CN102386211A - Ldmos器件及其制造方法 - Google Patents

Ldmos器件及其制造方法 Download PDF

Info

Publication number
CN102386211A
CN102386211A CN2010102692795A CN201010269279A CN102386211A CN 102386211 A CN102386211 A CN 102386211A CN 2010102692795 A CN2010102692795 A CN 2010102692795A CN 201010269279 A CN201010269279 A CN 201010269279A CN 102386211 A CN102386211 A CN 102386211A
Authority
CN
China
Prior art keywords
region
drift region
ldmos device
tagma
ldmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102692795A
Other languages
English (en)
Other versions
CN102386211B (zh
Inventor
吴孝嘉
罗泽煌
孙贵鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Corp
Original Assignee
CSMC Technologies Corp
Wuxi CSMC Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Corp, Wuxi CSMC Semiconductor Co Ltd filed Critical CSMC Technologies Corp
Priority to CN201010269279.5A priority Critical patent/CN102386211B/zh
Priority to PCT/CN2011/079041 priority patent/WO2012028077A1/en
Publication of CN102386211A publication Critical patent/CN102386211A/zh
Application granted granted Critical
Publication of CN102386211B publication Critical patent/CN102386211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种LDMOS器件,包括源区,栅极区,漏区,体区以及掺杂类型与体区相反的漂移区,体区在衬底区之上,漂移区在漏区和体区之间。LDMOS器件还包括绝缘介质层,所述绝缘介质层位于漂移区之上,栅极区之下。采用本发明的结构,可以提高器件的击穿电压,有利于降低导通电阻,使器件的功耗降低。并且在调整制造过程中,调整绝缘介质层和漂移区的结深对其他器件的较小。

Description

LDMOS器件及其制造方法
【技术领域】
本发明涉及一种LDMOS器件及其制造方法。
【背景技术】
横向双扩散MOS晶体管(LDMOS),是一种轻掺杂漏的MOS器件。由于LDMOS一般工作在线性区,其电流基本保持不变,所以LDMOS的功耗主要取决于导通电阻的大小。为了增加击穿电压,在有源区和漏区之间有一个漂移区。LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当LDMOS接高压时,漂移区由于是高阻,能够承受更高的电压。
目前传统的器件结构都是用较深的阱做的漂移区来承受器件耐压,由于阱的深度较深,漂移区耗尽较难,因此必须降低漂移区的掺杂浓度来承受耐压。这就导致器件的导通后的电阻较大,在相同的工作电流下器件功耗过高。且器件尺寸较大,使得芯片面积增大,集成度降低,很难满足目前的电路设计需求。
【发明内容】
有鉴于此,有必要针对LDMOS器件通过降低漂移区的掺杂浓度来承受耐压导致导通电阻较大的问题,提供一种击穿电压较高、导通电阻较低的LDMOS器件。
此外,还有必要针对LDMOS器件通过降低漂移区的掺杂浓度来承受耐压导致导通电阻较大的问题,提供一种使LDMOS器件击穿电压较高、导通电阻较低的LDMOS器件的制造方法。
一种LDMOS器件,包括源区,栅极区,漏区,体区以及掺杂类型与体区相反的漂移区,体区在衬底区之上,漂移区在漏区和体区之间,还包括绝缘介质层,所述绝缘介质层位于漂移区之上,栅极区之下。
优选地,还包括缓变沟道掺杂的P-body区,所述P-body区在体区之上,源区之下。
优选地,所述的绝缘介质层为二氧化硅层。
优选地,所述漂移区的掺杂浓度为1017~1018cm-3量级,所述漂移区的结深为0.4微米~2.0微米。
优选地,所述体区的掺杂浓度为1017~1018cm-3量级。
优选地,所述绝缘介质层和栅氧层的厚度不相等。
一种制造LDMOS器件的方法,所述LDMOS器件包括源区,栅极区,漏区,体区以及掺杂类型与体区相反的漂移区,体区在衬底区之上,漂移区在漏区和体区之间,其特征在于包括在漂移区上生长绝缘介质层的步骤。
优选地,所述LDMOS器件还包括衬底引出区,栅氧层,位于栅极区两侧的栅侧墙区,P-body区,包括如下步骤:
步骤一,采用标准工艺的阱注入工艺,形成衬底;
步骤二,利用标准的LOCOS或STI隔离工艺,通过有源区的版图,在将要形成的LDMOS的沟道区和源、漏、衬底以外区域形成隔离区;
步骤三,对漂移区进行低掺杂,再生长所述绝缘介质层,形成LDMOS器件的漂移区;
步骤四,接下来进行栅区的形成和源漏注入工艺,依次形成栅氧层,淀积和刻蚀栅材料,形成栅极区,P-body区注入和退火,低掺杂轻掺杂漏区且靠近漏区引出,形成栅侧墙,然后是进行源漏和衬底引出注入;
步骤五,依次淀积隔离层,光刻接触孔,淀积金属,光刻引线,钝化。
优选地,所述漂移区采用缓变掺杂的方式。
优选地,所述绝缘层形成时,器件除场区和漂移区外的区域被氮化硅覆盖。
通过引入绝缘介质层,可以调整绝缘介质层的厚度提升栅电极对漂移区的增强耗尽作用,因此,可以降低漂移区结深、提高掺杂浓度和优化绝缘介质厚度,使电场更均匀,利于提高器件耐压,减小漂移区长度或提高漂移区浓度,从而降低导通电阻。
【附图说明】
图1是第一种实施例的LDMOS器件结构图。
图2是第二种实施例的实施例的LDMOS器件结构图。
图3是第三种实施例的实施例的LDMOS器件结构图。
【具体实施方式】
基于本发明的结构,可以实现N型LDMOS器件和P型LDMOS器件,现以N型LDMOS为例,若要实现本发明的P型的LDMOS器件结构,本领域技术人员只需要根据本发明实施例做相应改动即可。
如图1所示,一种LDMOS器件,包括衬底101,体区103(P-well),体区引出105,源区,源区引出107,漏区,漏区引出109,栅氧层111,栅极区113,漂移区115,绝缘介质层117,位于栅极区113两侧的栅侧墙区119,还包括P-body区121。
绝缘介质层117位于漂移区115之上,栅极区113之下。绝缘介质层117采用电绝缘材料如二氧化硅。绝缘介质层117的厚度较薄,提高器件的耐压能力,绝缘介质层117的厚度可根据器件要求确定,厚度一般在栅氧层111厚度到场氧隔离或STI的厚度(几十纳米到几千埃的范围)。通过降低绝缘介质层117厚度提升栅极区113对漂移区115增强耗尽作用。
体区103和体区引出105均采用p型导电类型杂质掺杂,而源区、漏区和漂移区115均采用n型导电类型的杂质掺杂,相应的,对于p型器件,各个区的杂质类型与n型LDMOS相反。
优选地,体区103采用较高的浓度1017~1018cm-3量级,降低体电阻,防止寄生三极管导通。
漂移区115掺杂浓度为1017~1018cm-3量级,漂移区115结深在0.4微米~2.0微米左右。传统的漂移区浓度为7.5×1016cm-3,漂移区结深为2.0微米。
P-body区121可以形成缓变沟道掺杂,调整阈值电压,减小衬底电阻,防止寄生三极管导通,提高体区浓度,缩短沟道长度,降低导通电阻并减小器件面积。P-body区121在体区之上,源区之下。
因此,本发明的上述结构通过绝缘介质层117增强对漂移区115的耗尽,并且漂移区115深度较浅,提高了器件的耐压能力。漂移区的掺杂浓度较高,有利于降低导通电阻。
如图2所示,其为另一实施例的LDMOS器件结构图。本实施例中,省去了图1所示的P-body区121,使结构更加简单。
如图3所示,其为另一实施例的LDMOS器件结构图。本实施例中,体引出掺杂区122结深浅,掺杂浓度高,从而降低体电阻,防止寄生三极管导通。
本发明一种实施例的LDMOS的制造方法包括:
1、采用标准工艺的阱注入工艺,形成衬底。
2、利用标准的LOCOS(局部硅氧化)或STI(浅沟槽隔离)隔离工艺,通过有源区的版图,在将要形成的LDMOS的沟道区和源、漏、衬以外区域形成隔离区;在此过程中,非LOCOS或STI隔离的区域一般是通过二氧化硅和氮化硅作为硅表面的掩蔽层。利用这层掩蔽层,通过漂移区115的光刻刻板对漂移区进行涂胶→曝光→显影→氮化硅刻蚀。
3、对漂移区进行低掺杂,再生长绝缘介质层,形成LDMOS器件的漂移区,漂移区的掺杂方式可以是均匀掺杂,也可以是采用掺杂浓度从漏区向体区103缓变掺杂的方式。
生长的绝缘介质层厚度根据器件耐压需求调整;此时除了场区和漂移区以外的其余区域完全被氮化硅覆盖,调整绝缘介质层对其他器件影响很小。
4、接下来进行栅区的形成和源漏注入工艺,依次形成栅氧层,淀积和刻蚀栅材料,形成栅极区,P-body区注入和退火,低掺杂轻掺杂漏区(LDD)区,且LDMOS只在源端进行LDD掺杂注入,形成栅侧墙。然后是进行源漏和衬底引出注入,形成图1所示结构。
5、依次淀积隔离层,光刻接触孔,淀积金属,光刻引线,钝化。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种LDMOS器件,包括源区,栅极区,漏区,体区以及掺杂类型与体区相反的漂移区,体区在衬底区之上,漂移区在漏区和体区之间,其特征在于:还包括绝缘介质层,所述绝缘介质层位于漂移区之上,栅极区之下。
2.如权利要求1所述的LDMOS器件,其特征在于:还包括缓变沟道掺杂的P-body区,所述P-body区在体区之上,源区之下。
3.如权利要求1所述的LDMOS器件,其特征在于:所述的绝缘介质层为二氧化硅层。
4.如权利要求1所述的LDMOS器件,其特征在于:所述漂移区的掺杂浓度为1017~1018cm-3量级,所述漂移区的结深为0.4微米~2.0微米。
5.如权利要求1所述的LDMOS器件,其特征在于:所述体区的掺杂浓度为1017~1018cm-3量级。
6.如权利要求1所述的LDMOS器件,其特征在于:所述绝缘介质层和栅氧层的厚度不相等。
7.一种制造LDMOS器件的方法,所述LDMOS器件包括源区,栅极区,漏区,体区以及掺杂类型与体区相反的漂移区,体区在衬底区之上,漂移区在漏区和体区之间,其特征在于包括在漂移区上生长绝缘介质层的步骤。
8.如权利要求7所述的制造LDMOS器件的方法,其特征在于:所述LDMOS器件还包括衬底引出区,栅氧层,位于栅极区两侧的栅侧墙区,P-body区,包括如下步骤:
步骤一,采用标准工艺的阱注入工艺,形成衬底;
步骤二,利用标准的LOCOS或STI隔离工艺,通过有源区的版图,在将要形成的LDMOS的沟道区和源、漏、衬底以外区域形成隔离区;
步骤三,对漂移区进行低掺杂,再生长所述绝缘介质层,形成LDMOS器件的漂移区;
步骤四,接下来进行栅区的形成和源漏注入工艺,依次形成栅氧层,淀积和刻蚀栅材料,形成栅极区,P-body区注入和退火,低掺杂轻掺杂漏区且靠近漏区引出,形成栅侧墙,然后是进行源漏和衬底引出注入;
步骤五,依次淀积隔离层,光刻接触孔,淀积金属,光刻引线,钝化。
9.如权利要求7所述的制造LDMOS器件的方法,其特征在于:所述漂移区采用缓变掺杂的方式。
10.如权利要求7所述的制造LDMOS器件的方法,其特征在于:所述绝缘层形成时,器件除场区和漂移区外的区域被氮化硅覆盖。
CN201010269279.5A 2010-08-31 2010-08-31 Ldmos器件及其制造方法 Active CN102386211B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010269279.5A CN102386211B (zh) 2010-08-31 2010-08-31 Ldmos器件及其制造方法
PCT/CN2011/079041 WO2012028077A1 (en) 2010-08-31 2011-08-29 Ldmos device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010269279.5A CN102386211B (zh) 2010-08-31 2010-08-31 Ldmos器件及其制造方法

Publications (2)

Publication Number Publication Date
CN102386211A true CN102386211A (zh) 2012-03-21
CN102386211B CN102386211B (zh) 2014-01-08

Family

ID=45772157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010269279.5A Active CN102386211B (zh) 2010-08-31 2010-08-31 Ldmos器件及其制造方法

Country Status (2)

Country Link
CN (1) CN102386211B (zh)
WO (1) WO2012028077A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518031A (zh) * 2013-10-07 2015-04-15 飞思卡尔半导体公司 具有高可靠性的可合并半导体器件
CN105448725A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN106158972A (zh) * 2015-09-03 2016-11-23 珀尔微斯电子有限公司 制造高压功率场效应管的系统及方法
CN106571393A (zh) * 2015-10-07 2017-04-19 爱思开海力士有限公司 具有沟槽绝缘场板和金属场板的横向高压集成器件
CN107492497A (zh) * 2016-06-12 2017-12-19 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN111969038A (zh) * 2020-08-06 2020-11-20 互升科技(深圳)有限公司 一种场效应管制备方法及场效应管
CN112133740A (zh) * 2020-08-06 2020-12-25 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
WO2021128355A1 (zh) * 2019-12-27 2021-07-01 华为技术有限公司 横向扩散金属氧化物半导体晶体管及制造方法
CN113506743A (zh) * 2021-06-21 2021-10-15 上海华力集成电路制造有限公司 一种提高双扩散漏器件击穿电压的方法
WO2024037259A1 (zh) * 2022-08-15 2024-02-22 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466955B (zh) * 2020-12-04 2022-10-11 重庆邮电大学 一种具有体内导电沟道的薄层soi-ldmos器件
CN115360230B (zh) * 2022-06-10 2024-05-07 广东省大湾区集成电路与系统应用研究院 Ldmos器件的制作方法和ldmos器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599782B1 (en) * 2000-01-20 2003-07-29 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating thereof
US6897525B1 (en) * 1998-11-26 2005-05-24 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
CN101099242A (zh) * 2005-01-06 2008-01-02 英飞凌科技股份公司 Ldmos晶体管
US20090072308A1 (en) * 2007-09-18 2009-03-19 Chin-Lung Chen Laterally diffused metal-oxide-semiconductor device and method of making the same
CN101752416A (zh) * 2008-12-09 2010-06-23 上海华虹Nec电子有限公司 一种高压ldmos器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903421B1 (en) * 2004-01-16 2005-06-07 System General Corp. Isolated high-voltage LDMOS transistor having a split well structure
US7608889B2 (en) * 2007-09-28 2009-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Lateral diffusion metal-oxide-semiconductor structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897525B1 (en) * 1998-11-26 2005-05-24 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US6599782B1 (en) * 2000-01-20 2003-07-29 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating thereof
CN101099242A (zh) * 2005-01-06 2008-01-02 英飞凌科技股份公司 Ldmos晶体管
US20090072308A1 (en) * 2007-09-18 2009-03-19 Chin-Lung Chen Laterally diffused metal-oxide-semiconductor device and method of making the same
CN101752416A (zh) * 2008-12-09 2010-06-23 上海华虹Nec电子有限公司 一种高压ldmos器件

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518031B (zh) * 2013-10-07 2019-04-09 恩智浦美国有限公司 具有高可靠性的可合并半导体器件
CN104518031A (zh) * 2013-10-07 2015-04-15 飞思卡尔半导体公司 具有高可靠性的可合并半导体器件
CN105448725A (zh) * 2014-08-26 2016-03-30 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN105448725B (zh) * 2014-08-26 2018-11-16 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN106158972A (zh) * 2015-09-03 2016-11-23 珀尔微斯电子有限公司 制造高压功率场效应管的系统及方法
CN106158972B (zh) * 2015-09-03 2020-04-07 珀尔微斯电子有限公司 制造高压功率场效应管的系统及方法
CN106571393A (zh) * 2015-10-07 2017-04-19 爱思开海力士有限公司 具有沟槽绝缘场板和金属场板的横向高压集成器件
CN106571393B (zh) * 2015-10-07 2022-04-15 爱思开海力士系统集成电路有限公司 具有沟槽绝缘场板和金属场板的横向高压集成器件
CN107492497A (zh) * 2016-06-12 2017-12-19 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
WO2021128355A1 (zh) * 2019-12-27 2021-07-01 华为技术有限公司 横向扩散金属氧化物半导体晶体管及制造方法
CN111969038A (zh) * 2020-08-06 2020-11-20 互升科技(深圳)有限公司 一种场效应管制备方法及场效应管
CN112133740A (zh) * 2020-08-06 2020-12-25 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
CN112133740B (zh) * 2020-08-06 2024-05-24 互升科技(深圳)有限公司 一种多层外延mos管器件及其制备方法
CN113506743A (zh) * 2021-06-21 2021-10-15 上海华力集成电路制造有限公司 一种提高双扩散漏器件击穿电压的方法
WO2024037259A1 (zh) * 2022-08-15 2024-02-22 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制备方法

Also Published As

Publication number Publication date
WO2012028077A1 (en) 2012-03-08
CN102386211B (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102386211B (zh) Ldmos器件及其制造方法
US7923804B2 (en) Edge termination with improved breakdown voltage
JP5649597B2 (ja) トレンチmisデバイスの終端領域の作製プロセスおよび、misデバイスを含む半導体ダイとその形成方法
US7981783B2 (en) Semiconductor device and method for fabricating the same
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10573645B2 (en) Integrated semiconductor device and method for manufacturing the same
CN105070746A (zh) 用于横向双扩散金属氧化物半导体场效应晶体管的直通硅通孔处理技术
WO2004061975A1 (en) Trench mis device having implanted drain-drift region and thick bottom oxide and process for manufacturing the same
KR100762545B1 (ko) Lmosfet 및 그 제조 방법
JP2008509545A (ja) 高圧nmosトランジスタおよび製造方法
US7671441B2 (en) Trench MOSFET with sidewall spacer gates
CN104659090A (zh) Ldmos器件及制造方法
CN117542880B (zh) 横向双扩散场效应晶体管、制作方法、芯片及电路
KR20050058242A (ko) 낮은 기생 저항을 가진 트렌치 mosfet 디바이스형성 방법
US10217828B1 (en) Transistors with field plates on fully depleted silicon-on-insulator platform and method of making the same
CN105140289A (zh) N型ldmos器件及工艺方法
KR20100025291A (ko) 반도체 소자 및 그의 제조방법
CN102709190A (zh) Ldmos场效应晶体管及其制作方法
CN104157690B (zh) 一种带槽型结构的应变nldmos器件及其制作方法
CN102386227B (zh) 双向表面电场减弱的漏极隔离dddmos晶体管及方法
US7999311B2 (en) Semiconductor device
JP5597963B2 (ja) 半導体装置
CN108511346B (zh) Ldmos器件的制造方法
US20050139858A1 (en) Lateral double-diffused MOS transistor device
WO2011117920A1 (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171013

Address after: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8

Patentee after: Wuxi Huarun Shanghua Technology Co., Ltd.

Address before: 214000 No. 5 Hanjiang Road, national hi tech Industrial Development Zone, Wuxi, Jiangsu, China

Co-patentee before: Wuxi Huarun Shanghua Technology Co., Ltd.

Patentee before: Wuxi CSMC Semiconductor Co., Ltd.