CN102336919B - 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法 - Google Patents

改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法 Download PDF

Info

Publication number
CN102336919B
CN102336919B CN 201110269465 CN201110269465A CN102336919B CN 102336919 B CN102336919 B CN 102336919B CN 201110269465 CN201110269465 CN 201110269465 CN 201110269465 A CN201110269465 A CN 201110269465A CN 102336919 B CN102336919 B CN 102336919B
Authority
CN
China
Prior art keywords
preparation
bipolar membrane
polyethylene oxide
peo
alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110269465
Other languages
English (en)
Other versions
CN102336919A (zh
Inventor
陈日耀
周挺进
陈震
陈晓
郑曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN 201110269465 priority Critical patent/CN102336919B/zh
Publication of CN102336919A publication Critical patent/CN102336919A/zh
Application granted granted Critical
Publication of CN102336919B publication Critical patent/CN102336919B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种双极膜的制备方法,具体说是以静电纺丝法经磺酸基金属酞菁改性的海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法。在中间界面层的制备中,在加热至60~70℃下,将海藻酸钠与聚环氧乙烷按等质量比溶解在去离子水中,制备成混合溶液,磁力搅拌后加入磺酸基金属酞菁[MPc(SO3H)x],并用超声波振荡制备成混合电纺丝溶液;采用静电纺丝法将混合溶液喷涂于制备的阳离子交换膜表面,之后浸在含有CaCl2的乙醇溶液中10min,去离子水清洗,室温下干燥。本发明制备得到的双极膜具有水解离效率高,膜阻抗小,槽电压低,两膜层相容性好等特点。

Description

改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法
技术领域
     本发明涉及一种双极膜的制备方法,具体说是以静电纺丝法经磺酸基金属酞菁改性的聚环氧乙烷(PEO)为中间界面层的双极膜制备方法。
背景技术
双极膜(Bipolar Membrane, BPM)是一种新型的离子交换复合膜,它通常是由阳离子交换层(N型膜,简称阳膜层) 、中间界面层(催化层,简称中间层)和阴离子交换层(P型膜,简称阴膜层)复合而成,通常将构成双极膜的阴、阳两膜层相对内侧及其邻近区域称作中间界面层,是真正意义上的反应膜。在直流电场作用下,双极膜可将水离解,在膜两侧分别得到氢离子和氢氧根离子。
双极膜由于具有许多优良的性能,已在食品工业、化工行业、生命科学以及污染控制、资源回收、有机酸的分离与制备等众多领域得到广泛应用。双极膜中间界面层水解离效率直接影响双极膜的电阻压降(即膜IR降)和槽电压的大小,对双极膜阴、阳两膜层进行改性或在两膜层间添加一催化媒介层,以促进中间界面层水解离,从而降低双极膜的IR降和槽电压,降低能耗,减少电槽电化学副反应的发生已成为当前双极膜研究的热点。
酞菁,又称四苯并氮杂卟啉,是由四个异吲哚单元组成的平面共轭大环体系。自Braun和Tchemiac于1907年发现以来,酞菁及其衍生物因其特殊的结构和具有耐酸、耐碱、耐热、耐光、耐有机溶剂以及优异的电学、光学、磁学、催化等性能,而日益受到普遍的重视,已在光催化、有机半导体、传感器、光电材料、医学等诸多领域得到广泛应用,被喻为二十一世纪的新材料。
静电纺丝法是一种制备超细纤维的重要方法,与传统的方法有着明显的不同,它将聚合物溶液或熔体带上几千至几万伏高压静电,带电的聚合物液滴在电场力的作用下被拉伸。当电场力足够大时。聚合物液滴可克服表面张力形成喷射细流。细流在喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成了类似无纺布状的纤维毡。用静电纺丝法制得的纤维比传统纺丝方法细得多, 直径一般在数十纳米到数百纳米,所纺纳米纤维具有较高的比表面积和孔隙率。
本发明利用静电纺丝法制备含有磺酸基金属酞菁的阳离子型纳米纤维,并引入双极膜中间界面层,以提高双极膜内侧比表面积和孔隙率,增强两膜层相容性和与水分子间的相互作用。磺酸基金属酞菁在中间界面层形成高荷电区,促进中间界面层水解离,提高水解离效率,降低膜IR降和槽电压。
发明内容
本发明的目的在于提供一种在阳离子交换膜、阴离子交换膜之间,利用静电纺丝法在中间层引入经磺酸基金属酞菁改性的海藻酸钠(SA)-聚环氧乙烷(PEO)为双极膜中间界面层制备双极膜的方法,所制备的双极膜具有低的膜阻抗和高的两膜层相容性且性能优良。
本发明的目的是通过如下方案实现的:
1、阳离子交换膜层的制备
准确称取羧甲基纤维素钠(CMC)或海藻酸钠(SA),配制成质量分数为1~10% 的CMC水溶液或SA水溶液;另取聚乙烯醇(PVA),PVA与CMC 或SA的质量分数比为 0.5~1:1,用蒸馏水加热搅拌溶解,加入到上述制备的水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜,先用质量分数为1~10% 的FeCl3溶液浸泡交联10~30 min,后用蒸馏水冲洗干净,自然风干,即得PVA-CMC阳离子交换膜或PVA-SA阳离子交换膜。
2、海藻酸钠-聚环氧乙烷中间界面层的制备
在加热至60~70℃下,将海藻酸钠(SA)与聚环氧乙烷(PEO)按等质量比溶解在去离子水中,制备成SA与PEO含量均为1~5%的混合溶液,磁力搅拌4h后,加入磺酸基金属酞菁[MPc(SO3H)x,并用超声波振荡1~5min,制备成SA-PEO-MPc(SO3H)x混合电纺丝溶液;
采用静电纺丝法,在电压为15~20kV,喷口距离为10~15cm条件下将SA-PEO-MPc(SO3H)x混合溶液喷涂于制备的阳离子交换膜表面,之后浸在含有质量分数为10 % 的CaCl2乙醇溶液中10 min,去离子水清洗,室温下干燥。
在上述混合电纺丝溶液中,SA质量分数为1~5%,PEO质量分数为1~5%,磺酸基金属酞菁质量分数为为2~4%。
所述的磺酸基金属酞菁[MPc(SO3H)x的中心金属(M)离子可以是铜离子、铁离子、钴离子、锡离子、钛离子、锌离子、铝离子或镍离子。
所述的磺酸基金属酞菁[MPc(SO3H)x中所带磺酸基数量X可以是2或4。
3、壳聚糖阴膜液的制备
称取一定量的壳聚糖(CS),用质量分数为1~10%的乙酸水溶液搅拌溶解,配制成1~10%壳聚糖乙酸水溶液,边搅拌边缓慢滴加体积分数为2.5%的戊二醛溶液,减压脱泡,即可得到粘稠的CS阴膜液。
壳聚糖乙酸水溶液与戊二醛溶液体积比为1000︰2~8。
4、双极膜的制备
采用流延、叠合、粘合或热压的方法将CS阴膜液制膜并固定在膜表面纺有纤维丝的阳膜层上,在室温下风干,即得双极膜。
本发明的优点在于:
本发明涉及的利用静电纺丝法在双极膜中间层引入磺酸基金属酞菁制备的改性双极膜具有水解离效率高,膜阻抗小,槽电压低,两膜层相容性好等特点。
附图说明
图1是本发明实施例1所制备的PVA-CMC/SA-PEO-CuTsPc/CS双极膜结构示意图。
图2是本发明实施例1所制备的纺有SA-PEO-CuTsPc丝的PVA-CMC膜表面电镜图。
图3是本发明实施例1所制备的PVA-CMC/SA-PEO-CuTsPc/CS双极膜截面电镜图。
图4是以PVA-CMC/SA-PEO-CuTsPc/CS双极膜为电槽隔膜时槽电压随电流密度的变化曲线。
具体实施方式
图1中,1是阳离子交换膜; 2是SA-PEO-CuTsPc纳米纤维纺丝中间层 ; 3 是阴离子交换膜。  
下面结合实施例对本发明进行更详细的描述。
实施例1 
制备运用静电纺丝法在中间层引入四磺酸基铜酞菁(CuTsPc)改性的PVA-CMC/SA-PEO-CuTsPc/CS双极膜的具体步骤如下:
1、阳离子交换膜的制备
准确称取100克的CMC,溶于蒸馏水中,配制成质量分数为10% 的CMC水溶液。另取PVA,用蒸馏水加热搅拌溶解,加入到上述制备的CMC水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,步骤中PVA与CMC的质量分数比为1:1。将粘稠膜液流延于平整的培养皿中,在室温下风干成膜。先用质量分数为8% 的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-CMC阳离子交换膜。
2、SA-PEO-CuTsPc/PVA-CMC阳离子交换膜层的制备
准确称量2克海藻酸钠和2克的聚环氧乙烷(PEO)溶解在100mL 去离子水中,磁力搅拌4h后加入4克四磺酸基铜酞菁(CuTsPc),制备SA-PEO-CuTsPc混合溶液。采用静电纺丝法,在电压为20kV,喷口距离为10cm条件下将SA-PEO-CuTsPc混合纺丝溶液喷涂于PVA-CMC阳离子交换膜表面,之后浸在质量分数为10 %的CaCl2乙醇溶液中10 min,去离子水清洗,室温下干燥,制成SA-PEO-CuTsPc/PVA-CMC阳离子交换膜层。
图2是本实施例环境扫描电镜观测得PVA-CMC膜上纺有SA-PEO-CuTsPc纤维丝表面形貌图。从图2中可见,纺丝直径在纳米数量级,粗细均匀。
3、壳聚糖阴膜液的制备
称取50克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数5%壳聚糖乙酸水溶液1000mL,边搅拌边缓慢滴加3mL体积分数为2.5%的戊二醛溶液,减压脱泡,即可得到粘稠CS阴膜液。
4、PVA-CMC/SA-PEO-CuTsPc/CS双极膜的制备
将CS阴膜液流延于在膜表面纺有SA-PEO-CuTsPc纤维丝的PVA-CMC阳离子交换膜上,在室温下风干,即得PVA-CMC/SA-PEO-CuTsPc/CS双极膜,其结构示意图如图1所示。
图3是以环境扫描电镜观测得PVA-CMC/SA-PEO-CuTsPc/CS双极膜截面形貌图。上层为PVA-CMC阳离子交换膜层,SA-PEO-CuTsPc阳离子型纳米纤维位于中间界面层,下层为CS阴离子交换膜层。阳膜层、中间界面层与阴膜层结合紧密,膜层间无细小气泡和孔隙发现,膜中间界面层厚度在纳米数量级。   
将本实施例制备的PVA-CMC/SA-PEO-CuTsPc/CS双极膜作为阴极室与阳极室之间的隔膜,在阴、阳两极室中分别注入1mol/L Na2SO4溶液250mL,以铅为阴、阳两极(电极表观面积为2 cm2),测定阴、阳两极间槽电压随电流密度的变化关系,如图4所示。在相同条件下,测定阴、阳两极室无隔膜情况下槽电压与电流密度关系曲线。在一定的电流密度下,测得的有无隔膜情况下阴、阳两极间槽电压的差值即为双极膜的IR降。
由图4中可见,经静电纺丝制得含有CuTsPc纳米纤维,并引入中间界面层后,在相同的电流密度下,槽电压明显下降。这是由于在中间界面层引入含有四磺酸基铜酞菁的阳离子型纳米纤维后,提高了膜内侧比表面积和与水分子间相互作用,减弱了水的键合力。同时,四磺酸基铜酞菁在双极膜中间界面层形成高荷电区,进一步促进了中间界面层水的解离,降低了双极膜的IR降和槽电压。槽电压的下降有利于减少电槽电化学副反应的发生,降低能耗。
实施例2 
应用静电纺丝法在中间层引入四磺酸基钴酞菁(CoTsPc)的改性PVA-SA/ SA-PEO-CoTsPc / CS双极膜的具体制备步骤如下:
1、阳膜层的制备
准确称取5克的SA,溶于蒸馏水中,配制成质量分数5%的SA水溶液100mL。另取8克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的SA水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为6%的FeCl3溶液浸泡交联10 min,后用蒸馏水冲洗干净,自然风干,即得PVA-SA阳离子交换膜。
2、中间界面层的改性
在加热至65℃时,将3克海藻酸钠和3克的聚环氧乙烷溶解在100mL去离子水中,磁力搅拌4h后,加入3克四磺酸基钴酞菁(CoTsPc),并用超声波振荡3min,制备成SA-PEO- CoTsPc混合电纺丝溶液,采用静电纺丝法,在电压为15kV,喷口距离为15cm条件下将SA-PEO-CoTsPc混合溶液喷涂于制备的阳离子交换膜表面,之后浸在含有质量分数为10 % 的CaCl2乙醇溶液中10 min,去离子水清洗,室温下干燥。制成SA-PEO-CoTsPc/PVA-SA阳离子交换膜层。
3、壳聚糖阴膜的制备
称取 5克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数为5%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加3mL体积分数为2.5%的戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液,流延于平整的培养皿中,在室温下风干,即得CS阴离子交换膜。
4、PVA-SA/ SA-PEO-CoTsPc/ CS双极膜的制备
将制备的膜表面纺有SA-PEO-CoTsPc纤维丝的PVA-SA阳离子交换膜与CS阴膜在200°C下热压12h(纤维丝置于两膜中间),即得PVA-SA/ SA-PEO-CoTsPc / CS双极膜。
实施例3
制备运用静电纺丝法在中间层引入四磺酸基锌酞菁(ZnTsPc)改性的PVA -CMC/ SA-PEO -ZnTsPc /CS双极膜的具体步骤如下:
1、阳离子交换膜的制备
准确称取5克的CMC,溶于蒸馏水中,配制成质量分数为5%的CMC水溶液100ml。另取5克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的CMC水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为5%的FeCl3溶液浸泡交联15 min,后用蒸馏水冲洗干净,自然风干,即得PVA-CMC阳膜层。
2、中间界面层的改性
准确称量4克SA和4克的PEO溶解在100mL 去离子水中,磁力搅拌4h后加入3克四磺酸基锌酞菁,制备SA-PEO-ZnTsPc混合溶液。采用静电纺丝法,在电压为20kV,喷口距离为10cm条件下将SA-PEO-ZnTsPc混合纺丝溶液喷涂于PVA-CMC阳离子交换膜表面,之后浸在质量分数为10 %的CaCl2乙醇溶液中10 min,去离子水清洗,室温下干燥,制成SA-PEO-ZnTsPc/PVA-CMC阳离子交换膜层。
3、壳聚糖阴膜液的制备
称取5克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数为5%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加5 mL体积分数为2.5%的戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液。
4、PVA -CMC/ SA-PEO-ZnTsPc /CS双极膜的制备
将CS阴膜液流延于在膜表面纺有SA-PEO-ZnTsPc纤维丝的PVA-CMC阳离子交换膜层上,在室温下风干,即得PVA -CMC/ SA-PEO-ZnTsPc /CS双极膜。
实施例4
制备运用静电纺丝法在中间层引入二磺酸基铁酞菁(FePc(SO3H)2)改性的PVA -CMC/ SA-PEO - FePc(SO3H)2/CS双极膜的具体步骤如下:
1、阳离子交换膜的制备
准确称取5克的CMC,溶于蒸馏水中,配制成质量分数为5%的CMC水溶液100ml。另取5克的 PVA,用蒸馏水加热搅拌溶解,加入到上述制备的CMC水溶液中, 搅拌均匀,减压脱泡,得到粘稠膜液,流延于平整的培养皿中,在室温下风干成膜。先用质量分数为5%的FeCl3溶液浸泡交联15 min,后用蒸馏水冲洗干净,自然风干,即得PVA-CMC阳膜层。
2、中间界面层的改性
准确称量5克SA和5克的PEO溶解在100mL 去离子水中,磁力搅拌4h后加入2克二磺酸基铁酞菁(FePc(SO3H)2),制备SA-PEO- FePc(SO3H)2混合溶液。采用静电纺丝法,在电压为20kV,喷口距离为10cm条件下将SA-PEO- FePc(SO3H)2混合纺丝溶液喷涂于PVA-CMC阳离子交换膜表面,之后浸在质量分数为10 %的CaCl2乙醇溶液中10 min,去离子水清洗,室温下干燥,制成SA-PEO- FePc(SO3H)2 /PVA-CMC阳离子交换膜层。
3、壳聚糖阴膜液的制备
称取5克的CS,用质量分数为1%的乙酸水溶液搅拌溶解,配制成质量分数为5%壳聚糖乙酸水溶液100mL,边搅拌边缓慢滴加5 mL体积分数为2.5%的戊二醛溶液,减压脱泡,即可得到CS粘稠阴膜液。
4、PVA -CMC/ SA-PEO- FePc(SO3H)2 /CS双极膜的制备
将CS阴膜液流延于在膜表面纺有SA-PEO- SA-PEO- FePc(SO3H)2纤维丝的PVA-CMC阳离子交换膜层上,在室温下风干,即得PVA -CMC/ SA-PEO- SA-PEO- FePc(SO3H)2 /CS双极膜。

Claims (5)

1.一种改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法,该方法是在阳离子交换膜、阴离子交换膜之间,利用静电纺丝法,构建磺酸基金属酞菁改性的纳米纤维纺丝材料海藻酸钠-聚环氧乙烷为中间层的双极膜,其特征在于所述的海藻酸钠-聚环氧乙烷中间界面层的制备时:
1)在加热至60~70℃下,将海藻酸钠与聚环氧乙烷按等质量比溶解在去离子水中,制备成SA与PEO混合溶液,磁力搅拌4h后,加入磺酸基金属酞菁MPc(SO3H)x,并用超声波振荡1~5min,制备成SA-PEO-MPc(SO3H)x混合电纺丝溶液;
2)采用静电纺丝法将SA-PEO-MPc(SO3H)x混合溶液喷涂于制备的阳离子交换膜表面,之后浸在含有质量分数为10 % CaCl2的乙醇溶液中10 min,去离子水清洗,室温下干燥。
2.根据权利要求1所述的一种改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法,其特征在于所述的在上述混合电纺丝溶液中,SA质量分数为1~5%,PEO质量分数为1~5%,磺酸基金属酞菁质量分数为2~4%。
3.根据权利要求1所述的一种改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法,其特征在于所述的磺酸基金属酞菁MPc(SO3H)x的中心金属离子可以是铜离子、铁离子、钴离子、锡离子、钛离子、锌离子、铝离子或镍离子。
4.根据权利要求1所述的一种改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法,其特征在于所述的磺酸基金属酞菁MPc(SO3H)x中所带磺酸基数量X可以是2或4。
5.根据权利要求1所述的一种改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法,其特征在于所述的静电纺丝法,其条件为电压:15~20kV,喷口距离:10~15cm。
CN 201110269465 2011-09-13 2011-09-13 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法 Expired - Fee Related CN102336919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110269465 CN102336919B (zh) 2011-09-13 2011-09-13 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110269465 CN102336919B (zh) 2011-09-13 2011-09-13 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法

Publications (2)

Publication Number Publication Date
CN102336919A CN102336919A (zh) 2012-02-01
CN102336919B true CN102336919B (zh) 2012-12-19

Family

ID=45512896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110269465 Expired - Fee Related CN102336919B (zh) 2011-09-13 2011-09-13 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法

Country Status (1)

Country Link
CN (1) CN102336919B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617644B (zh) * 2020-05-12 2022-03-15 福建师范大学 一种侧链含卟啉水解离催化基团单片型聚芳醚酮双极膜制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899675A (zh) * 2009-10-13 2010-12-01 福建师范大学 一种双极膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899675A (zh) * 2009-10-13 2010-12-01 福建师范大学 一种双极膜及其制备方法

Also Published As

Publication number Publication date
CN102336919A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN102336916B (zh) 改性聚乙烯醇-壳聚糖为中间界面层的双极膜制备方法
CN102336918B (zh) 一种改性的聚苯乙烯纳米纤维为中间界面层的双极膜制备方法
CN106158426B (zh) 一种制备柔性超级电容器线状电极的方法
CN102352543B (zh) 改性海藻酸钠-羧甲基纤维素钠为中间界面层的双极膜制备方法
CN101279204B (zh) 高强度纳米纤维功能膜的制备方法
CN102336917B (zh) 改性聚四乙烯基吡啶为中间界面层的双极膜制备方法
CN102580549B (zh) 一种带有阴离子基团碳纳米管改性双极膜的制备方法
CN106935419A (zh) 一种钴镍双金属氧化物和石墨烯制备超级电容器电极材料的方法
WO2005057700A1 (en) Porous and continuous composite membrane and method of preparing the same
CN102468494B (zh) 一种全钒液流电池电极及其制备方法,以及全钒液流电池
CN104021948B (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
CN110265643A (zh) 一种Sb2O5/碳布柔性钠离子电池负极材料的制备方法
CN106531472B (zh) 一种聚吡咯/石墨烯/锰氧化物复合材料的制备方法
CN110289173A (zh) 一种高比电容的细菌纤维素基柔性氮掺杂石墨烯超级电容器电极材料及其制备方法和应用
CN108109855B (zh) 一种基于复合纱线的柔性超级电容器的制备方法
CN108286054B (zh) 一种电解二氧化碳制一氧化碳的电解池隔膜和应用方法
CN108538630A (zh) 一种生物质炭/石墨烯柔性复合膜的制备方法
Yusoff et al. An overview on the development of nanofiber‐based as polymer electrolyte membrane and electrocatalyst in fuel cell application
CN108232085A (zh) 聚离子液体包覆细菌纤维素膜及其制备方法
CN101138707A (zh) 以超支化聚合物为中间界面层的双极膜及其制备方法
CN105406091A (zh) 一种聚偏氟乙烯-杂多酸-壳聚糖复合质子交换膜的制备方法
CN111403184A (zh) 一种纳米碳掺杂MnO2异质结柔性电极的制备方法
CN103726233B (zh) 一种聚间苯二甲酰间苯二胺-聚丙烯腈复合纳米纤维膜的制备方法及其应用
CN1958856B (zh) 一种用于有机电化学合成过程的纳米碳纤维电催化电极的制备
CN102336919B (zh) 改性海藻酸钠-聚环氧乙烷为中间界面层的双极膜制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20150913

EXPY Termination of patent right or utility model