CN102361453B - 用于锁相环的高速占空比调节和双端转单端电路 - Google Patents

用于锁相环的高速占空比调节和双端转单端电路 Download PDF

Info

Publication number
CN102361453B
CN102361453B CN2011102328483A CN201110232848A CN102361453B CN 102361453 B CN102361453 B CN 102361453B CN 2011102328483 A CN2011102328483 A CN 2011102328483A CN 201110232848 A CN201110232848 A CN 201110232848A CN 102361453 B CN102361453 B CN 102361453B
Authority
CN
China
Prior art keywords
circuit
reverser
signal
testing circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011102328483A
Other languages
English (en)
Other versions
CN102361453A (zh
Inventor
王友华
张俊安
付东兵
胡刚毅
刘军
李儒章
陈光炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetc Chip Technology Group Co ltd
Chongqing Jixin Technology Co ltd
Original Assignee
CETC 24 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 24 Research Institute filed Critical CETC 24 Research Institute
Priority to CN2011102328483A priority Critical patent/CN102361453B/zh
Priority to PCT/CN2011/078759 priority patent/WO2013023385A1/zh
Priority to US13/522,745 priority patent/US9054681B2/en
Publication of CN102361453A publication Critical patent/CN102361453A/zh
Application granted granted Critical
Publication of CN102361453B publication Critical patent/CN102361453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/156Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
    • H03K5/1565Arrangements in which a continuous pulse train is transformed into a train having a desired pattern the output pulses having a constant duty cycle
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • H03K5/06Shaping pulses by increasing duration; by decreasing duration by the use of delay lines or other analogue delay elements

Abstract

本发明公开了一种用于锁相环的高速占空比调节和双端转单端电路,包括三部分:第一级输入波形整形级,第二级单边沿检测电路和第三级占空比恢复电路,本发明能够将锁相环压控振荡器的输出双端信号转换成单端信号,同时,本发明可以将锁相环压控振荡器输出波形的占空比调节到百分之五十,从而输出单端的、具有占空比为百分之五十的时钟信号。

Description

用于锁相环的高速占空比调节和双端转单端电路
技术领域
本发明涉及半导体器件及锁相环电路,更确切的说是一种占空比调节及双端转单端电路,该电路的直接应用为调节锁相环的压控振荡器输出波形占空比,及将压空振荡器的输出波形由双端转成单端信号。
背景技术
现代高速大规模集成电路设计对时钟信号的质量越来越敏感。时钟信号质量除了传统的时钟抖动外,时钟占空比越来越成为影响高速集成电路性能的关键因素。而占空比为50%的时钟信号在高速大规模集成电路设计中尤为重要。如高速的模数转换器及双数据率的SDRAM,由于系统利用时钟的上升沿和下降沿,因此占空比为50%的时钟信号对这类系统非常重要。高速动态电路,占空比决定了预充电及评估阶段的时间。占空比对高速动态电路的性能影响非常大。但是,由于器件失配等因素,锁相环压控振荡器输出时钟信号的占空比通常会偏离50%。为了将占空比不为50%的时钟信号校正为占空比为50%的时钟信号,传统的做法通常是将锁相环压控振荡器的输出信号通过分频电路进行二分频。但是这样会使压控振荡器的振荡频率为所需时钟频率的两倍,提高了锁相环的设计难度。
当前,常采用占空比调节电路完成该功能。同时,锁相环压控振荡器的输出通常为双端信号,为了适应单端时钟应用需求,通常将双端信号转换为单端信号,需要采用双端转单端电路实现该转换。
发明内容
有鉴于此,本发明提供了一种用于锁相环的高速占空比调节和双端转单端电路,其结构设计紧凑,方案合理,能够在输入时钟信号的占空比远远偏离50%的情况下,输出占空比为50%的时钟信号;同时在调节输入信号的占空比同时,将输入的双端信号转换成单端信号。同时完成占空比调节和双端转差分的两个功能。
本发明的目的是通过以下技术方案实现的:
用于锁相环的高速占空比调节和双端转单端电路,包括
第一级时钟输入整形级,该级包括输入时钟整形电路I和输入时钟整形电路II,输入时钟整形电路I和输入时钟整形电路II分别接收相位相差180º的时钟信号,输出具有较强驱动能力的时钟信号;
第二级单边沿检测电路级,该级包括单边沿检测电路I和单边沿检测电路II,所述单边沿检测电路I和单边沿检测电路II分别对应接收输入时钟整形电路I和输入时钟整形电路II输出的时钟信号,并检测时钟信号的上升沿或下降沿,当检测到上升沿或下降沿时,输出脉冲信号;
第三级占空比恢复电路,该电路接收由单边沿检测电路I和单边沿检测电路II输出的相位相差180º的脉冲信号,输出与脉冲信号同频率,占空比为50%的时钟信号。
进一步,所述单边沿检测电路I和单边沿检测电路II采用上升沿检测电路的结构,当检测到输入时钟信号的上升沿时,输出一低脉冲信号;
进一步,所述单边沿检测电路I和/或单边沿检测电路II采用的上升沿检测电路的结构包括
一延迟单元,接收时钟信号,并产生时钟信号的延迟信号;
一反向器,接收延迟的时钟信号,并产生延迟信号的反相信号;
一与非门,接收时钟信号和延迟的反向时钟信号,并产生脉冲信号。
当然,采用上升沿检测电路结构时,单边沿检测电路I或/和单边沿检测电路II还可以采用另一种上升沿检测电路结构,包括
上升沿触发的D触发器,其时钟输入端接收时钟信号,数据输入端接逻辑高电平VDD;
反向器I,与D触发器的正相输出端相联接,输出端连接到D触发器的异步复位端;
反向器II,与D触发器的正相输出端相联接,输出端为脉冲信号;
进一步,所述单边沿检测电路I/和单边沿检测电路II还可以采用下降沿检测电路的结构,当检测到输入时钟信号的下降沿时,输出一低脉冲信号;
进一步,所述单边沿检测电路I和/或单边沿检测电路II采用的下降沿检测电路的结构包括:
一延迟单元,接收时钟信号,并产生时钟信号的延迟信号;
一反向器,接收延迟的时钟信号,并产生延迟信号的反相信号;
一或门,接收时钟信号和延迟的反向时钟信号,并产生脉冲信号;
当然,采用下降沿检测电路结构时,单边沿检测电路I或/和单边沿检测电路II还可以采用另一种下降沿检测电路结构,包括
下降沿触发的D触发器,其时钟输入端接收时钟信号,数据输入端接逻辑高电平VDD;
反向器I,与D触发器的正相输出端相联接,输出端连接到D触发器的异步复位端;
反向器II,与D触发器的正相输出端相联接,输出端为脉冲信号;
进一步,所述占空比恢复电路包括
反向器I和反向器II,分别接收由单边沿检测电路I和单边沿检测电路II输出的具有大的占空比的脉冲信号;
反向器III和反向器IV,分别接收由反向器I和反向器II输出的反向的具有大的占空比的脉冲信号;
传输门I和传输门II,分别接收由反向器I和反向器II输出的反向脉冲信号,并产生延迟的脉冲信号;
传输门III和传输门IV,其中一个在传输门I输出的脉冲信号和反向器III输出的反向脉冲信号控制下,另外一个在传输门II输出的脉冲信号和反向器IV输出的反向脉冲信号控制下,产生高低电平;
依次串联的反向器V和反向器VI,所述反向器V的输入端联接至传输门III和传输门IV的输出端,通过反向器VI输出时钟信号。
作为占空比恢复电路的另一种构成方式,所述电路包括
两个反向器,接收具有大的占空比的脉冲信号;
一个或门,接收反向器的输出信号;
一个边沿触发器,接收或门的输出信号,产生高低电平。
上述所述的“具有大的占空比的脉冲信号”是指脉冲信号的占空比大于50%。
本发明的占空比调节和双端转单端电路包括一级输入时钟信号整形级,单边沿检测级和占空比恢复电路,与传统占空比调节电路和双端转差分电路相比,它具有以下优点:
1.能够在输入时钟信号的占空比远远偏离50%的情况下,输出占空比为50%的时钟信号;
2.在调节输入信号的占空比同时,将输入的双端信号转换成单端信号,与现有技术方案相比,减少了转换环节和实施成本;
3.电路实现简单,与传统结构相比,采用标准数字单元库,降低了成本及实现复杂度;
4 电路结构简单,与传统结构相比,在相同的输出频率下,降低了压控振荡器的工作频率,降低了压控振荡器的设计难度。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书和权利要求书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1是本发明的原理框图;由两个输入整形级 10,11,两个单边沿检测电路20,21和一占空比恢复电路30构成;
图2(a)是图1中的单边沿检测电路实施例一的电路连接图;
图2(b)是图2(a)的时序图;
图3(a)是图1中的单边沿检测电路实施例二的电路连接图;
图3(b)是图3(a)的时序图;
图4(a)是图1中的单边沿检测电路实施例三的电路连接图;
图4(b)是图4(a)的时序图;
图5(a)是图1中的单边沿检测电路实施例四的电路连接图;
图5(b)是图5(a)的时序图;
图6是本图1中的占空比恢复电路实施例一的电路连接图;
图7是图6的时序图;
图8是图1中的占空比恢复电路实施例二的电路连接图;
图9是图8的时序图;
图10为本发明的电路仿真时序图。
具体实施方式
以下将参照附图,对本发明的优选实施例进行详细的描述。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
如图1所示,电路的输入为相位相差180º的多相时钟信号CLK 101和bCLK 102,输出为占空比为50%的单端时钟信号CLKOUT 107。该电路由三部分构成,第一部分由输入时钟整形级构成,该级包括输入时钟整形电路I 10和输入时钟整形电路II 11,输入时钟整形电路接收从锁相环的压控振荡器输出的多相时钟CLK 101和bCLK 102并将输入的多相时钟信号整形,增加其驱动能力。第二部分由单边沿检测电路I 20和II 21组成。单边沿检测电路I 20当检测时钟信号SCLK 103的一个边沿(上升或者下降)时,输出一个脉冲信号PULSE 105。单边沿检测电路II 21当检测时钟信号bSCLK 104的一个边沿(上升或者下降)时,输出一个脉冲信号bPULSE 106。应当指出的是,单边沿检测电路I 20和单边沿检测电路II 21的检测边沿必须是统一的,即同时为上升沿检测或同时为下降沿检测,当然,其采用的检测电路结构可以有差别。
第三部分为占空比恢复电路30,该电路产生占空比为50%的单端时钟信号CLKOUT 107。
从锁相环压控振荡器输出的多相时钟信号CLK 101和bCLK 102具有较大的上升下降时间。通过一个或者多个缓冲器构成输入时钟整形级 10,11增加输入多相时钟CLK 101和bCLK 102的驱动能力。单边沿检测电路I 20和II 21分别接在输入时钟整形电路I10和II11之后。
关于单边沿检测电路的电路设计,本发明提供了四个实施例,应当理解实施例仅用以说明本发明的技术方案而非限制,对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
单边沿检测电路的实施例一
图2(a)所示,图2(a)为一上升沿检测电路结构,由一个与非门24,一个延迟单元22和一个反向器23构成。延迟单元22由缓冲器链或偶数个反向器构成。输入时钟信号SCLK 103一路经过延迟单元22和反向器23得到延迟反向的时钟信号D 25。另外一路时钟信号SCLK 和延迟反向的时钟信号D 25输入到与非门24,产生脉冲信号PULSE 105。图2(b)为图2(a)所示的上升沿检测电路的时序图。如时序图2(a)所示,上升沿检测电路当检测到输入时钟信号SCLK 26的上升沿时,输出一低脉冲信号PULSE 28。 由于信号D 27相对与输入时钟SCLK 26的延迟量∆t等于延迟单元22的延迟时间与反向器24的延迟时间之和。因此,脉冲PULSE 28的低电平时间与延迟单元22和反向器24的延迟时间成正比。由于延迟单元和反向器的延迟时间较小,因此,该上升沿检测电路输出低脉冲PULSE 28的宽度较小,其占空比远远大于50%。脉冲PULSE 28送入占空比恢复电路30。
单边沿检测电路的实施例二
如图3(a)所示,图3(a)为一上升沿检测电路结构,由一个上升沿触发,并且具有异步复位功能的上升沿触发的D触发器 1001和反向器1002,1004构成。输入时钟信号SCLK 1003接到D触发器1001的时钟输入端。D触发器1001的数据输入端接逻辑高电平VDD。D触发器1001的正相输出端输出接到反向器1002和1004的输入端。反向器1002的输出端连接到触发器1001的异步复位端。反向器1004的输出端为脉冲信号PULSE。
图3(b)为图3(a)所示的上升沿检测电路的时序图。如时序图3(b)所示,上升沿检测电路当检测到输入时钟信号SCLK的上升沿时,输出一低脉冲信号PULSE。 由图3(b)知,脉冲宽度∆t等于D触发器1001从异步复位端到正向输出端时间延迟和反相器1002的时间延迟之和。因此,脉冲PULSE 的低电平时间与D触发器1001异步复位到正向输出端时间延迟和反向器1002的延迟时间成正比。由于D触发器1001延迟时间和反向器的延迟时间较小,因此,该上升沿检测电路输出低脉冲PULSE的宽度较小,其占空比远远大于50%。脉冲PULSE送入占空比恢复电路30。
单边沿检测电路的实施例三
如图4(a)所示,该实现方式为下降沿检测电路结构。下降沿检测电路由一个或门704,一个延迟单元702和一个反向器703构成。延迟单元702可以由缓冲器或偶数个反向器构成。输入时钟信号SCLK 701一路经过延迟单元702和反向器703得到延迟反向的时钟信号D 705。另外一路时钟信号SCLK 和延迟反向的时钟信号D 705输入到与非门704,产生脉冲信号PULSE 706。图4(b)为图3(a)所示的下降沿检测电路的时序图。如时序图4(b)所示,下降沿检测电路当检测到输入时钟信号SCLK 801的下降沿时,输出一低脉冲信号PULSE 803。 由于信号D 802相对与输入时钟SCLK 801的延迟量∆t等于延迟单元702的延迟时间与反向器703的延迟时间之和。因此,脉冲PULSE 803的低电平时间与延迟单元702和反向器703的延迟时间成正比。由于延迟单元和反向器的延迟时间较小,因此,该上升沿检测电路输出低脉冲PULSE 803的宽度较小,其占空比远远大于50%。脉冲PULSE 803送入占空比恢复电路30。
单边沿检测电路的实施例四
图5(a)所示,图5(a)为一下降沿检测电路结构,由一个下降沿触发,并且具有异步复位功能的下降沿触发的D触发器 2001和反向器2002,2004构成。输入时钟信号SCLK 2003接到D触发器2001的时钟输入端。D触发器2001的数据输入端接逻辑高电平VDD。D触发器2001的正相输出端输出接到反向器2002和2004的输入端。反向器2002的输出端连接到触发器2001的异步复位端。反向器2004的输出端为脉冲信号PULSE。
图5(b)为图5(a)所示的下降沿检测电路的时序图。如时序图5(b)所示,上升沿检测电路当检测到输入时钟信号SCLK的上升沿时,输出一低脉冲信号PULSE。由图5(b)知,脉冲宽度∆t等于D触发器2001从异步复位端到正向输出端时间延迟和反相器2002的时间延迟之和。因此,脉冲PULSE 的低电平时间与D触发器2001异步复位到正向输出端时间延迟和反向器2002的延迟时间成正比。由于D触发器2001延迟时间和反向器的延迟时间较小,因此,该上升沿检测电路输出低脉冲PULSE的宽度较小,其占空比远远大于50%。脉冲PULSE送入占空比恢复电路30。
关于占空比恢复电路的电路设计,本发明提供了两个实施例,应当理解实施例仅用以说明本发明的技术方案而非限制,对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
占空比恢复电路实施例一
图6为图1中占空比恢复电路30的一种具体实施例。该占空比恢复电路由反向器I 305、反向器II 307、反向器III 306、反向器IV 308、反向器V 309a、反向器VI 309b、传输门I 301、传输门II 302、传输门III 303和传输门IV 304组成。输入信号PULSE 311经过反向器I 305后生成对应的互补控制信号PULSE_N 314,同时,输入信号bPULSE 312经过反向器II 307后生成对应的互补控制信号bPULSE_N 315。互补控制信号PULSE_N 314经过反向器III 306生成控制信号 A 316,互补控制信号bPULSE_N 315经过反向器IV 308生成控制信号 B 317。同时传输门III 303和IV 304将信号PULSE_N 314及bPULSE_N 315经过延迟得到控制信号,与信号A 316, B 317共同控制传输门301和302。依次串联的反向器V和反向器VI,所述反向器V的输入端联接至传输门III和传输门IV的输出端,通过反向器VI输出时钟信号。
图7所示为图6中占空比恢复电路的时序图。如图所示,当脉冲信号PULSE 311为低, 脉冲信号bPULSE 312为高时,传输门III 301开启。此时,X点的电压值等于电源电压VDD。当脉冲信号PULSE 311和脉冲信号bPULSE 312同时为高电平时,由于X点的寄生电容能够暂时存储电荷。因此,X点的电压保持上一状态的值不发生变化。当脉冲信号PULSE 311为高, 脉冲信号bPULSE 312为低时,传输门IV 302开启,此时X点的电压值为低电平。由于脉冲信号bPULSE 314的相位落后脉冲信号PULSE 313的相位180º。因此,X点电压的占空比为50%。反向器V 309a 接在X点之后,反向器VI 309b的输入端接在反向器V 309a的输出端。反向器V 309a和VI 309b增加了X点出信号的驱动能力,同时,屏蔽了外部负载。
占空比恢复电路实施例二
图8所示为图1中占空比恢复电路30的另外一种实施方式。该实施输入为脉冲信号PULSE 901和脉冲信号bPULSE 902,输出具有占空比为50%的时钟信号CLKOUT 908。该占空比恢复电路由两个反向器903,904,一个或门905和一个时钟上升沿触发的边沿触发器907构成。输入脉冲信号PULSE 901连接到反向器903的输入端,输入脉冲信号bPULSE 902连接到反向器904的输入端。反向器903,904的输出端连接到或门905的两个输入端。或门905的输出端信号CLK_R 906连接到上升沿触发的边沿触发器907的时钟输入端。上升沿触发的边沿触发器907的数据输入端接在边沿触发907的反向输出端。
图9为图6中占空比恢复电路的时序图。输入脉冲信号PULSE和bPULSE经过反向器和或门,得到一组脉冲序列CLK_R。脉冲序列CLK_R的周期为输入时钟信号周期的一半。因此,上升沿触发的边沿触发器907每半个输入时钟周期状态转换一次,输出时钟信号CLKOUT的低电平时间和高电平时间均为输入信号的半个周期。因此,输出时钟信号CLKOUT的占空比为50%。
图10所示为本发明的总时序图。图10(a) 所示为输入占空比为20%的情况。图10(b)所示为输入占空比为50%的情况。 图10(c)为输入占空比为80%的情况。图10(a)中输入信号SCLK 401表示从锁相环的压控振荡器输出的时钟信号,该信号占空比为20%。输出信号CLKOUT 402表示经过本发明处理后的输出时钟波形。
从图10(a)中可知,尽管输入波形的占空比远远小于50%,输出波形的占空比仍然为50%。图8(b)中输入信号SCLK 403表示从锁相环的压控振荡器输出的时钟信号,该信号占空比为50%。输出信号CLKOUT 404表示经过本发明处理后的输出时钟波形。图8(c)中输入信号SCLK 405表示从锁相环的压控振荡器输出的时钟信号,该信号占空比为80%。输出信号CLKOUT 406表示经过本发明处理后的输出时钟波形。从图10(c)中可知,尽管输入波形的占空比远远大于50%,输出波形的占空比仍然为50%。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述电路包括
第一级时钟输入整形级,该级包括输入时钟整形电路I和输入时钟整形电路II,输入时钟整形电路I和输入时钟整形电路II分别接收相位相差180º的时钟信号,输出具有较强驱动能力的时钟信号;
第二级单边沿检测电路级,该级包括单边沿检测电路I和单边沿检测电路II,所述单边沿检测电路I和单边沿检测电路II分别对应接收输入时钟整形电路I和输入时钟整形电路II输出的时钟信号,并检测时钟信号的上升沿或下降沿,当检测到上升沿或下降沿时,输出脉冲信号;
第三级占空比恢复电路,该电路接收由单边沿检测电路I和单边沿检测电路II输出的相位相差180º的脉冲信号,输出与脉冲信号同频率,占空比为50%的时钟信号,所述占空比恢复电路包括
反向器I和反向器II,分别接收由单边沿检测电路I和单边沿检测电路II输出的具有大的占空比的脉冲信号;
反向器III和反向器IV,分别接收由反向器I和反向器II输出的反向的具有大的占空比的脉冲信号;
传输门I和传输门II,分别接收由反向器I和反向器II输出的反向脉冲信号,并产生延迟的脉冲信号;
传输门III和传输门IV,其中传输门III在传输门I输出的脉冲信号和反向器III输出的反向脉冲信号控制下,传输门IV在传输门II输出的脉冲信号和反向器IV输出的反向脉冲信号控制下,产生高低电平;
依次串联的反向器V和反向器VI,所述反向器V的输入端联接至传输门III和传输门IV的输出端,通过反向器VI输出时钟信号。
2.根据权利要求1所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和单边沿检测电路II均采用上升沿检测电路的结构,当检测到输入时钟信号的上升沿时,输出一低脉冲信号。
3.根据权利要求2所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和/或单边沿检测电路II采用的上升沿检测电路的结构包括
一延迟单元,接收时钟信号,并产生时钟信号的延迟信号;
一反向器,接收延迟的时钟信号,并产生延迟信号的反相信号;
一与非门,接收时钟信号和延迟的反向时钟信号,并产生脉冲信号。
4.根据权利要求2所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和/或单边沿检测电路II采用的上升沿检测电路的结构包括
上升沿触发的D触发器,其时钟输入端接收时钟信号,数据输入端接逻辑高电平VDD;
反向器I,与D触发器的正相输出端相联接,输出端连接到D触发器的异步复位端;
反向器II,与D触发器的正相输出端相联接,输出端为脉冲信号。
5.根据权利要求1所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和单边沿检测电路II采用下降沿检测电路的结构,当检测到输入时钟信号的下降沿时,输出一低脉冲信号。
6.根据权利要求5所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和/或单边沿检测电路II采用的下降沿检测电路的结构包括
一延迟单元,接收时钟信号,并产生时钟信号的延迟信号;
一反向器,接收延迟的时钟信号,并产生延迟信号的反相信号;
一或门,接收时钟信号和延迟的反向时钟信号,并产生脉冲信号。
7.根据权利要求5所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述单边沿检测电路I和/或单边沿检测电路II采用的下降沿检测电路的结构包括
下降沿触发的D触发器,其时钟输入端接收时钟信号,数据输入端接逻辑高电平VDD;
反向器I,与D触发器的正相输出端相联接,输出端连接到D触发器的异步复位端;
反向器II,与D触发器的正相输出端相联接,输出端为脉冲信号。
8.根据权利要求1所述的用于锁相环的高速占空比调节和双端转单端电路,其特征在于:所述占空比恢复电路包括
两个反向器,接收具有大的占空比的脉冲信号;
一个或门,接收反向器的输出信号;
一个边沿触发器,接收或门的输出信号,产生占空比为50%的时钟信号。
CN2011102328483A 2011-08-15 2011-08-15 用于锁相环的高速占空比调节和双端转单端电路 Active CN102361453B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011102328483A CN102361453B (zh) 2011-08-15 2011-08-15 用于锁相环的高速占空比调节和双端转单端电路
PCT/CN2011/078759 WO2013023385A1 (zh) 2011-08-15 2011-08-23 用于锁相环的高速占空比调节和双端转单端电路
US13/522,745 US9054681B2 (en) 2011-08-15 2011-08-23 High speed duty cycle correction and double to single ended conversion circuit for PLL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102328483A CN102361453B (zh) 2011-08-15 2011-08-15 用于锁相环的高速占空比调节和双端转单端电路

Publications (2)

Publication Number Publication Date
CN102361453A CN102361453A (zh) 2012-02-22
CN102361453B true CN102361453B (zh) 2013-01-23

Family

ID=45586712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102328483A Active CN102361453B (zh) 2011-08-15 2011-08-15 用于锁相环的高速占空比调节和双端转单端电路

Country Status (3)

Country Link
US (1) US9054681B2 (zh)
CN (1) CN102361453B (zh)
WO (1) WO2013023385A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331442B1 (ko) * 2012-06-29 2013-11-21 포항공과대학교 산학협력단 듀티 싸이클 보정기능이 루프 내에 내장된 지연고정루프
CN103532522B (zh) * 2012-07-02 2015-12-16 中芯国际集成电路制造(上海)有限公司 占空比调整电路、双端转单端电路及振荡器
US9490784B2 (en) 2014-12-09 2016-11-08 Qualcomm Incorporated Apparatus and method for generating quadrupled reference clock from single ended crystal oscillator
CN104539286B (zh) * 2014-12-10 2017-12-01 深圳市国微电子有限公司 基频时钟产生电路
US9858134B2 (en) * 2015-04-08 2018-01-02 Microsemi Semiconductor Ulc Low latency digital clock fault detector
KR102468261B1 (ko) * 2016-02-05 2022-11-21 에스케이하이닉스 주식회사 듀티 보정 회로
CN107147375A (zh) * 2016-03-01 2017-09-08 成都锐成芯微科技股份有限公司 占空比矫正电路
CN106559061B (zh) * 2016-11-25 2021-12-14 北京兆芯电子科技有限公司 占空比校正器
WO2020077557A1 (zh) * 2018-10-17 2020-04-23 华为技术有限公司 一种占空比校准电路、电子设备及方法
KR20200145266A (ko) * 2019-06-21 2020-12-30 에스케이하이닉스 주식회사 위상 감지 회로 및 이를 이용하는 클럭 생성 회로 및 반도체 장치
CN110957998B (zh) * 2019-12-02 2020-08-11 翱捷智能科技(上海)有限公司 一种精确校正时钟信号占空比的电路
CN115498982B (zh) * 2022-11-21 2023-03-21 成都本原聚能科技有限公司 一种上电复位电路、集成电路及芯片
CN117294283B (zh) * 2023-11-23 2024-03-01 晶铁半导体技术(广东)有限公司 一种基于铁电电容的可编程双边延时装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198317B1 (en) * 1998-02-20 2001-03-06 Industrial Technology Research Institute Frequency multiplication circuit
CN101789784A (zh) * 2009-12-15 2010-07-28 北京时代民芯科技有限公司 用于延时锁定环的可配置鉴相器
CN101789773A (zh) * 2010-01-20 2010-07-28 无锡圆芯微电子有限公司 占空比偏移检测和补偿电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422585A (en) * 1993-09-24 1995-06-06 Fan Chiangi; Yung F. Apparatus for generating an output signal of a desired pulse width
CA2250538A1 (en) * 1998-10-30 2000-04-30 Mosaid Technologies Incorporated Duty cycle regulator
US6630851B2 (en) * 2001-06-29 2003-10-07 Fujitsu Limited Low latency clock distribution
KR100490655B1 (ko) * 2002-10-30 2005-05-24 주식회사 하이닉스반도체 듀티 사이클 보정 회로 및 그를 구비한 지연고정루프
KR100530366B1 (ko) * 2003-07-10 2005-11-22 삼성전자주식회사 위치데이터를 이용한 비디오 클럭 생성 장치 및 그 방법
US7126396B1 (en) * 2003-07-16 2006-10-24 National Semiconductor Corporation System for clock duty cycle stabilization
KR100629374B1 (ko) * 2003-12-23 2006-09-29 삼성전자주식회사 듀티 사이클 보정회로 및 방법
US20060181320A1 (en) * 2005-02-11 2006-08-17 International Business Machines Corporation Circuit for optimizing the duty cycle of a received clock transmitted over a transmission line
US7375563B1 (en) * 2006-04-07 2008-05-20 Pericom Semiconductor Corp. Duty cycle correction using input clock and feedback clock of phase-locked-loop (PLL)
KR100894255B1 (ko) * 2007-05-04 2009-04-21 삼성전자주식회사 지연 고정 루프, 이를 포함하는 집적 회로 및 이를구동하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198317B1 (en) * 1998-02-20 2001-03-06 Industrial Technology Research Institute Frequency multiplication circuit
CN101789784A (zh) * 2009-12-15 2010-07-28 北京时代民芯科技有限公司 用于延时锁定环的可配置鉴相器
CN101789773A (zh) * 2010-01-20 2010-07-28 无锡圆芯微电子有限公司 占空比偏移检测和补偿电路

Also Published As

Publication number Publication date
CN102361453A (zh) 2012-02-22
US9054681B2 (en) 2015-06-09
US20130257499A1 (en) 2013-10-03
WO2013023385A1 (zh) 2013-02-21

Similar Documents

Publication Publication Date Title
CN102361453B (zh) 用于锁相环的高速占空比调节和双端转单端电路
KR100810070B1 (ko) 지연고정루프
US7482850B2 (en) Delay locked loop circuit and semiconductor integrated circuit device
KR102314767B1 (ko) 지연-고정 루프에서 루프 카운트를 검출하기 위한 장치들 및 방법들
US8686773B1 (en) In-system margin measurement circuit
CN100581095C (zh) 时钟恢复电路以及通讯装置
KR101046227B1 (ko) Dll 회로
US20100213991A1 (en) Delay-locked loop circuit and method for synchronization by delay-locked loop
CN101997542B (zh) 延迟锁定环电路
TWI445313B (zh) Delayed locking circuit with twisted clocks
CN105049043A (zh) 一种带有失调校正功能的高速比较器
JP6264852B2 (ja) タイミング調整回路および半導体集積回路装置
CN101645301B (zh) 一种用于读数据采样的温度自适应调整方法及装置
CN105706368A (zh) 非同步式逐次逼近寄存器型模数转换器及包含于其中的内部时钟发生器
US9312839B2 (en) Buffer circuit and semiconductor integrated circuit
KR20100081483A (ko) Dll 회로 및 그 제어 방법
US5365128A (en) High-resolution synchronous delay line
US10038432B2 (en) Duty correction circuit
CN110034750A (zh) 时钟延迟电路
US7042267B1 (en) Gated clock circuit with a substantially increased control signal delay
JP5491454B2 (ja) パラレル−シリアル変換回路
CN109104170B (zh) 一种自适应宽频带数字时钟插值器单元
JP5157461B2 (ja) 分周回路及び分周方法
CN101615907B (zh) 相位/频率检测器
US7911859B2 (en) Delay line and memory control circuit utilizing the delay line

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220707

Address after: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee after: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC CO.,LTD.

Address before: 400060 Chongqing Nanping Nan'an District No. 14 Huayuan Road

Patentee before: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY Group Corp.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee after: CETC Chip Technology (Group) Co.,Ltd.

Address before: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee before: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC CO.,LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230417

Address after: Room 2-2, No. 2, Linxie Family Courtyard Group, Zaojeshu Village, Fenghuang Town, Shapingba District, Chongqing, 401334

Patentee after: Chongqing Jixin Technology Co.,Ltd.

Address before: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332

Patentee before: CETC Chip Technology (Group) Co.,Ltd.