CN102412184A - 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法 - Google Patents

离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法 Download PDF

Info

Publication number
CN102412184A
CN102412184A CN2011101336196A CN201110133619A CN102412184A CN 102412184 A CN102412184 A CN 102412184A CN 2011101336196 A CN2011101336196 A CN 2011101336196A CN 201110133619 A CN201110133619 A CN 201110133619A CN 102412184 A CN102412184 A CN 102412184A
Authority
CN
China
Prior art keywords
fleet plough
isolation structure
plough groove
groove isolation
ion injects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101336196A
Other languages
English (en)
Other versions
CN102412184B (zh
Inventor
郑春生
张文广
徐强
陈玉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201110133619.6A priority Critical patent/CN102412184B/zh
Priority to US13/339,404 priority patent/US20120302038A1/en
Publication of CN102412184A publication Critical patent/CN102412184A/zh
Application granted granted Critical
Publication of CN102412184B publication Critical patent/CN102412184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,包括以下步骤:步骤a、于一半导体衬底上形成一层保护层;步骤b、于所述半导体衬底及保护层上形成用于隔离PMOS有源区和NMOS有源区的沟槽;步骤c、于所述沟槽内形成填充材料层,使所述沟槽为所述填充材料层充满,形成浅沟槽隔离结构;步骤d、去除所述保护层表面多余的填充材料。本发明的有益效果是:对采用HARP工艺做浅槽隔离的器件,对PMOS周围的隔离氧化物采用离子注入调整应力从受拉变为受压,从而使PMOS沟道区域应力状态改变,性能提高,工艺简单可行,有效克服选择性浅槽填充的工艺复杂性。

Description

离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法
技术领域
本发明涉及一种浅沟槽隔离结构的制备方法,尤其是一种用于半导体制造领域的离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法。
背景技术
  亚常压化学汽相淀积(SA-CAD)和高浓度等离子体化学汽相淀积(HDP-CVD)工艺已广泛地用于半导体产业中,应用之一就是浅沟槽隔离(Shallow Trench Isolation, STI),即用高质量二氧化硅(SiO2)来隔离有源区(Active Areas, AA)。对小于90nm的技术节点,这两种CVD技术表现出一些差异,但SA-CVD所具有的填充能力强、SiO2膜应力可调及不存在对底层材料造成损坏等方面的优点使其成为70nm节点以下半导体器件的优选STI填充方案。由于未来技术节点的降低而不断提高STI纵宽比,所以HDP-CVD SiO2工艺的发展空间越来越小,人们开始采用SA-CVD工艺,即在540℃温度下的O3/TEOS 化学组分的高深宽比工艺(HARP)。在STI应用中,采用HARP取代HDP的主要优点是能够保持优良的STI填充能力并可拓展到45nm技术节点和更低的节点上。HARP填充的STI具有拉伸应力,该拉伸应力将会缓冲NMOS源漏极掺杂所引起的压缩应力,从而减小NMOS导电沟道和源漏极的缺陷,大大提高NMOS的性能。但该STI的拉伸应力会与PMOS源漏极掺杂所引起的向PMOS中部拉伸的拉伸应力产生竞争,导致拉伸应力较大的STI将PMOS向两侧拉伸,从而造成PMOS内部缺陷增多,如此将降低PMOS的性能。
中国专利可提高半导体器件性能的沟槽隔离结构制作方法(CN200710047357.5)公开了一种提出一种通过HDPCVD和HARP的混合型空隙填充方案,分别运用与NMOS和PMOS,从而一起提高器件的性能。但是此种工艺需要两次化学机械研磨,两次空隙填充,非常复杂,成品率低。
发明内容
针对上述存在的问题,本发明提供一种离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,以简单的工艺达到调整STI应力的技术效果,从而起到改善器件性能的目的。
本发明实现其技术目的所采用的技术手段为:
一种离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,包括以下步骤:
步骤a、于一半导体衬底上形成一层保护层;
步骤b、于所述半导体衬底及保护层上形成用于隔离PMOS有源区和NMOS有源区的沟槽;
步骤c、于所述沟槽内形成填充材料层,使所述沟槽为所述填充材料层充满,形成浅沟槽隔离结构;
步骤d、去除所述保护层表面多余的填充材料;
步骤e、于所述保护层上形成一光阻材料层,在所有所述浅沟槽隔离结构中除用于隔离NMOS有源区的所述浅沟槽隔离结构以外,其他所述浅沟槽隔离结构均通过所述光阻材料层中形成窗口予以暴露;
步骤f、向步骤e中形成的窗口中暴露的所述浅沟槽隔离结构实施离子注入;
步骤g、移除所述光阻材料层。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述半导体衬底为单晶硅
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤a形成的所述保护层为氮化硅薄膜。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤a形成所述保护层的方法为化学汽相淀积法或者物理汽相淀积法。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤b形成所述沟槽的方法为:形成图案化硬掩膜层覆于所述步骤a中形成的保护层上,利用所述图案化硬掩膜层进行干法刻蚀以形成沟槽。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤c形成所述填充材料层采用高深宽比填充工艺。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤d中去除多余填充材料的方法为化学机械研磨。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤e形成所述光阻材料层地方法为光阻旋涂。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤e于所述光阻材料层形成窗口的方法为光刻。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤f实施离子注入采用重掺杂。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤f实施离子注入所采用的离子可择自氩、锗、硅或氧。
上述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其中,所述步骤g移除所述光阻材料层的方法为清洗。
本发明的有益效果是:对采用HARP工艺做浅槽隔离的器件,对PMOS周围的隔离氧化物采用离子注入调整应力从受拉变为受压,从而使PMOS沟道区域应力状态改变,性能提高,工艺简单可行,有效克服选择性浅槽填充的工艺复杂性。
附图说明
图1为本发明离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法的流程框图;
图2为本发明离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法实施后的状态结构图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
如图1、图2所示,本发明离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法包括以下步骤:
步骤a、于一半导体衬底1上形成一层保护层2,此处半导体衬底为单晶硅,保护层2为化学汽相淀积法或者物理汽相淀积法形成的氮化硅薄膜。
步骤b、于半导体衬底1及保护层2上形成用于隔离PMOS有源区11的沟槽31和隔离NMOS有源区12的沟槽32,此处形成沟槽31和沟槽32的方法例如先形成图案化硬掩膜层覆于步骤a中形成的保护层上2,利用图案化硬掩膜层进行干法刻蚀以形成沟槽31和沟槽32。
步骤c、于沟槽31和沟槽32内形成填充材料层,使沟槽31和沟槽32为填充材料层充满,形成浅沟槽隔离结构,此处采用亚常压化学气相淀积高深宽比工艺进行填充。
步骤d、去除保护层2表面多余的填充材料,此处可采用化学机械研磨去除多余的填充材料。
步骤e、与保护层2上形成一个光阻材料层4,使除用于隔离NMOS有源区12的浅沟槽隔离结构暴露,此处采用光阻旋涂形成光阻材料层,并采用光刻手段形成窗口5以暴露浅沟槽隔离结构。也即仅用于隔离PMOS有源区11的浅沟槽隔离结构均通过光阻材料层4中形成的窗口5予以暴露,而同时用于隔离NMOS有源区12和PMOS有源区11的浅沟槽隔离结构(例如NMOS有源区12和PMOS有源区11交界处的浅沟槽隔离结构)被光阻材料层5所覆盖并不暴露。
步骤f、向步骤e中形成的窗口5暴露的所述浅沟槽隔离结构实施离子注入,注入离子采用重掺杂,离子可择自氩、锗、硅或氧。
步骤g、通过清洗的方式移除光阻材料层4。
后续还可以通过热处理来加强调整应力的效果。
本发明离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法维持了HARP工艺对NMOS的性能提高,同时通过对PMOS周围的STI实施离子注入,调整应力从受拉变为受压,从而使PMOS沟道区域应力状态改变,克服了HARP工艺对PMOS的性能影响,从而提高了器件的整体性能。在NMOS与PMOS交界区的STI结构由于为相邻的NMOS和PMOS共用,为不影响NMOS器件的性能所以不对共用的STI进行离子注入,虽然在交界区与NMOS相邻的PMOS沟道内没有形成受压力,但是也可以通过非共用一侧的STI由离子注入产生的推力平衡共用STI一侧带来的拉力,PMOS性能提升虽不如其他区域明显但也可得到明显改善。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的申请专利范围,所以凡运用本发明说明书及图示内容所作出的等效结构变化、利用公知的与本发明中提到具等同作用的物质进行代替,利用公知的与本发明中提到的手段方法具等同作用的手段方法进行替换,所得到的实施方式或者实施结果均包含在本发明的保护范围内。

Claims (12)

1.一种离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,包括以下步骤:
步骤a、于一半导体衬底上形成一层保护层;
步骤b、于所述半导体衬底及保护层上形成用于隔离PMOS有源区和NMOS有源区的沟槽;
步骤c、于所述沟槽内形成填充材料层,使所述沟槽为所述填充材料层充满,形成浅沟槽隔离结构;
步骤d、去除所述保护层表面多余的填充材料;
步骤e、于所述保护层上形成一光阻材料层,在所有所述浅沟槽隔离结构中除用于隔离NMOS有源区的所述浅沟槽隔离结构以外,其他所述浅沟槽隔离结构均通过所述光阻材料层中形成窗口予以暴露;
步骤f、向步骤e中形成的窗口中暴露的所述浅沟槽隔离结构实施离子注入;
步骤g、移除所述光阻材料层。
2.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述半导体衬底为单晶硅。
3.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤a形成的所述保护层为氮化硅薄膜。
4.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤a形成所述保护层的方法为化学汽相淀积法或者物理汽相淀积法。
5.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤b形成所述沟槽的方法为:形成图案化硬掩膜层覆于所述步骤a中形成的保护层上,利用所述图案化硬掩膜层进行干法刻蚀以形成沟槽。
6.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤c形成所述填充材料层采用高深宽比填充工艺。
7.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤d中去除多余填充材料的方法为化学机械研磨。
8.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤e形成所述光阻材料层地方法为光阻旋涂。
9.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤e于所述光阻材料层形成窗口的方法为光刻。
10.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤f实施离子注入采用重掺杂。
11.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤f实施离子注入所采用的离子可择自氩、锗、硅或氧。
12.如权利要求1所述离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法,其特征在于,所述步骤g移除所述光阻材料层的方法为清洗。
CN201110133619.6A 2011-05-23 2011-05-23 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法 Active CN102412184B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110133619.6A CN102412184B (zh) 2011-05-23 2011-05-23 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法
US13/339,404 US20120302038A1 (en) 2011-05-23 2011-12-29 Method for preparing a shallow trench isolation structure with the stress of its isolation oxide being tuned by ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110133619.6A CN102412184B (zh) 2011-05-23 2011-05-23 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法

Publications (2)

Publication Number Publication Date
CN102412184A true CN102412184A (zh) 2012-04-11
CN102412184B CN102412184B (zh) 2014-03-12

Family

ID=45914196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110133619.6A Active CN102412184B (zh) 2011-05-23 2011-05-23 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法

Country Status (2)

Country Link
US (1) US20120302038A1 (zh)
CN (1) CN102412184B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820266A (zh) * 2012-04-16 2012-12-12 上海华力微电子有限公司 一种前金属介电质层应力调配方法
CN104795412A (zh) * 2014-01-20 2015-07-22 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN106409679A (zh) * 2015-07-21 2017-02-15 台湾积体电路制造股份有限公司 具有掺杂的隔离绝缘层的鳍式场效应晶体管
WO2018161643A1 (zh) * 2017-03-06 2018-09-13 清华大学 应力调控方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916024B (zh) 2012-10-08 2015-12-02 上海华力微电子有限公司 一种形成双深度隔离沟槽的方法
US9087870B2 (en) * 2013-05-29 2015-07-21 GlobalFoundries, Inc. Integrated circuits including FINFET devices with shallow trench isolation that includes a thermal oxide layer and methods for making the same
FR3012665A1 (zh) 2013-10-31 2015-05-01 St Microelectronics Crolles 2
FR3012667A1 (zh) * 2013-10-31 2015-05-01 St Microelectronics Crolles 2
FR3012666A1 (zh) 2013-10-31 2015-05-01 St Microelectronics Crolles 2
CN109037144A (zh) * 2018-08-01 2018-12-18 武汉新芯集成电路制造有限公司 改善扩散长度效应及制作mos晶体管的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359145A (zh) * 2000-12-09 2002-07-17 三星电子株式会社 集成电路及其形成方法
US6514833B1 (en) * 1999-09-24 2003-02-04 Advanced Micro Devices, Inc. Method of inhibiting lateral diffusion between adjacent wells by introducing carbon or fluorine ions into bottom of STI groove
CN1471173A (zh) * 2002-06-24 2004-01-28 ������������ʽ���� 半导体器件及其制造方法
CN1797736A (zh) * 2004-12-03 2006-07-05 台湾积体电路制造股份有限公司 调整晶体管的浅沟渠隔离结构应力的方法
CN1949472A (zh) * 2005-10-14 2007-04-18 松下电器产业株式会社 半导体装置及其制造方法
CN101123253A (zh) * 2006-08-10 2008-02-13 国际商业机器公司 集成电路以及制作集成电路的方法
US7482245B1 (en) * 2006-06-20 2009-01-27 Novellus Systems, Inc. Stress profile modulation in STI gap fill
CN101419942A (zh) * 2007-10-24 2009-04-29 中芯国际集成电路制造(上海)有限公司 一种可提高半导体器件性能的沟槽隔离结构制作方法
CN101740456A (zh) * 2008-11-17 2010-06-16 中芯国际集成电路制造(上海)有限公司 浅沟槽结构制造方法及快闪存储器
CN101930946A (zh) * 2009-06-19 2010-12-29 新加坡格罗方德半导体制造私人有限公司 具有高电压晶体管的集成电路系统及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968960B2 (en) * 2006-08-18 2011-06-28 Micron Technology, Inc. Methods of forming strained semiconductor channels
US20090315115A1 (en) * 2008-06-23 2009-12-24 Chartered Semiconductor Manufacturing, Ltd. Implantation for shallow trench isolation (STI) formation and for stress for transistor performance enhancement
US7851328B2 (en) * 2008-09-22 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. STI stress modulation with additional implantation and natural pad sin mask

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514833B1 (en) * 1999-09-24 2003-02-04 Advanced Micro Devices, Inc. Method of inhibiting lateral diffusion between adjacent wells by introducing carbon or fluorine ions into bottom of STI groove
CN1359145A (zh) * 2000-12-09 2002-07-17 三星电子株式会社 集成电路及其形成方法
CN1471173A (zh) * 2002-06-24 2004-01-28 ������������ʽ���� 半导体器件及其制造方法
CN1797736A (zh) * 2004-12-03 2006-07-05 台湾积体电路制造股份有限公司 调整晶体管的浅沟渠隔离结构应力的方法
CN1949472A (zh) * 2005-10-14 2007-04-18 松下电器产业株式会社 半导体装置及其制造方法
US7482245B1 (en) * 2006-06-20 2009-01-27 Novellus Systems, Inc. Stress profile modulation in STI gap fill
CN101123253A (zh) * 2006-08-10 2008-02-13 国际商业机器公司 集成电路以及制作集成电路的方法
CN101419942A (zh) * 2007-10-24 2009-04-29 中芯国际集成电路制造(上海)有限公司 一种可提高半导体器件性能的沟槽隔离结构制作方法
CN101740456A (zh) * 2008-11-17 2010-06-16 中芯国际集成电路制造(上海)有限公司 浅沟槽结构制造方法及快闪存储器
CN101930946A (zh) * 2009-06-19 2010-12-29 新加坡格罗方德半导体制造私人有限公司 具有高电压晶体管的集成电路系统及其制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820266A (zh) * 2012-04-16 2012-12-12 上海华力微电子有限公司 一种前金属介电质层应力调配方法
CN104795412A (zh) * 2014-01-20 2015-07-22 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN104795412B (zh) * 2014-01-20 2018-03-30 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN106409679A (zh) * 2015-07-21 2017-02-15 台湾积体电路制造股份有限公司 具有掺杂的隔离绝缘层的鳍式场效应晶体管
US10192985B2 (en) 2015-07-21 2019-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET with doped isolation insulating layer
CN106409679B (zh) * 2015-07-21 2021-04-13 台湾积体电路制造股份有限公司 具有掺杂的隔离绝缘层的鳍式场效应晶体管
WO2018161643A1 (zh) * 2017-03-06 2018-09-13 清华大学 应力调控方法
CN108525609A (zh) * 2017-03-06 2018-09-14 清华大学 应力调控方法
CN108525609B (zh) * 2017-03-06 2020-11-06 清华大学 应力调控方法

Also Published As

Publication number Publication date
US20120302038A1 (en) 2012-11-29
CN102412184B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN102412184B (zh) 离子注入调整隔离氧化物应力的浅沟槽隔离结构制备方法
CN104299970B (zh) 具有减少的面的外延区的mos器件
CN1762056B (zh) 具有拉伸应变基片的半导体及其制备方法
CN104299909A (zh) 热调整半导体器件中的应力
CN106653751B (zh) 半导体器件及其制造方法
CN103137624A (zh) 高栅极密度器件和方法
CN103390644A (zh) 半导体器件及其制造方法
CN109148278A (zh) 半导体结构及其形成方法
US8546241B2 (en) Semiconductor device with stress trench isolation and method for forming the same
CN1956221A (zh) 具有介质应力产生区的晶体管及其制造方法
CN103531455B (zh) 半导体器件及其制造方法
CN104752202B (zh) 一种半导体器件的制造方法
CN102369598A (zh) 缩减在半导体装置的接点等级中图案化两个不同应力诱发层的期间所产生与地貌相关的不平整
CN103280459B (zh) 具有深槽结构的图形化应变nmos器件及其制作方法
US20190027602A1 (en) Fabricating method of fin structure with tensile stress and complementary finfet structure
CN106158651A (zh) Ldmos晶体管的形成方法及ldmos晶体管
CN106298665A (zh) 半导体器件的制造方法
CN106328501A (zh) 半导体器件的制造方法
CN105845573A (zh) 一种FinFET器件及其制造方法、电子装置
CN103367226B (zh) 半导体器件制造方法
CN107689329A (zh) 鳍式场效应晶体管及其制造方法
CN105097698A (zh) 一种半导体器件及其制造方法
CN204706565U (zh) 一种半导体器件
CN102610530B (zh) 一种具有高锗组分的锗硅沟道pmos的制备方法
CN102723336A (zh) 一种双多晶SOI应变SiGe回型沟道BiCMOS集成器件及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant