经发现如果用渗透增强剂处理待穿过的膜,甚至非亲脂性药物也可以穿过细胞膜。除了帮助非亲脂性药物在细胞膜中的扩散以外,渗透增强剂也增强亲脂性药物的渗透性。
渗透增强剂可以被归类为属于以下5大类之一:即表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合非表面活性剂(Lee等人,Critical Reviewsin Therapeutic Drug Carrier Systems,1991,p.92)。以上提到的各渗透增强剂的类别都在下面更详细地描述。
表面活性剂:对于本发明,表面活性剂(或″表面活性试剂″)是这样一种化学体:当其溶解在水性溶液中时降低溶液的表面张力或水溶液与另一液体之间的界面张力,结果dsRNA通过粘膜的吸收得到增强。除了胆汁盐和脂肪酸外,这些渗透增强剂还包括,例如,十二烷基硫酸钠、聚氧乙烯-9-月桂基醚和聚氧乙烯-20-鲸蜡基醚)(Lee等人,CriticalReviews in Therapeutic Drug Carrier Systems,1991,p.92);和全氟化学乳剂,如FC-43。(Takahashi等人,J.Pharm.Pharmacol.,1988,40,252)。
脂肪酸:可用作渗透增强剂的各种脂肪酸及其衍生物包括,例如,油酸、月桂酸、癸酸(正癸酸)、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、油酸单甘油酯(1-单油酰-外消旋-甘油)、甘油二月桂酸酯、辛酸、花生四烯酸、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、其C1-10烷基酯(例如甲酯、异丙酯和叔丁酯)及其单和二甘油酯(即油酸酯、月桂酸酯、癸酸酯、肉豆蔻酸酯、棕榈酸酯、硬脂酸酯、亚油酸酯等)(Lee等人,Critical Reviews inTherapeutic Drug Carrier Systems,1991,p.92;Muranishi,Critical Reviewsin Therapeutic Drug Carrier Systems,1990,7,1-33;El Hariri等人,J.Pharm.Pharmacol.,1992,44,651-654)。
胆汁盐:胆汁的生理作用包括促进脂质和脂溶性维生素的分散和吸收(Brunton,Chapter 38 in:Goodman&Gilman′s The PharmacologicalBasis of Therapeutics,9th Ed.,Hardman等人Eds.,McGraw-Hill,NewYork,1996,pp.934-935)。各种天然胆汁盐及其合成衍生物用作渗透增强剂。因此术语″胆汁盐″包括胆汁的任何天然存在的成分以及任何其合成衍生物。合适的胆汁盐包括,例如,胆酸(或其药学上可接受的钠盐,胆酸钠)、去氢胆酸(去氢胆酸钠)、脱氧胆酸(脱氧胆酸钠)、glucholicacid(glucholate钠)、甘氨胆酸(甘氨胆酸钠)、甘氨脱氧胆酸(甘氨脱氧胆酸钠)、牛磺胆酸(牛磺胆酸钠)、牛磺脱氧胆酸(牛磺脱氧胆酸钠)、鹅脱氧胆酸(鹅脱氧胆酸钠)、熊脱氧胆酸(UDCA)、牛磺-24,25-二氢-夫西地酸钠(STDHF)、甘油二氢夫西地酸钠和聚氧乙烯-9-月桂基醚(POE)(Lee等人,Critical Reviews in Therapeutic Drug Carrier Systems,1991,page 92;Swinyard,Chapter 39 In:Remington′s Pharmaceutical Sciences,18th Ed.,Gennaro,ed.,Mack Publishing Co.,Easton,Pa.,1990,pages 782-783;Muranishi,Critical Reviews in Therapeutic Drug Carrier Systems,1990,7,1-33;Yamamoto等人,J.Pharm.Exp.Ther.,1992,263,25;Yamashita等人,J.Pharm.Sci.,1990,79,579-583)。
螯合剂:如结合本发明使用的螯合剂可以被定义为通过与溶液中的金属离子形成络合物除去其中的金属离子的化合物,结果dsRNA通过粘膜的吸收得到增强。关于其在本发明中作为渗透增强剂的应用,螯合剂具有也可以作为DNase抑制剂的额外的优点,因此大多数鉴定的DNA核酸酶需要二价金属离子进行催化并且因此被螯合剂抑制(Jarrett,J.Chromatogr.,1993,618,315-339)。合适的螯合剂包括但不限于乙二胺四乙酸(EDTA)二钠、柠檬酸、水杨酸盐(例如水杨酸钠、5-甲氧基水杨酸盐和高香草酸盐(homovanilate))、胶原的N-酰基衍生物、月桂醇聚醚(laureth-9)和β-二酮的N-氧基酰基衍生物(烯胺)(Lee等人,CriticalReviews in Therapeutic Drug Carrier Systems,1991,92页;Muranishi,Critical Reviews in Therapeutic Drug Carrier Systems,1990,7,1-33;Buur等人,J.Control Rel.,1990,14,43-51)。
非螯合非表面活性剂:本文使用的非螯合非表面活性剂渗透增强化合物可以被定义为没有显示明显的螯合剂或表面活性剂活性但是可增强dsRNA通过消化粘膜的吸收的化合物(Muranishi,Critical Reviews inTherapeutic Drug Carrier Systems,1990,7,1-33)。这类渗透增强剂包括,例如,不饱和环脲、1-烷基-和1-烯基氮杂环-烷酮衍生物(Lee等人,CriticalReviews in Therapeutic Drug Carrier Systems,1991,92页);和非甾体抗炎药,如双氯芬酸钠、吲哚美辛和苯基丁氮酮(Yamashita等人,J.Pharm.Pharmacol.,1987,39,621-626)。
在细胞水平上增强dsRNA摄取的试剂也可以添加到本发明的药物组合物和其它组合物中。例如,阳离子脂质(如lipofectin(Junichi等人,美国专利5,705,188))、阳离子甘油衍生物和聚阳离子分子(如聚赖氨酸)(Lollo等人,PCT申请WO 97/30731)也已知其可增强dsRNA的细胞摄取。
可以利用其它试剂增强施用的核酸的渗透,包括二醇类如乙二醇和丙二醇、吡咯类如2-吡咯、氮酮类(azone)和萜烯类如柠檬烯和薄荷酮。
载体
可在药学上可接受的载体或稀释剂中配制本发明的dsRNA。所述“药学上可接受的载体”(本文中也称为“赋形剂”)为药学上可接受的溶剂、悬浮剂或任意其它药学上惰性的媒介。药学上可接受的载体可以是液体或固体,并可根据所计划的施用方式进行选择以提供所需的体积、稠度和其它相关的输送性质和化学性质。通常的药学上可接受的载体包括但不限于例如水、盐溶液、粘合剂(例如,聚乙烯吡咯烷酮或羟丙基甲基纤维素)、填料(例如,乳糖和其它糖、明胶或硫酸钙)、润滑剂(例如,淀粉、聚乙二醇或乙酸钠)、崩解剂(例如,淀粉或淀粉乙醇酸钠)和湿润剂(例如,十二烷基硫酸钠)。
本发明的某些组合物也在制剂中引入载体化合物。本文使用的“载体化合物”或“载体(carrier)”可以指为惰性(即本身不具有生物活性)但是被体内过程识别为核酸的核酸或其类似物,所述体内过程例如通过降解生物活性核酸或促进其从循环中清除而降低具有生物活性的核酸的生物利用度。核酸和载体化合物(后者一般过量)的共施用可导致肝脏、肾脏或其它循环外储库中回收的核酸量明显减少,这可能是由于载体化合物与核酸之间对共同受体的竞争。例如,当与聚肌苷酸、硫酸葡聚糖、聚肌胞苷酸或4-乙酰氨基-4′-异硫氰基-均二苯乙烯-2,2′-二磺酸共施用时,部分硫代磷酸dsRNA在肝组织中的回收可减少(Miyao等人,DsRNA Res.Dev.,1995,5,115-121;Takakura等人,DsRNA&Nucl.Acid Drug Dev.,1996,6,177-183)。
赋形剂
与载体化合物不同,“药物载体”或“赋形剂”是用于向动物递送一种或多种核酸的药学上可接受的溶剂、悬浮剂或任何其它药理学惰性的媒介。赋形剂可以是液体或固体,并且根据所计划的施用方式进行选择,以在与给定药物组合物的核酸和其它成分结合时提供所需的体积、稠度等。典型的药物载体包括但不限于例如粘合剂(例如,预胶化玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素等)、填料(例如,乳糖和其它糖、微晶纤维素、果胶、明胶、硫酸钙、乙基纤维素、聚丙烯酸酯或磷酸氢钙等)、润滑剂(例如,硬脂酸镁、滑石、硅石、胶体二氧化硅、硬脂酸、金属硬脂酸盐、氢化植物油、玉米淀粉、聚乙二醇、苯甲酸钠、乙酸钠等)、崩解剂(例如,淀粉、淀粉乙醇酸钠等)和湿润剂(例如,十二烷基硫酸钠等)。
适用于非肠胃外施用并且不与核酸发生有害反应的药学上可接受的有机或无机赋形剂也可以用于配制本发明的组合物。合适的药学上可接受的载体包括但不限于水、盐溶液、醇类、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
用于局部施用核酸的制剂可以包括无菌和非灭菌水溶液、在诸如醇的常用溶剂中的非水性溶液或核酸在液体或固体油基质中的溶液。该溶液也可含有缓冲剂、稀释剂和其它合适的添加剂。可以使用适用于非肠胃外施用并且不与核酸发生有害反应的药学上可接受的有机或无机赋形剂。
合适的药学上可接受的赋形剂包括但不限于水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
其它成分
本发明的组合物另外可含有其它在药物组合物中常见的辅助成分,其包含的量为本领域确认的使用水平。因此,例如,组合物可含有附加的相容的药学活性材料,例如,止痒剂、收敛剂、局部麻醉剂或抗炎剂;或者可含有其它用于物理配制本发明组合物各种剂型的材料,如染料、矫味剂、防腐剂、抗氧化剂、遮光剂、增稠剂和稳定剂。然而,这些材料在添加时应当不会不适当地干扰本发明组合物中的成分的生物活性。制剂可以被灭菌,并且若需要的话可与不会与制剂中的核酸发生有害相互作用的辅助剂混合,所述辅助剂例如是,润滑剂、防腐剂、稳定剂、湿润剂、乳化剂、用于影响渗透压的盐、缓冲剂、着色剂、矫味剂和/或芳香物质等。
水性悬浮液可以含有提高悬浮液粘度的物质,包括,例如,羧甲基纤维素钠、山梨糖醇和/或葡聚糖。悬浮液也可含有稳定剂。
联合治疗
一方面,本发明的组合物可用于联合治疗。术语″联合治疗″包括进一步联合其它生物活性成分(例如但不限于第二和不同的抗肿瘤剂)和非药物治疗(例如但不限于手术或放射治疗)向受试者施用化合物。例如,本发明的化合物可以与其它药理活性化合物,优选与能够增强本发明化合物效果的化合物联用。本发明的化合物可以与其它药物治疗同时(作为单一制剂或单独的制剂)或顺序施用。通常,联合治疗设想在一个治疗周期或疗程期间施用两种或多种药物。
在本发明的一个方面,所述化合物可以与一种或多种调节与各种疾病状态有关的蛋白激酶的单独药剂联合施用。这样的激酶的例子可包括但不限于:丝氨酸/苏氨酸特异性激酶、受体酪氨酸特异性激酶和非受体酪氨酸特异性激酶。丝氨酸/苏氨酸激酶包括有丝分裂原激活的蛋白激酶(MAPK)、减数分裂特异性激酶(MEK)、RAF和极光激酶。受体激酶家族的例子包括表皮生长因子受体(EGFR)(例如HER2/neu、HER3、HER4、ErbB、ErbB2、ErbB3、ErbB4、Xmrk、DER、Let23);成纤维细胞生长因子(FGF)受体(例如FGF-R1、GFF-R2/BEK/CEK3、FGF-R3/CEK2、FGF-R4/TKF、KGF-R);肝细胞生长/离散因子受体(HGFR)(例如MET、RON、SEA、SEX);胰岛素受体(例如IGFI-R);Eph(例如CEK5、CEK8、EBK、ECK、EEK、EHK-I、EHK-2、ELK、EPH、ERK、HEK、MDK2、MDK5、SEK);AxI(例如Mer/Nyk、Rse);RET;和血小板衍生生长因子受体(PDGFR)(例如PDGFα-R、PDGβ-R、CSF1-R/FMS、SCF-R/C-KIT、VEGF-R/FLT、NEK/FLK1、FLT3/FLK2/STK-1)。非受体酪氨酸激酶家族包括但不限于BCR-ABL(例如p43abl、ARG);BTK(例如ITK/EMT、TEC);CSK、FAK、FPS、JAK、SRC、BMX、FER、CDK和SYK。
在本发明的另一方面,所述化合物可以与一种或多种调节非激酶生物靶标或过程的药物联合施用。这样的靶标包括组蛋白去乙酰化酶(HDAC)、DNA甲基转移酶(DNMT)、热休克蛋白(例如HSP90)和蛋白体。
在一个实施方案中,所述化合物可以与抑制一个或多个生物靶标的抗肿瘤剂(例如小分子、单克隆抗体、反义RNA和融合蛋白)联合,所述抗肿瘤剂如Zolinza、特罗凯、易瑞沙、Tykerb、格列卫、索坦(Sutent)、Sprycel、Nexavar、索拉非尼、CNF2024、RG108、BMS387032、Affmitak、Avastin、赫赛汀(Herceptin)、埃比特斯(Erbitux)、AG24322、PD325901、ZD6474、PD 184322、Obatodax、ABT737和AEE788。这样的组合可能比任何单独使用的药物的疗效更强,并且可能防止或延迟抗性突变变体的出现。
在某些优选实施方案中,本发明的化合物与化疗剂联合施用。化疗剂包括肿瘤学领域中众多的治疗性处置。这些药剂在疾病的不同阶段施用以缩小肿瘤、破坏手术后剩下的癌细胞、诱导缓解、维持缓解和/或减轻与癌症或其治疗有关的症状。这些药剂的例子包括但不限于烷化剂如芥子气衍生物(氮芥、环磷酰胺、苯丁酸氮芥、美法仑、异环磷酰胺)、乙烯亚胺类(塞替派、六甲基黑色素)、烷基磺酸酯(白消安)、肼和三嗪类(六甲蜜胺、丙卡巴肼、达卡巴嗪和替莫唑胺)、亚硝基脲类(卡莫司汀、洛莫司汀和链佐星)、异环磷酰胺和金属盐(卡铂、顺铂和奥沙利铂);植物生物碱类如鬼臼毒素类(依托泊苷和替尼泊苷(Tenisopide))、紫杉烷类(紫杉醇和多西紫杉醇)、长春花生物碱类(长春新碱、长春碱、长春地辛和长春瑞滨)和喜树碱类似物(伊立替康和托泊替康);抗肿瘤抗生素类如色霉素类(更生霉素和光辉霉素)、蒽环类(多柔比星、柔红霉素、表柔比星、米托蒽醌、戊柔比星和伊达比星)和杂类抗生素如丝裂霉素、放线菌素和博来霉素;抗代谢物如叶酸拮抗剂(甲氨蝶呤、培美曲塞、雷替曲塞、氨基蝶呤)、嘧啶拮抗剂(5-氟脲嘧啶、氟尿苷、阿糖胞苷、卡培他滨和吉西他滨)、嘌呤拮抗剂(6-巯基嘌呤和6-硫鸟嘌呤)和腺苷脱氨酶抑制剂(克拉屈滨、氟达拉滨、巯基嘌呤、氯法拉滨、硫鸟嘌呤、奈拉滨和喷司他丁);拓扑异构酶抑制剂如拓扑异构酶I抑制剂(伊立替康、托泊替康)和拓扑异构酶II抑制剂(安吖啶、依托泊苷、磷酸依托泊苷、替尼泊苷);单克隆抗体(阿仑珠单抗、吉妥珠单抗奥佐米星、利妥昔单抗、曲妥珠单抗、替伊莫单抗(Ibritumomab Tioxetan)、西妥昔单抗、帕尼单抗、托西莫单抗、贝伐珠单抗);和杂类抗肿瘤药如核糖核苷酸还原酶抑制剂(羟基脲);肾上腺皮质类固醇抑制剂(米托坦);酶(天冬酰胺酶和培门冬酶);抗微管剂(雌莫司汀);和维甲酸类(贝沙罗汀、异维甲酸,维甲酸(ATRA))。在某些优选实施方案中,本发明的化合物与化学保护剂联合施用。化学保护剂用来保护身体或最小化化学治疗的副作用。这些药物的例子包括但不限于氨磷汀、美司钠和右雷佐生。
在本发明的一方面,所述化合物与放射治疗联合施用。通常在内部(靠近癌症部位植入放射性物质)或外部由使用光子(x-射线或γ-射线)或粒子辐射的机器发送辐射。在联合治疗还包括放射治疗时,放射治疗可以在任何合适的时间进行,只要治疗剂和放射治疗联合的共同作用获得有益效果。例如,在合适的情况下,当从治疗剂施用中暂时取消放射治疗时,也许数天乃至数周,仍然获得有益效果。
应当理解,本发明的化合物可以与免疫治疗剂联用。一种免疫治疗形式是通过在远离肿瘤的部位施用疫苗组合物产生宿主来源的活性全身性肿瘤特异性免疫应答。已经提到各种类型的疫苗,包括分离的肿瘤-抗原疫苗和抗独特型疫苗。另一种方法是使用来自待治疗受试者的肿瘤细胞,或这类细胞的衍生物(由Schirrmacher等人(1995)J.Cancer Res.Clin.Oncol.121:487综述)。在美国专利5,484,596中,Hanna Jr.等人请求保护一种治疗可切除的癌以防止复发或转移的方法,包括手术切除肿瘤、将胶原酶分散到细胞中、辐射细胞和给患者接种至少三个连续剂量的大约107个细胞。
应当理解,本发明的化合物可以有利地与一种或多种辅助治疗剂一起使用。合适的辅助治疗剂的例子包括类固醇类,如皮质类固醇类(安西奈德、倍他米松、二丙酸倍他米松、戊酸倍他米松、布地奈德、氯倍他索、醋酸氯倍他索、丁酸氯倍他索、17-丙酸氯倍他索、可的松、地夫可特、去羟米松、戊酸二氟米松、地塞米松、地塞米松磷酸钠、地奈德、糠酸盐、醋酸氟轻松、氟轻松、哈西缩松、氢化可的松、丁酸氢化可的松、氢化可的松琥珀酸钠、戊酸氢化可的松、甲基泼尼松龙、莫米松、泼尼卡酯、泼尼松龙、曲安西龙、曲安奈德和丙酸卤倍他索);5HTi激动剂,如曲坦(triptan)(例如舒马普坦或那拉曲坦);腺苷Al激动剂;EP配体;NMDA调节剂,如甘氨酸拮抗剂;钠通道阻滞剂(例如拉莫三嗪);物质P拮抗剂(例如NKi拮抗剂);大麻素;醋氨酚或非那西丁;5-脂氧合酶抑制剂;白三烯受体拮抗剂;DMARD(例如甲氨蝶呤);加巴喷丁和相关化合物;三环抗抑郁药(例如阿米替林);神经元稳定抗癫痫药;单胺能摄取抑制剂(例如文拉法辛);基质金属蛋白酶抑制剂;一氧化氮合酶(NOS)抑制剂,如iNOS的或nNOS抑制剂;肿瘤坏死因子α释放或作用的抑制剂;抗体治疗,如单克隆抗体治疗;抗病毒药,如核苷抑制剂(例如拉米夫定)或免疫系统调制剂(例如干扰素);阿片类止痛剂;局部麻醉剂;兴奋剂,包括咖啡因;H2拮抗剂(例如雷尼替丁);质子泵抑制剂(例如奥美拉唑);抗酸剂(例如氢氧化铝或氢氧化镁);抗气胀药(例如西甲硅油);解充血剂(例如苯福林、苯丙醇胺、伪麻黄碱、羟甲唑啉、肾上腺素、萘甲唑啉、赛洛唑啉、丙己君或左旋去氧麻黄碱);镇咳药(例如可待因、氢可酮、卡拉美芬、咳必清或右美沙芬);利尿剂;或镇静或非镇静抗组胺药。
本发明的化合物可以与靶向其它基因的siRNA共同施用。例如,本发明的化合物可以与靶向c-Myc基因的siRNA共同施用。在一个例子中,AD-12115可以与c-Myc siRNA共同施用。靶向c-Myc的siRNA的例子在美国专利申请12/373,039中公开,该申请通过引用并入本文。
制备脂质颗粒的方法
本发明的方法和组合物利用某些阳离子脂质,其合成、制备和鉴定在下面和附随的实施例中描述。另外,本发明提供制备脂质颗粒(包括与治疗剂如核酸结合的脂质颗粒)的方法。在本文所述的方法中,脂质混合物与缓冲的核酸水溶液混合以形成含有包封在脂质颗粒中的核酸的中间混合物,其中该包封的核酸以大约3wt%至大约25wt%,优选5-15wt%的核酸/脂质比存在。该中间混合物可以任选地选择大小,以获得其中脂质部分是优选直径为30-150nm,更优选大约40-90nm的单层囊泡的脂质包封核酸颗粒。然后升高pH以中和脂质-核酸颗粒上的至少一部分表面电荷,从而提供至少部分表面中和的脂质包封的核酸组合物。
如上所述,这些阳离子脂质中的几种是在低于氨基pKa的pH下带电而在高于该pKa的pH下基本为中性的氨基脂质。这些阳离子脂质被称为可滴定的阳离子脂质,并且可以采用两步法而用于本发明的制剂中。首先,可以在核酸存在下,使用可滴定的阳离子脂质和其它囊泡成分在较低pH下形成脂质囊泡。这样,囊泡将包封并圈闭核酸。其次,可以通过提高介质的pH至高于存在的可滴定阳离子脂质的pKa的水平,即提高至生理pH或更高,来中和新形成的囊泡的表面电荷。该方法特别有利的方面包括温和去除任何表面吸附的核酸和得到具有中性表面的核酸递送媒介。预计具有中性表面的脂质体或脂质颗粒可避免从循环中快速清除,以及避免某些与阳离子脂质体制剂相关的毒性。关于这些可滴定阳离子脂质在核酸-脂质颗粒制剂中的应用的其它细节在美国专利6,287,591和美国专利6,858,225中提供,该专利通过引用并入本文。
另外还需指出,以这种方式形成的囊泡提供具有高核酸含量的均匀囊泡大小的制剂。另外,囊泡的大小范围为大约30至大约150nm,更优选大约30至大约90nm。
不希望受任何具体理论的约束,据信核酸包封的极高效率是低pH下的静电相互作用的结果。在酸性pH(例如pH 4.0)下,囊泡表面带电,并且通过静电相互作用结合一部分核酸。当外部酸性缓冲剂与更中性的缓冲剂(例如pH 7.5)交换时,脂质颗粒或脂质体的表面被中和,使得能够去除任何外部核酸。关于制剂方法的更详细信息在各种公开文件(例如美国专利6,287,591和美国专利6,858,225)中提供。
鉴于以上所述,本发明提供制备脂质/核酸制剂的方法。在本文所述的方法中,脂质混合物与缓冲的核酸水溶液混合,以产生含有包封于脂质颗粒中的核酸的中间混合物,例如,其中包封的核酸以大约10wt%至大约20wt%的核酸/脂质比存在。中间混合物任选地可以调整大小,以获得其中脂质部分是优选直径为30-150nm,更优选大约40-90nm的单层囊泡的脂质包封核酸颗粒。然后升高pH以中和脂质-核酸颗粒上的至少一部分表面电荷,从而产生至少部分表面中和的脂质包封的核酸组合物。
在某些实施方案中,脂质混合物包括至少两种脂质成分:本发明的第一氨基脂质成分,其选自其具有的pKa使得该脂质在低于pKa的pH下为阳离子而在高于该pKa的pH下为中性的脂质,和第二脂质成分,其选自防止脂质-核酸颗粒形成过程中的颗粒聚集的脂质。在具体实施方案中,氨基脂质是本发明的新型阳离子脂质。
在制备本发明的核酸-脂质颗粒中,脂质混合物一般是脂质在有机溶剂中的溶液。该脂质混合物然后可以干燥以形成薄膜或冻干以形成粉末,之后用水性缓冲液水化以形成脂质体。或者,在优选的方法中,脂质混合物可以溶解在水混溶性醇如乙醇中,并且这种乙醇溶液添加到水性缓冲液中导致自发脂质体形成。在大多数实施方案中,醇以其可商购提供的形式使用。例如,乙醇可以作为无水乙醇(100%)或作为95%乙醇(其余为水)使用。该方法在美国专利5,976,567中更详细地描述。
根据本发明,脂质混合物与可含有核酸的缓冲水性溶液混合。缓冲的水性溶液一般是其中缓冲剂的pH低于脂质混合物中可质子化脂质的pKa的溶液。合适的缓冲剂的例子包括柠檬酸盐、磷酸盐、乙酸盐和MES。一种特别优选的缓冲剂是柠檬酸盐缓冲剂。优选的缓冲剂是1-1000mM范围的阴离子,取决于所包封的核酸的化学性质,并且缓冲剂浓度的优化对于达到高负载水平可能是重要的(参见,例如,美国专利6,287,591和美国专利6,858,225)。或者,用盐酸盐、硫酸盐等酸化纯水至pH 5-6可能是有利的。在这种情况下,可能适合的是添加5%葡萄糖或另一种在颗粒进行透析以除去乙醇时平衡颗粒膜两侧的渗透势的非离子溶质,提高pH或者与药学上可接受的载体如生理盐水混合。缓冲液中的核酸量可以变化,但是一般为大约0.01mg/mL至大约200mg/mL,更优选大约0.5mg/mL至大约50mg/mL。
将脂质混合物和治疗性核酸的缓冲水溶液混合以产生中间混合物。该中间混合物一般是包封有核酸的脂质颗粒的混合物。另外,该中间混合物也可以含有由于带负电荷的核酸和脂质颗粒表面上带正电荷的脂质(构成可质子化第一脂质成分的氨基脂质或其它脂质在pH低于脂质上可质子基团的pKa的缓冲液中带正电荷)的离子吸引而附着到脂质颗粒(脂质体或脂质囊泡)表面上的一部分核酸。在一组优选实施方案中,脂质混合物是脂质的醇溶液,并且调节各溶液的体积以使得在合并时所得醇含量为大约20%(体积)至大约45%(体积)。合并混合物的方法可包括多种方法中的任一种,通常取决于产生的制剂的规模。例如,当总体积为大约10-20mL或更低时,溶液可以在试管中混合并使用涡旋混合器在一起搅拌。大规模方法可以在合适生产规模的玻璃器具中进行。
任选地,通过混合脂质混合物与治疗剂(核酸)的缓冲水溶液产生的脂质包封的治疗剂(例如核酸)复合物可以调整大小以达到希望的大小范围和相对窄的脂质粒度分布。优选地,本文提供的组合物进行大小调整到大约70至大约200nm,更优选大约90至大约130nm的平均直径。几种技术可用于调整脂质体大小到希望的尺寸。一种大小调整方法在美国专利4,737,323中记载,该专利通过引用并入本文。通过浴或探头超声法超声处理脂质体悬浮液产生逐渐的尺寸下降至小于大约0.05微米尺寸的小单层囊泡(SUV)。匀浆化是另一种依靠剪切能将大脂质体破碎为较小脂质体的方法。在典型的匀浆过程中,多层囊泡通过标准乳剂匀浆器再循环,直到观察到选择的脂质体大小,一般为大约0.1至0.5微米。在两种方法中,可以通过常规激光束粒径测量监测粒度分布。对于本文的某些方法,利用挤出获得均匀的囊泡大小。
脂质体组合物通过小孔聚碳酸酯膜或不对称陶瓷膜挤出导致相对明确的大小分布。一般来说,悬浮液通过膜循环一次或多次,直到达到希望的脂质体复合物大小分布。脂质体可以连续通过较小孔的膜挤出,以实现脂质体大小的逐渐减小。在某些情况下,形成的脂质-核酸组合物可以在不进行任何大小调整的情况下使用。
在具体实施方案中,本发明的方法进一步包括中和脂质-核酸组合物的脂质部分上的至少一些表面电荷的步骤。通过至少部分中和表面电荷,未包封的核酸从脂质颗粒表面上游离,并且可使用常规技术从组合物中除去。优选地,通过缓冲液交换从得到的组合物中除去未包封的和表面吸附的核酸。例如,用HEPES缓冲盐溶液(HBS pH大约7.5)替代柠檬酸盐缓冲液(pH大约4.0,用于形成组合物)导致脂质体表面的中和和从表面上释放核酸。然后可以使用标准方法通过色谱法除去释放的核酸,然后转换到pH高于所用脂质的pKa的缓冲液。
任选地,脂质囊泡(即脂质颗粒)可以通过在水性缓冲液中水化而形成,并且在加入核酸之前使用上述任何方法调整大小。如上所述,水性缓冲液的pH应当低于氨基脂质的pKa。然后可以将核酸溶液添加到这些大小调整的、预形成的囊泡中。为了使核酸能够包封到这些“预形成”的囊泡中,混合物应当含有醇如乙醇。在乙醇的情况中,其应当以大约20%(w/w)至大约45%(w/w)的浓度存在。另外,将预形成的囊泡和在水性缓冲液-乙醇混合物中的核酸的混合物根据脂质囊泡的组成和核酸的性质而升温到大约25℃至大约50℃的温度可能是必要的。本领域技术人员应当明白,为了在脂质囊泡中达到希望的核酸水平而优化包封工艺会需要可变的操作如乙醇浓度和温度。合适的核酸包封条件的例子在实施例中提供。一旦核酸包封在预形成的囊泡中,可以提高外部pH以至少部分中和表面电荷。然后可以如上所述除去未包封的和表面吸附的核酸。
抑制PCSK9基因表达的方法
在再另一方面,本发明提供一种抑制哺乳动物中PCSK9基因表达的方法。该方法包括向哺乳动物施用本发明的组合物,使得靶PCSK9基因的表达降低延长的时间段,例如,至少一周、两周、三周或四周或者更长。
例如,在某些情况下,通过施用本文所述的双链寡核苷酸将PCSK9基因的表达抑制至少大约5%、10%、15%、20%、25%、30%、35%、40%、45%或50%。在一些实施方案中,通过施用该双链寡核苷酸,PCSK9基因抑制至少大约60%、70%或80%。在一些实施方案中,通过施用该双链寡核苷酸,PCSK9基因抑制至少大约85%、90%或95%。表1b、表2b和表5b提供使用各种浓度的各种PCSK9dsRNA分子在体外试验中获得的宽范围的表达抑制值。
降低的靶PCSK9基因的效果优选地导致哺乳动物血液中,特别是血清中LDLc(低密度脂蛋白胆固醇)水平的降低。在一些实施方案中,与处理前水平相比,LDLc水平降低至少10%、15%、20%、25%、30%、40%、50%或60%或更多。
所述方法包括施用含有dsRNA的组合物,其中dsRNA的核苷酸序列与所治疗的哺乳动物的PCSK9基因RNA转录本的至少一部分互补。当所治疗的生物体是哺乳动物如人时,所述组合物可以通过本领域已知的任何方法施用,包括但不限于口服或肠胃外途径,包括静脉内、肌肉内、皮下、透皮和气管(气雾剂)施用。在一些实施方案中,组合物通过静脉内输注或注射施用。
本文所述的方法和组合物可用于治疗可受PCSK9基因表达下调调节的疾病和病症。例如,本文所述的组合物可用于治疗高脂血症和其它形式的脂质失衡,例如高胆固醇血症、高甘油三酯血症以及与这些病变相关的病理状况,例如心脏和循环系统疾病。在一些实施方案中,也向用PCSK9dsRNA治疗的患者施用非dsRNA治疗剂,如已知可治疗脂质疾病的药剂。
一个方面,本发明提供一种抑制受试者例如人体中PCSK9基因表达的方法。该方法包括施用第一单剂量的dsRNA,例如,足以抑制PCSK9mRNA水平至少5天,更优选7、10、14、21、25、30或40天的剂量;以及任选地,施用第二单剂量的dsRNA,其中该第二单剂量在施用第一单剂量至少5天,更优选7、10、14、21、25、30或40天后施用,从而抑制受试者中PCSK9基因的表达。
在一个实施方案中,dsRNA的剂量施用不超过每四周一次,不超过每三周一次,不超过每两周一次,或者不超过每周一次。在另一个实施方案中,施用可以维持1、2、3或6个月,或者一年或更长。
在另一个实施方案中,当低密度脂蛋白胆固醇(LDLc)水平达到或超过预定的最低水平时,如大于70mg/dL、130mg/dL、150mg/dL、200mg/dL、300mg/dL或400mg/dL时,可以进行施用。
在一个实施方案中,至少部分地根据降低LDL、降低LDL而不降低HDL、降低ApoB或降低总胆固醇而不降低HDL的需要选择受试者(不同于只是根据恰好需要治疗的标准来选择患者)。
在一个实施方案中,dsRNA不激活免疫系统,例如,它不提高细胞因子水平如TNF-α或IFN-α水平。例如,当通过试验测定时,如通过例如本文所述的体外PBMC试验测定,TNF-α或IFN-α水平的提高小于用对照dsRNA(如不靶向PCSK9的dsRNA)处理的对照细胞的30%、20%或10%。
一个方面,本发明提供一种用于治疗、预防或控制疾病、病理过程或症状的方法,该疾病、病理过程或症状例如可由下调受试者如人类受试者中的PCSK9基因表达来介导。在一个实施方案中,所述疾病是高脂血症。该方法包括施用第一单剂量的dsRNA,例如,足以降低PCSK9mRNA水平至少5天,更优选7、10、14、21、25、30或40天的剂量;以及任选地,施用第二单剂量的dsRNA,其中该第二单剂量在施用第一单剂量至少5天,更优选7、10、14、21、25、30或40天后施用,从而抑制受试者中PCSK9基因的表达。
在另一个实施方案中,含有本发明所述的dsRNA(即靶向PCSK9的dsRNA)的组合物与非dsRNA治疗剂如已知治疗诸如高胆固醇血症、动脉粥样硬化症或血脂异常的脂质疾病的药物一起施用。例如,本发明所述的dsRNA可以与如下物质一起施用:例如,HMG-CoA还原酶抑制剂(例如他汀类药物)、贝特类药物、胆汁酸螯合剂、尼克酸、抗血小板剂、血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂(例如氯沙坦钾,如Merck&Co.的Cozaar)、酰基辅酶A胆固醇乙酰转移酶(ACAT)抑制剂、胆固醇吸收抑制剂、胆固醇酯转移蛋白(CETP)抑制剂、微粒体甘油三酯转移蛋白(MTTP)抑制剂、胆固醇调节剂、胆汁酸调节剂、过氧化物酶体增生激活受体(PPAR)激动剂、基于基因的治疗、复合血管保护剂(例如AGI-1067,来自Atherogenics)、糖蛋白IIb/IIIa抑制剂、阿司匹林或阿司匹林样化合物、IBAT抑制剂(例如S-8921,来自Shionogi)、鲨烯合酶抑制剂或单核细胞化学吸引蛋白(MCP)-I抑制剂。示例性的HMG-CoA还原酶抑制剂包括阿托伐他汀(Pfizer的Lipitor/Tahor/Sortis/Torvast/Cardyl)、普伐他汀(Bristol-Myers Squibb的Pravachol、Sankyo的Mevalotin/Sanaprav)、辛伐他汀(Merck的Zocor/Sinvacor、Boehringer Ingelheim的Denan、Banyu的Lipovas)、洛伐他汀(Merck的Mevacor/Mevinacor、Bexal的Lovastatina,Cepa;Schwarz Pharma的Liposcler)、氟伐他汀(Novartis的Lescol/Locol/Lochol、Fujisawa的Cranoc、Solvay的Digaril)、西立伐他汀(Bayer的Lipobay/GlaxoSmithKline的Baycol)、瑞舒伐他汀(AstraZeneca的Crestor)和匹伐他汀(伊伐他汀/risivastatin)(NissanChemical,Kowa Kogyo,Sankyo和Novartis)。示例性的贝特类药物包括,例如,苯扎贝特(例如Roche的Befizal/Cedur/BezalipKissei的Bezatol)、氯贝丁酯(例如Wyeth的Atromid-S)、非诺贝特(例如Fournier的Lipidil/Lipantil、Abbott的TricorTakeda的Lipantil,generics)、吉非贝齐(例如Pfizer的Lopid/Lipur)和环丙贝特(Sanofi-Synthelabo的Modalim)。示例性的胆汁酸螯合剂包括,例如,考来烯胺(Bristol-MyersSquibb的Questran和Questran LightTM)、考来替泊(例如Pharmacia的Colestid)和考来维仑(Genzyme/Sankyo的WelCholTM)。示例性的尼克酸治疗剂包括,例如,即释制剂,如Aventis’Nicobid、Upsher-Smith′s Niacor、Aventis’Nicolar和Sanwakagaku的Perycit。尼克酸延释制剂包括,例如,Kos Pharmaceuticals’Niaspan和Upsher-Smith的SIo-Niacin。示例性的抗血小板剂包括,例如,阿司匹林(例如Bayer的阿司匹林)、氯吡格雷(Sanofi-Synthelabo/Bristol-Myers Squibb的Plavix)和噻氯匹定(例如Sanofi-Synthelabo的Ticlid和Daiichi的Panaldine)。其它可与靶向PCSK9的dsRNA联用的阿司匹林样化合物包括,例如,Asacard(缓释阿司匹林,Pharmacia提供)和帕米格雷(Kanebo/Angelini Ricerche/CEPA)。示例性的血管紧张素转化酶抑制剂包括,例如,雷米普利(例如Aventis的Altace)和依那普利(例如Merck&Co.的Vasotec)。示例性的酰基CoA胆固醇乙酰转移酶(ACAT)抑制剂包括,例如,阿伐麦布(Pfizer)、依鲁麦布(eflucimibe)(BioPierre Fabre/Eli Lilly)、CS-505(Sankyo和Kyoto)和SMP-797(Sumito)。示例性的胆固醇吸收抑制剂包括,例如,依折麦布(ezetimibe)(Merck/Schering-Plough Pharmaceuticals Zetia)和帕马苷(Pfizer)。示例性的CETP抑制剂包括,例如,托彻普(Torcetrapib)(也称为CP-529414,Pfizer)、JTT-705(Japan Tobacco)和CETi-I(AvantImmunotherapeutics)。示例性的微粒体甘油三酯转移蛋白(MTTP)抑制剂包括,例如,英普他派(Bayer)、R-103757(Janssen)和CP-346086(Pfizer)。其它示例性的胆固醇调节剂包括,例如,NO-1886(Otsuka/TAPPharmaceutical)、CI-1027(Pfizer)和WAY-135433(Wyeth-Ayerst)。示例性的胆汁酸调节剂包括,例如,HBS-107(Hisamitsu/Banyu)、Btg-511(British Technology Group)、BARI-1453(Aventis)、S-8921(Shionogi)、SD-5613(Pfizer)和AZD-7806(AstraZeneca)。示例性的过氧化物酶体增生激活受体(PPAR)激动剂包括,例如,替格列扎(tesaglitazar)(AZ-242)(AstraZeneca)、萘格列酮(MCC-555)(Mitsubishi/Johnson&Johnson)、GW-409544(Ligand Pharniaceuticals/GlaxoSmithKline)、GW-501516(Ligand Pharmaceuticals/GlaxoSmithKline)、LY-929(LigandPharmaceuticals和Eli Lilly)、LY-465608(Ligand Pharmaceuticals和EliLilly)、LY-518674(Ligand Pharmaceuticals和Eli Lilly)和MK-767(Merck和Kyorin)。示例性的基于基因的治疗剂包括,例如,AdGWEGF121.10(GenVec)、ApoAl(UCB Pharma/Groupe Fournier)、EG-004(Trinam)(ArkTherapeutics)和ATP结合盒转运蛋白-Al(ABCAl)(CVTherapeutics/Incyte、Aventis、Xenon)。示例性的糖蛋白Ilb/IIIa抑制剂包括,例如,罗昔非班(也称为DMP754,Bristol-Myers Squibb)、更托非班(Merck KGaA/Yamanouchi)和Cromafiban(Millennium Pharmaceuticals)。示例性的鲨烯合酶抑制剂包括,例如,BMS-1884941(Bristol-MyersSquibb)、CP-210172(Pfizer)、CP-295697(Pfizer)、CP-294838(Pfizer)和TAK-475(Takeda)。示例性的MCP-I抑制剂是,例如,RS-504393(RocheBioscience)。抗动脉粥样硬化药BO-653(Chugai Pharmaceuticals)和烟酸衍生物Nyclin(Yamanouchi Pharmacuticals)也适合与本发明所述的dsRNA联合施用。适合与靶向PCSK9的dsRNA一起施用的示例性的联合治疗剂包括,例如,advicor(来自Kos Pharmaceuticals的尼克酸/洛伐他汀)、氨氯地平/阿托伐他汀(Pfizer)和依折麦布/辛伐他汀(例如Vytorin10/10、10/20、10/40和10/80片剂,Merck/Schering-Plough Pharmaceuticals提供)。用于治疗高胆固醇血症并且适合与靶向PCSK9的dsRNA联合施用的药物包括,例如,洛伐他汀、尼克酸Altoprev延释片(Andrx Labs)、洛伐他汀Caduet片(Pfizer)、苯磺酸氨氯地平、阿托伐他汀钙Crestor片(AstraZeneca)、瑞舒伐他汀钙Lescol胶囊(Novartis)、氟伐他丁钠Lescol(Reliant、Novartis)、氟伐他丁钠Lipitor片(Parke-Davis)、阿托伐他汀钙Lofibra胶囊(Gate)、Niaspan延释片(Kos)、尼克酸Pravachol片(Bristol-Myers Squibb)、普伐他汀钠TriCor片(Abbott)、非诺贝特Vytorin10/10片(Merck/Schering-Plough Pharmaceuticals)、依折麦布、辛伐他汀WelCholTM片(Sankyo)、盐酸考来维仑Zetia片(Schering)、依折麦布Zetia片(Merck/Schering-Plough Pharmaceuticals)和依折麦布Zocor片(Merck)。
在一个实施方案中,向患者施用PCSK9dsRNA,然后向患者施用非dsRNA剂(或者相反)。在另一个实施方案中,PCSK9dsRNA和非dsRNA治疗剂同时施用。
在另一个方面,本发明提供一种向最终用户例如护理者或受试者指示如何施用本文所述的dsRNA的方法。该方法包括,任选地向最终用户提供一个或多个剂量的dsRNA,并指示最终用户按照此处所述的方案施用dsRNA,由此指示最终用户。
在再另一个方面,本发明提供一种治疗患者的方法,该方法是通过基于患者对于降低LDL、降低LDL而不降低HDL、降低ApoB或降低总胆固醇的需要来选择患者。该方法包括向该患者施用足以降低患者LDL水平或ApoB水平的量的靶向PCSK9的dsRNA,而例如基本不降低HDL水平。
在另一个方面,本发明提供一种治疗患者的方法,该方法是通过根据需要降低ApoB水平来选择患者,并且向该患者施用足以降低患者ApoB水平的量的靶向PCSK9的dsRNA。在一个实施方案中,PCSK9的量足以降低LDL水平以及ApoB水平。在另一实施方案中,施用PCSK9dsRNA不影响患者中的HDL胆固醇的水平。
除非另有定义,否则本文所使用的所有科技术语与本发明所属领域中普通技术人员通常所理解的含义相同。虽然在本发明的实施或检验中可以使用与本文所述的类似或等同的方法和材料,但下文仍阐述了合适的方法和材料。本文提及的所有出版物、专利申请、专利和其它参考文献均通过参考方式将其全文并入本文。在有冲突的情况下,以本说明书(包括定义)为准。另外,所述材料、方法和实施例的目的仅在于进行说明而不是限制。
实施例
实施例1.PCSK9基因的基因步移(gene walking)
进行siRNA设计以在两个独立的筛选中进行鉴定:
a)靶向人及小鼠或大鼠PCSK9mRNA的siRNA,和
b)预测对靶基因PCSK9具有特异性的所有反应性人siRNA。
使用了人类、小鼠和大鼠PCSK9的mRNA序列:在整个siRNA选择过程中使用人类序列NM_174936.2作为参照序列。
在第一步中确定在人类和小鼠中是以及在人和大鼠的PCSK9mRNA序列中保守的19-mer延伸片段,从而导致人-小鼠交叉反应性siRNA以及与人和大鼠交叉反应的siRNA的筛选。
在第二筛选中鉴定特异地靶向人PCSK9的siRNA。提取所有可能的人PCSK9的19mer序列并将其定义为候选靶序列。表1a和表2a列出了所有与人、猴有交叉反应的序列,以及对小鼠、大鼠、人和猴有交叉反应的序列。表1a和表2a还列出了这些序列的化学修饰形式及其在体外和体内试验中的活性。该数据描述在实施例和图2-8中。
为了对候选靶序列及其对应siRNA进行分级并选择适合的候选序列,采用经预测的所述siRNA与无关靶标相互作用的可能性(脱靶潜力)作为分级参数。将具有低脱靶可能性的siRNA定义为优选的并假定其具有较高的体内特异性。
为了预测siRNA特异性脱靶可能性,进行了以下假设:
1)链中第2至第9位(由5′向3′计数)(种子区)对脱靶可能性的贡献可能大于其余序列(非种子区和切割位点区)
2)链中第10和第11位(由5′向3′计数)(切割位点区)对脱靶可能性的贡献可能大于非种子区
3)各条链中的第1和第19位与脱靶相互作用无关
4)可基于siRNA链序列与基因序列的互补性以及错配位置计算各基因和各链的脱靶得分
5)对于脱靶可能性必须考虑预测脱靶数以及最高脱靶得分
6)认为脱靶得分与脱靶潜力的相关性高于脱靶数
7)假设通过引入的内部修饰可能消除有义链活性,那么仅反义链的脱靶可能性是相关的
19-mer候选序列与可公开获取的人mRNA序列进行同源性检索,从而鉴定潜在的脱靶基因。
针对各脱靶基因提取各19mer输入序列的以下脱靶性质以计算脱靶得分:
非种子区中的错配数
种子区中的错配数
切割位点区中的错配数
参考第1-3条假设按下式计算脱靶得分:
脱靶得分=种子区错配数×10+切割位点区错配数×1.2+非种子区错配数×1
将对应于19mer输入序列的各siRNA的最相关脱靶基因定义为具有最低脱靶得分的基因。因此,将最低脱靶得分定义为各siRNA的相关脱靶得分。
实施例2.dsRNA合成
试剂来源
在本文中未明确指出试剂来源时,所述试剂可以以符合分子生物学应用的质量/纯度的标准从任意分子生物学试剂供应商处获得。
siRNA合成
使用Expedite 8909合成仪(Applied Biosystems,Applera DeutschlandGmbH,Darmstadt,Germany)和可控孔度玻璃(CPG,ProligoBiochemie GmbH,Hamburg,Germany)作为固相载体,以1μ摩尔规模通过固相合成产生单链RNA。分别使用相应的亚磷酰胺和2′-O-甲基亚磷酰胺(Proligo Biochemie GmbH,Hamburg,Germany)通过固相合成产生RNA和含2′-O-甲基核苷酸的RNA。利用标准的核苷亚磷酰胺化学法(例如,Current protocols in nucleic acid chemistry,Beaucage,S.L等人(Edrs.),John Wiley&Sons,Inc.,New York,NY,USA所描述的),将这些结构块引入寡核苷酸链序列中的选定位点处。通过将碘氧化剂溶液替换成Beaucage试剂(Chruachem Ltd,Glasgow,UK)的乙腈溶液(1%)以引入硫代磷酸酯键。其它辅助试剂可从Mallinckrodt Baker(Griesheim,Germany)获得。
根据已建立的方法,通过阴离子交换HPLC进行寡核苷酸粗品的脱保护和纯化。利用分光光度计(DU 640B,Beckman Coulter GmbH,Unterschleiβheim,Germany)通过在260nm波长下相应RNA溶液的UV吸光度测定收率和浓度。通过在退火缓冲液(20mM磷酸钠,pH 6.8;100mM氯化钠)中混合互补链的等摩尔溶液,在85-90℃的水浴中加热3分钟并在3-4小时内冷却至室温而生成双链RNA。退火的RNA溶液在-20℃储存直至使用。
偶联的siRNA
为了合成3′-胆固醇偶联的siRNA(本文中称为-Chol-3′),在RNA合成中使用适当修饰的固体载体。通过以下方法制备所述修饰的固体载体:
2-氮杂丁烷-1,4-二羧酸二乙酯AA
将4.7M的氢氧化钠水溶液(50mL)加入到搅拌的、冰冷的甘氨酸乙酯盐酸盐(32.19g,0.23摩尔)的水溶液(50mL)中。随后,加入丙烯酸乙酯(23.1g,0.23摩尔)并在室温下搅拌混合物直至通过TLC确认反应完成。19小时后,使用二氯甲烷(3×100mL)对溶液进行分配。使用无水硫酸钠干燥有机层、过滤并蒸发。蒸馏残留物以获得AA(28.8g,61%)。
3-{乙氧基羰甲基-[6-(9H-芴-9-基-甲氧基羰基-氨基)-己酰基]-氨基}-丙酸乙酯AB
将Fmoc-6-氨基-己酸(9.12g,25.83mmol)溶解于二氯甲烷(50mL)中,并用冰冷却。在0℃下,向所得溶液中加入二异丙基碳二亚胺(3.25g,3.99mL,25.83mmol)。随后,加入氮杂丁烷-1,4-二羧酸二乙酯(5g,24.6mmol)和二甲基氨基吡啶(0.305g,2.5mmol)。使所得溶液达到室温,并进一步搅拌6小时。通过TLC确定反应完成。真空浓缩反应混合物并加入乙酸乙酯以沉淀二异丙基脲。过滤悬浮液。使用5%盐酸水溶液、5%碳酸氢钠和水洗涤滤液。使用硫酸钠干燥合并的有机层并将其浓缩以得到粗产物,通过柱层析(50%EtOAC/己烷)纯化粗产物以获得11.87g AB(88%)。
3-[(6-氨基-己酰基)-乙氧基羰甲基-氨基]-丙酸乙酯AC
在0℃下,将3-{乙氧基羰甲基-[6-(9H-芴-9-基甲氧基羰基-氨基)-己酰基]-氨基}-丙酸乙酯AB(11.5g,21.3mmol)溶解于含20%哌啶的二甲基甲酰胺中。将溶液持续搅拌1小时。真空下浓缩反应混合物,向残留物中添加水并使用乙酸乙酯萃取所得产物。将粗产物转化成其盐酸盐而进行纯化。
3-({6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[a]菲-3-基-氧基羰基氨基]-己酰基}乙氧基羰甲基-氨基)-丙酸乙酯AD
将3-[(6-氨基-己酰基)-乙氧基羰甲基-氨基]-丙酸乙酯AC的盐酸盐(4.7g,14.8mmol)加入二氯甲烷中。将悬浮液在冰上冷却至0℃。向悬浮液中添加二异丙基乙胺(3.87g,5.2mL,30mmol)。向所得溶液中添加氯甲酸胆固醇酯(6.675g,14.8mmol)。将反应混合物搅拌过夜。使用二氯甲烷稀释反应混合物并使用10%盐酸洗涤。通过快速色谱纯化产物(10.3g,92%)。
1-{6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[a]菲-3-基-氧基羰基氨基]-己酰基}-4-氧代-吡咯烷-3-羧酸乙酯AE
在30mL干甲苯中使叔丁醇钾(1.1g,9.8mmol)成浆状。将所得混合物在冰上冷却至0℃,并在搅拌下于20分钟内加入5g(6.6mmol)的二酯AD。在添加过程中将温度保持在5℃以下。在0℃下持续搅拌30分钟,并加入1mL冰醋酸,随后立即加入含4g NaH2PO4·H2O的40mL水。将所得混合物由二氯甲烷萃取两次(每次100mL),使用磷酸盐缓冲液将合并的有机萃取物洗涤两次(每次10mL),干燥并蒸发至干。将残留物溶解于60mL甲苯中,冷却至0℃并用三份50mL pH 9.5的冷碳酸盐缓冲液进行萃取。使用磷酸将水性萃取物调节至pH 3,并使用5份40mL氯仿进行萃取,将萃取液合并、干燥并蒸发至干。使用25%乙酸乙酯/己烷通过柱层析纯化残余物得到1.9g b-酮酯(39%)。
[6-(3-羟基-4-羟甲基-吡咯烷-1-基)-6-氧代-己基]-氨基甲酸17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[a]菲-3-基酯AF
在1小时内将甲醇(2mL)滴加到含b-酮酯AE(1.5g,2.2mmol)和硼氢化钠(0.226g,6mmol)的四氢呋喃(10mL)回流混合物中。在回流温度下持续搅拌1小时。冷却至室温后,加入1N HCl(12.5mL),用乙酸乙酯(3×40mL)萃取所得混合物。使用无水硫酸钠干燥合并的乙酸乙酯层,真空浓缩得到产物,其再经柱层析(10%MeOH/CHCl3)纯化(89%)。
(6-{3-[双-(4-甲氧基-苯基)-苯基-甲氧基甲基]-4-羟基-吡咯烷-1-基}-6-氧代-己基)-氨基甲酸17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[a]菲-3-基酯AG
通过在真空下与吡啶(2×5mL)一起蒸发从而干燥二醇AF(1.25gm1.994mmol)。在搅拌下加入无水吡啶(10mL)和4,4′-二甲氧基三苯甲基氯(0.724g,2.13mmol)。在室温下反应过夜。通过加入甲醇终止反应。真空下浓缩反应混合物,并向残留物加入二氯甲烷(50mL)。用1M碳酸氢钠水溶液洗涤有机层。使用无水硫酸钠干燥有机层、过滤并浓缩。通过用甲苯进行蒸发除去残留的吡啶。通过柱层析(2%MeOH/氯仿,在5%MeOH/CHCl3中Rf=0.5)纯化粗产物(1.75g,95%)。
琥珀酸单-(4-[双-(4-甲氧基-苯基)-苯基-甲氧基甲基]-1-{6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[a]菲-3-基-氧基羰基氨基]-己酰基}-吡咯烷-3-基)酯AH
将化合物AG(1.0g,1.05mmol)与琥珀酸酐(0.150g,1.5mmol)和DMAP(0.073g,0.6mmol)混合并在40℃下真空干燥过夜。将所得混合物溶解于无水二氯乙烷(3mL)中,加入三乙胺(0.318g,0.440mL,3.15mmol),并在室温和氩气气氛中将所得溶液搅拌16小时。随后,使用二氯甲烷(40mL)稀释,并使用冰冷的柠檬酸水溶液(5wt%,30mL)和水(2×20mL)洗涤。使用无水硫酸钠干燥有机相,并浓缩至干。将所得残留物原样用于下一个步骤。
胆固醇衍生化的CPG AI
将琥珀酸酯AH(0.254g,0.242mmol)溶解于二氯甲烷/乙腈的混合物(3∶2,3mL)中。向该溶液中连续加入DMAP(0.0296g,0.242mmol)的乙腈溶液(1.25mL)、2,2′-二硫代-双(5-硝基吡啶)(0.075g,0.242mmol)的乙腈/二氯乙烷(3∶1,1.25mL)溶液。向所得溶液中加入三苯基膦(0.064g,0.242mmol)的乙腈溶液(0.6ml)。反应混合物的颜色变为亮橙色。使用手动震荡器短暂地搅拌溶液(5分钟)。加入长链烷基胺-CPG(LCAA-CPG)(1.5g,61mM)。将悬浮液搅拌2小时。通过烧结漏斗过滤CPG,并依次使用乙腈、二氯甲烷和醚洗涤。利用乙酸酐/吡啶掩蔽未反应的氨基基团。采用UV测量法测定所获取的CPG的载量(37mM/g)。
根据WO 2004/065601中所描述的合成具有5′-12-十二烷酸双癸酰胺基团(本文称为“5′-C32-”)或5′-胆固醇基衍生基团(本文称为“5′-Chol-”)的siRNA,不同的是对于胆固醇基衍生物,使用Beaucage试剂进行氧化步骤以在核酸寡聚物的5′末端引入硫代磷酸酯键。
与Chol-p-(GalNAc)3(N-乙酰半乳糖胺-胆固醇)(图16)和LCO(GalNAc)3(N-乙酰半乳糖胺-3’-石胆酸-油酰)(图17)偶联的dsRNA的合成在2008年12月4日提交的美国专利申请12/328,528中描述,该申请通过引用并入本文。
实施例3.在HuH7、HepG2、Hela和猴原代肝细胞中进行的PCSK9
siRNA筛选发现高活性序列
HuH-7细胞从JCRB Cell Bank(Japanese Collection of ResearchBioresources)(Shinjuku,Japan,cat.No.:JCRB0403)获取。在37℃和5%CO2气氛中的加湿培养箱(Heraeus HERAcell,Kendro Laboratory Products,Langenselbold,Germany)中在补充有10%胎牛血清(FCS)(Biochrom AG,Berlin,Germany,cat.No.S0115)、青霉素100U/ml、链霉素100μg/ml(Biochrom AG,Berlin,Germany,cat.No.A2213)和2mM L-谷氨酰胺(Biochrom AG,Berlin,Germany,cat.No K0282)的Dulbecco’s MEM培养基(Biochrom AG,Berlin,Germany,cat.No.F0435)中培养细胞。HepG2细胞和Hela细胞从美国典型培养物保藏中心(Rockville,MD,cat.No.HB-8065)获取,并在37℃和5%CO2气氛中的加湿培养箱(HeraeusHERAcell,Kendro Laboratory Products,Langenselbold,Germany)中于补充有10%胎牛血清(FCS)(Biochrom AG,Berlin,Germany,cat.No.S0115)、青霉素100U/ml、链霉素100μg/ml(Biochrom AG,Berlin,Germany,cat.No.A2213)、1×非必需氨基酸(Biochrom AG,Berlin,Germany,cat.No.K-0293)和1mM丙酮酸钠(Biochrom AG,Berlin,Germany,cat.No.L-0473)的MEM(Gibco Invitrogen,Karlsruhe,Germany,cat.No.21090-022)中培养。
为了用siRNA转染,将HuH7、HepG2或Hela细胞以2.0×104细胞/孔的密度接种到96孔板中,并直接转染。根据制造商的描述使用lipofectamine 2000(Invitrogen GmbH,Karlsruhe,Germany,cat.No.11668-019)进行siRNA(30nM用于单剂筛选)的转染。
转染24小时后,裂解HuH7细胞和HepG2细胞,并使用QuantigeneExplore试剂盒(Genosprectra,Dumbarton Circle Fremont,USA,cat.No.QG-000-02)根据实验方案对PCSK9mRNA水平进行定量。相对于GAPDH mRNA的水平对PCSK9mRNA水平进行标准化。对各个siRNA采集8个单独的数据点。使用与PCSK9基因无关的siRNA双链体作为对照。给定PCSK9特异性siRNA双链体的活性表示为处理细胞中的PCSK9mRNA浓度相对于使用对照siRNA双链体处理的细胞中的PCSK9mRNA浓度的百分比。
由In vitro Technologies,Inc.(Baltimore,Maryland,USA,cat NoM00305)获得食蟹猴原代肝细胞(冷藏的)并于37℃和5%CO2气氛中的加湿培养箱内、在InVitroGRO CP培养基(cat No Z99029)中培养。
为了用siRNA进行转染,将食蟹猴原代细胞以3.5×104细胞/孔的密度在96孔板(Fisher Scientific,cat No.08-774-5)中接种到胶原包被的板上中,并直接转染。根据制造商的描述使用lipofectamine 2000(Invitrogen GmbH,Karlsruhe,Germany,cat.No.11668-019)一式两份地进行siRNA(从30nM开始进行8次2倍系列稀释)的转染。
转染后16小时,将培养基替换成添加Torpedo Antibiotic Mix(In vitroTechnologies,Inc,cat.No Z99000)的新鲜InVitroGRO CP培养基。
更换培养基24小时后,裂解食蟹猴原代细胞,并使用QuantigeneExplore试剂盒(Genosprectra,Dumbarton Circle Fremont,USA,cat.No.QG-000-02)根据实验方案对PCSK9mRNA水平进行定量。相对于GAPDH mRNA的水平对PCSK9mRNA水平进行标准化。随后,比较标准化的PCSK9/GAPDH比和仅lipofectamine 2000对照的PCSK9/GAPDH比。
表1b和2b(和图6A)总结了所得结果并提供了以不同剂量在不同细胞系中进行体外筛选的实例。将PCSK9转录本的沉默表示为给定剂量下残留转录本的百分比。
高活性序列是使用小于或等于100nM剂量的给定siRNA处理后残留的转录本少于70%的序列。极高活性序列是使用小于或等于100nM剂量的给定siRNA处理后残留的转录本少于60%的序列。活性序列是在使用高剂量(100nM)处理后残留的转录本少于90%的序列。
还在下文所述的类脂质制剂中在小鼠体内对活性siRNA的实例进行了筛选。体外活性序列通常在体内也具有活性(参见图6A和6B和实施例4)。
实施例4.小鼠中PCSK9siRNA的体内效力筛选
在小鼠模型中体内测试32个在LNP-01脂质体中配制的PCSK9siRNA。LNP01是由胆固醇、mPEG2000-C14甘油酯和dsRNA形成的类脂质制剂。LNP01制剂可用于将dsRNA递送至肝脏。
配制过程
使用类脂质LNP-01·4HCl(MW 1487)(图1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(Avanti Polar Lipids)制备脂质-siRNA纳米颗粒。制备以下各物质在乙醇中的原液:LNP-01 133mg/mL,胆固醇25mg/mL,PEG-神经酰胺C16 100mg/mL。随后,以42∶48∶10的摩尔比混合LNP-01、胆固醇和PEG-神经酰胺C16的原液。将混合的脂质溶液与siRNA水溶液(乙酸钠水溶液,pH 5)迅速混合,使得乙醇终浓度为35-45%和乙酸钠终浓度为100-300mM。在混合时自发形成脂质-siRNA纳米颗粒。根据所需的粒度分布,在某些情况下使用热桶挤出机(Lipex Extruder,NorthernLipids,Inc)将所得纳米颗粒混合物通过聚碳酸酯膜(截留值为100nm)挤出。在其它情况下,可以省略挤出步骤。通过透析或切向流过滤除去乙醇并同时完成缓冲液的更换。将缓冲液更换成磷酸盐缓冲盐水(PBS)pH7.2。
制剂的鉴定
以相似的方式鉴定经标准方法或无挤出方法制备的制剂。首先通过目视检查来鉴定制剂。所述制剂应该是没有聚集或沉积的微白色半透明溶液。使用Malvern Zetasizer Nano ZS(Malvern,USA)通过动态光散射测定脂质-纳米颗粒的粒径和粒度分布。颗粒应该为20-300nm,理想地是40-100nm的大小。粒度分布应该为单峰分布。采用染料排除试验评估制剂中的总siRNA浓度以及圈闭分数。在存在或不存在破坏制剂的表面活性剂(0.5%Triton-X100)的条件下,将配制的siRNA的样品与RNA结合染料Ribogreen(Molecular Probes)一起温育。通过将由包含表面活性剂的样品产生的信号与标准曲线相比较来确定制剂中的总siRNA。从总siRNA含量中减去“游离”siRNA含量(由不存在表面活性剂时的信号所测定)确定圈闭分数。圈闭siRNA的百分比通常>85%。
推注给药(bolus dosing)
使用27G针通过尾静脉注射对C57/BL6小鼠(每组5只,8-10周龄,Charles River Laboratories,MA)进行配制的siRNA的推注给药。将siRNA以0.5mg/ml的浓度配制在LNP-01中(随后使用PBS透析)从而能够以10μl/g体重递送5mg/kg的剂量。给药前将小鼠在红外线灯下放置约3分钟以便于注射。
给药48小时后,通过CO2窒息处死小鼠。通过眼球后部放血收集0.2ml血液,收集肝脏并在液氮中冷冻。将血清和肝脏在-80℃下储存。
使用6850Freezer/Mill Cryogenic Grinder(SPEX CentriPrep,Inc)粉碎冷冻的肝脏,并在分析前将粉末保存在-80℃下。
使用来自QuantiGene Reagent System(Genospectra)的基于分支DNA技术的试剂盒根据实验方案检测PCSK9mRNA水平。在65℃下,将10-20mg冷冻肝脏粉末在含0.16μg/ml蛋白酶K(Epicentre,#MPRK092)的600μl组织和细胞裂解溶液(Epicentre,#MTC096H)中裂解3小时。随后,将10μl裂解物加入到90μl裂解工作试剂(2倍体积水中的1倍体积裂解混合原液)中,并在具有小鼠PCSK9特异性探针组和小鼠GAPDH或亲环蛋白B特异性探针组的Genospectra捕获板上于52℃下温育过夜。在软件QuantiGene ProbeDesigner Sonware 2.0(Genospectra,Fremont,CA,USA,cat.No.QG-002-02)的协助下从PCSK9、GAPDH和亲环蛋白B的核酸序列中选择用于捕获延伸剂(Capture Extender(CE))、标记延伸剂(Label Extender(LE))和封闭(BL)探针的核酸序列。在Victor2-Light(Perkin Elmer)上作为相对光单位读取化学发光。对各实验组计算肝脏裂解物中PCSK9mRNA与GAPDH或亲环蛋白B mRNA的比的平均值,并将其与使用PBS处理的对照组或使用无关siRNA(凝血因子VII)处理的对照组进行比较。
根据制造商的说明书,使用StanBio Cholesterol LiquiColor试剂盒(StanBio Laboratoriy,Boerne,Texas,USA)测定小鼠血清中的血清总胆固醇。使用Victor2 1420 Multilabel Counter(Perkin Elmer)在495nm处进行测量。
结果
与经PBS处理的对照组相比,至少10种PCSK9siRNA显示出大于40%的PCSK9mRNA下调,而经无关siRNA(凝血因子VII)处理的对照组没有任何影响(图2-3)。PCSK9转录本的沉默还与这些动物中血清总胆固醇的降低相关(图4-5)。在下调PCSK9mRNA方面最有效的siRNA也显示最显著的胆固醇降低效应(比较图2-3和图4-5)。此外,具有体外活性的分子与具有体内活性的分子之间具有强相关性(比较图6A和6B)。
对包含不同化学修饰的序列也进行了体外(表1和表2)和体内筛选。作为一个例子,在体外(猴原代肝细胞)测试了在LNP-01中配制的较少修饰的序列AD-9314和AD-9318以及该序列AD-9314的较高修饰形式(AD-10792、AD-10793和AD-10796)和该序列AD-9318的较高修饰形式(AD-10794、AD-10795、AD-10797),或在体内测试了在LNP-01中配制的序列(AD-9314和AD-10792)。图7(也可参见表1和表2)表明亲本分子AD-9314和AD-9318及修饰形式在体外均具有活性。作为实例的图8表明亲本AD-9314和较高修饰的AD-10792序列在体内均具有活性,从而在小鼠中显示内源PCSK9的50-60%的沉默。图9进一步例证了AD-9314和AD-10792的其它化学修饰形式的活性。
AD-3511是AD-10792的衍生物,与10792一样有效(IC50约为0.07-0.2nM)(数据未示出)。AD-3511的有义链和反义链的序列如下:
有义链:5’-GccuGGAGuuuAuucGGAAdTsdT SEQ ID NO:1521
反义链:5’-puUCCGAAuAAACUCcAGGCdTsdT SEQ ID NO:1522
实施例5.在大鼠和NHP中的PCSK9作用持续时间实验
大鼠
用5mg/kg LNP01-10792(配制的ALDP-10792)通过尾静脉注射处理大鼠。在指定的时间点抽血(见表3),并且通过标准方法测定与PBS处理的动物相比的总胆固醇量。总胆固醇水平在第2天降低约60%,并且到第28天回复到基线水平。这些数据表明配制形式的PCSK9 siRNA在较长时间内降低胆固醇水平。
猴
用LNP01配制的dsRNA处理食蟹猴,并评估LDL-C水平。将总共19只食蟹猴分配到给药组。从第-11天开始,按照以下时间表每天两次对动物进行限制喂食:在上午9点喂食,在上午10点停止喂食,在下午4点喂食,在下午5点停止喂食。在给药的第一天,所有动物都通过30分钟静脉内输注给药一次。评估动物在临床体征、体重和临床病理学指数(包括直接LDL和HDL胆固醇)方面的变化。
通过股静脉进行静脉穿刺以采集血样。第1-7组在第-3、-1、3、4、5和7天,第1、4、6组在第14天,第1组在第18和21天,第4和6组在第21天,在早晨喂食前(即上午9点以前)和早晨喂食后大约4小时(从下午1点开始)采集样品。各时间点采集至少两个1.0ml的样品。
不向1.0ml血清样品中加入抗凝剂,而向各1.0ml血浆样品中加入干抗凝剂乙二胺四乙酸(K2)。使血清样品在室温下静置至少20分钟以帮助凝固,然后将样品置于冰上。采样后尽快地将血浆样品置于冰上。在30分钟内将样品转送到临床病理学实验室进行进一步处理。
按照检测机构标准(Testing Facility Standard)操作程序,使用冷冻离心机尽快将血样处理为血清或血浆。将各个样品分成3个大致相等的体积,在液氮中快速冷冻,并置于-70℃下。各等试样应当最少为大约50μL。如果采集的总样品体积低于150μL,则将残余的样品体积加至最后的试管中。各个样品都标以动物编号、剂量组、采集天数、日期、名义采集时间和研究编号。按照厂商说明在Beckman分析仪上直接按照标准程序测定血清LDL胆固醇。
结果示于表4中。以5mg/kg施用的LNP01-10792和LNP01-9680在给药后3-7天内降低血清LDL胆固醇。大多数接受LNP01-10792的动物到第14天,接受LNP01-9680的动物到第21天,血清LDL胆固醇回复到基线水平。该数据证明LNP01配制的ALDP-9680的胆固醇降低作用持续时间大于21天。
实施例6.PCSK9siRNA导致肝脏提取物中的PCSK mRNA降低,
并且降低小鼠和大鼠中的血清胆固醇水平
为了测试PCSK9siRNA对PCSK9转录本的急性沉默(和随后的PCSK9蛋白下调)是否导致总胆固醇水平的急剧下降,将siRNA分子AD-1a2(AD-10792)配制在LNP01类脂质制剂中。这些dsRNA的序列和修饰显示在表5a中。脂质体配制的siRNA双链体AD-1a2(LNP01-1a2)在不同剂量下以小体积(对于小鼠约0.2ml,对于大鼠约1.0ml)通过尾静脉注射到C57/BL6小鼠或Sprague Dawley大鼠中。
对于小鼠,注射后48小时收集肝脏,并测定PCSK9转录本的水平。除了肝脏以外,还采集血液并进行总胆固醇分析。LNP01-1a2显示清楚的剂量响应,与靶向萤光素酶的对照siRNA(LNP01-对照)或PBS处理的动物相比具有最大PCSK9信使抑制(约60-70%)(图14A)。小鼠中最高剂量下PCSK9转录本的降低可转化为约30%的总胆固醇降低(图14B)。这一胆固醇降低水平介于杂合和纯合PCSK9敲除小鼠所报告的水平之间(Rashid等人,Proc.Natl.Acad.Sci.USA 102:5374-9,2005,epub April 1,2005)。因此,PCSK9转录本通过RNAi机制的降低能够急剧降低小鼠中的总胆固醇。而且,对PCSK9转录本的效应持续20-30天,较高的剂量显示较大的初始转录本水平降低,以及随后显示更持久的效应。
在历史上大鼠中总胆固醇的下调是困难的,因为胆固醇水平甚至在高剂量HMG-CoA还原酶抑制剂的存在下仍保持不变。有意思的是,与小鼠相比,大鼠似乎具有高得多的PCSK9基础转录本水平,如通过bDNA试验测定的。通过尾静脉向大鼠单次注射1、2.5和5mg/kg的LNP01-a2。注射后72小时收集肝组织和血液。LNP01-1a2显示清楚的剂量响应效应,与对照萤光素酶siRNA和PBS相比,在最高剂量时具有PCSK9转录本的最大50-60%的沉默(图10A)。mRNA沉默与持续10天的约50-60%的血清总胆固醇急剧降低有关(图10A和10B),经大约3周逐渐恢复到给药前水平(图10B)。该结果证明在大鼠模型系统中,通过siRNA靶向降低PCSK9对总胆固醇具有急剧、有力和持久的效应。为了确认观察到的转录本减少是由于siRNA机制,对来自处理的动物或对照动物的肝脏提取物进行5’RACE,该方法以前用于证明预测的siRNA切割事件的发生(Zimmermann等人,Nature.441:111-4,2006,Epub2006Mar 26)。在用LNP01-1a2处理的动物中观察到预测的位点特异性mRNA切割事件的PCR扩增和检测,而在PBS或LNP01-对照的对照动物中没有观察到(Frank-Kamanetsky等人.(2008)PNAS105:119715-11920)。该结果证明观察到的LNP01-1a2的效应是由于PCSK9转录本通过siRNA特异性机制的切割。
PCSK9影响胆固醇水平的机制已经与细胞表面上LDLR数目相关联。大鼠(而不是小鼠、NHP和人)通过胆固醇合成的紧密调节并且较低程度上通过LDLR水平的调控来控制其胆固醇水平。为了研究LDLR调控是否在RNAi治疗性PCSK9靶向时发生,我们对用5mg/kg LNP01-1a2处理的大鼠的肝LDLR水平进行了定量(通过Western印迹法)。如图11所示,与PBS或LNP01-对照的对照siRNA处理的动物相比,LNP01-1a2处理的动物在单剂量LNP01-1a2后48小时具有LDLR水平的明显(平均约3-5倍)的诱导。
也进行试验以测试PCSK9的减少是否改变肝脏自身中甘油三酯和胆固醇的水平。遗传缺失、化合物或siRNA抑制剂引起的与VLDL装配和分泌相关的基因如微粒体甘油三酯转移蛋白(MTP)或ApoB的急剧降低导致肝脏甘油三酯增多(参见,例如,Akdim等人,Curr.Opin.Lipidol.18:397-400,2007)。预测肝脏中PCSK9沉默诱导的血浆胆固醇清除率提高(以及随后肝脏LDLR水平的升高)不会导致肝脏甘油三酯的积聚。然而,为了解决这种可能性,对处理的动物或对照动物中的肝胆固醇和肝脏中甘油三酯浓度进行定量。如图10C所示,与对照组相比,施用PCSK9siRNA的大鼠的肝TG水平或胆固醇水平没有统计学差异。这些结果表明PCSK9沉默和随后的胆固醇降低不太可能导致过度的肝脂积聚。
实施例7.对siRNA的额外修饰不影响沉默和大鼠中胆固醇减少
的持续时间
在dsRNA有义链和反义链3’末端的硫代磷酸酯修饰能够针对外切核酸酶进行保护。dsRNA有义链和反义链中的2’OMe和2’F修饰能够针对内切核酸酶进行保护。AD-1a2(见表5b)在有义链和反义链上都含有2’OMe修饰。进行实验以确定固有稳定性(通过siRNA在人血清中的稳定性确定)或化学修饰(2’OMe相比2’F或混合物)的程度或类型是否与观察到的大鼠效力或沉默效应持续时间有关。产生具有相同AD-1a2核心序列但是含有不同化学修饰的siRNA的稳定性,并在原代食蟹猴(Cyno)肝细胞中测试其体外活性。然后,对于通过体外PCSK9沉默的IC50值测定保持类似活性的一系列这类分子(表5b),测试它们在人血清中对于外切核酸酶和内切核酸酶切割的稳定性。各个双链体在人血清中37℃下温育(时程),并进行HPLC分析。亲本序列AD-1a2在合并的人血清中的T1/2约为7小时。更多修饰(参见表5中的化学修饰)的序列AD-1a3、AD-1a5和AD-1a4全部具有超过24小时的T1/2。为了测试化学修饰或稳定性的不同是否导致效力的改变,配制了AD-1a2、AD-1a3、AD-1a5、AD-1a4和AD-对照序列,并注射到大鼠体内。在给药后的各不同天数采集动物的血液,并测定总胆固醇浓度。以前的实验已经表明在用LNP01-1a2处理的大鼠中,PCSK9转录本水平降低与总胆固醇值之间具有极紧密的相关性(图10A)。观察到所有4种分子在给药后第2天都使总胆固醇降低约60%(相对于PBS或对照siRNA),并且所有分子对总胆固醇水平具有相等的效应,从而显示相似的幅度和持续时间特性。这些分子表明的胆固醇降低幅度和效应持续时间没有统计学差异,无论其在人血清中的不同化学性质或稳定性如何。
实施例8.LNP01-1a2和LNP01-3a1在转基因小鼠中使人PCSK9
和循环人PCSK9蛋白沉默
在体内测试LNP01-1a2(即PCS-A2或AD-10792)和另一分子AD-3a1(即PCS-C2或AD-9736)(它只靶向人和猴PCSK9信使)沉默人PCSK9基因的效果。使用在ApoE启动子下表达人PCSK9的转基因小鼠系(Lagace等人,J Clin Invest.116:2995-3005,2006)。设计特异性PCR试剂和抗体,它们分别检测人转录本和蛋白质,而不检测小鼠转录本和蛋白质。人源化小鼠同龄组注射单剂量LNP01-1a2(又称为LNP-PCS-A2)或LNP01-3a1(又称为LNP-PCS-C2),48小时后采集肝脏和血液。单剂量LNP01-1a2或LNP01-3a1能够使人PCSK9转录本水平降低>70%(图15A),并且该转录本下调导致显著降低的循环人PCSK9蛋白质水平,如通过ELISA测定的(图15B)。这些结果证明两种siRNA都能够沉默人转录本,并且随后降低循环血浆人PCSK9蛋白质量。
实施例9.NHP中由饮食调节分泌PCSK9水平
对于小鼠,PCSK9mRNA水平受转录因子固醇调节元件结合蛋白-2调节,并且通过禁食降低。在临床实践和标准NHP研究中,在整夜禁食期后检测血液采集和胆固醇水平。这部分地由于循环TG的变化干扰LDLc值的计算的可能性。鉴于小鼠中禁食和喂食行为对PCSK9水平的调节,进行实验以了解禁食和喂食在NHP中的效应。
使猕猴适应每天两次喂食时间表,在此过程中在一小时后取走食物。上午9-10点给动物喂食,之后取走食物。接下来在下午5-6点再一次给动物喂食一小时,然后取走食物。整夜禁食(下午6点到次日上午9点)后采血,并且再在上午9点喂食后2小时和4小时采血。通过ELISA试验(见方法部分)测定血浆或血清中的PCSK9水平。有意思的是,发现循环PCSK9水平在整夜禁食后较高,并且在喂食2小时和4小时后降低。该数据与其中通过摄食高度调节PCSK9水平的啮齿动物模型一致。然而,意外的是,PCSK9水平在喂食后的前几小时下降。该结果使得能够更小心地设计NHP实验,以探查配制的AD-1a2和在食蟹猴原代肝细胞中具有高活性的另一种PCSK9siRNA(AD-2a1)的有效性。
实施例10.PCSK9siRNA减少非人灵长类动物(NHP)的循环
LDLc、ApoB和PCSK9,但不减少HDLc
在小鼠和大鼠中,靶向PCSK9的siRNA到给药后72小时急剧降低PCSK9和总胆固醇水平,并且在单剂给药后持续约21-30天。为了将这些发现扩展到脂蛋白谱最近似地模拟人类的物种,在食蟹猴(Cyno)模型中进行进一步的实验。
向食蟹猴施用均靶向PCSK9的siRNA 1(LNP01-10792)和siRNA 2(LNP-01-9680)。如图12所示,两种siRNA都导致显著的脂质降低,最多持续到给药后7天。siRNA 2导致大约50%的脂质降低,至少持续到给药后7天,在给药后第14天脂质降低约60%,并且siRNA 1导致大约60%的LDLc降低,至少持续7天。
首先预筛选LDLc为40mg/dl或更高的雄性食蟹猴。然后对选择的动物施行禁食/喂食饮食方案,并适应11天。在给药前第-3天和-1天,在禁食时和喂食后4小时的时间点采集血清,并且分析总胆固醇(Tc)、LDL胆固醇(LDLc)、HDL胆固醇(HDLc)以及甘油三酯(TG)和血浆PCSK9水平。动物根据第-3天的LDLc水平随机分组。在给药日(称为第1天),注射1mg/kg或5mg/kg LNP01-1a2和5mg/kg LNP01-2a1以及PBS和1mg/kg LNP01-对照作为对照。所有剂量都良好耐受,在生存期内没有发现。随着实验进行,较低剂量没有效果变得越来越明显(基于LDLc降低)。因此我们在第14天向PBS组动物施用5mg/kg LNP01-对照的对照siRNA,其随后可用作5mg/kg LNP01-1a2和5mg/kgLNP01-2a1高剂量组的另外的对照。开始时在给药后第3、4、5、7天对动物采血,并测定Tc、HDLc、LDLc和TG浓度。在给药后第14天和第21天对LNP01-1a2、LNP01-2a1高剂量组进行额外的采血(因为到第7天LDLc水平没有回复到基线水平)。
如图12A所示,单剂LNP01-1a2或LNP01-2a1导致从给药后第3天开始统计学显著的LDLc降低,经过大约14天(对于LNP01-1a2)和大约21天(LNP01-2a1)回复到基线水平。这种效应在PBS组、对照siRNA组或1mg/kg治疗组均未见到。与给药前水平相比,LNP01-2a1导致在给药后72小时LDLc平均降低56%,4只动物中的1只几乎达到70%LDLc降低,其余所有的都达到>50%的LDLc降低(参见图12A)。如预期的,处理的动物中LDLc的降低也与通过血清ELISA测定的循环ApoB水平的降低相关(图12B)。有意思的是,在该食蟹猴研究中观察到的LDLc降低程度大于曾经报告的高剂量他汀类药物的程度,以及大于其它用于高胆固醇血症的现有护理化合物标准的程度。作用的起效也比他汀类药物更急剧,效果在早至给药后48小时即可观察到。
LNP01-1a2和LNP01-2a1处理均不会导致HDLc降低。事实上,这两种分子都导致(平均地)Tc/HDL比降低的倾向(图12C)。另外,循环甘油三酯水平以及(除了一只动物以外的)ALT和AST水平未受显著影响。
也测定了处理的动物和对照动物中的PCSK9蛋白质水平。如图11所示,与给药前相比,LNP01-1a2和LNP01-2a1处理各自导致降低循环PCSK9蛋白质水平的趋势。特别是,相对于PBS(第3-21天)和LNP01-对照siRNA对照(第4天、第7天),更高活性的siRNA LNP01-2a1证明显著降低循环PCSK9蛋白质。
实施例11.修饰的siRNA和hPBMC中免疫应答的激活
在人原代血液单核细胞(hPBMC)中测试siRNA对免疫系统的激活。发现两个对照诱导序列和未修饰的亲本化合物AD-1a1诱导IFN-α和TNF-α。然而,该序列的化学修饰形式(AD-1a2、AD-1a3、AD-1a5和AD-1a4)以及AD-2a1在这些相同试验中对于IFN-α和TNF-α诱导是阴性的(参见表5和图13A和13B)。因此,化学修饰能够抑制对siRNA分子的IFN-α和TNF-α应答。另外,当配制在脂质体中并且在小鼠中检测时,AD-1a2和AD-2a1都不激活IFN-α。
实施例12.siRNA偶联物在小鼠中的评估
AD-10792偶联到(GalNAc)3/胆固醇(图16)或(GalNAc)3/LCO(图17)。合成偶联物在3’末端的有义链。使用以下所述的方法测定小鼠中偶联的siRNA对PCSK9转录本水平和血清总胆固醇的效应。
简要地说,连续三天:第0天、第1天和第2天,通过尾静脉注射给小鼠施用2种偶联siRNA之一或PBS,剂量为大约100、50、25或12.5mg/kg。各个剂量组包括6只小鼠。最后一次给药后24小时处死小鼠并获取血和肝脏样品,贮存,并处理以测定PCSK9mRNA水平和血清总胆固醇。
结果显示在图18中。与对照PBS相比,两种siRNA偶联物都被证明具有活性,(GalNAc)3/胆固醇偶联的AD-10792的ED50为3X50mg/kg,(GalNAc)3/LCO偶联的AD-10792为3X100mg/kg。结果表明具有GalNAc的胆固醇偶联siRNA具有活性并且能够沉默肝脏中的PCSK9,从而导致胆固醇降低。
推注给药
使用27G针通过尾静脉注射对C57/BL6小鼠(每组6只,8-10周龄,Charles River Laboratories,MA)进行配制siRNA的推注给药。将siRNA配制在LNP-01中(随后使用PBS进行透析)并且用PBS稀释至1.0、0.5、0.25和0.125mg/ml的浓度,从而能够以10μl/g体重递送100、50、25和12.5mg/kg的剂量。给药前将小鼠在红外线灯下保持约3分钟以便于注射。
最后一次给药24小时后,通过CO2窒息处死小鼠。通过眼球后部放血收集0.2ml血液,收集肝脏并在液氮中冷冻。将血清和肝脏在-80℃下保存。使用6850Freezer/Mill Cryogenic Grinder(SPEX CentriPrep,Inc)粉碎冷冻的肝脏,并在分析前将粉末保存在-80℃下。
使用来自QuantiGene Reagent System(Panomics,USA)的基于分支DNA技术的试剂盒根据实验方案检测PCSK9mRNA水平。在65℃下,将10-20mg冷冻肝脏粉末在含0.16μg/ml蛋白酶K(Epicentre,#MPRK092)的600μl组织和细胞裂解溶液(Epicentre,#MTC096H)中裂解3小时。随后,将10μl裂解物加入到90μl裂解工作试剂(2倍体积水中的1倍体积原存储混合液)中,并在具有对小鼠PCSK9和小鼠GAPDH特异性的探针组的Genospectra捕获板上于52℃下温育过夜。用于小鼠PCSK9和小鼠GAPDH的探针组购自Panomics,USA。在Victor2-Light(Perkin Elmer)上读取作为相对光单位的化学发光。对各处理组计算肝脏裂解物中PCSK9mRNA与mGAPDH mRNA比的平均值,并将其与使用PBS处理的对照组或使用无关siRNA(凝血因子VII)处理的对照组进行比较。
按照厂商说明书使用总胆固醇分析(Wako,USA)测定小鼠血清中的总血清胆固醇。测量在600nm的Victor2 1420 Multilabel Counter(PerkinElmer)上进行。
实施例13.脂质配制的siRNA在大鼠中的评估
简言之,通过尾静脉注射向大鼠施用SNALP配制的siRNA或PBS,以及单剂量的大约0.3、1.0和3.0mg/kg SNALP配制的AD-10792。各剂量组包括5只大鼠。给药72小时后,处死大鼠并获取血液和肝脏样品,保存,处理以确定PCSK9mRNA和血清总胆固醇水平。结果显示在图19中。与对照PBS相比,SNALP配制的AD-10792(图19A)降低PCSK9转录本水平和血清总胆固醇水平的ED50为大约1.0mg/kg。这些结果表明施用SNALP配制的siRNA在体内导致有效的和高效的PCSK9沉默以及随后的总胆固醇降低。
推注给药
使用27G针通过尾静脉注射对Sprague-Dawley大鼠(每组5只,170-190g体重,Charles River Laboratories,MA)进行配制siRNA的推注给药。将siRNA配制在SNALP中(随后使用PBS进行透析)并且用PBS稀释至0.066、0.2和0.6mg/ml的浓度,从而能够以5μl/g体重递送0.3、1.0和3.0mg/kg的SNALP配制的AD-10792。给药前将大鼠在红外灯下保持约3分钟以便于注射。
最后一次给药后72小时,通过CO2窒息处死大鼠。通过眼球后部放血收集0.2ml血液,收集肝脏并在液氮中冷冻。将血清和肝脏在-80℃下保存。使用6850Freezer/Mill Cryogenic Grinder(SPEX CentriPrep,Inc)粉碎冷冻的肝脏,并在分析前将粉末保存在-80℃下。
使用来自QuantiGene Reagent System(Panomics,USA)的基于分支DNA技术的试剂盒根据实验方案检测PCSK9mRNA水平。在65℃下,将10-20mg冷冻肝脏粉末在含0.16μg/ml蛋白酶K(Epicentre,#MPRK092)的600μl组织和细胞裂解溶液(Epicentre,#MTC096H)中裂解3小时。随后,将10μl裂解物加入到90μl裂解工作试剂(2倍体积水中1倍体积原裂解混合液)中,并在具有对大鼠PCSK9和大鼠GAPDH特异性的探针组的Genospectra捕获板上于52℃下温育过夜。用于大鼠PCSK9和大鼠GAPDH的探针组购自Panomics,USA。在Victor2-Light(Perkin Elmer)上读取作为相对光单位的化学发光。对各处理组计算肝脏裂解物中大鼠PCSK9mRNA与大鼠GAPDH mRNA比的平均值,并将其与使用PBS处理的对照组或使用无关siRNA(凝血因子VII)处理的对照组进行比较。
按照厂商说明书使用总胆固醇分析(Wako,USA)测定大鼠血清中的总血清胆固醇。测量在600nm的Victor2 1420 Multilabel Counter(PerkinElmer)上进行。
实施例14.AD-9680和AD-14676的错配步移(Mismatch walk)在
HeLa细胞中的体外效力筛选
在HeLa细胞中测定序列变异或修饰对AD-9680、AD-14676和AD-10792有效性的影响。如表6所示合成了大量变异体,包括增加DFT(2,4-二氟甲苯酰基,缺乏Watson-Crick配对的胸苷三磷酸形状类似物);增加单一或组合错配;以及测试两种不同的骨架化学:先是2’-O甲基,或者与2’F交替。
3个亲本双链体的序列可见表1a,并且在下面重复给出:
将HeLa接种在96孔板(8,000-10,000细胞/孔)上100μl含10%胎牛血清的Dulbecco改良Eagle培养基(DMEM)中。当细胞达到50%汇合时(约24小时后),将其用从10nM开始的系列四倍稀释的siRNA转染。每孔使用0.4μl转染试剂LipofectamineTM 2000(Invitrogen Corporation,Carlsbad,CA),并且按照厂商方案进行转染。即,siRNA:LipofectamineTM2000复合物如下制备。适量的siRNA在不含血清的Opti-MEM I减血清培养基中稀释,并温和混合。LipofectamineTM 2000在使用前温和混合,然后对于96孔板的每孔,0.4μl稀释在25μl不含血清的Opti-MEM I减血清培养基中,温和混合,并在室温下温育5分钟。温育5分钟后,1μl稀释的siRNA与稀释的LipofectamineTM 2000混合(总体积为26.4μl)。将复合物温和混合,并在室温下温育20分钟以使siRNA:LipofectamineTM 2000复合物能够形成。然后将100μl含10%胎牛血清的DMEM加到各siRNA:LipofectamineTM 2000复合物中并通过来回摇动平板温和混合。向含有细胞的各孔加入100μl上述混合物,平板在37℃的CO2培养箱中温育24小时,然后除去培养基,并加入100μl含10%胎牛血清的DMEM。
培养基改变后24小时除去培养基,裂解细胞,并按照厂商方案通过bDNA分析(Panomics,USA)测定细胞裂解物的PCSK9mRNA沉默。在Victor2-Light(Perkin Elmer)上读取作为相对光单位的化学发光。将细胞裂解物中人PCSK9mRNA与人GAPDH mRNA的比与仅LipofectamineTM 2000对照处理的细胞的比进行比较。
图20是一系列与AD-9680有关的化合物的剂量响应曲线。图21是一系列与AD-14676有关的化合物的剂量响应曲线。结果表明特定位置的DFT或错配能够提高两种亲本化合物的活性(由较低的IC50值证明)。图24是比较亲本双链体AD-9680和AD-10792与修饰双链体的有效性的剂量响应曲线,在修饰双链体中,在有义链的10位插入DFT。该修饰使HeLa细胞中的有效性提高大约2倍。
不被理论所约束,推测的是通过引入错配或DFT使有义链去稳定化可导致有义链的较快速去除。
实施例15.高浓度下Hep3B细胞中缺乏脱靶效应
按照厂商说明,使用试剂RNAiMAX(Invitrogen),一试三份将脂质配制的PCSK9靶向siRNA(AD-9680)以250nM、1μM和5μM的浓度转染到Hep3B细胞中:1μl转染试剂;反向转染方案。转染后48小时采集样品。使用MagMAXTM-96总RNA分离试剂盒(Ambion)纯化总RNA;使用含有RNase抑制剂(ABI)的High Capacity cDNA逆转录试剂盒由13.5μl RNA制剂合成cDNA;使用了ABI Gene Expression Taqman试验;按照厂商说明,使用TaqManGene Expression Master Mix(ABI)建立q-PCR反应,并在ABI 7900仪器上运行。利用Delta delta Ct法计算数值。样品相对于hGAPDH进行标准化并进行校准以模拟转染。
测定以下与靶序列具有最接近的同源性的基因的转录本水平:ORMDL2、BMP6、TAPT1、MYEF2、LOC442252、RFT1和PCSK9。
结果显示在图22中。在高浓度dsRNA下没有观察到脱靶效应(PCS-B2=AD-9680)。
实施例16.大鼠中较低AD-10792剂量对总胆固醇水平降低的维
持
用3mg/kg推注给药的SNALP-DlinDMA配制的AD-10792处理大鼠。第2天,测定血清总胆固醇水平。随后一周一次给予1.0和0.3mg/kg,共四周。重复给药前一天对大鼠采血,并测定血清总胆固醇水平。阴性对照为PBS。
结果显示在图23的图表中。3mg/kg推注给药后,总胆固醇水平降低60%,并且通过一周一次重复1.0和0.3mg/kg给药而保持在大约50%,在停止重复给药后回复到给药前水平。
一周一次(比EC50)低10倍的维持剂量有效地保持沉默,到最后一次注射后15天胆固醇水平回到基线水平。如血清总胆固醇的降低所反映的,PCSK9初始给药提高LDLR水平。如较低剂量的后续AD-10792施用所反映的,这种LDLR水平的升高提高了PCSK9靶向siRNA的效力。
实施例17.大鼠在施用各种不同AD-10792脂质制剂后,对胆固醇
水平的效应的分析
大鼠如本文所述的用四种不同的AD-10792脂质制剂(包括SNALP和LNP08)处理。在第3天,测定血清总胆固醇水平。使用本文所述的方法进行该实验。与LNP01配制的(EC50为2.0mg/kg)和SNALP配制的(EC50为1.0mg/kg)相比,施用LNP-08配制的AD-10792导致0.08mg/kg的最低EC50(数据未示出)。
实施例18.PCSK9 siRNA叠瓦(tiling)实验
PCSK9叠瓦组的生物信息学选择
有义和反义寡聚体设计为靶向ALN-PCSK9的19碱基靶区直接上游和下游的侧翼区中的人PCSK9转录本(AD-9680)。我们使用NCBI RefseqNM_174936.2作为PCSK9基因的参考人转录本。AD-9680的反义寡核苷酸含有19个连续碱基,这些碱基与NM_174936的从相对于mRNA起点的3530到3548位的区域中的碱基互补。对转录本序列亚组的各独特19mer设计一组siRNA分子,该转录本序列由AD-9680靶区5’末端上游的10个碱基到3’末端下游的10个碱基限定。对于NM_174936.2转录本,有义寡核苷酸19mer的5’位置的第一个碱基从3520位延伸到3558位(表7和8)。
PCSK9叠瓦序列的合成:
用MerMade 192合成仪合成PCSK9序列。制备两组序列。第一组不含化学修饰(未修饰的),第二组制备为含有endolight化学修饰。在含有endolight化学修饰的序列中,有义链中的所有嘧啶(胞嘧啶和尿嘧啶)都被替换为相应的2’-O-甲基碱基(2’O-甲基C和2’-O-甲基U)。在反义链中,与ribo A核苷相邻(朝向5’位置)的嘧啶被替换为其相应的2-O-甲基核苷。在有义和反义序列的3’末端引入两个碱基的dTsdT延伸。将序列文件转化为文本文件,以使其适合装载在MerMade 192合成软件中。
PCSK9序列的合成采用使用亚磷酰胺化学方法的固体支持寡核苷酸合成。上述序列的合成在96孔板中以1μm的规模进行。制备0.1M浓度的酰胺化物溶液,并且乙基硫代四唑(0.6M的乙腈溶液)用作活化剂。第一步使用甲胺,第二步使用氟离子,将合成的序列在96孔板中切割并脱保护。这样获得的粗序列使用丙酮:乙醇混合物沉淀,并将沉淀物重悬浮在0.2M乙酸钠缓冲液中。通过LC-MS分析各序列的样品,得到的质谱数据证实了序列的身份。选择的一组样品也通过IEX色谱法进行分析。所有序列都在使用Source 15Q柱的AKTA探测纯化系统上纯化。将对应于全长序列的单峰收集在洗脱液中,随后通过离子交换层析分析纯度。纯化的序列在Sephadex G25柱上使用AKTA纯化剂脱盐。分析脱盐的PCSK9序列的浓度和纯度。然后提供单链进行退火。
PCSK9叠瓦siRNA的体外筛选:
细胞培养和转染:
在37℃和5%CO2气氛下,在补充有10%FBS、链霉素和谷氨酰胺(ATCC)的Eagle最低基础培养基(EMEM,ATCC)中,Hela细胞(ATCC,Manassas,VA)生长到接近汇合,之后通过胰蛋白酶消化从板上释放细胞。反向转染如下进行:向96孔板中每孔5μl的siRNA双链体中加入5μl Opti-MEM,以及每孔10μl Opti-MEM+0.2μl LipofectamineRNAiMax(Invitrogen,Carlsbad CA.cat#13778-150),并在室温下温育15分钟。然后加入含有2.0x104Hela细胞的80μl无抗生素完全生长培养基。细胞在RNA纯化之前温育24小时。以0.1或10nM的终双链体浓度进行实验。对于剂量响应筛选,用从1nM到1fM的7倍、10倍系列稀释的siRNA转染HeLa细胞。
使用MagMAX-96总RNA分离试剂盒(Applied Biosystem,Forer CityCA,part#:AM1830)分离总RNA。收获细胞,并在140μl裂解/结合溶解中裂解,然后使用Eppendorf Thermomixer以850rpm混合1分钟(混合速度在整个过程中相同)。向细胞裂解物中加入20微升磁珠和裂解/结合增强混合物,并混合5分钟。使用磁座(magnetic stand)捕获磁珠,并在不干扰磁珠的情况下除去上清液。除去上清液后,用洗涤溶液1(添加异丙醇)洗涤磁珠并混合1分钟。再次捕获磁珠,并除去上清液。然后用150μl洗涤溶液2(添加乙醇)洗涤磁珠,捕获,并除去上清液。然后向磁珠添加50μl DNase混合物(MagMax turbo DNase缓冲液和TurboDNase),并将其混合10-15分钟。混合后,加入100μl RNA再结合溶液,并混合3分钟。除去上清液,用150μl洗涤溶液2再次洗涤磁珠,并混合1分钟,完全除去上清液。将磁珠混合2分钟至干,之后用50μl水洗脱RNA。
cDNA使用ABI高容量cDNA逆转录试剂盒(Applied Biosystems,Foster City,CA,Cat#4368813)合成。向10μl总RNA中加入每反应2μl10X缓冲液、0.8μl 25X dNTPs、2μl随机引物、1μl逆转录酶、1μl RNase抑制剂和3.2μl H2O的主混合物。使用Bio-Rad C-1000或S-1000热循环仪(Hercules,CA)通过以下步骤产生cDNA:25℃10min,37℃120min,85℃5sec,4℃保持。
如下进行实时PCR。在LightCycler 480 384孔板(Roche cat#0472974001)中,将2μl cDNA加至每孔含有1μl GAPDH TaqMan探针(Applied Biosystems Cat#4326317E)、1μl PCSK9TaqMan探针(AppliedBiosystems cat#HS03037355_M1)和10μl Roche探针主混合物(RocheCat#04887301001)的主混合物中。实时PCR在LightCycler 480实时PCR仪(Roche)中进行。各双链体在两个独立的转染中检测,并且各个转染一式两份进行分析。
使用ΔΔCt法分析实时数据。将各个样品相对于GAPDH表达标准化,并且评估相对于用非靶向双链体AD-1955转染的细胞的下调。使用XLfit中的4参数拟合模型定义IC50。
单剂量实验的数据示于表9中。数据表示为相对于对照AD-1955靶向的细胞保留的信使的百分比。
剂量响应筛选的数据示于表10中。数据表示为相对于AD-1955导致50%抑制的剂量(以pM为单位)。各个剂量响应重复两次(Rep1和Rep2)。示出了两个剂量响应筛选中产生的IC50的平均值。
AD-9680侧翼的siRNA的平均IC50对人PCSK9转录本靶区的起始位点作图,图25。
因此,用RNAi试剂靶向PCSK9的核苷酸区3520-3555对于抑制PCSK9高度有效。
实施例19.与靶向PCSK9的dsRNA复合的基于ApoE3的重构
HDL
通过单推浓注剂量静脉内给药(尾静脉注射)给C57BL6小鼠施用30mg/kg rEHDL/chol-siPCSK9。
Chol-siPCSK9(dsRNA双链体AD-20583)具有以下序列:
有义:GccuGGAGuuuAuucGGAAdTsdTL10(SEQ ID NO:1729)
反义:PuUfcCfgAfaUfaAfaCfuCfcAfgGfcdTsdT(SEQ ID NO:1730)
L10的结构为:
注射后,使小鼠禁食整夜(约14小时),然后在注射后48小时杀死。通过bDNA试验测定肝脏的mRNA水平,并相对于GAPDH mRNA水平进行标准化。
结果
bDNA测定的结果示于图26中,该图表明施用rEHDL/chol-siPCSK9后PCSK9显著降低,但是施用未复合的siRNA(chol-siPCSK9)后没有降低。rEHDL/chol-siPCSK9使PCSK9mRNA水平降低大约80%。
实施例20.非人灵长类动物(NHP)中的LNP-11配制的siRNA
将靶向PCSK9的siRNA(AD-9680)配制在LNP-11制剂(本文所述的)中并且施用于食蟹猴。对照为AD-1955。脂质配制的siRNA在第1天以0.03、0.1、0.3和1.0mg/kg的剂量通过30分钟输注施用。对照以1.0mg/kg施用。第3天,进行肝脏活检以测量PCSK9转录本。在第-3、-1、3、4、5、7、9、11、12、15、22、30和37天采集血样,并且测定PCSK9蛋白质水平和LDLc数和HDLc数。
结果示于图27A、图27B和图27C中。
如图27A和图27B所示,施用导致快速和持久的剂量依赖性的PCSK9蛋白质水平降低,并且导致>50%的LDLc(LDL胆固醇)水平降低。这些效应非常强,ED50剂量水平为30-100微克/千克。如图27C所示,施用未导致HDLc水平的变化。
实施例21.使用LNP-09配制的PCSK9dsRNA的大鼠中的剂量响
应
将dsRNA AD-10792(靶向大鼠PCSK9)包封在含XTC的制剂例如LNP09制剂中。LNP09制剂的XTC/DSPC/Cholesterol/PEG-DMG%摩尔比为50/10/38.5/1.5和脂质∶siRNA比为10∶1。
将制剂通过尾静脉单剂量(DRC)注射到大鼠中。注射后72小时收集肝脏和血浆(每组5只动物)。按照厂商说明通过bDNA测定制备的肝脏中的PCSK9转录本水平。也测定GAPDH转录本水平,并将PCSK9:GAPDH比相对于PBS对照进行标准化并作图。使用来自WAKO TX的胆固醇试剂盒测定血清中的总胆固醇。
结果示于图29中。使用该制剂,在剂量<0.1mg/kg时在大鼠中实现PCSK9沉默和总胆固醇降低。在降低PCSK9mRNA方面,ED50为0.2mg/kg,在降低血清胆固醇方面为0.2mg/kg和0.08。
实施例22.用LNP-09配制的PCSK9dsRNA处理转基因小鼠
过表达人CETP和ApoB100的转基因小鼠(CETP/ApoB双人源化转基因小鼠,Taconic Labs)更近似地模拟在人类中发现的LDL/HDL比。
CETP/ApoB双人源化转基因小鼠购自Taconic Labs。通过尾静脉向动物注射(单次注射)5mg/kg LNP09配制的AD-10792(标准配制程序)或AD-1955萤光素酶对照(每组4只动物)。注射后72小时收集肝脏和血浆(每组5只动物),并且测定肝脏PCSK9mRNA、LDL颗粒和HDL颗粒数。
按照厂商方案通过bDNA测定制备的肝脏中的PCSK9转录本水平。也测定GAPDH转录本水平,并且将PCSK9:GAPDH比作图,相对于PBS对照进行标准化。通过NMR(Liposciences Inc.)基于其SOP测定LDL和HDL颗粒数/浓度。
结果显示在图30中。PCSK9的沉默使LDL颗粒浓度降低了约90%,而HDL水平中度降低(与使用PBS对照处理的处理动物相比)。这证明了PCSK9水平显著降低,随后这些动物中LDLc降低。
实施例23.人体中PCSK9表达的抑制
人类受试者用本文所述的靶向PCSK9基因的脂质配制的dsRNA治疗,以抑制PCSK9基因的表达并在单剂量后的长时间内降低胆固醇水平。在一个实施方案中,脂质配制的dsRNA包括脂质MC3。
选择或确认需要治疗的受试者。该受试者可能需要降低LDL、降低LDL而不降低HDL、降低ApoB或降低总胆固醇。受试者的确认可以在临床环境中进行,或者在别处进行,例如,在受试者的家中由受试者自己使用自检测试剂盒进行。
在0时间点,向受试者皮下施用合适的第一剂量的抗-PCSK9siRNA。dsRNA如本文所述配制。在第一剂量一段时间后,例如,7天、14天和21天后,评估受试者的状况,例如,通过测定LDL、ApoB和/或总胆固醇水平。该测定的同时可以伴随测定所述受试者中PCSK9表达,和/或PCSK9mRNA的成功siRNA靶向的产物。也可以测定其它有关标准。给药次数和强度根据受试者的需要进行调节。
治疗后,受试者的LDL、ApoB或总胆固醇水平相对于治疗前存在的水平降低,或者相对于类似患病但未治疗的受试者测定的水平降低。
本领域技术人员熟知所述方法和组合物以及本公开内容中特别列出的那些方法和组合物,这些方法和组合物能够使本领域技术人员在下文权利要求书完整范围内实施本发明。
表1a:靶向PCSK9的dsRNA的序列
U,C,A,G:相应的核糖核苷酸;T:脱氧胸苷;u,c,a,g:相应的2’-O-甲基核糖核苷酸;Uf,Cf,Af,Gf:相应的2’-脱氧-2’-氟核糖核苷酸;其中核苷酸记录在序列中,它们通过3’-5’磷酸二酯基团连接;中间插入“s”的核苷酸通过3’-O-5’-O磷酸硫代二酯基团连接;除非用前缀“p-”表示,寡核苷酸在5’-最远端核苷酸上没有5’-磷酸基团;所有寡核苷酸都在3’-最远端核苷酸上带有3’-OH。
表1b.靶向PCSK9的siRNA的筛选
表2a.靶向PCSK9的修饰dsRNA的序列
U,C,A,G:相应的核糖核苷酸;T:脱氧胸苷;u,c,a,g:相应的2’-O-甲基核糖核苷酸;Uf,Cf,Af,Gf:相应的2’-脱氧-2’-氟核糖核苷酸;moc,mou,mog,moa:相应的2’-MOE核苷酸;其中核苷酸记录在序列中,它们通过3’-5’磷酸二酯基团连接;ab:3’-末端脱无基核苷酸;中间插入“s”的核苷酸通过3’-O-5’-O硫代磷酸二酯基团连接;除非用前缀“p-”表示,寡核苷酸在5’-最远端核苷酸上没有5’-磷酸基团;所有寡核苷酸都在3’-最远端核苷酸上带有3’OH。
表2b.靶向PCSK9的dsRNA的筛选
表3.用LNP01-10792处理的大鼠的胆固醇水平
剂量为5mg/kg,每组n=6只大鼠
天 | 血清总胆固醇(相对于PBS对照) |
2 | 0.329±0.035 |
4 | 0.350±0.055 |
7 | 0.402±0.09 |
9 | 0.381±0.061 |
11 | 0.487±0.028 |
14 | 0.587±0.049 |
16 | 0.635±0.107 |
18 | 0.704±0.060 |
21 | 0.775±0.102 |
28 | 0.815±0.103 |
表4.用LNP配制的dsRNA处理的食蟹猴的血清LDL-C水平
血清LDL-C(相对于给药前)
表5a:靶向PCSK9的修饰dsRNA
U,C,A,G:相应的核糖核苷酸;T:脱氧胸苷;u,c,a,g:相应的2’-O-甲基核糖核苷酸;Uf,Cf,Af,Gf:相应的2’-脱氧-2’-氟核糖核苷酸;其中核苷酸记录在序列中,它们通过3’-5’磷酸二酯基团连接;中间插入“s”的核苷酸通过3’-O-5’-O硫代磷酸二酯基团连接;除非用前缀“p-”表示,寡核苷酸在5’-最远端核苷酸上没有5’-磷酸基团;所有寡核苷酸都在3’-最远端核苷酸上带有3’-OH。
表5b:修饰dsRNA在猴肝细胞中的沉默活性
表6:靶向PCSK9的dsRNA:错配和修饰
链:S/有义;AS/反义
U,C,A,G:相应的核糖核苷酸;T:脱氧胸苷;u,c,a,g:相应的2’-O-甲基核糖核苷酸;Uf,Cf,Af,Gf:相应的2’-脱氧-2’-氟核糖核苷酸;Y1对应于DFT二氟甲苯酰基核糖(或脱氧核糖)核苷酸;其中核苷酸记录在序列中,它们通过3’-5’磷酸二酯基团连接;中间插入“s”的核苷酸通过3’-O-5’-O硫代磷酸二酯基团连接;除非用前缀“p-”表示,寡核苷酸在5’-最远端核苷酸上没有5’-磷酸基团;所有寡核苷酸都在3’-最远端核苷酸上带有3’OH。
表7:AD-9680侧翼的未修饰siRNA的序列
表8:AD-9680侧翼的修饰siRNA的序列
表9:用AD-9680侧翼siRNA单剂量处理HeLa细胞
表10:使用AD-9680侧翼siRNA的HeLa细胞中的IC50
Claims (43)
1.一种包含核酸脂质颗粒的组合物,所述核酸脂质颗粒包含用于抑制细胞中人PCSK9基因表达的双链核糖核酸(dsRNA),其中:
所述核酸脂质颗粒包含脂质制剂,该脂质制剂包含45-65mol%的阳离子脂质、5mol%至大约10mol%的非阳离子脂质、25-40mol%的固醇和0.5-5mol%的PEG或PEG修饰的脂质,
所述dsRNA由有义链和反义链组成,并且有义链包含第一序列且反义链包含与SEQ ID NO:1523(5’-UUCUAGACCUGUUUUGCUU-3’)的至少15个连续核苷酸互补的第二序列,
其中所述第一序列与所述第二序列互补,并且其中所述dsRNA的长度为15-30个碱基对。
2.如权利要求1所述的组合物,其中所述阳离子脂质包含MC3(((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基4-(二甲基氨基)丁酸酯。
5.如权利要求4所述的组合物,其中所述阳离子脂质包含XTC(2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环)。
6.如权利要求4所述的组合物,其中所述阳离子脂质包含XTC,所述非阳离子脂质包含DSPC,所述固醇包含胆固醇,且所述PEG脂质包含PEG-DMG。
8.如权利要求1所述的组合物,其中所述阳离子脂质包含ALNY-100((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺))。
10.如权利要求1所述的组合物,其中所述有义链包含SEQ ID NO:1227且所述反义链包含SEQ ID NO:1228。
11.如权利要求1所述的组合物,其中所述有义链由SEQ ID NO:1227组成且所述反义链由SEQ ID NO:1228组成。
12.如权利要求11所述的组合物,其中各链如下修饰以包括如小写字母“c”或“u”所示的2’-O-甲基核糖核苷酸和如小写字母“s”所示的硫代磷酸酯:
dsRNA由有义链和反义链组成,有义链由SEQ ID NO:1229(5’-uucuAGAccuGuuuuGcuuTsT-3’)组成,反义链由SEQ ID NO:1230(5’-AAGcAAAAcAGGUCuAGAATsT-3’)组成。
13.如权利要求1所述的组合物,其中所述dsRNA包含至少一个修饰核苷酸。
14.如权利要求13所述的组合物,其中所述修饰核苷酸选自下组:2′-O-甲基修饰的核苷酸、包含5′-硫代磷酸酯基团的核苷酸以及与胆固醇基衍生物或十二烷酸双癸酰胺基团相连接的末端核苷酸。
15.如权利要求13所述的组合物,其中所述修饰核苷酸选自下组:2′-脱氧-2′-氟代修饰核苷酸、2′-脱氧-修饰核苷酸、锁核苷酸、无碱基核苷酸、2′-氨基-修饰核苷酸、2′-烷基-修饰核苷酸、吗啉代核苷酸、氨基磷酸酯和含有非天然碱基的核苷酸。
16.如权利要求1所述的组合物,其中所述dsRNA包含至少一个2′-O-甲基修饰的核糖核苷酸和至少一个含有5′-硫代磷酸酯基团的核苷酸。
17.如权利要求1所述的组合物,其中所述dsRNA的各链的长度为19-23个碱基。
18.如权利要求1所述的组合物,其中所述dsRNA的各链的长度为21-23个碱基。
19.如权利要求1所述的组合物,其中所述dsRNA的各链的长度为21个碱基。
20.如权利要求1所述的组合物,其进一步包含脂蛋白。
21.如权利要求1所述的组合物,其进一步包含载脂蛋白E(ApoE)。
22.如权利要求21所述的组合物,其中所述dsRNA偶联到亲脂体上。
23.如权利要求22所述的组合物,其中所述亲脂体是胆固醇。
24.如权利要求21所述的组合物,其中所述ApoE用至少一种两亲性试剂重构。
25.如权利要求24所述的组合物,其中所述两亲性试剂是磷脂。
26.如权利要求24所述的组合物,其中所述两亲性试剂是选自下组的磷脂:二肉豆蔻酰磷脂酰胆碱(DMPC)、二油酰磷脂酰乙醇胺(DOPE)、棕榈酰油酰磷脂酰胆碱(POPC)、卵磷脂酰胆碱(EPC)、二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、-磷脂酰乙醇胺(POPE)、二油酰磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-1-羧酸酯(DOPE-mal)及其组合。
27.如权利要求25所述的组合物,其中所述ApoE是重构的高密度脂蛋白(rHDL)。
28.如权利要求1所述的组合物,其中向表达PCSK9的细胞施用所述组合物与施用对照物相比抑制PCSK9表达至少40%。
29.如权利要求1所述的组合物,其中向哺乳动物施用所述组合物与施用对照物相比降低哺乳动物中的PCSK9蛋白质水平。
30.如权利要求1所述的组合物,其中向灵长类动物施用所述组合物与施用对照物相比降低哺乳动物中的LDLc水平。
31.如权利要求1所述的组合物,其中向哺乳动物施用小于0.1mg/kg的剂量的所述组合物与施用对照物相比减少了PCSK9肝mRNA和总血清胆固醇。
32.如权利要求1所述的组合物,其中向哺乳动物施用所述组合物与施用对照物相比以大约0.2mg/kg的ED50减少PCSK9肝mRNA和以大约0.08mg/kg的ED50减少总血清胆固醇。
33.如权利要求1所述的组合物,其中向哺乳动物施用所述组合物与施用对照物相比使血清LDL颗粒数减少90%以上或使血清HDL颗粒数减少75%以上。
34.一种抑制细胞中PCSK9表达的方法,包括向所述细胞施用如权利要求1所述的组合物。
35.一种降低需要治疗的哺乳动物中的LDLc水平的方法,包括向该哺乳动物施用如权利要求1所述的组合物。
36.如权利要求35所述的方法,其中向哺乳动物施用含有0.25mg/kg至4mg/kg dsRNA的剂量。
37.如权利要求35所述的方法,其中向人施用大约0.01、0.1、0.5、1.0、2.5或5.0mg/kg的dsRNA。
38.一种抑制受试者中PCSK9基因表达的方法,包括以大约3mg/kg的第一剂量向受试者施用如权利要求1所述的组合物,然后一周一次施用至少一个后续剂量,其中所述后续剂量低于所述第一剂量。
39.如权利要求38所述的方法,其中所述受试者是大鼠或非人灵长类动物或人。
40.如权利要求38所述的方法,其中所述PCSK9靶向dsRNA包含AD-9680。
41.如权利要求38所述的方法,其中所述后续剂量为大约1.0mg/kg或大约0.3mg/kg。
42.如权利要求38所述的方法,其中所述后续剂量一周一次施用四周。
43.如权利要求38所述的方法,其中所述第一剂量的施用使总胆固醇水平降低大约15-60%。
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18716909P | 2009-06-15 | 2009-06-15 | |
US61/187,169 | 2009-06-15 | ||
US21835009P | 2009-06-18 | 2009-06-18 | |
US61/218,350 | 2009-06-18 | ||
US24479009P | 2009-09-22 | 2009-09-22 | |
US61/244,790 | 2009-09-22 | ||
US28559809P | 2009-12-11 | 2009-12-11 | |
US61/285,598 | 2009-12-11 | ||
US29347410P | 2010-01-08 | 2010-01-08 | |
US61/293,474 | 2010-01-08 | ||
US31357810P | 2010-03-12 | 2010-03-12 | |
US61/313,578 | 2010-03-12 | ||
PCT/US2010/038707 WO2010148013A2 (en) | 2009-06-15 | 2010-06-15 | Lipid formulated dsrna targeting the pcsk9 gene |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510020286.4A Division CN104651408A (zh) | 2009-06-15 | 2010-06-15 | 靶向pcsk9基因的脂质配制的dsrna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102458366A true CN102458366A (zh) | 2012-05-16 |
CN102458366B CN102458366B (zh) | 2015-02-11 |
Family
ID=43357015
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510020286.4A Pending CN104651408A (zh) | 2009-06-15 | 2010-06-15 | 靶向pcsk9基因的脂质配制的dsrna |
CN201080032102.1A Expired - Fee Related CN102458366B (zh) | 2009-06-15 | 2010-06-15 | 靶向pcsk9基因的脂质配制的dsrna |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510020286.4A Pending CN104651408A (zh) | 2009-06-15 | 2010-06-15 | 靶向pcsk9基因的脂质配制的dsrna |
Country Status (13)
Country | Link |
---|---|
US (4) | US8273869B2 (zh) |
EP (1) | EP2442792A4 (zh) |
JP (2) | JP5894913B2 (zh) |
KR (1) | KR20120050429A (zh) |
CN (2) | CN104651408A (zh) |
AU (1) | AU2010260148A1 (zh) |
BR (1) | BRPI1010689A2 (zh) |
CA (1) | CA2764832A1 (zh) |
EA (1) | EA201270019A1 (zh) |
IL (1) | IL216886A0 (zh) |
MX (1) | MX2011013421A (zh) |
NZ (1) | NZ597504A (zh) |
WO (1) | WO2010148013A2 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104854242A (zh) * | 2012-12-05 | 2015-08-19 | 阿尔尼拉姆医药品有限公司 | PCSK9 iRNA组合物及其使用方法 |
CN106659803A (zh) * | 2014-04-23 | 2017-05-10 | 摩登纳特斯有限公司 | 核酸疫苗 |
CN107441506A (zh) * | 2016-05-30 | 2017-12-08 | 上海交通大学 | 基因输送载体及其制备与应用 |
CN108265052A (zh) * | 2016-12-30 | 2018-07-10 | 苏州瑞博生物技术有限公司 | 一种小干扰核酸和药物组合物及其用途 |
WO2019126990A1 (zh) * | 2017-12-26 | 2019-07-04 | 广州市锐博生物科技有限公司 | 一种抑制PCSK9基因表达的siRNA分子及其应用 |
CN111087332A (zh) * | 2019-12-11 | 2020-05-01 | 东南大学 | 一种阳离子氨基脂质及其合成方法与应用 |
CN112368381A (zh) * | 2018-04-18 | 2021-02-12 | 迪克纳制药公司 | 用于治疗高胆固醇血症和相关病况的pcsk9靶向寡核苷酸 |
CN113840926A (zh) * | 2019-03-19 | 2021-12-24 | 阿克丘勒斯治疗公司 | 脂质包封的rna纳米颗粒的制备方法 |
CN114657136A (zh) * | 2020-12-22 | 2022-06-24 | 未来智人再生医学研究院(广州)有限公司 | 一种表达靶向PCSK9的shRNA和/或shRNA-miR的多能干细胞或其衍生物 |
CN114668774A (zh) * | 2015-08-25 | 2022-06-28 | 阿尔尼拉姆医药品有限公司 | 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物 |
CN118086311A (zh) * | 2023-05-25 | 2024-05-28 | 苏州时安生物技术有限公司 | 抑制PCSK9基因表达的siRNA、其缀合物和药物组合物及用途 |
Families Citing this family (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7605251B2 (en) | 2006-05-11 | 2009-10-20 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the PCSK9 gene |
MX2010008394A (es) * | 2008-01-31 | 2010-11-12 | Alnylam Pharmaceuticals Inc | Metodos optimizados para administracion de arndc focalizando el gen pcsk9. |
CA3033577A1 (en) | 2008-11-10 | 2010-05-14 | Arbutus Biopharma Corporation | Novel lipids and compositions for the delivery of therapeutics |
WO2010147992A1 (en) | 2009-06-15 | 2010-12-23 | Alnylam Pharmaceuticals, Inc. | Methods for increasing efficacy of lipid formulated sirna |
BRPI1010689A2 (pt) | 2009-06-15 | 2016-03-15 | Alnylam Pharmaceuticals Inc | "dsrna formulado por lipídios direcionados para o gene pcsk9" |
US9187746B2 (en) | 2009-09-22 | 2015-11-17 | Alnylam Pharmaceuticals, Inc. | Dual targeting siRNA agents |
DK2506857T3 (en) | 2009-12-01 | 2018-05-07 | Translate Bio Inc | SUPPLY OF MRNA FOR AMPLIFICATION OF PROTEINS AND ENZYMES IN HUMAN GENETIC DISEASES |
EP2600901B1 (en) | 2010-08-06 | 2019-03-27 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
EP2616543A1 (en) | 2010-09-15 | 2013-07-24 | Alnylam Pharmaceuticals, Inc. | MODIFIED iRNA AGENTS |
DE19177059T1 (de) | 2010-10-01 | 2021-10-07 | Modernatx, Inc. | N1-methyl-pseudouracile enthältendes ribonucleinsäuren sowie ihre verwendungen |
WO2012058693A2 (en) * | 2010-10-29 | 2012-05-03 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of pcsk9 genes |
CN108358812B (zh) | 2010-11-15 | 2021-05-11 | 生命技术公司 | 含胺的转染试剂及其制备和使用方法 |
CN103282503B (zh) | 2010-12-29 | 2015-12-02 | 弗·哈夫曼-拉罗切有限公司 | 用于细胞内递送核酸的小分子缀合物 |
PL3326648T3 (pl) | 2011-01-28 | 2021-10-11 | Sanofi Biotechnology | Kompozycje farmaceutyczne zawierające ludzkie przeciwciała przeciwko PCSK9 |
EP3674409A1 (en) * | 2011-03-29 | 2020-07-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of tmprss6 gene |
WO2012135805A2 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
WO2012149386A1 (en) * | 2011-04-27 | 2012-11-01 | Isis Pharmaceuticals, Inc. | Modulation of cideb expression |
JP6184945B2 (ja) | 2011-06-08 | 2017-08-23 | シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド | mRNA送達のための脂質ナノ粒子組成物および方法 |
MX345095B (es) | 2011-06-21 | 2017-01-17 | Alnylam Pharmaceuticals Inc | Composiciones de arni similares a angiopoyetina 3 (angptl3) y metodos para su uso. |
WO2012177949A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of protein c (proc) genes |
KR20230084331A (ko) * | 2011-06-21 | 2023-06-12 | 알닐람 파마슈티칼스 인코포레이티드 | 아포리포단백질 c-iii(apoc3) 유전자의 발현 억제를 위한 조성물 및 방법 |
AR087305A1 (es) | 2011-07-28 | 2014-03-12 | Regeneron Pharma | Formulaciones estabilizadas que contienen anticuerpos anti-pcsk9, metodo de preparacion y kit |
DK2751270T3 (en) | 2011-08-29 | 2018-10-29 | Ionis Pharmaceuticals Inc | OLIGOMER-CONJUGATE COMPLEXES AND THEIR USE |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
LT3682905T (lt) | 2011-10-03 | 2022-02-25 | Modernatx, Inc. | Modifikuoti nukleozidai, nukleotidai ir nukleorūgštys bei jų naudojimas |
CN104114571A (zh) * | 2011-10-05 | 2014-10-22 | 普洛体维生物治疗公司 | 用于沉默醛脱氢酶的组合物和方法 |
IL308752A (en) * | 2011-11-18 | 2024-01-01 | Alnylam Pharmaceuticals Inc | RNAI factors, compositions and methods of using them for the treatment of transthyretin-related diseases |
EP3366775B1 (en) * | 2011-11-18 | 2022-04-27 | Alnylam Pharmaceuticals, Inc. | Modified rnai agents |
PL2791160T3 (pl) | 2011-12-16 | 2022-06-20 | Modernatx, Inc. | Kompozycje zmodyfikowanego mrna |
DE18200782T1 (de) | 2012-04-02 | 2021-10-21 | Modernatx, Inc. | Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9133461B2 (en) | 2012-04-10 | 2015-09-15 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the ALAS1 gene |
US9127274B2 (en) | 2012-04-26 | 2015-09-08 | Alnylam Pharmaceuticals, Inc. | Serpinc1 iRNA compositions and methods of use thereof |
US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
WO2013185067A1 (en) | 2012-06-08 | 2013-12-12 | Shire Human Genetic Therapies, Inc. | Nuclease resistant polynucleotides and uses thereof |
US10577604B2 (en) | 2012-10-15 | 2020-03-03 | Ionis Pharmaceuticals, Inc. | Methods for monitoring C9ORF72 expression |
US10058630B2 (en) * | 2012-10-22 | 2018-08-28 | Concievalve, Llc | Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis |
EP2912182B1 (en) | 2012-10-23 | 2021-12-08 | Caris Science, Inc. | Aptamers and uses thereof |
US10942184B2 (en) | 2012-10-23 | 2021-03-09 | Caris Science, Inc. | Aptamers and uses thereof |
RS63237B1 (sr) | 2012-11-26 | 2022-06-30 | Modernatx Inc | Terminalno modifikovana rnk |
AU2013361323B2 (en) | 2012-12-19 | 2018-09-06 | Caris Science, Inc. | Compositions and methods for aptamer screening |
MX365409B (es) | 2013-03-14 | 2019-05-31 | Shire Human Genetic Therapies | Composiciones de ácido ribonucleico mensajero del regulador transmembrana de fibrosis quística y métodos y usos relacionados. |
LT2970974T (lt) * | 2013-03-14 | 2017-12-11 | Alnylam Pharmaceuticals, Inc. | Komplemento komponento c5 irnr kompozicijos ir jų panaudojimas |
AU2014236396A1 (en) | 2013-03-14 | 2015-08-13 | Shire Human Genetic Therapies, Inc. | Methods for purification of messenger RNA |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
PL2992098T3 (pl) | 2013-05-01 | 2019-09-30 | Ionis Pharmaceuticals, Inc. | Kompozycje i sposoby modulowania ekspresji hbv i ttr |
WO2014182661A2 (en) | 2013-05-06 | 2014-11-13 | Alnylam Pharmaceuticals, Inc | Dosages and methods for delivering lipid formulated nucleic acid molecules |
TWI727917B (zh) | 2013-05-22 | 2021-05-21 | 美商阿尼拉製藥公司 | TMPRSS6iRNA 組成物及其使用方法 |
EA038792B1 (ru) | 2013-05-22 | 2021-10-20 | Элнилэм Фармасьютикалз, Инк. | КОМПОЗИЦИИ НА ОСНОВЕ RNAi Serpina1 И СПОСОБЫ ИХ ПРИМЕНЕНИЯ |
EP2810955A1 (en) | 2013-06-07 | 2014-12-10 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
EP2862877A1 (en) | 2013-10-18 | 2015-04-22 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
TW201534324A (zh) | 2013-06-07 | 2015-09-16 | Sanofi Sa | 藉由投與pcsk9抑制劑抑制動脈粥狀硬化的方法 |
US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
EP2853595A1 (en) * | 2013-09-30 | 2015-04-01 | Soluventis GmbH | NOTCH 1 specific siRNA molecules |
EA201690675A1 (ru) | 2013-10-03 | 2016-08-31 | Модерна Терапьютикс, Инк. | Полинуклеотиды, кодирующие рецептор липопротеинов низкой плотности |
BR112016007226B1 (pt) * | 2013-10-04 | 2021-12-07 | Alnylam Pharmaceuticals, Inc. | Ácido ribonucleico de fita dupla (dsrna) para inibição da expressão de alas1, composição farmacêutica e seus usos |
KR20160062069A (ko) | 2013-10-11 | 2016-06-01 | 아이오니스 파마수티컬즈, 인코포레이티드 | C9orf72 발현을 조절하기 위한 조성물 |
EA202090893A3 (ru) * | 2013-10-17 | 2021-09-30 | Элнилэм Фармасьютикалз, Инк. | Композиции с ирнк к pcsk9 и способы их применения |
US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
CA2928188A1 (en) | 2013-10-22 | 2015-04-30 | Shire Human Genetic Therapies, Inc. | Mrna therapy for argininosuccinate synthetase deficiency |
JP6634022B2 (ja) * | 2013-11-04 | 2020-01-22 | ダウ アグロサイエンシィズ エルエルシー | 最適なダイズ遺伝子座 |
KR101647178B1 (ko) * | 2013-11-28 | 2016-08-23 | 충남대학교산학협력단 | 효소 절단성 링커 또는 올리고 라이신을 포함하는 폴리에틸렌글리콜-리피드를 이용한 안정화된 플라스미드-지질 입자 |
CN106103718B (zh) * | 2014-02-11 | 2021-04-02 | 阿尔尼拉姆医药品有限公司 | 己酮糖激酶(KHK)iRNA组合物及其使用方法 |
CN116970607A (zh) * | 2014-03-19 | 2023-10-31 | Ionis制药公司 | 用于调节共济失调蛋白2表达的组合物 |
SG11201608725YA (en) | 2014-04-25 | 2016-11-29 | Shire Human Genetic Therapies | Methods for purification of messenger rna |
DK3137476T3 (da) | 2014-04-28 | 2019-11-18 | Ionis Pharmaceuticals Inc | Linker-modificerede oligomerforbindelser |
AU2015252841B2 (en) | 2014-05-01 | 2020-03-19 | Ionis Pharmaceuticals, Inc. | Compositions and methods for modulating growth hormone receptor expression |
JP6637442B2 (ja) | 2014-05-01 | 2020-01-29 | アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. | 補体b因子発現を調節するための組成物及び方法 |
ES2844593T3 (es) | 2014-05-01 | 2021-07-22 | Ionis Pharmaceuticals Inc | Composiciones y procedimientos para modular la expresión de la angiopoyetina de tipo 3 |
BR112016022855B1 (pt) | 2014-05-01 | 2022-08-02 | Ionis Pharmaceuticals, Inc | Compostos e composições para modular a expressão de pkk e seus usos |
EP3146049B1 (en) | 2014-05-22 | 2020-02-26 | Alnylam Pharmaceuticals, Inc. | Angiotensinogen (agt) irna compositions and methods of use thereof |
US10570169B2 (en) | 2014-05-22 | 2020-02-25 | Ionis Pharmaceuticals, Inc. | Conjugated antisense compounds and their use |
KR20240017117A (ko) | 2014-07-16 | 2024-02-06 | 사노피 바이오테크놀로지 | 이형접합성 가족성 고콜레스테롤혈증(heFH) 환자의 치료방법 |
WO2016030863A1 (en) | 2014-08-29 | 2016-03-03 | Glaxosmithkline Intellectual Property Development Limited | Compounds and methods for treating viral infections |
US9339029B2 (en) * | 2014-09-04 | 2016-05-17 | Preceres Inc. | Hydrazinyl lipidoids and uses thereof |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
WO2016040748A1 (en) | 2014-09-12 | 2016-03-17 | Ionis Pharmaceuticals, Inc. | Compositions and methods for detection of smn protein in a subject and treatment of a subject |
WO2016085852A1 (en) | 2014-11-24 | 2016-06-02 | Alnylam Pharmaceuticals, Inc. | Tmprss6 irna compositions and methods of use thereof |
US10307491B2 (en) | 2015-01-30 | 2019-06-04 | The Regents Of The University Of Michigan | Liposomal particles comprising biological molecules and uses thereof |
JP2018516847A (ja) * | 2015-03-25 | 2018-06-28 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | 生体高分子薬を送達するための組成物及び方法 |
WO2016168286A1 (en) | 2015-04-13 | 2016-10-20 | Alnylam Pharmaceuticals, Inc. | Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof |
SG11201708468YA (en) | 2015-04-16 | 2017-11-29 | Ionis Pharmaceuticals Inc | Compositions for modulating c9orf72 expression |
GB2537614A (en) * | 2015-04-20 | 2016-10-26 | Heart Biotech Ltd | Formulations for inhibition of PCSK9 for the treatment of hypercholesterolemia |
WO2017011276A1 (en) | 2015-07-10 | 2017-01-19 | Ionis Pharmaceuticals, Inc. | Modulators of diacyglycerol acyltransferase 2 (dgat2) |
CN108136040B (zh) | 2015-07-31 | 2022-03-01 | 阿克丘勒斯治疗公司 | 用于药物递送的多配体试剂 |
DK3329002T3 (da) | 2015-07-31 | 2021-01-11 | Alnylam Pharmaceuticals Inc | Transthyretin (ttr)-irna-sammensætninger og fremgangsmåder til anvendelse deraf til behandling eller forebyggelse af ttr-forbundne sygdomme |
EA201890519A1 (ru) | 2015-08-18 | 2018-07-31 | Ридженерон Фармасьютикалз, Инк. | Ингибирующие антитела против pcsk9 для лечения пациентов с гиперлипидемией, подвергающихся аферезу липопротеинов |
HUE057613T2 (hu) | 2015-09-17 | 2022-05-28 | Modernatx Inc | Vegyületek és készítmények terápiás szerek intracelluláris bejuttatására |
CA2998382A1 (en) | 2015-09-24 | 2017-03-30 | Ionis Pharmaceuticals, Inc. | Modulators of kras expression |
WO2017079291A1 (en) | 2015-11-02 | 2017-05-11 | Ionis Pharmaceuticals, Inc. | Compounds and methods for modulating c90rf72 |
EP4119569B1 (en) | 2015-11-06 | 2024-07-31 | Ionis Pharmaceuticals, Inc. | Conjugated antisense compounds for use in therapy |
BR112018003291A2 (pt) | 2015-11-06 | 2018-09-25 | Ionis Pharmaceuticals, Inc. | modulando a expressão da apolipoproteina (a) |
CN106810609A (zh) * | 2015-11-27 | 2017-06-09 | 苏州君盟生物医药科技有限公司 | 抗pcsk9抗体及其应用 |
EP3964200A1 (en) | 2015-12-10 | 2022-03-09 | ModernaTX, Inc. | Compositions and methods for delivery of therapeutic agents |
US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2017127750A1 (en) | 2016-01-22 | 2017-07-27 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
MA45295A (fr) * | 2016-04-19 | 2019-02-27 | Alnylam Pharmaceuticals Inc | Composition d'arni de protéine de liaison de lipoprotéines haute densité (hdlbp/vigiline) et procédés pour les utiliser |
JP7066632B2 (ja) * | 2016-05-09 | 2022-05-13 | アストラゼネカ・アクチエボラーグ | 親油性抗炎症剤を含む脂質ナノ粒子およびその使用方法 |
EP3471778A4 (en) * | 2016-06-20 | 2020-02-19 | The Regents of The University of Michigan | COMPOSITIONS AND METHOD FOR DELIVERING BIOMACROMOLECOLIC ACTIVE SUBSTANCES |
PE20190513A1 (es) | 2016-07-15 | 2019-04-10 | Ionis Pharmaceuticals Inc | Compuestos y metodos para la modulacion de smn2 |
CN109661233A (zh) | 2016-10-06 | 2019-04-19 | Ionis 制药公司 | 缀合低聚化合物的方法 |
WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
JOP20190112A1 (ar) | 2016-11-14 | 2019-05-14 | Amgen Inc | علاجات مدمجة لتصلب الشرايين، شاملة مرض قلبي وعائي تصلبي |
TWI788312B (zh) | 2016-11-23 | 2023-01-01 | 美商阿尼拉製藥公司 | 絲胺酸蛋白酶抑制因子A1 iRNA組成物及其使用方法 |
CA3043768A1 (en) | 2016-11-29 | 2018-06-07 | PureTech Health LLC | Exosomes for delivery of therapeutic agents |
US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
DK3596042T3 (da) | 2017-03-15 | 2022-04-11 | Modernatx Inc | Krystalformer af aminolipider |
HRP20230063T1 (hr) | 2017-03-15 | 2023-03-17 | Modernatx, Inc. | Spoj i pripravci za intracelularnu isporuku terapijskih sredstava |
WO2018170336A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
JOP20190215A1 (ar) | 2017-03-24 | 2019-09-19 | Ionis Pharmaceuticals Inc | مُعدّلات التعبير الوراثي عن pcsk9 |
JP7218303B2 (ja) * | 2017-05-09 | 2023-02-06 | ウルトラジェニックス ファーマシューティカル インコーポレイテッド | トランスフェクション試薬を生成するための拡大可能な方法 |
IL270631B2 (en) | 2017-05-16 | 2024-03-01 | Translate Bio Inc | Treatment of cystic fibrosis through the administration of mRNA with an optimal codon encoding ctfr |
CA3063723A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
WO2018232120A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
CA3085442A1 (en) | 2017-09-19 | 2019-03-28 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for treating transthyretin (ttr) mediated amyloidosis |
EP3719126A4 (en) | 2017-12-01 | 2021-10-20 | Suzhou Ribo Life Science Co., Ltd. | NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID, ASSOCIATED PREPARATION PROCESS AND USE |
JP2021504415A (ja) | 2017-12-01 | 2021-02-15 | スーチョウ リボ ライフ サイエンス カンパニー、リミテッドSuzhou Ribo Life Science Co., Ltd. | 二本鎖オリゴヌクレオチド、二本鎖オリゴヌクレオチドを含む組成物および複合体ならびに調製方法と使用 |
KR20200095483A (ko) | 2017-12-01 | 2020-08-10 | 쑤저우 리보 라이프 사이언스 컴퍼니, 리미티드 | 핵산, 이를 포함하는 조성물과 컨쥬게이트, 및 그의 제조 방법과 용도 |
JP7365052B2 (ja) | 2017-12-01 | 2023-10-19 | スーチョウ リボ ライフ サイエンス カンパニー、リミテッド | 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用 |
CN110944675B9 (zh) | 2017-12-01 | 2024-08-09 | 苏州瑞博生物技术股份有限公司 | 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 |
US11633482B2 (en) | 2017-12-29 | 2023-04-25 | Suzhou Ribo Life Science Co., Ltd. | Conjugates and preparation and use thereof |
CA3088522A1 (en) | 2018-01-15 | 2019-07-18 | Ionis Pharmaceuticals, Inc. | Modulators of dnm2 expression |
JP7317029B2 (ja) | 2018-02-12 | 2023-07-28 | アイオーニス ファーマシューティカルズ, インコーポレーテッド | 修飾化合物及びその使用 |
MX2020011913A (es) | 2018-05-09 | 2021-01-29 | Ionis Pharmaceuticals Inc | Compuestos y metodos para la reduccion de la expresion de fxi. |
CN112313335B (zh) | 2018-05-14 | 2024-07-09 | 阿尔尼拉姆医药品有限公司 | 血管紧张素原(AGT)iRNA组合物及其使用方法 |
EP3833397A4 (en) | 2018-08-08 | 2023-06-14 | Arcturus Therapeutics, Inc. | COMPOSITIONS AND AGENTS AGAINST NON-ALCOHOLIC STEATOHEPATITIS |
EP3842534A4 (en) | 2018-08-21 | 2022-07-06 | Suzhou Ribo Life Science Co., Ltd. | NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID AND METHOD OF USE THEREOF |
WO2020041793A1 (en) | 2018-08-24 | 2020-02-27 | Translate Bio, Inc. | Methods for purification of messenger rna |
TW202423454A (zh) | 2018-09-19 | 2024-06-16 | 美商Ionis製藥公司 | Pnpla3表現之調節劑 |
WO2020063198A1 (zh) | 2018-09-30 | 2020-04-02 | 苏州瑞博生物技术有限公司 | 一种siRNA缀合物及其制备方法和用途 |
JP2022536112A (ja) * | 2019-06-05 | 2022-08-12 | ガイド セラピューティクス,インコーポレーテッド | 組織送達のための材料の分析 |
TW202124360A (zh) | 2019-09-19 | 2021-07-01 | 美商現代公司 | 用於治療劑之細胞內遞送之支鏈尾端脂質化合物及組合物 |
JP2022552249A (ja) | 2019-10-14 | 2022-12-15 | アストラゼネカ・アクチエボラーグ | Pnpla3発現のモジュレーター |
CN110638788A (zh) * | 2019-10-25 | 2020-01-03 | 广州医科大学 | 一种能够沉默Pcsk9蛋白的siRNA、其纳米递送系统及应用 |
KR102269256B1 (ko) * | 2019-11-04 | 2021-06-24 | 건국대학교 산학협력단 | 케피어 유래 프로바이오틱 효모 클루이베로미세스 막시아누스 a5 및 이의 용도 |
AU2021225957A1 (en) | 2020-02-28 | 2022-09-08 | Ionis Pharmaceuticals, Inc. | Compounds and methods for modulating SMN2 |
EP4081642A1 (en) * | 2020-03-16 | 2022-11-02 | Argonaute Rna Limited | Antagonist of pcsk9 |
CA3201661A1 (en) | 2020-11-18 | 2022-05-27 | Ionis Pharmaceuticals, Inc. | Compounds and methods for modulating angiotensinogen expression |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
KR20230150844A (ko) | 2021-02-26 | 2023-10-31 | 알닐람 파마슈티칼스 인코포레이티드 | 케토헥소키나아제(KHK) iRNA 조성물 및 이의 사용 방법 |
TW202302849A (zh) | 2021-03-04 | 2023-01-16 | 美商艾拉倫製藥股份有限公司 | 類血管生成素3(ANGPTL3)iRNA組成物及其使用方法 |
IL307926A (en) | 2021-04-26 | 2023-12-01 | Alnylam Pharmaceuticals Inc | Transmembrane assemblies, serine 6 ((TMPRSS6 IRNA) and methods of using them |
KR20240042004A (ko) | 2021-08-03 | 2024-04-01 | 알닐람 파마슈티칼스 인코포레이티드 | 트랜스티레틴(TTR) iRNA 조성물 및 이의 사용 방법 |
AU2022357561A1 (en) | 2021-10-01 | 2024-04-18 | Adarx Pharmaceuticals, Inc. | Prekallikrein-modulating compositions and methods of use thereof |
WO2023184038A1 (en) | 2022-04-01 | 2023-10-05 | Nanovation Therapeutics Inc. | Mrna delivery method and composition thereof |
WO2024086929A1 (en) * | 2022-10-25 | 2024-05-02 | Nanovation Therapeutics Inc. | Lipid nanoparticle formulations for anti-sense oligonucleotide delivery |
WO2024220930A2 (en) | 2023-04-20 | 2024-10-24 | Adarx Pharmaceuticals, Inc. | Mapt-modulating compositions and methods of use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030229037A1 (en) * | 2000-02-07 | 2003-12-11 | Ulrich Massing | Novel cationic amphiphiles |
US20040009216A1 (en) * | 2002-04-05 | 2004-01-15 | Rodrigueza Wendi V. | Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease |
US20080113930A1 (en) * | 2006-05-11 | 2008-05-15 | Pamela Tan | Compositions and methods for inhibiting expression of the pcsk9 gene |
US20080188675A1 (en) * | 2005-02-14 | 2008-08-07 | Sirna Therapeutics Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022114A1 (en) | 1998-10-09 | 2000-04-20 | Ingene, Inc. | PRODUCTION OF ssDNA $i(IN VIVO) |
US6054299A (en) | 1994-04-29 | 2000-04-25 | Conrad; Charles A. | Stem-loop cloning vector and method |
CA2222328C (en) | 1995-06-07 | 2012-01-10 | Inex Pharmaceuticals Corporation | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
JP5015373B2 (ja) | 1998-04-08 | 2012-08-29 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション | 改良表現型を得るための方法及び手段 |
AR020078A1 (es) | 1998-05-26 | 2002-04-10 | Syngenta Participations Ag | Metodo para alterar la expresion de un gen objetivo en una celula de planta |
JP2002527061A (ja) | 1998-10-09 | 2002-08-27 | インジーン・インコーポレイテッド | ssDNAの酵素的合成 |
DE19956568A1 (de) | 1999-01-30 | 2000-08-17 | Roland Kreutzer | Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens |
US6271359B1 (en) | 1999-04-14 | 2001-08-07 | Musc Foundation For Research Development | Tissue-specific and pathogen-specific toxic agents and ribozymes |
DE10100586C1 (de) | 2001-01-09 | 2002-04-11 | Ribopharma Ag | Verfahren zur Hemmung der Expression eines Ziegens |
US20070026394A1 (en) | 2000-02-11 | 2007-02-01 | Lawrence Blatt | Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies |
WO2003070918A2 (en) | 2002-02-20 | 2003-08-28 | Ribozyme Pharmaceuticals, Incorporated | Rna interference by modified short interfering nucleic acid |
BRPI0115814B8 (pt) | 2000-12-01 | 2021-05-25 | Europaeisches Laboratorium Fuer Molekularbiologie Embl | moléculas de rna de filamento duplo, seu método de preparação e composição farmacêutica compreendendo as mesmas |
US20030170891A1 (en) | 2001-06-06 | 2003-09-11 | Mcswiggen James A. | RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA) |
US20080249040A1 (en) | 2001-05-18 | 2008-10-09 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of sterol regulatory element binding protein 1 (SREBP1) gene expression using short interfering nucleic acid (siNA) |
US20070173473A1 (en) | 2001-05-18 | 2007-07-26 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of proprotein convertase subtilisin Kexin 9 (PCSK9) gene expression using short interfering nucleic acid (siNA) |
US7956176B2 (en) | 2002-09-05 | 2011-06-07 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
EP1560931B1 (en) | 2002-11-14 | 2011-07-27 | Dharmacon, Inc. | Functional and hyperfunctional sirna |
DE10302421A1 (de) | 2003-01-21 | 2004-07-29 | Ribopharma Ag | Doppelsträngige Ribonukleinsäure mit verbesserter Wirksamkeit |
EP2239329A1 (en) | 2003-03-07 | 2010-10-13 | Alnylam Pharmaceuticals, Inc. | Therapeutic compositions |
AU2004227414A1 (en) | 2003-04-03 | 2004-10-21 | Alnylam Pharmaceuticals | iRNA conjugates |
EP1471152A1 (en) | 2003-04-25 | 2004-10-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Mutations in the human PCSK9 gene associated to hypercholesterolemia |
AU2004263830B2 (en) | 2003-06-13 | 2008-12-18 | Alnylam Pharmaceuticals, Inc. | Double-stranded ribonucleic acid with increased effectiveness in an organism |
AU2004257373B2 (en) | 2003-07-16 | 2011-03-24 | Arbutus Biopharma Corporation | Lipid encapsulated interfering RNA |
JP2007512355A (ja) | 2003-11-21 | 2007-05-17 | アルザ コーポレイション | 開裂性のpegで表面修飾されたリポソーム−dna複合体で媒介される遺伝子送達 |
WO2006073419A2 (en) * | 2004-04-01 | 2006-07-13 | Gang Zheng | Lipoprotein nanoplatforms |
AU2005252273B2 (en) | 2004-06-07 | 2011-04-28 | Arbutus Biopharma Corporation | Lipid encapsulated interfering RNA |
AU2005251403B2 (en) | 2004-06-07 | 2011-09-01 | Arbutus Biopharma Corporation | Cationic lipids and methods of use |
CA2587411A1 (en) | 2004-11-17 | 2006-05-26 | Protiva Biotherapeutics, Inc. | Sirna silencing of apolipoprotein b |
PL1866414T3 (pl) | 2005-03-31 | 2012-10-31 | Calando Pharmaceuticals Inc | Inhibitory podjednostki 2 reduktazy rybonukleotydowej i ich zastosowania |
US7915230B2 (en) | 2005-05-17 | 2011-03-29 | Molecular Transfer, Inc. | Reagents for transfection of eukaryotic cells |
AU2006274413B2 (en) | 2005-07-27 | 2013-01-10 | Arbutus Biopharma Corporation | Systems and methods for manufacturing liposomes |
JP5336853B2 (ja) | 2005-11-02 | 2013-11-06 | プロチバ バイオセラピューティクス インコーポレイティッド | 修飾siRNA分子およびその使用法 |
JP5704741B2 (ja) | 2006-03-31 | 2015-04-22 | アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. | Eg5遺伝子発現の抑制のための組成物および方法 |
US8598333B2 (en) | 2006-05-26 | 2013-12-03 | Alnylam Pharmaceuticals, Inc. | SiRNA silencing of genes expressed in cancer |
EP2052079A2 (en) * | 2006-07-17 | 2009-04-29 | Sirna Therapeutics Inc. | Rna interference mediated inhibition of proprotein convertase subtilisin kexin 9 (pcsk9) gene expression using short interfering nucleic acid (sina) |
CA2848238C (en) | 2006-10-03 | 2016-07-19 | Tekmira Pharmaceuticals Corporation | Lipid containing formulations |
AU2007325767A1 (en) | 2006-11-27 | 2008-06-05 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
WO2008109369A2 (en) * | 2007-03-02 | 2008-09-12 | Mdrna, Inc. | Nucleic acid compounds for inhibiting tnf gene expression and uses thereof |
JOP20080381B1 (ar) | 2007-08-23 | 2023-03-28 | Amgen Inc | بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9) |
CA2708173C (en) * | 2007-12-04 | 2016-02-02 | Alnylam Pharmaceuticals, Inc. | Targeting lipids |
CA2710713C (en) | 2007-12-27 | 2017-09-19 | Protiva Biotherapeutics, Inc. | Silencing of polo-like kinase expression using interfering rna |
JP5749494B2 (ja) | 2008-01-02 | 2015-07-15 | テクミラ ファーマシューティカルズ コーポレイション | 核酸の送達のための改善された組成物および方法 |
MX2010008394A (es) | 2008-01-31 | 2010-11-12 | Alnylam Pharmaceuticals Inc | Metodos optimizados para administracion de arndc focalizando el gen pcsk9. |
WO2009111658A2 (en) | 2008-03-05 | 2009-09-11 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of eg5 and vegf genes |
HUE034483T2 (en) | 2008-04-15 | 2018-02-28 | Protiva Biotherapeutics Inc | New lipid preparations for introducing a nucleic acid |
CA2984026C (en) * | 2008-10-09 | 2020-02-11 | Arbutus Biopharma Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
KR102578331B1 (ko) * | 2008-10-20 | 2023-09-15 | 알닐람 파마슈티칼스 인코포레이티드 | 트랜스티레틴의 발현을 억제하기 위한 조성물 및 방법 |
CA3033577A1 (en) * | 2008-11-10 | 2010-05-14 | Arbutus Biopharma Corporation | Novel lipids and compositions for the delivery of therapeutics |
NZ593618A (en) | 2008-12-10 | 2013-02-22 | Alnylam Pharmaceuticals Inc | Gnaq targeted dsrna compositions and methods for inhibiting expression |
AU2010208035B2 (en) | 2009-01-29 | 2016-06-23 | Arbutus Biopharma Corporation | Improved lipid formulation for the delivery of nucleic acids |
JP5769701B2 (ja) * | 2009-05-05 | 2015-08-26 | テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation | 脂質組成物 |
PL2440183T3 (pl) * | 2009-06-10 | 2019-01-31 | Arbutus Biopharma Corporation | Ulepszona formulacja lipidowa |
WO2010147992A1 (en) | 2009-06-15 | 2010-12-23 | Alnylam Pharmaceuticals, Inc. | Methods for increasing efficacy of lipid formulated sirna |
BRPI1010689A2 (pt) | 2009-06-15 | 2016-03-15 | Alnylam Pharmaceuticals Inc | "dsrna formulado por lipídios direcionados para o gene pcsk9" |
WO2012058693A2 (en) | 2010-10-29 | 2012-05-03 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of pcsk9 genes |
-
2010
- 2010-06-15 BR BRPI1010689A patent/BRPI1010689A2/pt not_active IP Right Cessation
- 2010-06-15 WO PCT/US2010/038707 patent/WO2010148013A2/en active Application Filing
- 2010-06-15 MX MX2011013421A patent/MX2011013421A/es active IP Right Grant
- 2010-06-15 NZ NZ597504A patent/NZ597504A/xx not_active IP Right Cessation
- 2010-06-15 EP EP10790072.2A patent/EP2442792A4/en not_active Withdrawn
- 2010-06-15 CN CN201510020286.4A patent/CN104651408A/zh active Pending
- 2010-06-15 AU AU2010260148A patent/AU2010260148A1/en not_active Abandoned
- 2010-06-15 EA EA201270019A patent/EA201270019A1/ru unknown
- 2010-06-15 JP JP2012516211A patent/JP5894913B2/ja not_active Expired - Fee Related
- 2010-06-15 CN CN201080032102.1A patent/CN102458366B/zh not_active Expired - Fee Related
- 2010-06-15 US US12/816,207 patent/US8273869B2/en not_active Expired - Fee Related
- 2010-06-15 CA CA2764832A patent/CA2764832A1/en not_active Abandoned
- 2010-06-15 KR KR1020127001050A patent/KR20120050429A/ko not_active Application Discontinuation
-
2011
- 2011-12-08 IL IL216886A patent/IL216886A0/en unknown
-
2012
- 2012-08-07 US US13/568,898 patent/US8598139B2/en not_active Expired - Fee Related
-
2013
- 2013-10-18 US US14/058,052 patent/US20140121263A1/en not_active Abandoned
-
2015
- 2015-11-10 JP JP2015220441A patent/JP2016074685A/ja active Pending
-
2016
- 2016-03-03 US US15/060,492 patent/US20170000815A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030229037A1 (en) * | 2000-02-07 | 2003-12-11 | Ulrich Massing | Novel cationic amphiphiles |
US20040009216A1 (en) * | 2002-04-05 | 2004-01-15 | Rodrigueza Wendi V. | Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease |
US20080188675A1 (en) * | 2005-02-14 | 2008-08-07 | Sirna Therapeutics Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
US20080113930A1 (en) * | 2006-05-11 | 2008-05-15 | Pamela Tan | Compositions and methods for inhibiting expression of the pcsk9 gene |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104854242B (zh) * | 2012-12-05 | 2018-03-16 | 阿尔尼拉姆医药品有限公司 | PCSK9 iRNA组合物及其使用方法 |
CN108220295A (zh) * | 2012-12-05 | 2018-06-29 | 阿尔尼拉姆医药品有限公司 | PCSK9 iRNA组合物及其使用方法 |
CN108220295B (zh) * | 2012-12-05 | 2022-09-02 | 阿尔尼拉姆医药品有限公司 | PCSK9 iRNA组合物及其使用方法 |
CN104854242A (zh) * | 2012-12-05 | 2015-08-19 | 阿尔尼拉姆医药品有限公司 | PCSK9 iRNA组合物及其使用方法 |
CN106659803A (zh) * | 2014-04-23 | 2017-05-10 | 摩登纳特斯有限公司 | 核酸疫苗 |
CN114668774A (zh) * | 2015-08-25 | 2022-06-28 | 阿尔尼拉姆医药品有限公司 | 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物 |
CN107441506A (zh) * | 2016-05-30 | 2017-12-08 | 上海交通大学 | 基因输送载体及其制备与应用 |
CN108265052A (zh) * | 2016-12-30 | 2018-07-10 | 苏州瑞博生物技术有限公司 | 一种小干扰核酸和药物组合物及其用途 |
CN108265052B (zh) * | 2016-12-30 | 2021-05-28 | 苏州瑞博生物技术股份有限公司 | 一种小干扰核酸和药物组合物及其用途 |
AU2017445584B2 (en) * | 2017-12-26 | 2021-08-12 | Argorna Pharmaceuticals Limited | SiRNA molecule inhibiting the expression of the PCSK9 gene and use thereof |
WO2019126990A1 (zh) * | 2017-12-26 | 2019-07-04 | 广州市锐博生物科技有限公司 | 一种抑制PCSK9基因表达的siRNA分子及其应用 |
CN112368381A (zh) * | 2018-04-18 | 2021-02-12 | 迪克纳制药公司 | 用于治疗高胆固醇血症和相关病况的pcsk9靶向寡核苷酸 |
CN113840926A (zh) * | 2019-03-19 | 2021-12-24 | 阿克丘勒斯治疗公司 | 脂质包封的rna纳米颗粒的制备方法 |
CN111087332B (zh) * | 2019-12-11 | 2021-07-06 | 东南大学 | 一种阳离子氨基脂质及其合成方法与应用 |
CN111087332A (zh) * | 2019-12-11 | 2020-05-01 | 东南大学 | 一种阳离子氨基脂质及其合成方法与应用 |
CN114657136A (zh) * | 2020-12-22 | 2022-06-24 | 未来智人再生医学研究院(广州)有限公司 | 一种表达靶向PCSK9的shRNA和/或shRNA-miR的多能干细胞或其衍生物 |
CN118086311A (zh) * | 2023-05-25 | 2024-05-28 | 苏州时安生物技术有限公司 | 抑制PCSK9基因表达的siRNA、其缀合物和药物组合物及用途 |
CN118086311B (zh) * | 2023-05-25 | 2024-08-09 | 苏州时安生物技术有限公司 | 抑制PCSK9基因表达的siRNA、其缀合物和药物组合物及用途 |
Also Published As
Publication number | Publication date |
---|---|
US20110015252A1 (en) | 2011-01-20 |
WO2010148013A2 (en) | 2010-12-23 |
US8598139B2 (en) | 2013-12-03 |
US8273869B2 (en) | 2012-09-25 |
AU2010260148A1 (en) | 2012-02-02 |
BRPI1010689A2 (pt) | 2016-03-15 |
US20130035371A1 (en) | 2013-02-07 |
CA2764832A1 (en) | 2010-12-23 |
JP5894913B2 (ja) | 2016-03-30 |
NZ597504A (en) | 2013-10-25 |
KR20120050429A (ko) | 2012-05-18 |
CN102458366B (zh) | 2015-02-11 |
EP2442792A2 (en) | 2012-04-25 |
JP2012530143A (ja) | 2012-11-29 |
WO2010148013A3 (en) | 2011-02-24 |
MX2011013421A (es) | 2012-03-16 |
US20170000815A1 (en) | 2017-01-05 |
JP2016074685A (ja) | 2016-05-12 |
EP2442792A4 (en) | 2015-12-23 |
EA201270019A1 (ru) | 2012-06-29 |
IL216886A0 (en) | 2012-02-29 |
CN104651408A (zh) | 2015-05-27 |
US20140121263A1 (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102458366B (zh) | 靶向pcsk9基因的脂质配制的dsrna | |
CN102421900B (zh) | 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法 | |
CN105267233B (zh) | 用于抑制Eg5和VEGF基因表达的组合物和方法 | |
CN103937793B (zh) | 抑制运甲状腺素蛋白表达的组合物和方法 | |
CN104854242B (zh) | PCSK9 iRNA组合物及其使用方法 | |
CN103890000B (zh) | 血管生成素样3(ANGPTL3)iRNA组合物及其使用方法 | |
CN104520310B (zh) | SERPINC1 iRNA组合物及其使用方法 | |
CN103813810A (zh) | 用于抑制tmprss6基因表达的组合物和方法 | |
CN102639115A (zh) | 脂质配制的组合物及抑制eg5和vegf基因的表达的方法 | |
CN103370054A (zh) | 用于抑制Eg5和VEGF基因的表达的脂质配制的组合物和方法 | |
WO2011017548A1 (en) | Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes | |
CN105980559A (zh) | 用于抑制alas1基因表达的组合物与方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150211 Termination date: 20180615 |
|
CF01 | Termination of patent right due to non-payment of annual fee |