CN105140289A - N型ldmos器件及工艺方法 - Google Patents

N型ldmos器件及工艺方法 Download PDF

Info

Publication number
CN105140289A
CN105140289A CN201510607048.3A CN201510607048A CN105140289A CN 105140289 A CN105140289 A CN 105140289A CN 201510607048 A CN201510607048 A CN 201510607048A CN 105140289 A CN105140289 A CN 105140289A
Authority
CN
China
Prior art keywords
type
ldmos device
drift region
trap
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510607048.3A
Other languages
English (en)
Inventor
石晶
钱文生
刘冬华
胡君
段文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201510607048.3A priority Critical patent/CN105140289A/zh
Publication of CN105140289A publication Critical patent/CN105140289A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Abstract

本发明公开了一种N型LDMOS器件,在低阻衬底上具有N型埋层,埋层之上为N型外延,N型外延中具有相互抵靠的P阱和漂移区:所述漂移区中还具有N阱及STI结构;所述P阱中具有LDMOS器件的源区,所述漂移区的N阱中具有LDMOS器件的漏区;所述P阱中还具有重掺杂P型区,将P阱引出;N型外延表面具有LDMOS器件的栅氧化层及多晶硅栅极,多晶硅栅极两侧为侧墙;所述漂移区中的STI结构底部具有重掺杂的多晶硅。通过在漂移区STI底部增加P型掺杂的多晶硅层,在漂移区上方形成P型的辅助耗尽区,降低表面电场强度,使器件具有较低的导通电阻的同时具有较高的击穿电压。本发明还公开了所述N型LDMOS器件的工艺方法。

Description

N型LDMOS器件及工艺方法
技术领域
本发明涉及半导体器件制造领域,特别是指一种N型LDMOS器件,本发明还涉及所述N型LDMOS器件的工艺方法。
背景技术
由于具有耐高压,大电流驱动能力和极低功耗等特点,目前在电源管理电路中被广泛采用。在LDMOS(LaterallyDiffusedMetalOxideSemiconductor横向双扩散金属氧化物半导体)器件中,导通电阻是一个重要的指标。如图1所示,为传统的LDMOS器件的结构示意图,其源区及漏区是重掺杂N型区112,位于P阱107中,P阱107中还具有重掺杂P型区113将P型阱引出,位于N阱106中。在BCD(Bipolar-CMOS-DMOS)工艺中,DMOS虽然与CMOS集成在同一块芯片中,但由于高耐压和低导通电阻的要求,DMOS在本底区和漂移区的条件与CMOS现有的工艺条件共享的前提下,其导通电阻较高,往往无法满足开关管应用的要求。因此,为了制作高性能的LDMOS,需要采用各种方法优化器件的导通电阻。通常需要在器件的漂移区增加一道额外的N型注入,使器件有较低的导通电阻,而采用这种方法会降低器件的击穿电压。
发明内容
本发明所要解决的技术问题是提供一种N型LDMOS器件,具有较低的导通电阻及较高的击穿电压。
本发明还要解决的技术问题在于提供所述N型LDMOS器件的工艺方法。
为解决上述问题,本发明所述的N型LDMOS器件,在低阻衬底上具有N型埋层,埋层之上为N型外延,N型外延中具有相互抵靠的P阱和漂移区:
所述漂移区中还具有N阱及STI结构;
所述P阱中具有LDMOS器件的源区,所述漂移区的N阱中具有LDMOS器件的漏区;
所述P阱中还具有重掺杂P型区,将P阱引出;
N型外延表面具有LDMOS器件的栅氧化层及多晶硅栅极,多晶硅栅极两侧为侧墙;
所述漂移区中的STI结构底部具有重掺杂的多晶硅。
所述漂移区中STI底部的多晶硅,掺杂类型为P型。
本发明所述的N型LDMOS器件的工艺方法,包含如下的工艺步骤:
第1步,在低阻衬底上离子注入形成N型埋层;
第2步,在N型埋层上形成N型外延;
第3步,光刻及刻蚀在N型外延上形成STI沟槽,并在位于漂移区中的STI沟槽中淀积多晶硅及进行杂质注入;
第4步,在STI沟槽中填充氧化硅并研磨,形成浅槽隔离;
第5步,光刻打开阱区及漂移区,进行离子注入形成N阱、P阱及漂移区;
第6步,淀积氧化层及多晶硅,光刻及刻蚀形成栅氧化层及多晶硅栅极;
第7步,淀积氧化硅,刻蚀形成栅极侧墙;
第8步,进行离子注入形成源区、漏区以及将P阱引出的重掺杂P型区;
第9步,进行接触孔工艺,制作金属引线形成电极。
进一步地,所述第1步中,低阻衬底电阻率为0.007~0.013Ω·cm。
进一步地,所述第3步中,对STI沟槽中多晶硅注入杂质为铟。
进一步地,所述第7步中,淀积氧化硅厚度为干法刻蚀形成侧墙。
本发明所述的N型LDMOS器件,通过在漂移区STI底部增加多晶硅层并对其进行掺杂,在漂移区上方形成P型的辅助耗尽区,利用P型区域辅助耗尽,降低表面电场强度,避免导通电流增加时出现击穿电压下降的情况,使得器件保持较好特性的前提下,导通电流大幅增加,使器件有较低的导通电阻,同时保证器件导通状态下击穿电压达到应用要求。本发明所述的工艺方法,与BCD工艺兼容,可集成在BCD工艺中。
附图说明
图1是传统的LDMOS器件结构示意图;
图2~10是本发明N型LDMOS器件的制造工艺步骤示意图;
图11是本发明电场强度仿真对比图;
图12是是本发明N型LDMOS器件的制造工艺流程图。
附图标记说明
101是衬底,102是N型埋层,103是外延,104是多晶硅,105是STI(氧化硅),106是N阱,107是P阱,108是漂移区,109是栅氧化层,110是多晶硅栅极,111是侧墙,112是重掺杂N型区(源区,漏区),113是重掺杂P型区,114是接触孔,115是金属。
具体实施方式
本发明所述的N型LDMOS器件如图10所示,在电阻率为0.007~0.013Ω·cm的低阻衬底101上具有N型埋层102,埋层102之上为N型外延103,N型外延103中具有相互抵靠的P阱107和漂移区108;
所述漂移区108中还具有N阱106及STI隔离结构105;
所述P阱107中具有LDMOS器件的源区112,所述漂移区108的N阱106中具有LDMOS器件的漏区112(同为重掺杂N型区,采用同一附图标记);
所述P阱107中还具有重掺杂P型区113,将P阱107引出;P阱107作为LDMOS器件的沟道区;
N型外延103表面具有LDMOS器件的栅氧化层109及多晶硅栅极110,多晶硅栅极两侧为侧墙;
所述漂移区108中的STI结构105底部具有重掺杂的多晶硅104。
所述漂移区108中STI结构105底部的多晶硅104,掺杂类型为P型,优选地为铟。
上述LDMOS器件通过在漂移区STI底部增加P型辅助耗尽区,降低表面电场强度,经过仿真如图11所示,图11左上图为传统结构的剖面图,右上图为本发明结构的剖面图,左下图为器件击穿时沿剖面切线方向的电场分布,右下图为器件击穿时沿剖面切线方向的电压分布。从本发明结构与传统结构比较来看,本发明结构可使电场分布更加均匀,从而获得的击穿电压也较高。
本发明所述的N型LDMOS器件的工艺方法,包含如下的工艺步骤:
第1步,如图2所示,在电阻率为0.007~0.013Ω·cm的低阻衬底101上离子注入形成N型埋层102。
第2步,在N型埋层102上形成N型外延103。如图3所示。
第3步,光刻及刻蚀在N型外延上形成STI沟槽,并在位于漂移区中的STI沟槽中淀积多晶硅104及进行P型杂质注入,如图4所示;注入杂质为铟,由于后续要通过热氧化方法生长栅氧化层并在源漏注入后进行热退火,因此多晶硅层中P型杂质注入采用铟杂质,以防止其扩散过快压缩漂移区。
第4步,在STI沟槽中填充氧化硅并研磨,形成浅槽隔离结构。如图5所示。
第5步,光刻打开阱区及漂移区,进行离子注入形成N阱106、P阱107及漂移区108,如图6所示。
第6步,淀积氧化层及多晶硅,光刻及刻蚀形成栅氧化层109及多晶硅栅极110,如图7所示。
第7步,淀积厚度为的氧化硅,干法刻蚀形成栅极侧墙111,如图8所示。
第8步,进行离子注入形成源区、漏区以及将P阱引出的重掺杂P型区113,如图9所示。
第9步,进行接触孔114工艺,制作金属引线115形成电极。器件制作完成,如图10所示。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种N型LDMOS器件,在低阻衬底上具有N型埋层,埋层之上为N型外延,N型外延中具有相互抵靠的P阱和漂移区:
所述漂移区中还具有N阱及STI结构;
所述P阱中具有LDMOS器件的源区,所述漂移区的N阱中具有LDMOS器件的漏区;
所述P阱中还具有重掺杂P型区,将P阱引出;
N型外延表面具有LDMOS器件的栅氧化层及多晶硅栅极,多晶硅栅极两侧为侧墙;
其特征在于:所述漂移区中的STI结构底部具有重掺杂的多晶硅。
2.如权利要求1所述的N型LDMOS器件,其特征在于:所述漂移区中STI底部的多晶硅,掺杂类型为P型。
3.制造如权利要求1所述的N型LDMOS器件的工艺方法,其特征在于:包含如下的工艺步骤:
第1步,在低阻衬底上离子注入形成N型埋层;
第2步,在N型埋层上形成N型外延;
第3步,光刻及刻蚀在N型外延上形成STI沟槽,并在位于漂移区中的STI沟槽中淀积多晶硅及进行杂质注入;。第4步,在STI沟槽中填充氧化硅并研磨,形成浅槽隔离;
第5步,光刻打开阱区及漂移区,进行离子注入形成N阱、P阱及漂移区;
第6步,淀积氧化层及多晶硅,光刻及刻蚀形成栅氧化层及多晶硅栅极;
第7步,淀积氧化硅,刻蚀形成栅极侧墙;
第8步,进行离子注入形成源区、漏区以及将P阱引出的重掺杂P型区;
第9步,进行接触孔工艺,制作金属引线形成电极。
4.如权利要求3所述的一种N型LDMOS器件的工艺方法,其特征在于:所述第1步中,低阻衬底电阻率为0.007~0.013Ω·cm。
5.如权利要求3所述的一种N型LDMOS器件的工艺方法,其特征在于:所述第3步中,淀积多晶硅的厚度为对STI沟槽中多晶硅注入杂质为P型,掺入杂质优选地为铟,掺杂能量需小于20kev,掺杂剂量为1e12~1e14/cm2
6.如权利要求3所述的一种N型LDMOS器件的工艺方法,其特征在于:所述第7步中,淀积氧化硅厚度为干法刻蚀形成侧墙。
CN201510607048.3A 2015-09-22 2015-09-22 N型ldmos器件及工艺方法 Pending CN105140289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510607048.3A CN105140289A (zh) 2015-09-22 2015-09-22 N型ldmos器件及工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510607048.3A CN105140289A (zh) 2015-09-22 2015-09-22 N型ldmos器件及工艺方法

Publications (1)

Publication Number Publication Date
CN105140289A true CN105140289A (zh) 2015-12-09

Family

ID=54725577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510607048.3A Pending CN105140289A (zh) 2015-09-22 2015-09-22 N型ldmos器件及工艺方法

Country Status (1)

Country Link
CN (1) CN105140289A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298935A (zh) * 2016-08-16 2017-01-04 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN106449412A (zh) * 2016-09-30 2017-02-22 上海华虹宏力半导体制造有限公司 开关n型ldmos器件的工艺方法
CN111261722A (zh) * 2020-01-21 2020-06-09 东南大学 一种集成电容的低反向恢复电荷的横向二极管
CN112736078A (zh) * 2019-10-28 2021-04-30 上海先进半导体制造有限公司 基于bcd工艺的pnp型高压esd器件及ldmos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049457A (ja) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd 高耐圧半導体装置及びその製造方法
CN103839998A (zh) * 2012-11-27 2014-06-04 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN104282563A (zh) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Ldmos器件及其形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049457A (ja) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd 高耐圧半導体装置及びその製造方法
CN103839998A (zh) * 2012-11-27 2014-06-04 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN104282563A (zh) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Ldmos器件及其形成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298935A (zh) * 2016-08-16 2017-01-04 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN106298935B (zh) * 2016-08-16 2019-08-13 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN106449412A (zh) * 2016-09-30 2017-02-22 上海华虹宏力半导体制造有限公司 开关n型ldmos器件的工艺方法
CN112736078A (zh) * 2019-10-28 2021-04-30 上海先进半导体制造有限公司 基于bcd工艺的pnp型高压esd器件及ldmos
CN111261722A (zh) * 2020-01-21 2020-06-09 东南大学 一种集成电容的低反向恢复电荷的横向二极管

Similar Documents

Publication Publication Date Title
CN104517852B (zh) 横向漏极金属氧化物半导体元件及其制造方法
CN102769037B (zh) 减少表面电场的结构及横向扩散金氧半导体元件
US8610206B2 (en) Split-gate lateral diffused metal oxide semiconductor device
US10263070B2 (en) Method of manufacturing LV/MV super junction trench power MOSFETs
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
CN102386211B (zh) Ldmos器件及其制造方法
JP2013258327A (ja) 半導体装置及びその製造方法
CN102376762B (zh) 超级结ldmos器件及制造方法
CN105070759A (zh) Nldmos器件及其制造方法
CN108242467B (zh) Ldmos器件及其制作方法
CN104716177A (zh) 一种改善漏电的射频ldmos器件及其制造方法
CN104377244A (zh) 一种降低ldmos导通电阻的器件结构
CN104659090B (zh) Ldmos器件及制造方法
CN105140289A (zh) N型ldmos器件及工艺方法
CN102751332A (zh) 耗尽型功率半导体器件及其制造方法
CN104659091A (zh) Ldmos器件及制造方法
CN104658913A (zh) Nldmos的制造方法
KR20110078621A (ko) 반도체 소자 및 그 제조 방법
JP2021506118A (ja) Ldmosデバイス及びその製造方法
CN115274859B (zh) Ldmos晶体管及其制造方法
CN104409500B (zh) 射频ldmos及其制作方法
CN102694020B (zh) 一种半导体装置
CN104821334A (zh) N型ldmos器件及工艺方法
KR20110078861A (ko) 수평형 디모스 트랜지스터

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151209