CN102356043B - 氢气发生装置和氢气发生方法 - Google Patents

氢气发生装置和氢气发生方法 Download PDF

Info

Publication number
CN102356043B
CN102356043B CN2010800119468A CN201080011946A CN102356043B CN 102356043 B CN102356043 B CN 102356043B CN 2010800119468 A CN2010800119468 A CN 2010800119468A CN 201080011946 A CN201080011946 A CN 201080011946A CN 102356043 B CN102356043 B CN 102356043B
Authority
CN
China
Prior art keywords
ammonia
hydrogen
oxidation
formation apparatus
feed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010800119468A
Other languages
English (en)
Other versions
CN102356043A (zh
Inventor
中西治通
有川英一
日数谷进
稻住近
荒木贞夫
森匠磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Toyota Motor Corp
Original Assignee
Hitachi Zosen Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Toyota Motor Corp filed Critical Hitachi Zosen Corp
Publication of CN102356043A publication Critical patent/CN102356043A/zh
Application granted granted Critical
Publication of CN102356043B publication Critical patent/CN102356043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0221Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明提供用于从氨有效产生氢气的氢气发生装置,并涉及用于从氨产生氢气的氢气发生装置(51)。该装置包含具有氧化氨的氨氧化催化剂(11a,11b)的氨氧化部位(10),和具有分解氨以产生氮气和氢气的氨分解催化剂(21)的氨分解部位(20)。在供料气流方向上氨分解部位位于氨氧化部位的下游。氧化催化剂既包含贵金属催化剂又包含贱金属催化剂,且氧化部位上游部分中的贵金属催化剂装载浓度高于氧化部位下游部分中的贵金属催化剂装载浓度,和/或分解催化剂既包含贵金属催化剂又包含贱金属催化剂,且分解部位下游部分中的贵金属催化剂装载浓度高于分解部位上游部分中的贵金属催化剂装载浓度。

Description

氢气发生装置和氢气发生方法
技术领域
本发明涉及一种氢气发生装置,更明确的说是适于汽车的氢气发生装置。并且,本发明涉及使用这种氢气发生装置的氢气发生方法。
背景技术
近来,已推荐使用氢气作为清洁能源。特别是,用氢气作燃料的燃料电池驱动汽车正发展活跃。来自用氢气作燃料的燃料电池废气不含氮氧化物、颗粒物质(PM)、二氧化碳等,它们包含在来自内燃机的废气中,因此这种燃料电池适于做可以防止环境污染和全球变暖的清洁能源。
然而,由于氢气储存时占据大容量,供入氢气做燃料的措施一直是个问题,尤其是对于汽车燃料电池。
关于这个问题,如以下专利文献1和2所述,通过分解氨等产生氢气的方法正引起关注。例如,专利文献1给出一种用于有分解器的燃料电池的氢气发生装置,分解器通过催化反应将作为氢气源的氨和肼的至少一种分解成为氮气和氢气,然后向燃料电池提供获得的氮气和氢气。在一个用于燃料电池的氢气发生装置的实施方案中,在燃烧装置中以催化反应燃烧来自燃料电池的废气中未反应的氨和氢气,来自该燃烧装置的废气热量提供给分解氨等的分解器。专利文献1所述,根据该实施方案,加热分解器的热源变得不必要并因此提高了能源效率。
引用的专利文献
专利文献1:日本的未审查专利公开No.2003-40602
专利文献2:日本的未审查专利公开No.2005-145748
发明概要
技术问题
本发明提供一种氢气发生装置和氢气发生方法,用于由氨有效产生氢气。
问题的解决
本发明的发明人已研究了一种装置和一种方法用于由氨产生氢气,并设想了以下本发明:
<1>由氨产生氢气的氢气发生装置,
其中氢气发生装置包含具有将氨氧化的氨氧化催化剂的氨氧化部位,和具有将氨分解以产生氮气和氢气的氨分解催化剂的氨分解部位;
其中在供料气流方向上氨分解部位位于氨氧化部位下游,并且
其中氢气发生装置满足下列条件(i)和(ii)之一或两者均满足:
(i)氨氧化催化剂既包含贵金属催化剂又包含贱金属催化剂,供料气流方向上氨氧化部位的上游部分中的贵金属催化剂装载浓度高于供料气流方向上氨氧化部位的下游部分中的贵金属催化剂装载浓度,
(ii)氨分解催化剂既包含贵金属催化剂又包含贱金属催化剂,供料气流方向上氨分解部位的下游部分中的贵金属催化剂装载浓度高于供料气流方向上氨分解部位的上游部分中的贵金属催化剂装载浓度。
<2>根据以上<1>所述的氢气发生装置,其满足(i)和(ii)两个条件。
<3>使用根据以上<1>或<2>所述的氢气发生装置由氨产生氢气的氢气发生方法,其包括:
向氨氧化部位提供包含氨和氧气的供料气体,将氨部分氧化以获得含氨的部分氧化气体,向氨分解部位提供含氨的部分氧化气体,并将氨分解成为氮气和氢气以获得含氢气的产物气体,
通过调节供料气体的温度和/或供料气体中氨和氧气的比例以控制氨氧化部位和/或氨分解部位的反应。
<4>根据以上<3>所述方法,其中调节供料气体的温度和/或供料气体中氨和氧气的比例以使从氨分解部位排出的含氢气的产物气体的温度为规定温度或更高。
<5>提供有以上<1>或<2>所述氢气发生装置的燃料电池或内燃机系统,和其中氢气通过氢气发生装置供应的燃料电池或内燃机。
附图简要说明
图1为显示本发明氢气发生装置的一个实施方案的图;
图2为显示本发明氢气发生装置的另一个实施方案的图;
图3为显示本发明氢气发生装置的另一个实施方案的图;
图4为显示本发明氢气发生装置的另一个实施方案的图;
图5为显示使用本发明氢气发生装置的一个实施方案的图;
实施方案描述
《本发明氢气发生装置的第一实施方案》
可装配本发明的氢气发生装置,例如,如图1所示。图1所示的本发明氢气发生装置的第一实施方案(51)包含具有将氨氧化的氨氧化催化剂(11a,11b)的氨氧化部位(10),和具有将氨分解以产生氮气和氢气的氨分解催化剂(21)的氨分解部位(20)。在氢气发生装置(51)中,如箭头61所示提供含氨和氧气的供料气体,如箭头62所示获得含氢气的产物气体,因此在供料气流方向上氨分解部位(20)位于氨氧化部位(10)的下游。
含氨和氧气的供料气体可为氨和空气的混合气体。而且,在图1中,氨氧化部位(10)和氨分解部位(20)安排在一个容器中,但是,当然,氨氧化部位和氨分解部位可安排在以气体通道连接的单独容器中。以上也适于其他实施方案。
根据本发明氢气发生装置,在氨氧化部位中,一部分氨被空气中的氧气氧化(下式1)产生氧化热,而在氨分解部位中,利用该氧化热将另一部分氨分解成氢气和氮气(下式2),因此在减少或无需外部加热下用一种简单的配置即可由氨产生氢气。
NH3+3/4O2
→1/2N2+3/2H2O+75cal/mol(放热反应)
...(式1)
NH3
→1/2N2+3/2H2-11cal/mol(吸热反应)
...(式2)
如果使用便宜的贱金属催化剂作为氨氧化催化剂,则通常要求高温,如超过400℃以引起在大速率下的如上式1所示的氨氧化反应。如果使用具有高活性的贵金属催化剂如铂作为氨氧化催化剂,则引起在大速率下的反应所需的温度低至介于150℃和200℃或以上,但使用大量贵金属催化剂在成本方面并不理想。
在本发明中,在本发明氢气发生装置的氨氧化部位(10)中,氨氧化催化剂既包含贵金属催化剂又包含贱金属催化剂,并且在供料气流方向上上游部分(11a)中的贵金属催化剂装载浓度比供料气流方向上下游部分(11b)中的贵金属催化剂装载浓度高,例如2倍或更多,5倍或更多,或10倍或更高。关于本发明,催化剂的“装载浓度”指的是与载体,如氧化铝粉末的质量比。
根据该配置,通过在供料气流方向上氨氧化部位的上游部分中以高浓度负载的贵金属催化剂加速氨的部分氧化,因此通过部分氧化而得的反应热可将通过氨氧化部位的供料气体的温度提高至例如500℃以上。其结果是可加速氨的部分氧化,即使是在贵金属催化剂装载浓度相对低的氨氧化部位的下游部分。
也就是说,根据本发明的氢气发生装置,通过以减少量的用于氨氧化部位的相对昂贵贵金属催化剂进行氨的部分氧化反应,可以有效产生氧化热。
《本发明氢气发生装置的第二实施方案》
另外,可装配本发明氢气发生装置,例如,如图2所示。如图2所示的本发明氢气发生装置的第二实施方案(52)包含具有将氨氧化的氨氧化催化剂(11)的氨氧化部位(10),和具有将氨分解以产生氮气和氢气的氨分解催化剂(21a,21b)的氨分解部位(20)。在氢气发生装置(52)中,如箭头61所示提供含氨和氧气的供料气体,如箭头62所示获得含氢气的产物气体,因此在供料气流方向上氨分解部位(20)位于氨氧化部位(10)的下游。
根据本发明氢气发生装置,在氨氧化部位中,一部分氨被空气中的氧气氧化(上式1)以产生氧化热,而在氨分解部位中,利用该氧化热将另一部分氨分解成氢气和氮气(上式2)。其结果是,利用一种简单的配置即可由氨产生氢气。
如果使用便宜的贱金属催化剂作为氨分解催化剂,则要求高温如超过500℃以引起在大速率下的如上式2所示的氨分解反应。如果使用贵金属催化剂,如钌,为氨分解催化剂,则引起在大速率下的反应所要求的温度低至如350℃或更高,但使用大量贵金属催化剂在成本方面并不理想。因为上式2所示的氨分解反应为吸热反应,随着供料气体通过氨分解部位并向供料气体方向的下游移动,同时,氨的分解反应在进行,气体的温度降低,并且变得更加难以继续进行分解反应。
在本发明中,在本发明氢气发生装置的氨分解部位(20)中,氨分解催化剂既包含贵金属催化剂又包含贱金属催化剂,并且供料气流方向上下游部分(21b)中的贵金属催化剂装载浓度比供料气流方向上上游部分(21a)中的贵金属催化剂装载浓度高,例如2倍或更多,5倍或更多,或10倍或更高。
根据该配置,在其中供料气体温度相对高的供料气流方向上氨分解部位的上游部分中,通过贱金属催化剂加速氨的分解反应(吸热反应),而在其中由于供料气体温度降低难以进行反应的供料气流方向上氨分解部位的下游部分中,可以通过在下游部分中提供以高浓度负载的贵金属催化剂加速氨的分解。
也就是说,根据本发明的氢气发生装置,使用在氨分解部位中所用的减少量的相对昂贵的贵金属催化剂可有效加速氨的分解反应。
《本发明氢气发生装置的第三实施方案》
此外,可装配本发明氢气发生装置,例如,如图3所示。图3所示的本发明氢气发生装置(53)的第三实施方案包含具有将氨氧化的氨氧化催化剂(11a,11b)的氨氧化部位(10),和具有将氨分解以产生氮气和氢气的氨分解催化剂(21a,21b)的氨分解部位(20)。在氢气发生装置(53)中,如箭头61所示提供含氨和氧气的供料气体,如箭头62所示获得包含氢气的产物气体,因此在供料气流方向上氨分解部位(20)位于氨氧化部位(10)的下游。
另外,供料气流方向上氨氧化部位(10)的下游部分(11b)可与供料气流方向上氨分解部位(20)的上游部分(21a)分开。然而,如图4所示,这些部分也可装配成一个整体。
根据本发明的氢气发生装置,在氨氧化部位中,一部分氨被空气中的氧气氧化(上式1)以产生氧化热,而在氨分解部位中,利用该氧化热将另一部分氨分解成氢气和氮气(上式2)。其结果是,利用一种简单的配置即可由氨产生氢气。
根据本发明的氢气发生装置,本发明氢气发生装置的第一和第二实施方案的效果关于根据图1和图2解释,也就是说,可以获得在氨氧化部位和氨分解部位使用减少量的相对昂贵的贵金属催化剂即可有效加速氨的氧化反应和分解反应的技术效果。
《本发明的氢气发生装置-氨氧化催化剂》
作为本发明氢气发生装置中使用的氨氧化催化剂,可列出贵金属催化剂如铂、钌、钯、铑等,尤其是铂;和贱金属催化剂,如铁、钴、镍等,尤其是铁。
《本发明的氢气发生装置-氨分解催化剂》
作为本发明氢气发生装置中使用的氨分解催化剂,可列出贵金属催化剂如铂、钌、钯、铑等,尤其是钌;和贱金属催化剂,如铁、钴、镍、钨、钼、钒等,尤其是镍。
《本发明氢气发生装置的用途》
本发明的氢气发生装置可用于任何应用,例如它可与燃料电池或内燃机联合使用,特别是与燃料电池或内燃机联合用于移动车辆,如汽车。根据本发明氢气发生装置,利用一种简单的配置可由氨产生氢气,而且在氨氧化部位和/或氨分解部位使用减少量的相对昂贵的贵金属催化剂可有效加速氨的氧化反应和/或分解反应。因此,例如,当本发明的氢气发生装置提供给汽车时,需要的热量可通过将氨氧化提供,尽管废气的热量不足以用作热源以提供需要的温度。
另外,本发明的氢气发生装置可用于以氨为燃料的氨燃烧发动机,特别是用于汽车的氨燃烧发动机。当使用氨作为发动机燃料时,由于氨的点火性能低,在发动机低载运行和高载运行时氨的燃烧可能不充分。因此,在这种情况下,有必要加入助燃剂以协助氨的燃烧。作为助燃剂,可列出的有烃化合物和氢气。如果将使用本发明氢气发生装置通过分解氨获得的氢气作为氨燃烧的助燃剂,则优选只有氨可用作助燃剂的前体和用作燃料。并且,任选地,通过向氨氧化部位和分解部位提供来自发动机的废气的热能可加速氨的氧化和分解反应。
具体来说,在本发明氢气发生装置中,如图5所示,氨供给部件71,任选加热器72,氧气供给部件73可联合使用,来自氨供给部件71和氧气供给部件73提供的氨和氧气可任选由加热器72加热,然后提供给本发明的氢气发生装置50。
在这种情况下,氨供给部件可为可以向氢气发生装置提供氨的任何部件。因此,氨供给部件可以为,例如,氨罐,特别是含液态氨的氨罐。而且,在这种情况下,优选氨供给部件任选具有泵、阀等,以控制提供氨的量。
另外,氧气供给部件可为可以向氢气发生装置提供氧气的任何部件,特别是向氨氧化部位提供空气的空气供给部件。因此,该氧气供给部件可由用于从环境气氛获取空气的空气进气口、泵、阀等组成。
任选加热器可为能分别加热氨供给部件和氧气供给部件提供的氨和空气的任何加热器。
《本发明的氢气发生方法》
在使用本发明氢气发生装置由氨产生氢气的本发明方法中,含氢气的产物气体的获得通过向氨氧化部位提供含氨和氧气的供料气体;将氨部分氧化以获得含氨的部分氧化气体;向氨分解部位提供以这种方式获得的含氨的部分氧化气体;以及将氨分解成为氮气和氢气。而且,在这种情况下,通过调节供料气体温度和/或供料气体中氨和氧气的比例可控制氨氧化部位和/或氨分解部位的反应。
例如,通过加热器增加供给到氨氧化部位的供料气体的温度可加速氨氧化部位中的氨氧化反应(放热反应)。而且,例如,通过增加供给到氨氧化部位的氧气比例以增加在氨氧化部位中氧化的氨的比例可加速氨氧化反应的热量产生,或通过降低供给到氨氧化部位的氧气比例以降低在氨氧化部位中氧化的氨的比例可增加用于氢气生产的氨的比例。
例如,通过调节供料气体温度和/或供料气体中氨和氧气的比例可充分加速氨分解部位中的氨分解反应以使从氨分解部位得到的含氢气的产物气体达到预定温度或更高。“预定温度”为例如,在贵金属催化剂存在下氨分解部位中的氨分解充分进行的温度,例如该温度可为300℃-500℃。
可将温度计如热电偶任选置于氨氧化部位的进口侧和/或出口侧、和/或氨分解部位的进口侧和/或出口侧以控制本发明方法中的本发明氢气发生装置。
实施例
通过具有如图1-3所示配置的氢气发生装置由氨和空气获得含氢气的产物气体。氨氧化部位和氨分解部位组成如下表1所示。
表1
表1:氢气发生装置的组成
铂催化剂:用于氧化的贵金属催化剂,具体来说为其中负载铂的氧化铝粉末涂布在由堇青石制成的蜂窝结构上的催化剂(2g铂/L-基质)。
铁催化剂:用于氧化的贱金属催化剂,具体来说为其中5质量%的氧化铁负载于直径1mm的小球状氧化铝粉末上的催化剂。
镍催化剂:用于分解的贱金属催化剂,具体来说为其中10质量%的镍负载于形成为直径1mm的小球状氧化铝粉末的氧化铝粉末上的催化剂。
钌催化剂:用于分解的贵金属催化剂,具体来说为其中5质量%的钌负载于直径1mm的小球状氧化铝粉末上的催化剂。
评价中,在100NL(标准升)/分钟的恒定氨供给速率和供给到氨氧化部位的供料气体的不同温度以及不同供料空气量下测量氨氧化部位和氨分解部位的出口温度以及氨分解部位的氢气含量。在参考例和实施例中,设定供料空气的量以使氧化部位的出口温度(与分解部位的进口温度基本相同)为400℃。此外,对比例2与对比例1相同,不同的是氨分解部位采用加热器外部加热。加热器用于保持供料气体温度恒定。
评价的条件与结果如下表2所示。而且,表2中,由下式得到氢气产率:
<氢气产率(%)>=
<产生的氢气量(NL)>
/<提供的氨的量(NL)x 1.5>×100
Figure BDA0000091363570000101
如上表2所示,尽管实施例的氢气发生装置使用的贵金属催化剂量(铂催化剂和钌催化剂)小于参考例,实施例的氢气发生装置仍能达到与参考例相似或更多的的氢气产率(产率接近理论产率)。
而且,甚至与不采用氨氧化,而是使用高于实施例十倍量的钌作为氨分解催化剂的对比例1相比,实施例的氢气发生装置仍能获得优异的氢气产率。
并且,实施例的氢气发生装置优点在于它们不要求如对比例2的氢气发生装置的外部加热,尽管与不采用氨氧化,而是使用高于实施例十倍量的钌作为氨分解催化剂并且氨分解部位外部加热的对比例2相比,实施例的氢气产率较低。
附图标记列表
10:氨氧化部位
11,11a,11b:氨氧化催化剂
20:氨分解部位
21,21a,21b:氨分解催化剂
50,51,52,53:本发明氢气发生器
61:指示供料气流的箭头
62:指示产物气流的箭头
71:氨供给部件
72:加热器
73:空气供给部件

Claims (5)

1.用于由氨产生氢气的氢气发生装置,
其中氢气发生装置包含具有将氨氧化的氨氧化催化剂的氨氧化部位,和具有将氨分解以产生氮气和氢气的氨分解催化剂的氨分解部位;
其中在供料气流方向上氨分解部位位于氨氧化部位的下游;并且其中氢气发生装置满足下列条件(i)和(ii)之一或两者均满足:
(i)氨氧化催化剂既包含贵金属催化剂又包含贱金属催化剂,供料气流方向上氨氧化部位上游部分中的贵金属催化剂装载浓度高于供料气流方向上氨氧化部位下游部分中的贵金属催化剂装载浓度,
(ii)氨分解催化剂既包含贵金属催化剂又包含贱金属催化剂,供料气流方向上氨分解部位下游部分中的贵金属催化剂装载浓度高于供料气流方向上氨分解部位上游部分中的贵金属催化剂装载浓度。
2.根据权利要求1所述的氢气发生装置,其满足条件(i)和(ii)两者。
3.用于由氨产生氢气的氢气发生方法,其使用权利要求1或2所述的氢气发生装置,所述方法包括:
向氨氧化部位提供包含氨和氧气的供料气体,将氨部分氧化以获得含氨的部分氧化气体,向氨分解部位提供含氨的部分氧化气体,将氨分解成为氮气和氢气以获得含氢气的产物气体,和
通过调节供料气体温度和/或供料气体中氨和氧气的比例来控制氨氧化部位和/或氨分解部位中的反应。
4.根据权利要求3所述的方法,其中调节供料气体的温度和/或供料气体中氨和氧气的比例以使从氨分解部位排出的含氢气的产物气体的温度为在贵金属催化剂存在下氨分解部位中的氨分解充分进行的温度或更高。
5.燃料电池或内燃机系统,其提供有权利要求1或2所述的氢气发生装置,和由氢气发生装置提供氢气的燃料电池或内燃机。
CN2010800119468A 2009-04-07 2010-03-11 氢气发生装置和氢气发生方法 Active CN102356043B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP093167/2009 2009-04-07
JP2009093167A JP5352323B2 (ja) 2009-04-07 2009-04-07 水素生成装置及び水素生成方法
PCT/JP2010/054614 WO2010116874A2 (en) 2009-04-07 2010-03-11 Hydrogen generating apparatus and hydrogen generating method

Publications (2)

Publication Number Publication Date
CN102356043A CN102356043A (zh) 2012-02-15
CN102356043B true CN102356043B (zh) 2013-12-18

Family

ID=42936656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800119468A Active CN102356043B (zh) 2009-04-07 2010-03-11 氢气发生装置和氢气发生方法

Country Status (5)

Country Link
US (1) US8932773B2 (zh)
EP (1) EP2417055B1 (zh)
JP (1) JP5352323B2 (zh)
CN (1) CN102356043B (zh)
WO (1) WO2010116874A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049947B2 (ja) * 2008-11-19 2012-10-17 日立造船株式会社 アンモニアエンジンシステム
JP5352343B2 (ja) * 2009-05-21 2013-11-27 日立造船株式会社 水素製造触媒
JP4915452B2 (ja) 2010-01-12 2012-04-11 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
US8961923B2 (en) 2010-05-27 2015-02-24 Shawn Grannell Autothermal ammonia cracker
JP2012066945A (ja) 2010-09-21 2012-04-05 Hitachi Zosen Corp アンモニアからの水素の製造方法
US8561578B2 (en) * 2010-12-30 2013-10-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen generator and internal combustion engine provided with hydrogen generator
JP5920823B2 (ja) * 2012-03-28 2016-05-18 日立造船株式会社 継続的水素製造方法
JP5920822B2 (ja) * 2012-03-28 2016-05-18 日立造船株式会社 水素の製造方法
US9634344B2 (en) 2012-04-06 2017-04-25 Panasonic Intellectual Property Management Co., Ltd. Hydrogen purifier, hydrogen generation apparatus, and fuel cell system
JP6048933B2 (ja) 2013-01-17 2016-12-21 日立造船株式会社 水素製造方法
EP2796198A1 (en) * 2013-04-23 2014-10-29 Danmarks Tekniske Universitet Catalysts for selective oxidation of ammonia in a gas containing hydrogen
CN106714968B (zh) * 2014-05-27 2019-09-06 丹麦技术大学 用于在含氢气的气体中选择性地氧化氨的催化剂、方法以及装置的应用
WO2017154732A1 (ja) * 2016-03-07 2017-09-14 昭和電工株式会社 アンモニア分解装置及び水素ガス製造装置
JP6769856B2 (ja) * 2016-12-13 2020-10-14 三菱パワー株式会社 水素含有燃料供給システム、火力発電プラント、燃焼ユニット及び燃焼ユニットの改造方法
TWI812634B (zh) 2017-08-24 2023-08-21 丹麥商托普索公司 自熱性氨裂解製程
WO2020241604A1 (ja) * 2019-05-29 2020-12-03 株式会社豊田自動織機 エンジンシステム
DK3878806T3 (da) * 2020-03-10 2023-05-22 Ammonigy Gmbh Fremgangsmåde til fremstilling af hydrogen eller hydrogenholdige brændstoffer ved katalytisk ammoniakspaltning
US11167732B1 (en) * 2020-12-17 2021-11-09 Air Products And Chemicals, Inc. Hydrogen fueling station with integrated ammonia cracking unit
US20220389864A1 (en) 2021-05-14 2022-12-08 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
EP4352008A1 (en) 2021-06-11 2024-04-17 Amogy Inc. Systems and methods for processing ammonia
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
WO2023194526A1 (en) * 2022-04-08 2023-10-12 Basf Se A zoned reactor for the reforming of nh3
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528657A (zh) * 2003-09-26 2004-09-15 清华大学 低温型氨分解制备氢气的催化剂及其制备方法
CN101352685A (zh) * 2007-07-25 2009-01-28 中国科学院大连化学物理研究所 一种用于氨分解制氢的负载型镍催化剂及制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353751A (en) 1970-10-05 1974-05-22 Topsoe H F A Method for catalytic decomposition of ammonia
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
US7867300B2 (en) * 2001-03-02 2011-01-11 Intelligent Energy, Inc. Ammonia-based hydrogen generation apparatus and method for using same
US7811529B2 (en) 2001-04-23 2010-10-12 Intelligent Energy, Inc. Hydrogen generation apparatus and method for using same
US7922781B2 (en) * 2001-03-02 2011-04-12 Chellappa Anand S Hydrogen generation apparatus and method for using same
JP4267325B2 (ja) * 2001-03-02 2009-05-27 インテリジェント・エネルギー・インコーポレーテッド アンモニアベース水素発生装置および同装置の使用方法
JP2003040602A (ja) 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc 燃料電池用水素製造装置
US7105148B2 (en) 2002-11-26 2006-09-12 General Motors Corporation Methods for producing hydrogen from a fuel
US20050022450A1 (en) * 2003-02-12 2005-02-03 Cher-Dip Tan Reformer system, a method of producing hydrogen in the reformer system, and a method of using the reformer system
JP2005145748A (ja) * 2003-11-14 2005-06-09 Tama Tlo Kk 水素生成装置
JP4652841B2 (ja) * 2005-02-21 2011-03-16 キヤノンアネルバ株式会社 真空処理装置における水素原子発生源及び水素原子輸送方法
GB0510514D0 (en) 2005-05-24 2005-06-29 Johnson Matthey Plc Steam reforming
US7285142B1 (en) * 2006-04-28 2007-10-23 University Of Central Florida Research Foundation, Inc. Catalytic dehydrogenation of amine borane complexes
JP5049947B2 (ja) * 2008-11-19 2012-10-17 日立造船株式会社 アンモニアエンジンシステム
JP5483705B2 (ja) * 2009-03-17 2014-05-07 株式会社日本触媒 水素製造触媒およびそれを用いた水素製造方法
JP5624343B2 (ja) * 2009-03-17 2014-11-12 株式会社日本触媒 水素製造方法
JP5426201B2 (ja) * 2009-03-17 2014-02-26 株式会社日本触媒 アンモニア分解装置および当該装置を用いたアンモニア分解方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528657A (zh) * 2003-09-26 2004-09-15 清华大学 低温型氨分解制备氢气的催化剂及其制备方法
CN101352685A (zh) * 2007-07-25 2009-01-28 中国科学院大连化学物理研究所 一种用于氨分解制氢的负载型镍催化剂及制备方法

Also Published As

Publication number Publication date
CN102356043A (zh) 2012-02-15
WO2010116874A2 (en) 2010-10-14
US8932773B2 (en) 2015-01-13
JP2010241647A (ja) 2010-10-28
WO2010116874A3 (en) 2011-04-07
EP2417055A2 (en) 2012-02-15
EP2417055B1 (en) 2015-04-22
JP5352323B2 (ja) 2013-11-27
US20120040261A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
CN102356043B (zh) 氢气发生装置和氢气发生方法
CN102216588B (zh) 氨发动机系统
US6871491B2 (en) Combustion system having an emission control device
CN102553629B (zh) 催化剂和制造方法
CN103118971A (zh) 由氨制备氢气的方法
CN101678274B (zh) 用于对燃烧废气中的氮氧化物进行选择性催化还原的系统和方法
US20060075743A1 (en) Exhaust treatment systems and methods for using the same
EP2637769B1 (en) Exhaust gas nox treatment using three scr catalyst zones in series
JP2009517210A (ja) 選択的触媒還元用の多段システム
JP2010514546A (ja) 自動車の排ガス中の窒素酸化物の選択的接触還元法
CN101915146A (zh) 用于碳氢化合物燃料动力源的nox排放控制系统
US10385748B2 (en) Method for exhaust gas aftertreatment and combustion system
CN101737134A (zh) 贫燃发动机排气中的NOx还原用双床催化剂系统
US6698190B2 (en) Device and method for cleansing exhaust gas
TW561144B (en) Process and device for catalytic conversion of a substance
KR100667051B1 (ko) 2단 촉매연소 장치, 복합발전 시스템 및 그 방법
Tsolakis et al. Exhaust gas fuel reforming for IC Engines using diesel type fuels
CN108060955A (zh) 废热重组产氢装置
CN114375367A (zh) 用于废气后处理的设备和方法及其应用
US20060242906A1 (en) Reformer system and method of operating the same
JP2023132508A (ja) 亜酸化窒素浄化システム及びそれを用いた亜酸化窒素浄化方法
US20050089464A1 (en) Production Of Syngas For Fuel Cells Using Multiple Catalyst Configuration
US20180179994A1 (en) Device for producing hydrogen by reforming reaction and waste heat
JP2020008183A (ja) アンモニアの燃焼方法及び水素製造方法
GB2458994A (en) The use of urea in catalytic production of hydrogen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant