CN102390998A - 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法 - Google Patents

含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法 Download PDF

Info

Publication number
CN102390998A
CN102390998A CN2011102234058A CN201110223405A CN102390998A CN 102390998 A CN102390998 A CN 102390998A CN 2011102234058 A CN2011102234058 A CN 2011102234058A CN 201110223405 A CN201110223405 A CN 201110223405A CN 102390998 A CN102390998 A CN 102390998A
Authority
CN
China
Prior art keywords
sintering
powder
silicon nitride
tungsten carbide
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102234058A
Other languages
English (en)
Other versions
CN102390998B (zh
Inventor
李元元
李小强
郑东海
屈盛官
杨超
邵明
肖志瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2011102234058A priority Critical patent/CN102390998B/zh
Priority to GB1320481.3A priority patent/GB2506287B/en
Priority to PCT/CN2011/079485 priority patent/WO2013020317A1/zh
Publication of CN102390998A publication Critical patent/CN102390998A/zh
Application granted granted Critical
Publication of CN102390998B publication Critical patent/CN102390998B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法。该碳化钨复合材料含按质量百分比0.5~3%的氧化铝颗粒和0.4~10%的氮化硅晶须,其余为碳化钨以及不可避免的杂质相;所述氮化硅晶须为原位自生β-Si3N4晶须。本发明制备的WC复合材料不含任何金属粘结相,具有优良的硬度、耐磨性和高温力学性能,以及中等的韧性;本发明不仅可以降低WC复合材料制备的成本,还有效地扩大了其应用范围,该材料适合作为刀具如可转位刀片等,塑性加工工具如拉丝模等,也适合作为剪切工具如冲剪模等。

Description

含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
技术领域
本发明涉及一种碳化钨(WC)材料及其制备方法,具体是指含氧化铝(Al2O3)颗粒与氮化硅(β-Si3N4)晶须的碳化钨复合材料及制备方法。
背景技术
传统的硬质合金是由硬质WC相和低熔点金属类粘结相组成,其中WC具有极高的硬度和优异的抗氧化性和耐腐蚀性,而金属类粘结剂的加入不可避免地会削弱合金的硬度、耐磨损、抗氧化和耐腐蚀等性能,另外还很有可能会使合金的耐磨性下降,特别是在高温下金属粘结相易软化和氧化等特性,均会使得WC硬质合金容易出现过快失效,从而限制了WC硬质合金的应用范围,为此,本领域研究者一直为摆脱金属粘结剂的局限而努力。另外,传统硬质合金体系中最常见的是WC-Co合金,而Co资源的稀缺性以及其战略地位均要求WC硬质合金应尽可能减少或避免Co作为粘结相。
中国专利200410068022.8公开了一种超细纯碳化钨的烧结方法,该方法是利用放电等离子烧结技术制备不含任何粘结相的纯WC材料,获得的致密纯WC材料有着极高的硬度和优异的耐磨性,但由于其断裂韧性低,为此严重阻碍了该材料的应用。WC的化学键主要为共价键,有着陶瓷材料的固有脆性。长期以来,利用传统陶瓷材料的强韧化方法(如颗粒或晶须强韧化)对WC进行增韧的研究一直严重落后于WC-Co的研究,而鲜有报导。在一般陶瓷材料中,通过外加晶须对材料进行强韧化处理,可以有效地提高材料的强度和韧性,但是这种外加晶须的方法往往存在着晶须容易相互缠绕、团聚,难以分散等问题,而且操作人员直接接触晶须可能带来健康危害,使得其可操作性大大降低。中国专利200610011114.1提出了一种原位自生β-Si3N4晶须增韧Si3N4基陶瓷以及一种利用a-Si3N4颗粒在高温下向β-Si3N4转变从而在基体内原位生成β-Si3N4晶须的方法。这种原位生成晶须的方法不仅可增韧陶瓷基体,而且可以很好地解决通常外加陶瓷晶须时遇到的晶须容易相互缠绕、团聚,难以分散等问题,而且也避免了操作人员直接接触晶须所可能带来的健康危害。但这种方法目前只限用于Al2O3基和Si3N4基等少数几种材料中,其应用还有待进一步开发研究。
在不添加金属粘结剂的前提下,进一步提高WC材料的韧性又尽可能地利用纯WC的高硬度特点,是本领域技术研发的热点。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种不含金属粘结相的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料。
本发明的另一个目的在于利用颗粒与原位自生晶须协同增韧,提供一种含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法。
本发明的目的可以通过如下措施来实现:
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其特征在于:所述碳化钨复合材料含氧化铝颗粒与氮化硅晶须,其余为碳化钨以及不可避免的杂质相;所述氧化铝颗粒的质量百分比为0.5~3%;所述氮化硅晶须为原位自生β-Si3N4晶须,其质量百分比为0.4~10%。
所述原位自生β-Si3N4晶须的长径比≥3。
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比配比原料粉末:WC87~99%,Al2O30.5~3%,颗粒为0.5~10μm的a-Si3N40.5~10%,其余为不可避免的微量杂质;
步骤二:粉末分散与混合
将上述原料粉末置于有机或无机溶剂中,采用强制手段使团聚粉末分散,再将所得浆料进行湿式低能球磨,制得混合浆料;
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末;
步骤四:烧结粉末
采用放电等离子烧结或热压烧结技术对上述混合粉末进行成型和烧结。
所述Al2O3与a-Si3N4的质量比≥1/10。
所述有机溶剂为乙醇,无机溶剂为水;所述强制手段是指超声震荡和机械搅拌协同作用下实施团聚粉末分散。
所述放电等离子烧结为一步烧结工艺或两步烧结工艺,所述一步烧结工艺条件如下:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
烧结升温速率:50~300℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa;
所述两步烧结工艺条件如下:
第一步:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
烧结升温速率:50~300℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa;
第二步:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
降温速率:50~300℃/min,
烧结温度:1350~1550℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa。
所述热压烧结为一步烧结工艺或两步烧结工艺,所述一步烧结工艺条件如下:
烧结压力:30~70Mpa,
烧结升温速率:5~20℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护;
所述两步烧结工艺条件如下:
第一步:
烧结压力:30~70Mpa,
烧结升温速率:5~20℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护;
第二步:
烧结压力:30~70Mpa,
降温速率:5~20℃/min,
烧结温度:1350~1550℃,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护。
本发明与现有技术相比具有以下突出的优点:
1、本发明制备的WC复合材料是一种由Al2O3颗粒与原位自生β-Si3N4晶须协同增韧的不含有任何金属粘结相的WC复合材料,它具有优良的硬度、耐磨性和高温力学性能,以及中等的韧性,它适合作为刀具如可转位刀片等,塑性加工工具如拉丝模等,也适合作为剪切工具如冲剪模等。
2、本发明制备的WC复合材料不含有Co,与传统WC-Co硬质合金相比,它不仅可以降低成本,还可以节约稀缺而且具战略性的Co资源。
3、本发明制备的WC复合材料,它不含有任何金属粘结相,因而它比以金属作为粘结相的WC基硬质合金具有更高的硬度和更优异的耐磨性能,尤其是在较高的工作温度下不会因为金属的软化而导致材料硬度大幅度下降,因此它更适合应用在对硬度和耐磨性要求比较高或工作温度比较高的条件下,譬如可用作切削高强合金、高速切削的刀具和拉丝模等。另外,它的抗氧化和耐腐蚀性能也有显著提高,因此也更适用于各种腐蚀性环境中,譬如作为特殊的密封材料,从而扩大了WC材料的应用范围。
4、本发明制备的WC复合材料,它含有Al2O3颗粒与β-Si3N4晶须,由于两者的协同增韧,因此可以获得比纯WC或由单一陶瓷组元增韧WC材料更高韧性的无粘结相WC材料。
5、本发明制备方法采用了原位自生法在WC基体中引入β-Si3N4晶须,充分利用了a-Si3N4在高温下向β-Si3N4转变以及β-Si3N4晶粒易沿特定晶面生长的特点。在初始材料粉末的准备中,只需将a-Si3N4颗粒粉末与其它颗粒粉末充分均匀混合即可以在随后的烧结过程中在WC晶间生成均匀分布的β-Si3N4晶须,经X射线衍射分析得到,a-Si3N4向β-Si3N4转变的最终转化率≥80%。为此本发明不但很好地解决了通常外加陶瓷晶须时遇到的晶须容易相互缠绕、团聚,难以分散等问题,而且也避免了操作人员直接接触晶须所可能带来的健康危害。
6、本发明采用相对廉价的Al2O3与a-Si3N4粉末作为原料,可以降低WC基硬质材料的生产成本。加入的Al2O3既作为a-Si3N4向β-Si3N4转变的烧结助剂,同时也作为颗粒增韧相弥散分布在WC基体中。
7、本发明采用的a-Si3N4粉末其表面不可避免地存在少量的SiO2,在烧结过程中,SiO2与Al2O3在1587℃左右会发生共晶发应形成液相,从而促进材料的致密化,为在相对较低的烧结温度下制备致密的无粘结相WC材料提供了可能。
附图说明
图1为实施例1获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的断口形貌扫描电镜(S EM)图;
图2为实施例1获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的显微组织S EM图;
图3为实施例2获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的断口形貌S EM图;
图4为实施例2获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的显微组织S EM图;
图5为实施例3获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的断口形貌S EM图;
图6为实施例3获得的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的显微组织S EM图。
具体实施方式
通过如下实施例对本发明作进一步说明,但本发明的实施方式不仅限于此。
实施例1
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 96%,Al2O31%,a-Si3N43%,其余为不可避免的微量杂质;WC粉末纯度≥98.7%、粒度约100nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度0.8~1μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于乙醇中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行放电等离子一步烧结,烧结电流类型为直流脉冲电流,其中烧结压力为70MPa,烧结温度为1800℃,升温速率为100℃/min,保温时间为5min,真空度为4Pa。
通过以上方法制备,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为1%;原位自生β-Si3N4晶须的质量百分比约为2.5%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1018.65GPa,断裂韧性为7.25MPa·m1/2(断裂韧性是通过维氏硬度压痕法进行测量(Anstis G R,Chantikul P,Lawn B R,et al.,Acritical-evaluation of indentation techniques for measuring fracturetoughness. l. direct crack measurements[J].Joumal of the AmericanCeramic Society,1981.64(9):533-538)),其断口形貌与显微组织形貌分别如图1,图2所示。根据图1所示的断口形貌估算出材料基体的晶粒尺寸为200~800nm;根据图2所示的材料体内β-Si3N4晶须的长径比为5~6。
实施例2
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 94%,Al2O31%,a-Si3N45%,其余为不可避免的微量杂质;WC粉末纯度≥98.7%、粒度约100nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度0.8~1μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于乙醇中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,其球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行放电等离子两步烧结,烧结电流类型为直流脉冲电流,其中烧结压力为70MPa,真空度为4Pa,烧结分两步完成:先以100℃/min的升温速率升至1550℃,保温10min,随后以50℃/min的降温速率降至1450℃,再保温10min,烧结完成。
通过以上步骤制备,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为1%;原位自生β-Si3N4晶须的质量百分比约为4.5%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1021.42GPa,断裂韧性为5.94MPa·m1/2,其断口形貌与显微组织形貌分别如图3,图4所示。根据图3所示的断口形貌估算出材料基体的晶粒尺寸为100~300nm;根据图4所示的材料体内β-Si3N4晶须的长径比为3~5。
实施例3
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 97%,Al2O31%,a-Si3N42%,其余为不可避免的微量杂质;WC粉末纯度≥98.7%、粒度约100nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度0.8~1μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于乙醇中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,其球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行热压两步烧结,其中烧结压力为70MPa,烧结气氛为N2(0.1MPa),烧结分两步完成:先以20℃/min的升温速率升至1550℃,保温60min,随后以10℃/min的降温速率降至1450℃,再保温60min,烧结完成。
通过以上步骤制备,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为1%;原位自生β-Si3N4晶须的质量百分比约为1.7%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1022.87GPa,断裂韧性为5.64MPa·m1/2,其断口形貌与显微组织形貌分别如图5,图6所示。根据图5所示的断口形貌估算出材料基体的晶粒尺寸为100~200nm;根据图6所示的材料体内β-Si3N4晶须的长径比为3~4。
实施例4
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 99%,Al2O30.5%,a-Si3N40.5%,其余为不可避免的微量杂质;WC粉末纯度≥99.9%、粒度约800nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度8~10μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于乙醇中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行放电等离子一步烧结,烧结电流类型为直流脉冲电流,其中烧结压力为30MPa,烧结温度为1900℃,升温速率为50℃/min,烧结过程不保温,真空度为4Pa。
通过以上方法制备出,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为0.5%;原位自生β-Si3N4晶须的质量百分比约为0.4%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1023.20GPa,断裂韧性为5.45MPa·m1/2,材料基体的晶粒尺寸为800~1000nm;材料体内β-Si3N4晶须的长径比为4~5。
实施例5
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 87%,Al2O33%,a-Si3N410%,其余为不可避免的微量杂质;WC粉末纯度≥99.9%、粒度约600nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度6~8μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于水中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行放电等离子一步烧结,烧结电流类型为直流脉冲电流,其中烧结压力为50MPa,烧结温度为1550℃,升温速率为300℃/min,保温时间为20min,真空度为3Pa。
通过以上方法制备,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为3%;原位自生β-Si3N4晶须的质量百分比约为10%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1017.56GPa,断裂韧性为7.62MPa·m1/2,材料基体的晶粒尺寸为600~800nm;材料体内β-Si3N4晶须的长径比为5~6。
实施例6
含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比用量进行配比:WC 90%,Al2O32%,a-Si3N48%,其余为不可避免的微量杂质;WC粉末纯度≥98.7%、粒度约100nm,Al2O3粉末纯度≥99.9%、粒度1~2μm,a-Si3N4粉末表面氧含量为3~5wt.%,粒度0.5~0.8μm。
步骤二:粉末分散与混合
将上述原料粉末浸没于水中,进行超声震荡加机械搅拌,使团聚粉末分散,再将所得浆料进行湿式低能球磨,所用球磨机为行星式,球磨礶(500mL)与磨球材质为Al2O3陶瓷,球料比为2∶1,在转速200r/min工况下,球磨30小时制得混合浆料。
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末。
步骤四:烧结粉末
将步骤三所得的混合粉末称取60g装入直径为Φ30mm的石墨烧结模具中进行热压一步烧结,其中烧结压力为30MPa,烧结温度为1550℃,升温速率为5℃/min,保温时间为120min,真空度为4Pa。
通过以上方法制备,所得碳化钨复合材料含氧化铝颗粒的质量百分比约为2%;原位自生β-Si3N4晶须的质量百分比约为7%,其余为碳化钨以及不可避免的杂质相。上述无粘结相含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其硬度为HV1018.20GPa,断裂韧性为6.58MPa·m1/2,材料基体的晶粒尺寸为200~1000nm;材料体内β-Si3N4晶须的长径比为4~5。

Claims (7)

1.含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其特征在于:所述碳化钨复合材料含氧化铝颗粒与氮化硅晶须,其余为碳化钨以及不可避免的杂质相;所述氧化铝颗粒的质量百分比为0.5~3%;所述氮化硅晶须为原位自生β-Si3N4晶须,其质量百分比为0.4~10%。
2.根据权利要求1所述的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料,其特征在于:所述原位自生β-Si3N4晶须的长径比≥3。
3.含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述制备方法包括如下步骤及其工艺条件:
步骤一:备料
将WC、Al2O3、a-Si3N4粉末按下述质量百分比配比原料粉末:WC87~99%,Al2O30.5~3%,颗粒为0.5~10μm的a-Si3N40.5~10%,其余为不可避免的微量杂质;
步骤二:粉末分散与混合
将上述原料粉末置于有机或无机溶剂中,采用强制手段使团聚粉末分散,再将所得浆料进行湿式低能球磨,制得混合浆料;
步骤三:粉末干燥与过筛
将上述混合浆料置于干燥炉内烘干至溶剂残余量≤1%,然后碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末;
步骤四:烧结粉末
采用放电等离子烧结或热压烧结技术对上述混合粉末进行成型和烧结。
4.根据权利要求3所述的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述Al2O3与a-Si3N4的质量比≥1/10。
5.根据权利要求3所述的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述有机溶剂为乙醇,无机溶剂为水;所述强制手段是指超声震荡和机械搅拌协同作用下实施团聚粉末分散。
6.根据权利要求3所述的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述放电等离子烧结为一步烧结工艺或两步烧结工艺,所述一步烧结工艺条件如下:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
烧结升温速率:50~300℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa;
所述两步烧结工艺条件如下:
第一步:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
烧结升温速率:50~300℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa;
第二步:
烧结电流类型为直流脉冲电流,
烧结压力:30~70Mpa,
降温速率:50~300℃/min,
烧结温度:1350~1550℃,
烧结保温时间:0~20min,
烧结真空度:≤4Pa。
7.根据权利要求3所述的含氧化铝颗粒与氮化硅晶须的碳化钨复合材料的制备方法,其特征在于:所述热压烧结为一步烧结工艺或两步烧结工艺,所述一步烧结工艺条件如下:
烧结压力:30~70Mpa,
烧结升温速率:5~20℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护;
所述两步烧结工艺条件如下:
第一步:
烧结压力:30~70Mpa,
烧结升温速率:5~20℃/min,
烧结温度:1550~1900℃,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护;
第二步:
烧结压力:30~70Mpa,
降温速率:5~20℃/min,
烧结温度:1350~1550,
烧结保温时间:0~120min,
烧结气氛:真空度≤4Pa或0.1MPa的N2气氛保护。
CN2011102234058A 2011-08-05 2011-08-05 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法 Expired - Fee Related CN102390998B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011102234058A CN102390998B (zh) 2011-08-05 2011-08-05 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
GB1320481.3A GB2506287B (en) 2011-08-05 2011-09-08 Tungsten Carbide Composite Containing Alumina Grains and Silicon Nitride Whiskers and the Preparation Method Thereof
PCT/CN2011/079485 WO2013020317A1 (zh) 2011-08-05 2011-09-08 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102234058A CN102390998B (zh) 2011-08-05 2011-08-05 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN102390998A true CN102390998A (zh) 2012-03-28
CN102390998B CN102390998B (zh) 2013-07-24

Family

ID=45858406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102234058A Expired - Fee Related CN102390998B (zh) 2011-08-05 2011-08-05 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法

Country Status (3)

Country Link
CN (1) CN102390998B (zh)
GB (1) GB2506287B (zh)
WO (1) WO2013020317A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581271A (zh) * 2012-03-30 2012-07-18 吉林大学 一种粉末冶金材料混料方法
CN102863218A (zh) * 2012-09-27 2013-01-09 华南理工大学 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN103360074A (zh) * 2013-07-11 2013-10-23 东华大学 一种WC-Al2O3纳米复合材料的制备方法
CN104388724A (zh) * 2014-11-24 2015-03-04 中南大学 一种超细wc粉体的分散方法
CN106513670A (zh) * 2016-11-10 2017-03-22 株洲硬质合金集团有限公司 一种超细硬质合金的烧结方法
CN106542838A (zh) * 2016-10-28 2017-03-29 华南理工大学 一种立体网络增韧wc复合材料及其制备方法
CN106591747A (zh) * 2016-12-14 2017-04-26 华南理工大学 一种β‑Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法
CN110845249A (zh) * 2019-11-01 2020-02-28 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622115A (zh) * 2020-11-06 2021-04-09 浙江海洋大学 一种螺杆泵螺杆衬胶模具及其使用方法
CN113845743B (zh) * 2021-10-12 2023-10-31 深圳妙将来新科技有限公司 一种含纳米材料的聚乙烯的制备方法
CN113732332A (zh) * 2021-10-18 2021-12-03 南京理工大学 一种温度感知智能切削刀具及其制造方法
CN114956846B (zh) * 2022-06-21 2023-10-27 郑州大学 一种SiC晶须增韧氧化铝陶瓷刀具材料的制备方法
CN116969763B (zh) * 2023-09-25 2023-12-12 成都先进金属材料产业技术研究院股份有限公司 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793042A (zh) * 2006-01-06 2006-06-28 清华大学 一种原位增韧氮化硅基陶瓷及其超快速烧结方法
CN101008064A (zh) * 2007-01-17 2007-08-01 江西省科学院应用物理研究所 一种晶须增韧碳化钨-钴基硬质合金材料及其制备工艺
US20110124483A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453239A (zh) * 2003-05-29 2003-11-05 上海交通大学 大颗粒球形亚微米/纳米/纤维陶瓷复合粉体
CN1271008C (zh) * 2004-07-19 2006-08-23 西北工业大学 一种晶须和颗粒增韧陶瓷基复合材料制备方法
CN101164996B (zh) * 2006-10-16 2010-09-01 宁波大学 一种含碳化硅晶须以及棒状氧化铝嵌入颗粒的碳化硅陶瓷
CN100569699C (zh) * 2007-09-28 2009-12-16 清华大学 一种线路板或电路板粉碎专用陶瓷刀具材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793042A (zh) * 2006-01-06 2006-06-28 清华大学 一种原位增韧氮化硅基陶瓷及其超快速烧结方法
CN101008064A (zh) * 2007-01-17 2007-08-01 江西省科学院应用物理研究所 一种晶须增韧碳化钨-钴基硬质合金材料及其制备工艺
US20110124483A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈刚等: "放电等离子烧结碳化硼陶瓷的工艺研究", 《人工晶体学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581271A (zh) * 2012-03-30 2012-07-18 吉林大学 一种粉末冶金材料混料方法
CN102863218A (zh) * 2012-09-27 2013-01-09 华南理工大学 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN102863218B (zh) * 2012-09-27 2014-06-11 华南理工大学 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN103360074A (zh) * 2013-07-11 2013-10-23 东华大学 一种WC-Al2O3纳米复合材料的制备方法
CN104388724A (zh) * 2014-11-24 2015-03-04 中南大学 一种超细wc粉体的分散方法
CN104388724B (zh) * 2014-11-24 2016-08-24 中南大学 一种超细wc粉体的分散方法
CN106542838A (zh) * 2016-10-28 2017-03-29 华南理工大学 一种立体网络增韧wc复合材料及其制备方法
CN106513670A (zh) * 2016-11-10 2017-03-22 株洲硬质合金集团有限公司 一种超细硬质合金的烧结方法
CN106513670B (zh) * 2016-11-10 2018-12-18 株洲硬质合金集团有限公司 一种超细硬质合金的烧结方法
CN106591747A (zh) * 2016-12-14 2017-04-26 华南理工大学 一种β‑Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法
CN110845249A (zh) * 2019-11-01 2020-02-28 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法
CN110845249B (zh) * 2019-11-01 2022-04-22 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法

Also Published As

Publication number Publication date
GB2506287A (en) 2014-03-26
CN102390998B (zh) 2013-07-24
GB2506287B (en) 2019-07-31
GB201320481D0 (en) 2014-01-01
WO2013020317A1 (zh) 2013-02-14

Similar Documents

Publication Publication Date Title
CN102390998B (zh) 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN102701773B (zh) 自生氮化硅晶须增韧碳化钨复合材料及其制备方法
KR101252332B1 (ko) 복합 소결체
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
JPWO2007010670A1 (ja) 複合焼結体
CN101008064A (zh) 一种晶须增韧碳化钨-钴基硬质合金材料及其制备工艺
CN104073665B (zh) 一种WC-Co-cBN复合材料的制备方法
CN105272260A (zh) 一种无粘结相碳化钨复合材料及其制备方法
CN100545127C (zh) SiC晶须增韧碳氮化钛基金属陶瓷切削刀片及其制备方法
CN102320170A (zh) 一种梯度纳米复合陶瓷刀具材料及其制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN110819866A (zh) 一种WC-Co-B4C硬质合金的制备方法
Liu et al. Preparation of Ni3Al bonded diamond core drill with Ni–Cr alloy and its performance on glass–ceramic
CN105152666A (zh) 一种AlON结合铝碳耐火材料及其制备方法
CN100418923C (zh) 一种致密Ti2AlC-TiB2复合材料及其制备方法
CN111646801A (zh) 一种用于刀具的碳化硼-碳化钨复合陶瓷梯度材料及其制备方法和应用
CN102863218B (zh) 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN103979942B (zh) 一种碳纳米管-氧化铝复合材料及其制备方法
CN103524134A (zh) 一种氮化硅-碳氮化钛微纳米复合材料的制备方法
CN102021473B (zh) 一种Fe3Al-Al2O3复合材料的制备方法
Li et al. Fabrication and performance evaluation of metal bond diamond tools based on aluminothermic reaction
CN113416078B (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
Mo et al. Effect of the TiC-TiB2-AlN system on properties of PCBN tool material
CN113941708A (zh) 一种增强PcBN复合片界面结合能力的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130724

Termination date: 20210805

CF01 Termination of patent right due to non-payment of annual fee