CN102336916A - 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法 - Google Patents

改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法 Download PDF

Info

Publication number
CN102336916A
CN102336916A CN 201110269457 CN201110269457A CN102336916A CN 102336916 A CN102336916 A CN 102336916A CN 201110269457 CN201110269457 CN 201110269457 CN 201110269457 A CN201110269457 A CN 201110269457A CN 102336916 A CN102336916 A CN 102336916A
Authority
CN
China
Prior art keywords
pva
bipolar membrane
chitosan
preparation
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110269457
Other languages
English (en)
Other versions
CN102336916B (zh
Inventor
陈日耀
周挺进
陈震
陈晓
郑曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN 201110269457 priority Critical patent/CN102336916B/zh
Publication of CN102336916A publication Critical patent/CN102336916A/zh
Application granted granted Critical
Publication of CN102336916B publication Critical patent/CN102336916B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及一种以静电纺丝法将聚乙烯醇-壳聚糖作为中间界面层,以氨基金属酞菁改性的双极膜制备方法。在中间界面层的制备中,在加热60~70℃下,将聚乙烯醇和壳聚糖溶解在醋酸和尿素的水溶液中,磁力搅拌4h后,加入2~5克氨基金属酞菁[MPc(NH2)X],并用超声波振荡1~5min,制备PVA-CS-MPc(NH2)X混合溶液;采用静电纺丝法,将混合溶液喷涂于PVA-CMC或PVA-SA阳离子交换膜表面,作为中间界面层。本发明利用静电纺丝法在双极膜中引入氨基金属酞菁改性的纳米纤维纺丝材料聚乙烯醇-壳聚糖中间层,制备得到的双极膜具有水解离效率高,膜阻抗小,槽电压低,两膜层相容性好等特点。

Description

改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法
技术领域
     本发明涉及一种双极膜的制备方法,具体说是以静电纺丝法将聚乙烯醇-壳聚糖作为中间界面层,以氨基金属酞菁改性的双极膜制备方法。
背景技术
双极膜(Bipolar Membrane,BPM)通常是由阴离子交换膜层(AM,简称阴膜层)和阳离子交换膜层(CM,简称阳膜层) 复合而成,通常将构成双极膜的阴、阳两膜层相对的内侧及其邻近区域称作中间界面层(简称中间层)。中间层可以是一种微空间,也可以是实体层。将双极膜置于电槽阴、阳两极之间时,在直流电场的作用下,双极膜中间界面层中的水将发生解离,生成氢离子和氢氧根离子,氢离子透过阳离子交换膜层进入阴极室,氢氧根离子透过阴离子交换膜层进入阳极室。
双极膜由于具有许多优良的性能,已在食品工业、化工行业、生命科学以及污染控制、资源回收、有机酸的分离与制备等众多领域得到广泛应用。双极膜中间界面层水解离效率直接影响双极膜的电阻压降(即膜IR降)和槽电压的大小,对双极膜阴、阳两膜层进行改性或在两膜层间添加一催化媒介层,以促进中间界面层水解离,从而降低双极膜的IR降和槽电压,降低能耗,减少电槽电化学副反应的发生已成为当前双极膜研究的热点。
酞菁,又称四苯并氮杂卟啉,是由四个异吲哚单元组成的平面共轭大环体系。自Braun和Tchemiac于1907年发现以来,酞菁及其衍生物因其特殊的结构和具有耐酸、耐碱、耐热、耐光、耐有机溶剂以及优异的电学、光学、磁学、催化等性能,而日益受到普遍的重视,已在光催化、有机半导体、传感器、光电材料、医学等诸多领域得到广泛应用,被喻为二十一世纪的新材料。
通过静电纺丝技术制备纳米纤维材料是近十几年来世界材料科学技术领域的最重要的学术与技术活动之一。静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控、所纺纳米纤维具有较高的比表面积和孔隙率等优点,已成为有效制备纳米纤维材料的主要途径之一。
本发明在双极膜中间界面层利用静电纺丝法添加氨基金属酞菁,以提高双极膜内侧比表面积,增强两膜层相容性和与水分子间的相互作用,此外,氨基金属酞菁在中间界面层形成高荷电区,促进中间界面层水解离,提高水解离效率,降低膜IR降和槽电压。
发明内容
本发明的目的在于提供一种在阳离子交换膜、阴离子交换膜之间,利用静电纺丝法,构建氨基金属酞菁改性的纳米纤维纺丝材料聚乙烯醇-壳聚糖为中间层的双极膜制备方法,制备的双极膜具有低的膜阻抗和高的两膜层相容性。
本发明的目的是通过如下方案实现的:
1、阳离子交换膜的制备
准确称取一定量的羧甲基纤维素钠(CMC)或海藻酸钠(SA),配制成质量分数为1~10% 的水溶液;另取一定量的聚乙烯醇(PVA)溶解后加入到上一步骤制备的水溶液中, 搅拌、减压脱泡、流延风干成膜;风干成膜后,用FeCl3溶液浸泡交联,蒸馏水冲洗干净,自然风干,即得阳离子交换膜。
2、中间界面层的制备
在加热60~70℃下,将聚乙烯醇和壳聚糖溶解在质量分数为5%的醋酸和质量分数为1~2%的尿素的水溶液中,磁力搅拌4h后加入用质量浓度为25%的浓氨水助溶的氨基金属(M)酞菁[MPc(NH2)X],并用超声波振荡1~5min,制备PVA-CS- MPc(NH2)X混合溶液;
采用静电纺丝法,在电压为10~15kV,喷口距离为10cm条件下将PVA-CS- MPc(NH2)X混合溶液喷涂于阳离子交换膜表面,制成纳米纤维表面改性的阳膜层。
所述的PVA-CS-MPc(NH2)X混合溶液中,PVA溶质质量占6~10%,CS溶质质量占1~5%,氨基金属酞菁溶质质量占2~5%。
所述的氨基金属酞菁[MPc(NH2)X],其中心金属M的离子可以是铜离子、铁离子、钴离子、锡离子、钛离子、锌离子、铝离子、镍离子、钙离子或镁离子。
所述的氨基金属酞菁[MPc(NH2)X]中X为其所带氨基数量,可以是2或4。
3、阴离子交换膜液的制备
称取10~100的壳聚糖(CS),用质量分数为1~10%的乙酸水溶液搅拌溶解,配制成质量分数为1~10%壳聚糖乙酸水溶液,边搅拌边缓慢滴加体积分数为2.5%的 1~5mL的戊二醛溶液,减压脱泡,即可得到粘稠的CS阴膜液。
4、双极膜的制备
采用流延、叠合、粘合或热压的方法将CS阴膜液固定在膜表面纺有纤维丝的阳离子交换膜上,在室温下风干,即得双极膜。
本发明的优点在于:
本发明利用静电纺丝法在双极膜中引入氨基金属酞菁改性的纳米纤维纺丝材料聚乙烯醇-壳聚糖中间层,制备得到的双极膜具有水解离效率高,膜阻抗小,槽电压低,两膜层相容性好等特点。  
附图说明
图1是本发明实施例1所制备的PVA-CMC/PVA-CS- CuTAPc /CS双极膜结构示意图。
图 2 是本发明实施例1所制备的纳米纤维纺丝表面改性的阳膜PVA-CS-CuTAPc/PVA-CMC表面电镜图。
图 3是本发明实施例1所制备的PVA-CMC/PVA-CS-CuTAPc/CS双极膜截面电镜图。
图4是PVA-CMC/PVA-CS-CuTAPc/CS双极膜的槽电压随电流密度的变化曲线。
具体实施方式
图1中,1是双极膜的阳离子交换膜;2是双极膜的中间界面层;3是双极膜的阴离子交换膜。
下面结合实施例对本发明进行更详细的描述。
实施例1 
制备运用静电纺丝法在中间界面层引入四氨基铜酞菁(CuTAPc)改性的PVA-CMC/PVA-CS-CuTAPc/CS双极膜的具体步骤如下:
1、阳离子交换膜的制备
准确称取100克CMC,溶于蒸馏水中,配制成质量分数为10%的CMC水溶液1000mL。另取PVA,用蒸馏水加热搅拌溶解,加入到上述制备的CMC水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,步骤中PVA与CMC的质量分数比为1:1。
将粘稠膜液流延于平整的培养皿中,在室温下风干成膜。先用质量分数为8% 的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-CMC阳离子交换膜。
2、中间界面层的制备
在加热70℃下,将6克聚乙烯醇和5克的壳聚糖溶解在由质量分数为5%醋酸和质量分数为1%尿素组成的100mL 混合水溶液中,磁力搅拌4h后加入用质量分数为25%的浓氨水助溶的5克四氨基铜酞菁,并用超声波振荡约3 min,制备PVA-CS-CuTAPc混合溶液。采用静电纺丝法,在电压为12kV,喷口距离为10cm条件下将PVA-CS-CuTAPc混合溶液纺丝于PVA-CMC阳离子交换膜表面,制成表面改性的阳膜层PVA-CS-CuTAPc/PVA-CMC。
图2是以环境扫描电镜观测得PVA-CMC膜上纺有PVA-CS-CuTAPc纤维丝的表面形貌图。从图2中可见,纺丝直径在纳米数量级,粗细均匀。
3、阴离子交换膜液的制备
称取25克的CS,用质量分数为10%的乙酸水溶液搅拌溶解,配制成质量分数为5%壳聚糖乙酸水溶液500mL,边搅拌边缓慢滴加3mL戊二醛溶液,减压脱泡,即可得到粘稠CS阴膜液。
4、PVA-CMC/PVA-CS-CuTAPc/CS双极膜的制备
将CS阴膜液流延于表面纺有纳米纤维的阳膜层上,在室温下风干,即得PVA-CMC/PVA-CS-CuTAPc/CS双极膜,其结构如图1所示。
图3是以环境扫描电镜观测得PVA-CMC/PVA-CS-CuTAPc/CS双极膜截面形貌图。上层为PVA-CMC阳膜层,膜厚约为91.7μm,PVA-CS-CuTAPc纤维位于中间界面层,下层为CS阴膜层,膜厚约为77.5μm。阳膜层、中间界面层与阴膜层结合紧密,膜层间无细小气泡和孔隙发现,膜中间界面层厚度在纳米数量级。
将本实施例制备的PVA-CMC/PVA-CS-CuTAPc/CS双极膜作为阴极室与阳极室之间的隔膜,在阴、阳两极室中分别注入1mol/L Na2SO4溶液250mL,以铅为阴、阳两极(电极表观面积为2 cm2),测定阴、阳两极间槽电压随电流密度的变化关系。在相同条件下,测定阴、阳两极室无隔膜情况下槽电压与电流密度关系曲线。在相同的电流密度下,测得的有无隔膜情况下阴、阳两极间槽电压的差值即为双极膜的IR降。
图4是PVA-CMC/PVA-CS-CuTAPc/CS双极膜的槽电压随电流密度的变化曲线。由图4中可见,经静电纺丝在中间层添加氨基酞菁改性后,在相同的电流密度下,槽电压明显下降。当电流密度为60 mA/cm2时,槽电压从8.9V下降到5.3V, 下降了3.6V。这是由于在中间层引入含有四氨基铜酞菁的阴离子交换纤维后,提高了膜内侧比表面积和与水分子间相互作用,减弱了水的键合力。同时,四氨基铜酞菁在双极膜中间层形成高荷电区,促进了中间界面层水的解离,降低了双极膜的IR降和槽电压。槽电压的下降有利于减少电槽电化学副反应的发生,降低能耗。
实施例2 
应用静电纺丝法在中间层引入四氨基酞菁钴(CoTAPc)的改性PVA -SA/CS双极膜的具体制备步骤如下:
1、阳膜层的制备
准确称取5克的SA,溶于蒸馏水中,配制成质量分数5%的SA水溶液100mL。另取8克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的SA水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为6%的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-SA阳离子交换膜。
2、中间界面层的制备
在加热60℃下,将6克聚乙烯醇和1克壳聚糖溶解在由质量分数为 5%的醋酸和质量分数为1%的尿素组成的100mL混合水溶液中,磁力搅拌4h后加入2克的四氨基钴酞菁,用质量分数为25%的浓氨水助溶,并用超声波振荡约5min,制备PVA-CS- CoTAPc 混合溶液。采用静电纺丝法,在电压为15kV,喷口距离为10cm条件下,将PVA-CS- CoTAPc 混合溶液纺丝于PVA-SA阳离子交换膜表面,制成表面改性的阳膜层PVA-CS- CoTAPc /PVA-SA。
3、阴离子交换膜的制备
称10克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数为10%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加3 mL戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液,流延于平整的培养皿中,在室温下风干,即得CS阴离子交换膜。
4、PVA-SA/PVA-CS- CoTAPc / CS双极膜的制备
将制备的膜表面纺有PVA-CS-CoTAPc纤维丝的PVA- SA阳膜与CS阴膜在200℃下热压8h(纤维丝置于两膜中间),即得PVA-SA/PVA-CS- CoTAPc / CS双极膜。
实施例3
应用静电纺丝法在中间层引入四氨基酞菁锌(ZnTAPc)的改性PVA -SA/CS双极膜的具体制备步骤如下: 
1、阳膜层的制备
准确称取5克的SA,溶于蒸馏水中,配制成质量分数为5%的SA水溶液100mL。另取8克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的SA水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为6%的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-SA阳离子交换膜。
2、中间界面层的制备
在加热65℃下,将7克聚乙烯醇和3克壳聚糖溶解在由质量分数为 5%的醋酸和质量分数为1%的尿素组成的100mL混合水溶液中,磁力搅拌4h后加入3克的四氨基酞菁锌,用质量分数为25%的浓氨水助溶,并用超声波振荡约5min,制备PVA-CS- ZnTAPc 混合溶液。采用静电纺丝法,在电压为15kV,喷口距离为10cm条件下,将PVA-CS- ZnTAPc 混合溶液纺丝于PVA-SA阳离子交换膜表面,制成表面改性的阳膜层PVA-CS-ZnTAPc /PVA-SA。
3、阴离子交换膜的制备
称10克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数为10%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加3 mL戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液,流延于平整的培养皿中,在室温下风干,即得CS阴离子交换膜。
4、PVA-SA/PVA-CS- CoTAPc / CS双极膜的制备
将制备的膜表面纺有PVA-CS-ZnTAPc纤维丝的PVA- SA阳膜与CS阴膜在200°C下热压9h(纤维丝置于两膜中间),即得PVA-SA/PVA-CS-ZnTAPc / CS双极膜。
实施例4
应用静电纺丝法在中间层引入四氨基酞菁铁(FeTAPc)的改性PVA -SA/CS双极膜的具体制备步骤如下: 
1、阳膜层的制备
准确称取5克的SA,溶于蒸馏水中,配制成质量分数为5%的SA水溶液100mL。另取8克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的SA水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为6%的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-SA阳离子交换膜。
2、中间界面层的制备
在加热68℃下,将8克聚乙烯醇和2克壳聚糖溶解在由质量分数为 5%的醋酸和质量分数为2%的尿素组成的100mL混合水溶液中,磁力搅拌4h后加入4克的四氨基铁酞菁,用质量分数为25%的浓氨水助溶,,并用超声波振荡约5min,制备PVA-CS-FeTAPc混合溶液。采用静电纺丝法,在电压为15kV,喷口距离为10cm条件下,将PVA-CS-FeTAPc混合溶液纺丝于PVA-SA阳离子交换膜表面,制成表面改性的阳膜层PVA-CS-FeTAPc/PVA-SA。
3、阴离子交换膜阴膜液的制备
称10克的CS,用质量分数为8%的乙酸水溶液搅拌溶解,配制成质量分数为10%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加3 mL戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液,流延于平整的培养皿中,在室温下风干,即得CS阴离子交换膜。
4、PVA-SA/PVA-CS-FeTAPc/ CS双极膜的制备
将制备的膜表面纺有PVA-CS-FeTAPc纤维丝的PVA- SA阳膜与CS阴膜在220℃下热压7h(纤维丝置于两膜中间),即得PVA-SA/PVA-CS-FeTAPc/ CS双极膜。

Claims (7)

1.一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,该方法是在阳离子交换膜、阴离子交换膜之间,利用静电纺丝法,构建氨基金属酞菁改性的纳米纤维纺丝材料聚乙烯醇-壳聚糖为中间层的双极膜,其特征在于:
1)阳离子交换膜的制备
取海藻酸钠、羧甲基纤维素,配制成水溶液;另取一定量的聚乙烯醇溶解后加入到水溶液中, 搅拌、减压脱泡、流延风干成膜;风干成膜后,用FeCl3溶液浸泡交联,蒸馏水冲洗干净,自然风干,即得阳离子交换膜;
 2)中间界面层的制备
在加热60~70℃下,将6~10克的聚乙烯醇和1~5克的壳聚糖溶解在醋酸和尿素的水溶液中,磁力搅拌4h后,加入2-5克氨基金属酞菁[MPc(NH2)X],并用超声波振荡1~5min,制备PVA-CS- MPc(NH2)X混合溶液;
采用静电纺丝法,将PVA-CS- MPc(NH2)X混合溶液喷涂于阳离子交换膜表面;
3)阴离子交换膜阴膜液的制备
取壳聚糖,用质量分数为1~10%的乙酸水溶液搅拌溶解,配制成1~10%壳聚糖乙酸水溶液,边搅拌边缓慢滴加体积分数为2.5%的 1~5mL的戊二醛溶液,减压脱泡,即可得到粘稠的CS阴膜液;
4)双极膜的制备
采用流延、叠合、粘合或热压的方法将CS阴膜液固定在膜表面纺有纤维丝的阳离子交换膜上,在室温下风干,即得双极膜。
2.根据权利要求1所述的一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于所述的PVA-CS-MPc(NH2)X混合溶液中,PVA溶质质量占6~10%,CS溶质质量占1~5%,氨基金属酞菁溶质质量占2~5%。
3.根据权利要求1所述的一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于所述的氨基金属酞菁[MPc(NH2)X],其中心金属M的离子可以是铜离子、铁离子、钴离子、锡离子、钛离子、锌离子、铝离子、镍离子、钙离子或镁离子。
4.根据权利要求1所述的一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于所述的氨基金属酞菁[MPc(NH2)X]中X可以是2或4。
5.根据权利要求1所述的一种氨基金属酞菁改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于所述的静电纺丝法,其条件为电压:10~15kV,喷口距离:10cm。
6.根据权利要求1所述的一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于所述的醋酸和尿素水溶液中,醋酸质量分数为5%,尿素质量分数为1~2%。
7.根据权利要求1所述的一种改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法,其特征在于加入氨基金属酞菁前,氨基金属酞菁用质量浓度为25%的浓氨水先行助溶。
CN 201110269457 2011-09-13 2011-09-13 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法 Expired - Fee Related CN102336916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110269457 CN102336916B (zh) 2011-09-13 2011-09-13 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110269457 CN102336916B (zh) 2011-09-13 2011-09-13 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法

Publications (2)

Publication Number Publication Date
CN102336916A true CN102336916A (zh) 2012-02-01
CN102336916B CN102336916B (zh) 2012-12-19

Family

ID=45512893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110269457 Expired - Fee Related CN102336916B (zh) 2011-09-13 2011-09-13 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法

Country Status (1)

Country Link
CN (1) CN102336916B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586929A (zh) * 2012-02-14 2012-07-18 中国科学院过程工程研究所 一种界面靶向膜和界面靶向纤维的制备方法
CN102600732A (zh) * 2012-04-06 2012-07-25 福建师范大学 一种用太阳光催化剂改性双极膜的制备方法
CN103938367A (zh) * 2014-05-05 2014-07-23 福建师范大学 一种以apam为阳极膜的纳米纤维双极膜的制备方法
CN103951841A (zh) * 2014-05-05 2014-07-30 福建师范大学 一种以静电纺丝技术制备纳米纤维离子交换复合膜的方法
CN104014321A (zh) * 2014-06-20 2014-09-03 厦门大学 壳聚糖/聚乙烯醇/四氧化三铁复合磁性颗粒及制备与应用
CN104593819A (zh) * 2015-01-06 2015-05-06 山东天维膜技术有限公司 双极膜及其制备方法
CN105088377A (zh) * 2014-05-13 2015-11-25 财团法人纺织产业综合研究所 静电纺丝液、聚乙烯醇纳米纤维及离子交换膜
CN107603399A (zh) * 2017-09-20 2018-01-19 阜南县中泰工艺品有限公司 一种藤条制柳编表面高附着涂料
CN107620160A (zh) * 2016-07-15 2018-01-23 北京汇益科技股份有限公司 一种静电纺丝法制备双极膜的方法
CN108842164A (zh) * 2018-09-19 2018-11-20 太原师范学院 以铜-金属有机骨架材料为中间界面层的双极膜及其制备方法
CN108866567A (zh) * 2018-09-19 2018-11-23 太原师范学院 以锌-金属有机骨架材料为中间界面层的双极膜及其制备方法
CN109851828A (zh) * 2018-12-03 2019-06-07 大连理工大学 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法
CN109876683A (zh) * 2019-03-07 2019-06-14 宁德师范学院 一种mCMC/GO/mCS双极膜及其制备方法
CN109957885A (zh) * 2019-04-12 2019-07-02 嘉兴学院 一种静电纺丝膜及其制备方法以及在盐差能发电中的应用
CN110467473A (zh) * 2019-08-02 2019-11-19 中国航发北京航空材料研究院 一种氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
CN111249928A (zh) * 2020-02-27 2020-06-09 山东科技大学 一种基于金属有机框架化合物的混合基质阳离子交换膜及其制备方法
CN111530313A (zh) * 2020-05-12 2020-08-14 福建师范大学 一种侧基键合酞菁催化基团单片型聚砜双极膜的制备方法
CN111530308A (zh) * 2020-05-12 2020-08-14 福建师范大学 侧基含卟啉催化基团的单片型聚芳醚酮双极膜制备方法
CN115245762A (zh) * 2021-09-16 2022-10-28 上海三及新材料科技有限公司 一种负载mof型双极膜及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899675A (zh) * 2009-10-13 2010-12-01 福建师范大学 一种双极膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899675A (zh) * 2009-10-13 2010-12-01 福建师范大学 一种双极膜及其制备方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586929A (zh) * 2012-02-14 2012-07-18 中国科学院过程工程研究所 一种界面靶向膜和界面靶向纤维的制备方法
CN102600732A (zh) * 2012-04-06 2012-07-25 福建师范大学 一种用太阳光催化剂改性双极膜的制备方法
CN103938367A (zh) * 2014-05-05 2014-07-23 福建师范大学 一种以apam为阳极膜的纳米纤维双极膜的制备方法
CN103951841A (zh) * 2014-05-05 2014-07-30 福建师范大学 一种以静电纺丝技术制备纳米纤维离子交换复合膜的方法
CN103938367B (zh) * 2014-05-05 2016-02-24 福建师范大学 一种以apam为阳极膜的纳米纤维双极膜的制备方法
CN105088377A (zh) * 2014-05-13 2015-11-25 财团法人纺织产业综合研究所 静电纺丝液、聚乙烯醇纳米纤维及离子交换膜
CN105088377B (zh) * 2014-05-13 2018-03-20 财团法人纺织产业综合研究所 静电纺丝液、聚乙烯醇纳米纤维及离子交换膜
CN104014321A (zh) * 2014-06-20 2014-09-03 厦门大学 壳聚糖/聚乙烯醇/四氧化三铁复合磁性颗粒及制备与应用
CN104593819A (zh) * 2015-01-06 2015-05-06 山东天维膜技术有限公司 双极膜及其制备方法
CN107620160A (zh) * 2016-07-15 2018-01-23 北京汇益科技股份有限公司 一种静电纺丝法制备双极膜的方法
CN107620160B (zh) * 2016-07-15 2020-05-22 北京汇益科技股份有限公司 一种静电纺丝法制备双极膜的方法
CN107603399A (zh) * 2017-09-20 2018-01-19 阜南县中泰工艺品有限公司 一种藤条制柳编表面高附着涂料
CN108866567A (zh) * 2018-09-19 2018-11-23 太原师范学院 以锌-金属有机骨架材料为中间界面层的双极膜及其制备方法
CN108842164A (zh) * 2018-09-19 2018-11-20 太原师范学院 以铜-金属有机骨架材料为中间界面层的双极膜及其制备方法
CN109851828A (zh) * 2018-12-03 2019-06-07 大连理工大学 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法
CN109851828B (zh) * 2018-12-03 2021-04-16 大连理工大学 一种电纺一维中空多孔无机纳米纤维掺杂改性的非氟质子交换膜及其制备方法
CN109876683A (zh) * 2019-03-07 2019-06-14 宁德师范学院 一种mCMC/GO/mCS双极膜及其制备方法
CN109957885A (zh) * 2019-04-12 2019-07-02 嘉兴学院 一种静电纺丝膜及其制备方法以及在盐差能发电中的应用
CN110467473A (zh) * 2019-08-02 2019-11-19 中国航发北京航空材料研究院 一种氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
CN111249928A (zh) * 2020-02-27 2020-06-09 山东科技大学 一种基于金属有机框架化合物的混合基质阳离子交换膜及其制备方法
CN111530313A (zh) * 2020-05-12 2020-08-14 福建师范大学 一种侧基键合酞菁催化基团单片型聚砜双极膜的制备方法
CN111530308A (zh) * 2020-05-12 2020-08-14 福建师范大学 侧基含卟啉催化基团的单片型聚芳醚酮双极膜制备方法
CN111530313B (zh) * 2020-05-12 2022-01-11 福建师范大学 一种侧基键合酞菁催化基团单片型聚砜双极膜的制备方法
CN115245762A (zh) * 2021-09-16 2022-10-28 上海三及新材料科技有限公司 一种负载mof型双极膜及其应用
CN115245762B (zh) * 2021-09-16 2024-03-12 上海三及新材料科技有限公司 一种负载mof型双极膜及其应用

Also Published As

Publication number Publication date
CN102336916B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN102336916B (zh) 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法
CN102336917B (zh) 改性聚四乙烯基吡啶为中间界面层的双极膜制备方法
CN106694007B (zh) 一种单分散金属原子/石墨烯复合催化剂及其制备方法和应用
CN110117049B (zh) 一种金属-有机框架/聚吡咯杂化导电电极的制备方法
CN106158426B (zh) 一种制备柔性超级电容器线状电极的方法
CN102336918B (zh) 一种改性的聚苯乙烯纳米纤维为中间界面层的双极膜制备方法
CN102352543B (zh) 改性海藻酸钠-羧甲基纤维素钠为中间界面层的双极膜制备方法
Wang et al. A hybrid electrocatalyst with a coordinatively unsaturated metal–organic framework shell and hollow Ni3S2/NiS core for oxygen evolution reaction applications
CN107486233B (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN102580549A (zh) 一种带有阴离子基团碳纳米管改性双极膜的制备方法
CN101613483B (zh) 以光敏剂或光催化半导体材料为中间层的双极膜及其制备方法
CN107299362A (zh) 一种活性炭负载钴镍合金材料的制备方法及其电化学应用
CN108538630A (zh) 一种生物质炭/石墨烯柔性复合膜的制备方法
CN102516575B (zh) 一种负载重金属离子的碳纳米管改性双极膜的制备方法
CN103726233B (zh) 一种聚间苯二甲酰间苯二胺-聚丙烯腈复合纳米纤维膜的制备方法及其应用
CN101138707A (zh) 以超支化聚合物为中间界面层的双极膜及其制备方法
CN110451615A (zh) 一种金属-有机框架碳纳米管杂化脱盐电极的制备方法
CN1958856B (zh) 一种用于有机电化学合成过程的纳米碳纤维电催化电极的制备
CN103938367B (zh) 一种以apam为阳极膜的纳米纤维双极膜的制备方法
CN102336919B (zh) 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法
CN106298287A (zh) 一种多层石墨烯与铁钴层状双金属氢氧化物的复合材料及其制备方法与应用其的超级电容器
CN116005172A (zh) 光热与电催化双功能复合纳米碳薄膜连续全电解海水的方法及装置
CN1667857A (zh) 一种纳米结构铂超薄膜碳电极的制备方法
Dahonog et al. Hydrothermal synthesis of NiCo2O4 nanowires on carbon fiber paper for hydrogen evolution catalyst
CN100430128C (zh) 一种碳基纳米材料电催化剂的电化学原位纯化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20150913

EXPY Termination of patent right or utility model