CN102149596A - 移动体及其控制方法 - Google Patents

移动体及其控制方法 Download PDF

Info

Publication number
CN102149596A
CN102149596A CN200980135755XA CN200980135755A CN102149596A CN 102149596 A CN102149596 A CN 102149596A CN 200980135755X A CN200980135755X A CN 200980135755XA CN 200980135755 A CN200980135755 A CN 200980135755A CN 102149596 A CN102149596 A CN 102149596A
Authority
CN
China
Prior art keywords
taking
seat
moving body
attitude
person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980135755XA
Other languages
English (en)
Other versions
CN102149596B (zh
Inventor
平哲也
松本洁
中井亮仁
大村吉幸
友国伸保
冈部康平
克利斯汀·奥特
高畑智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008233592A external-priority patent/JP5044515B2/ja
Priority claimed from JP2008234560A external-priority patent/JP4825856B2/ja
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Publication of CN102149596A publication Critical patent/CN102149596A/zh
Application granted granted Critical
Publication of CN102149596B publication Critical patent/CN102149596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1051Arrangements for steering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1056Arrangements for adjusting the seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/38General characteristics of devices characterised by sensor means for torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/44General characteristics of devices characterised by sensor means for weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/22Driver interactions by presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

提供具有高操作性能的移动体及其控制方法。根据本发明一个方式的移动体(1)包括:搭乘座席(8),用于搭乘者搭乘;底盘(13),支承搭乘座席(8);车轮(6),使底盘(13)移动;力传感器(9),输出与施加给搭乘座席(8)的座面的力相应的测量信号;驱动部(5),驱动所述搭乘座席;以及控制计算部(51),基于驱动部(5)的驱动量、搭乘座席(8)的平衡位置姿态、以及来自力传感器(9)的测量信号来计算用于驱动车轮(6)和驱动部(5)的指令值。

Description

移动体及其控制方法
技术领域
本发明涉及移动体及其控制方法。
背景技术
近年来,开发了在使搭乘者搭乘的状态下移动的移动体(专利文献1、2)。例如,在专利文献1~3中,在搭乘者搭乘的搭乘面(座面)上设置有力传感器(压力传感器)。并且,通过来自力传感器的输出来驱动车轮。即,力传感器成为操作装置进行输入。
在专利文献1的移动体中,通过向要前进的方向施加体重来进行移动。例如,当想要向前方前进时,搭乘者使上身向前方倾斜。即,搭乘者变为前倾姿态。并且,一旦变为前倾姿态,施加到搭乘座席的力就会发生变化。由力传感器检测该力。通过力传感器的检测结果来驱动球状轮胎。在专利文献1的图14中,在搭乘者坐在搭乘座席的状态下进行了倒立摆控制。专利文献2公开了轮椅型的移动体。在该移动体上设置有椅子和脚踏板。
另外,专利文献3公开了主动检测使用者的动作并根据检测结果自动动作的移动体。例如,通过多个压力传感器来计算使用者的重心。轮椅形状的移动体根据该重心位置而动作(图2)。
另外,专利文献4公开了用于使双脚行走型的移动体动作的接口装置。该接口装置具有椅子型形状。并且,在椅子的背面和座面设置有多个力传感器。通过四个力传感器来检测搭乘者的骨盆转动,并估计行走意向。然后,根据由力传感器估计出的行走意向来驱动双腿。另外,在该接口装置上设置有放脚台。
现有技术文献
专利文献
专利文献1:日本专利文献特开2006-282160号公报;
专利文献2:日本专利文献特开平10-23613号公报;
专利文献3:日本专利文献特开平11-198075号公报;
专利文献4:日本专利文献特开平7-136957号公报。
发明内容
发明要解决的问题
在专利文献1~3中,实际根据搭乘于移动体的搭乘者的姿态来移动。由此能够进行与实际移动的环境相应的操作。例如,搭乘者能够如下进行操作。当想要前进时,搭乘者向前方移动上身。即,搭乘者变为前倾姿态。于是,重心位置移向前方,施加给力传感器的力发生变化。由此,传感器检测出前进输入。相反地,当想要向后方移动时,搭乘者变为后倾姿态。于是,重心位置移向后方,能够检测出后倾输入。另外,当左右移动时,搭乘者向左右方向移动重心。由此,能够检测出左右的转弯输入。如此能够根据转弯输入、前进输入、后退输入而移动。
但是,在力传感器被设置在搭乘者搭乘的搭乘面上的移动体中存在下述的问题。例如,假定向斜右前方前进的情况。此时,如果移动体的机械结构处于固定,搭乘者就会受离心力。于是,使搭乘者的姿态额外地移向斜右前方,导致速度被加速。或者存在以下的问题:上身移向外侧,从而无法按照所想的那样向斜右前方前进。即,由于向力传感器的输入不被传递给搭乘者,因此难以直观地了解进行了何种程度的操作。尤其是,当施加离心力时,难以向搭乘者想要移动的方向进行操作。
这样,以往的移动体存在无法按照搭乘者的意图进行操作的问题。
本发明的目的在于提供具有高操作性能的移动体及其控制方法。
用于解决问题的手段
本发明的第一方式是一种移动体,包括:搭乘座席,所述搭乘座席用于搭乘者搭乘;主体部,所述主体部支承所述搭乘座席;移动机构,所述移动机构使所述主体部移动;传感器,所述传感器输出与施加到所述搭乘座席的座面的力相应的测量信号;搭乘座席驱动机构,所述搭乘座席驱动机构驱动所述搭乘座席,以改变所述搭乘座席的座面的角度;以及控制计算部,所述控制计算部基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算用于驱动所述移动机构和所述搭乘座席驱动机构的指令值。由此,搭乘者能够容易掌握操作量,因此能够改善操作性能。
根据本发明第二方式的移动体在上述的移动体的基础上还具有以下特征:还包括姿态检测部,所述姿态检测部输出与所述移动体的姿态角度相应的信号,所述搭乘座席的平衡位置姿态根据姿态检测部的输出而改变。由此能够以适当的操作量进行移动。
根据本发明第三方式的移动体在上述的移动体的基础上还具有以下特征:所述搭乘座席的平衡位置姿态发生改变,以使所述搭乘座席的搭乘面变为水平。由此能够改善乘坐舒适性。
根据本发明第四方式的移动体在上述的移动体的基础上还具有以下特征:所述搭乘座席的平衡位置姿态不管所述移动体的移动状况如何都保持恒定。由此能够简单地改善操作性能。
根据本发明第五方式的移动体在上述的移动体的基础上还具有以下特征:基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算所述搭乘座席驱动机构的目标驱动量,基于所述搭乘座席驱动机构的目标驱动量来计算所述移动体的前进后退移动速度。由此能够以适当的速度进行移动。
本发明的第六方式是一种移动体的控制方法,其中,所述移动体包括:搭乘座席,所述搭乘座席用于搭乘者搭乘;主体部,所述主体部支承所述搭乘座席;移动机构,所述移动机构使所述主体部移动;传感器,所述传感器输出与施加到所述搭乘座席的座面的力相应的测量信号;以及搭乘座席驱动机构,所述搭乘座席驱动机构驱动所述搭乘座席,以改变所述搭乘座席的座面的角度;所述控制方法包括以下步骤:输入所述搭乘座席的平衡位置姿态;以及基于来自所述传感器的测量信号、所述平衡位置姿态以及所述搭乘座席驱动机构的驱动量来计算用于驱动所述移动机构和所述搭乘座席驱动机构的指令值。
根据本发明第七方式的控制方法在上述控制方法的基础上还具有以下特征:通过设置在所述移动体上的姿态检测部来输出与所述移动体的姿态角度相应的信号,所述搭乘座席的平衡位置姿态根据姿态检测部的输出而改变。
根据本发明第八方式的控制方法在上述的控制方法的基础上还具有以下特征:所述搭乘座席的平衡位置姿态发生改变,以使所述搭乘座席的搭乘面变为水平。
根据本发明第九方式的控制方法在上述的控制方法的基础上还具有以下特征:所述搭乘座席的平衡位置姿态不管所述移动体的移动状况如何都保持恒定。由此能够简单地改善操作性能。
根据本发明第十方式的控制方法在上述的控制方法的基础上还具有以下特征:基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算所述搭乘座席驱动机构的目标驱动量,基于所述搭乘座席驱动机构的目标驱动量来计算所述移动体的前进后退移动速度。由此能够以适当的速度进行移动。
发明效果
根据本发明,能够提供具有高操作性能的移动体及其控制方法。
附图说明
图1是示意性地示出本发明涉及的移动体的前视图;
图2是示意性地示出本发明涉及的移动体的侧视图;
图3是用于说明绕各轴的动作的图;
图4是示出用于使移动体移动的控制系统的框图;
图5是示出用于使移动体的姿态变化的结构的立体图;
图6是示出实施方式1涉及的移动体的控制的流程图;
图7是示出实施方式1涉及的移动体的柔性控制的流程图;
图8是示出实施方式2涉及的移动体的控制的流程图;
图9是示出实施方式2涉及的移动体的柔性控制的流程图;
图10是用于说明移动体在下坡路移动时的姿态的图;
图11是示出用于使移动体移动的控制系统的框图;
图12是示出搭乘者搭乘在搭乘座席上的状态的图;
图13是示出搭乘者的姿态和输入方向的图;
图14是用于说明实施方式3中的搭乘者的姿态和输入力矩值的侧视图;
图15是用于说明实施方式4中的搭乘者的姿态和输入力矩值的侧视图;
图16是用于说明实施方式4中的搭乘者的姿态和输入力矩值的侧视图;
图17是示意性地示出用于实施方式5中的移动体的脚踏板的结构的侧视图;
图18是示出本实施方式5涉及的移动体的控制方法的流程图;
图19是示出搭乘者未携带行李的状态下的重心位置的图;
图20是示出搭乘者携带行李的状态下的重心位置的图;
图21是示出本实施方式6涉及的移动体的控制方法的流程图;
图22是示出设置于座面的接触传感器的结构的顶视图;
图23A是示出座面上的搭乘位置的偏差的顶视图;
图23B是示出座面上的搭乘位置的偏差的顶视图;
图23C是示出座面上的搭乘位置的偏差的顶视图;
图24是示出本实施方式8涉及的移动体的控制方法的流程图;
图25是示出移动体的静态稳定区域的顶视图;
图26是示出本实施方式8涉及的移动体的控制系统的结构的框图;
图27是示出本实施方式8涉及的移动体的控制方法的流程图;
图28是示出用于本实施方式8涉及的移动体的脚踏板的结构的侧视图;
图29是示出在倾斜面上移动的移动体的情况的侧视图;
图30是用于说明对在倾斜面上移动的移动体施加偏移时的情况的图;
图31是示出本实施方式9涉及的移动体的控制方法的流程图。
附图标记说明
1移动体,2框架部,3搭乘部,4姿态检测部,5驱动部,501横摆轴机构,501a编码器,502俯仰轴机构,502a编码器,503侧倾轴机构,503a编码器,603驱动马达,603a编码器,6车轮,601前轮,602后轮,603驱动马达,603a编码器,8搭乘座席,8a座面,9力传感器,10脚踏板,11外壳,12辨别部,13底盘,14搭乘位置检测部,17脚踏板驱动部,51控制计算部,52蓄电池,53传感器处理部,71搭乘者,72臀部,73大腿部,75重心位置,76行李,77开关,78静态稳定区域,201第一平行连杆机构,201a横连杆,201b纵连杆,202第二平行连杆机构,202a横连杆,202b纵连杆,301支承轴。
具体实施方式
以下,基于附图来详细说明本发明涉及的小型车辆的实施方式。但本发明不限于以下的实施方式。另外,为了使说明清楚,以下的记载和附图酌情进行了简化。
<整体结构>
参照附图来说明本发明涉及的移动体1的整体结构。首先,使用图1、图2来说明移动体1的整体结构。图1是示意性地示出移动体1的结构的前视图,图2是示意性地示出移动体1的结构的侧视图。另外,图1、和图2示出了XYZ的直角座标系。Y轴表示移动体1的左右方向,X轴表示移动体1的前后方向,Z轴表示竖直方向。因此,X轴对应于侧倾轴,Y轴成为俯仰轴,Z轴成为横摆轴。在图1、2中,将+X方向作为移动体1的前方向进行说明。另外,图1、2所示的移动体1的基本的整体结构在以下说明的各实施方式中是相同的。
如图1所示,移动体1具有搭乘部3和底盘13。底盘13是移动体1的主体部,并支承搭乘部3。底盘13包括姿态检测部4、车轮6、脚踏板10、外壳11、控制计算部51、以及蓄电池52等。车轮6包括前轮601和后轮602。这里,对包括一个前轮601和两个后轮602的三轮型的移动体1进行说明。
搭乘部3具有搭乘座席8以及力传感器9。并且,搭乘座席8的上表面成为座面8a。即,移动体1在搭乘者乘坐在座面8a上的状态下移动。座面8a可以是平面,也可以具有与臀部形状相应的形状。另外,也可以在搭乘座席8上设置靠背。即,也可以将搭乘座席8形成为轮椅形状。也可以使搭乘座席8具有缓冲性,以提高乘坐舒适性。当移动体1处于水平面上时,座面8a成为水平。力传感器9检测搭乘者的体重移动。即,力传感器9检测向搭乘座席8的座面8a施加的力。并且,力传感器9输出与施加给座面8a的力相应的测量信号。力传感器9被设置在搭乘座席8的下侧。即,在底盘13和搭乘座席8之间配置有力传感器9。
作为力传感器9,例如可以使用六轴力传感器。在此情况下,如图3所示,测量三轴方向上的平移力(SFx、SFy、SFz)和绕各轴的力矩(SMx、SMy、SMz)。这些平移力和力矩是将力传感器9的中心取为原点的值。当将向移动体1的传感器处理部输入的测量信号设为力矩(Mx、My、Mz)、将这些力矩的控制座标原点设为图2所示的(a、b、c)时,Mx、My、Mz能够分别如下表示。
Mx=SMx+c·SFy-b·SFz
My=SMy+a·SFz-c·SFx
Mz=SMz+b·SFx-a·SFy
另外,图3是用于说明各轴的图。作为力传感器9,只要是能够测量力矩(Mx、My、Mz)的传感器即可。也可以将能够测量绕各轴的力矩(SMx、SMy、SMz)的三轴力传感器配置在控制座标原点来直接测量Mx、My、Mz。另外,也可以设置三个单轴力传感器。另外,也可以是应变计或使用了电位计的模拟操纵杆等。即只要是能够直接或间接测量绕三轴的力矩的装置即可。并且,力传感器9输出三个力矩(Mx、My、Mz),作为测量信号。
另外,搭乘座席8包括用于检测搭乘位置的搭乘位置检测部14。搭乘位置检测部14具有多个接触传感器等。例如,多个接触传感器在搭乘座席8的座面8a上排列成阵列状。接触传感器在有物体接触到其上表面的状态下输出接触信号。并且,搭乘位置检测部14基于来自多个接触传感器的接触信号来检测搭乘者的搭乘位置。具体地说,将搭乘者搭乘在座面8a的基准位置上的情形作为原点,来检测搭乘者实际搭乘的搭乘位置的偏差量。搭乘位置的偏差量针对X方向和Y方向分别检测。能够根据输出接触信号的接触传感器的分布的差异来检测搭乘位置。
在作为移动体1的主体部分的底盘13上设置有姿态检测部4、车轮6、脚踏板10、外壳11、控制计算部51、以及蓄电池52等。外壳11具有箱体形状,其前方下侧突出。另外,在该突出的部分之上配置有脚踏板10。脚踏板10被设置在搭乘座席8的前方侧。因此,在搭乘者搭乘在搭乘座席8上的状态下,搭乘者的双脚放在脚踏板10上。
脚踏板10包括用于辨别是否搭乘了搭乘者的辨别部12。辨别部12例如具有多个接触传感器等。多个接触传感器例如在脚踏板10的上表面被排列成阵列状。并且,各接触传感器在有物体接触到其上表面的状态下输出接触信号。基于该接触信号来辨别是否有搭乘者的脚掌接触。当接触的接触传感器的集合与脚掌形状相似时,辨别为搭乘了搭乘者。即,根据接触的区域是否与脚掌的形状相似来辨别是否搭乘了搭乘者。另外,能够辨别是否搭乘了搭乘者还是搭乘了搭乘者以外的物体。通过不是利用力传感器9而利用设置在脚踏板10上的辨别部12来辨别搭乘者的有无,能够可靠地进行辨别。即,在物体放置在搭乘座席8上的情况下,也能够防止误认为搭乘了搭乘者。
在外壳11中内置有驱动马达603、姿态检测部4、控制计算部51、以及蓄电池52。蓄电池52向驱动马达603、姿态检测部4、控制计算部51、辨别部12、搭乘位置检测部14以及力传感器9等各电气设备供应电源。姿态检测部4例如具有陀螺传感器或加速度传感器等,检测移动体1的姿态。即,当底盘13倾斜时,姿态检测部4检测其倾斜角度和倾斜角速度。姿态检测部4检测绕侧倾轴的姿态的倾斜角度、以及绕俯仰轴的姿态的倾斜角度。并且,姿态检测部4将姿态检测信号输出给控制计算部51。
车轮6可旋转地安装在外壳11上。这里,设置有三个圆盘状的车轮6。车轮6的一部分比外壳11的下表面向下侧突出。从而车轮6与地面接触。两个后轮602被设置在外壳11的后部。后轮602是驱动轮,通过驱动马达603而旋转。即,通过驱动马达603的驱动,后轮602绕其车轴旋转。后轮602被设置在左右两侧。另外,后轮602中内置有用于读取其旋转速度的编码器。左后轮602的车轴和右后轮602的车轴被配置在同一直线上。
另外,车轮6包括前轮601。并且,一个前轮601设置在外壳11的前部中央。因此,前轮601在Y方向上配置在两个后轮602之间。搭乘座席8在X方向上设置在前轮601的车轴和后轮602的车轴之间。前轮601是从动轮(辅助轮),根据移动体1的移动而旋转。即,前轮601根据通过后轮602的旋转而移动的方向和速度而旋转。这样,通过在后轮602的前面设置作为辅助轮的前轮601,能够防止跌倒。前轮601被设置在脚踏板10的下方。
控制计算部51是具有CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信接口等的计算处理装置。另外,控制计算部51具有可装卸的HDD、光盘、光磁盘等,存储各种程序和控制参数等,并根据需要将该程序和数据提供给存储器(没有图示)等。当然,控制计算部51在物理上不限于一个结构。控制计算部51进行用于根据来自力传感器9的输出来控制驱动马达603的动作的处理。
<实施方式1>
接着,使用图4来说明用于使实施方式1涉及的移动体1移动的控制系统。图4是示出用于使移动体1移动的控制系统的结构的框图。首先,通过力传感器9来检测施加给座面8a的力。传感器处理部53对来自力传感器9的测量信号进行处理。即,对与从力传感器9输出的测量信号对应的测量数据进行计算处理。由此,计算出输入到控制计算部51的输入力矩值。另外,传感器处理部53可以内置于力传感器9中,也可以内置于控制计算部51中。
这样,由力传感器9测量出的力矩(Mx、My、Mz)被变换为绕各轴的输入力矩值(Mx′、My′、Mz′)。并且,输入力矩值成为为使各后轮602动作而输入的输入值。这样,传感器处理部53针对各轴计算输入值。输入力矩值的大小根据力矩的大小而定。输入力矩值的符号根据所测量出的力矩的符号而定。即,当力矩为正时,输入力矩值也为正,当力矩为负时,输入力矩值也为负。例如,当力矩Mx为正时,输入力矩值Mx′也为正。因此,该输入力矩值成为与搭乘者想要的操作对应的输入值。
控制计算部51基于输入力矩值(Mx′、My′、Mz′)来求出输入转矩τi。例如,输入转矩τi=(Mx′、My′、Mz′)。并且,基于该转矩τi进行控制计算。由此计算出用于驱动驱动马达603的指令值。通常,转矩τi越大,指令值就越大。该指令值被输出给驱动马达603。另外,在本实施方式中,由于左右后轮602是驱动轮,因此图中示出了两个驱动马达603。并且,一个驱动马达603使右后轮602旋转,另一个驱动马达603使左后轮602旋转。驱动马达603基于指令值使后轮602旋转。即,驱动马达603施加用于使作为驱动轮的后轮602旋转的指令转矩。当然,驱动马达603也可以经由减速器等向后轮602施加旋转转矩。例如,当从控制计算部51输入了作为指令值的指令转矩时,驱动马达603以该指令转矩旋转。由此,后轮602旋转,从而移动体1以期望的速度向期望的方向移动。当然,指令值不限于驱动马达603的转矩,也可以是旋转速度、转数。
另外,在驱动马达603中分别内置有编码器603a。该编码器603a检测驱动马达603的旋转速度等。并且,所检测出的旋转速度被输入给控制计算部51。控制计算部51基于当前旋转速度和作为目标的旋转速度来进行反馈控制。例如,通过对目标旋转速度和当前旋转速度之差乘以适当的反馈增益来计算出指令值。当然,输出到左右驱动马达603的指令值也可以是不同的值。即,当向前方或后方直线前进时,进行控制使得左右后轮602的旋转速度相同,当左右转弯时,进行控制使得左右后轮602方向相同且旋转速度不同。另外,当就地转弯时,进行控制使得左右后轮602向相反方向旋转。
例如,当搭乘者采取前倾姿态时,就会有绕俯仰轴的力施加在搭乘座席8上。于是,力传感器9检测出+My的力矩(参照图3)。根据该+My的力矩,传感器处理部53计算出用于使移动体1平移的输入力矩值My′。同样地,传感器处理部53基于Mx计算出输入力矩值Mx′,基于Mz计算出输入力矩值Mz′。由此,能够求出转矩τi。
控制计算部51基于输入力矩值和编码器的读取值来计算指令值。由此,左右后轮602以期望的旋转速度旋转。同样地,当向右方向转弯时,搭乘者向右侧移动体重。由此,对搭乘座席施加绕侧倾轴的力,力传感器9检测出+Mx的力矩。根据该+Mx的力矩,传感器处理部53计算出用于使移动体1向右方向转弯的输入力矩值Mx′。即,能够求出与移动体1移动的方向对应的转向角。并且,根据输入力矩值,控制计算部51计算出指令值。根据该指令值,左右后轮602以不同的旋转速度旋转。即,左侧后轮602以比右侧后轮602快的旋转速度旋转。
基于My′,求出在前后方向上平移的分量。即,确定以相同的旋转速度向相同的方向驱动左右后轮602的驱动转矩等。从而,My′、即My越大,移动体1的移动速度就越快。基于Mx′,求出移动方向、即针对转向角的分量。即,确定左右后轮602的旋转转矩差。从而,Mx′、即Mx越大,左右后轮602的旋转速度的差异就越大。
基于Mz′,求出针对就地转弯的分量。即,求出通过使左右后轮602向相反方向旋转而就地转弯的分量。因此,Mz′、即Mz越大,左右后轮602的相反方向上的旋转速度就越大。例如,在Mz′为正的情况下,当从上侧观察时,计算出从上侧观察时绕左侧就地转弯的驱动转矩等。即,右侧后轮602向前方旋转,左侧后轮602以相同的旋转速度向后方旋转。
另外,通过合成基于各个输入力矩值Mx′、My′、Mz′算出的三个分量,计算出用于驱动两个后轮602的指令值。由此,分别计算出针对左右后轮602的指令值。计算驱动转矩、旋转速度等来作为指令值。即,通过合成针对与输入力矩值Mx′、My′、Mz′对应的每个分量计算出的值,来计算出针对左右的后轮602的指令值。这样,移动体1根据基于测得的力矩Mx、My、Mz算出的输入力矩值Mx′、My′、Mz′而移动。即,基于通过搭乘者的体重移动产生的力矩Mx、My、Mz来确定移动体1的移动方向和移动速度。
这样,通过搭乘者的动作来进行用于使移动体1移动的输入。即,根据搭乘者的姿态变化来检测绕各轴的力矩。并且,移动体1基于这些力矩的测量值而移动。由此搭乘者能够简便地操作移动体1。即,不需要操纵杆或方向盘等的操作,可以仅通过移动体重来进行操作。例如,当想要向斜右前方移动时,向右前方施加体重。另外,当想要向斜左后方移动时,向左后方施加体重。由此,搭乘者的重心位置发生变化,从而进行与其变化量相应的输入。即,通过检测与搭乘者的重心移动相应的力矩,能够直观地进行操作。
另外,在移动体1上设置有用于驱动搭乘座席8的驱动部5。以下,说明对该驱动部5的控制。驱动部5具有横摆轴机构501、俯仰轴机构502以及侧倾轴机构503。横摆轴机构501、俯仰轴机构502以及侧倾轴机构503是旋转关节,通过它们的动作,搭乘座席8的姿态发生变化。横摆轴机构501使搭乘座席8绕横摆轴旋转。俯仰轴机构502使搭乘座席8绕俯仰轴旋转。侧倾轴机构503使搭乘座席8绕侧倾轴旋转。由此座面8a相对于底盘13的角度发生变化。即,使得座面8a相对于底盘13倾斜。从而,驱动部5用作驱动搭乘座席8的驱动部,横摆轴机构501、俯仰轴机构502以及侧倾轴机构503分别具有关节驱动马达和減速器。并且,分别设置有用于检测该关节马达的转角的编码器501a、502a、503a。
控制计算部51如上所述根据来自传感器处理部53的转矩来进行控制计算。并且,控制计算部51输出用于驱动横摆轴机构501、俯仰轴机构502、以及侧倾轴机构503的关节的指令值。即,控制计算部51基于转矩来计算各轴机构的目标关节角度。并且,控制计算部51计算与目标关节角度相应的指令值,并向各马达输出该指令值。由此,横摆轴机构501、俯仰轴机构502、以及侧倾轴机构503的各关节被调整到目标关节角度。即,各轴机构进行驱动以追随目标关节角度。由此,移动体1的姿态发生变化,从而能够将搭乘座席8的座面8a调整到期望的角度。
这样,座面8a的倾斜角度根据针对力传感器9的输入而发生变化。由此,搭乘者能够直观地掌握输入值。由此能够改善操作性能。
接着,使用图5来说明用于使移动体1的姿态变化的结构。图5是示出用于使姿态变化的机构的结构的图,并示出了底盘13的内部结构。如图5所示,在底盘13上设置有用于控制姿态的框架部2。框架部2被配置在外壳11内。在框架部2中,第一平行连杆机构201和第二平行连杆机构202以避免二者在交差部分彼此限制旋转的方式被连结成俯视情况下的T字状。
第一平行连杆机构201沿前后方向配置。该第一平行连杆机构201包括四个横连杆201a、前后纵连杆201b。
横连杆201a全部具有相等的长度。虽然省略了图示,但在横连杆201a的两端形成有嵌入用于与纵连杆201b连结的连结轴的嵌合孔。两个横连杆201a被上下配置并构成一组,并且两组的横连杆201a组以中间夹着纵连杆201b的方式被配置在该纵连杆201b的左侧和右侧。
虽然省略了图示,但用于与横连杆201a连结的连结轴从纵连杆201b的左右两侧部以在上下方向等间隔地彼此相对地配置的方式向左右方向突出。该连结轴作为横连杆201a和纵连杆201b的旋转轴经由轴承等被嵌入到横连杆201a的嵌合孔中。
本实施方式的前侧的纵连杆201b被形成为L字形状。横连杆201a经由连结轴可旋转地连结在纵连杆201b的垂直片的上下端部上。在纵连杆201b的水平片的顶端设置有作为车轮6的自由式滚轮。当移动体1的移动方向变化时,滚轮的方向根据其变化而旋转。后侧的纵连杆201b包括比下侧的横连杆201a更向下方突出的突出部。虽然省略了图示,但用于与第二平行连杆机构202连结的连结轴从该突出部的前后两侧部以彼此相对配置的方式向前后方向突出。另外,虽然省略了图示,但用于与第二平行连杆机构202的连结轴还从后侧的纵连杆201b的前后两侧部中的上下横连杆201a之间的部分以彼此相对配置的方式向前后方向突出。
第二平行连杆机构202沿左右方向配置。该第二平行连杆机构202包括四个横连杆202a、左右的纵连杆202b。
横连杆202a全部具有相等的长度。虽然省略了图示,但在横连杆202a的两端形成有嵌入用于与纵连杆202b连结的连结轴的嵌合孔。另外,虽然省略了图示,但在横连杆202a的长度方向的大致中央位置形成有嵌入用于与第一平行连杆机构201连结的连结轴的嵌合孔。两个横连杆202a被上下配置并构成一组,并且两组的横连杆202a组以中间夹着纵连杆202b和第一平行连杆机构201的后侧的纵连杆201b的方式被配置在该纵连杆202b和第一平行连杆机构201的后侧的纵连杆201b的前侧和后侧。从第一平行连杆机构201的后侧的纵连杆201b突出的连结轴作为第一平行连杆机构201和第二平行连杆机构202的旋转轴,经由轴承等嵌入到横连杆202a的大致中央位置的嵌合孔中。
虽然省略了图示,但纵连杆202b和横连杆202a的连结轴从纵连杆202b的前后两侧部以在上下方向等间隔地彼此相对地配置的方式向前后方向突出。该连结轴作为横连杆202a和纵连杆202b的旋转轴,经由轴承等被嵌入到横连杆202a的端部的嵌合孔中。
其结果,第一平行连杆机构201被构成为能够不受第二平行连杆机构202的限制而向前后方向旋转。另一方面,第二平行连杆机构202被构成为能够不受第一平行连杆机构201的限制而向左右方向旋转的结构。
搭乘部3设置在姿态检测部4之上,并与框架部2的旋转连动。具体地说,搭乘部3经由支承轴301而与第一平行连杆机构201的上下横连杆201a连结。虽然省略了图示,但该支承轴301与第一平行连杆机构201的上下横连杆201a的连结轴从该支承轴301的上部和下部的左右两侧部向左右方向突出。虽然省略了图示,但在第一平行连杆机构201的横连杆201a的长度方向的大致中央位置形成有用于嵌入从支承轴301突出的连结轴的嵌合孔。支承轴301被插在以中间夹着纵连杆201b的方式配置于该纵连杆201b的左右的横连杆201a之间。从支承轴301突出的连结轴经由轴承等嵌入到第一平行连杆机构201的嵌合孔中。其结果,当第一平行连杆机构201向前后方向旋转时,支承轴301和纵连杆201b在维持平行状态的状态下连动。
通过驱动部5的驱动,框架部2动作。由此移动体1的姿态发生变化。通过底盘13倾斜,搭乘部3的角度发生变化。另外,驱动部5中设置有绕横摆轴旋转的横摆轴机构501、绕俯仰轴旋转的俯仰轴机构502、以及绕侧倾轴旋转的侧倾轴机构503。横摆轴机构501例如被设置在支承轴301和姿态检测部4之间。即,横摆轴机构501在三个机构中被设置在最靠近搭乘部3的位置。另外,横摆轴机构501是用于使搭乘部3绕横摆轴旋转的旋转关节,俯仰轴机构502和侧倾轴机构503是用于使搭乘部3绕轴旋转的旋转关节。
接着,使用图6来说明移动体1的控制方法。图6是示出移动体1的控制方法的流程图。图6示出了移动体1的一个控制周期。按照该流程图进行移动体1的移动控制和姿态控制。即,图6示出了后轮602的驱动和驱动部5的驱动的控制方法。
首先,检测横摆轴机构501、俯仰轴机构502、侧倾轴机构503的关节角(步骤S101)。即,通过设置于各轴机构的编码器501a、502a、503a来检测各自的关节的角度。移动体1成为与该关节角度相应的姿态。接着,通过力传感器9来检测力矩的值(步骤S102)。即,测定力矩(Mx、My、Mz)。然后,进行力传感器9的偏移修正(步骤S103)。即,当搭乘者乘坐的位置发生了偏离时,对该位置施加偏移。向控制目标原点施加偏移,以便针对所输入的力矩,修正搭乘位置的位置偏差。由此能够算出修正了位置偏差的力矩(Mx’、My’、Mz’)。另外,步骤S101和步骤S102的顺序可以颠倒,也可以同时进行步骤S101和步骤S102。
输入座面的平衡位置姿态φid(步骤S104)。如上所述,当移动体1在平坦的地面上移动时,座面8a处于水平的位置为平衡位置姿态。此时的横摆轴机构501、俯仰轴机构502、侧倾轴机构503的关节角度对应于平衡位置姿态。从而,在本实施方式中,平衡位置姿态是固定的。即,不管移动状况如何,均选择使各轴的关节角度保持恒定的平衡位置姿态。
接着,进行柔性补偿(步骤S105)。通过这里的柔性控制来确定横摆轴机构501、俯仰轴机构502、侧倾轴机构503的目标关节角度。柔性控制是指进行具有虚拟弹簧特性、虚拟阻尼特性的行为的控制。通过横摆轴机构501、俯仰轴机构502、侧倾轴机构503的动作显示出弹簧特性、阻尼特性。通过引入该柔性控制,座面8a可根据搭乘者的力而倾斜。这里,使用横摆轴机构501、俯仰轴机构502以及侧倾轴机构503的关节角度、力传感器9的力矩、座面8a的平衡位置姿态来进行柔性控制。由此计算出横摆轴机构501、俯仰轴机构502、侧倾轴机构503的目标关节角度。关于该步骤的详细情况,将在后面进行说明。
另外,对座面8a进行控制(步骤S106)。即,驱动设置于各轴的马达,以使横摆轴机构501、俯仰轴机构502、侧倾轴机构503分别被调整到目标关节角度。由此,座面8a的倾斜度发生变化,到达当前目标位置姿态。这里,座面8a的倾斜度根据力传感器9的输出而变化。即,与对座面8a的力相应地,搭乘者从座面8a接受力。因此,搭乘者19能够直观地掌握对力传感器9的输入。由此能够改善操作性能,能够按照搭乘者19的意图移动。
接着,检测车轮转角、速度、转矩(步骤S107)。即,基于编码器603a的输出来检测左右后轮602的动作状态。并且,根据绕俯仰轴的目标关节角度来计算移动体1的前进后退速度(步骤S108)。此时,基于在步骤S105中求得的当前目标位置姿态φi来计算前进后退速度。即,控制计算部51基于俯仰轴机构502的目标关节角度来计算前进后退速度。因此,作为目标的前进后退速度根据力传感器9的力矩、座面的平衡位置姿态以及各关节角度来确定。
另外,基于侧倾轴、横摆轴的关节角度来计算移动体1的转弯速度(步骤S109)。控制计算部51基于在步骤S105中求得的当前目标位置姿态φi来计算转弯速度。即,控制计算部51基于横摆轴机构501、侧倾轴机构503的目标关节角度来计算前进后退速度。由此,作为目标的前进后退速度根据力传感器9的力矩、座面的平衡位置以及各关节角度来确定。
另外,通过合成前进后退速度和转弯速度来计算左右后轮602的旋转转矩(步骤S110)。即,计算用于使后轮602旋转的旋转转矩。左右后轮602的转矩成为指令值输出到驱动马达603。这里,使用在步骤S107中检测出的后轮602的转角和目标速度来进行反馈控制。控制计算部51输出用于驱动驱动马达603的指令值。由此,移动体1以接近在步骤S108中算出的前进后退速度以及在步骤S109中算出的转弯速度的速度移动。因此根据力传感器9的输入,移动体1按照搭乘者的意图而移动。
接着,使用图7来说明步骤S105的柔性补偿。图7是示出柔性控制的详细情况的流程图。首先,搭乘者移动体重(步骤S201)。即,为了使移动体1移动,通过体重移动来进行输入。由此,施加给力传感器9的力发生变化。由力传感器9检测施加到座面8a的绕三轴的转矩τi(步骤S201)。该转矩τi可基于输入力矩来算出。分别算出绕横摆轴的转矩τθz(=Mz′)、绕俯仰轴的转矩τθy(=My′)、绕侧倾轴的转矩τθx(=Mx′)。如此,τi是转矩,包含针对侧倾、俯仰、横摆的分量。即,τi包含τθx、τθy、τθz的三个分量。
另外,与步骤S201、S202同时输入座面的平衡位置姿态φid(步骤S203)。该平衡位置姿态φid表示作为横摆轴机构501、俯仰轴机构502、侧倾轴机构503的基准的基准位置。即,成为各轴机构的基准的关节角度被输入到控制计算部51。在本实施方式中,座面的平衡位置姿态φid的值被固定。成为平衡位置姿态φid的关节角度被存储在控制计算部51的存储器等中。并且,通过读出该关节角度来输入平衡位置姿态φid。当移动体1在平坦的地面上移动时,座面8a达到水平的位置为平衡位置。因此,各轴机构中的固定的关节角度表示平衡位置姿态φid。平衡位置姿态φid绕各轴而被确定。平衡位置姿态φid包括绕侧倾轴的平衡位置姿态φθxd、绕俯仰轴的平衡位置姿态φθyd、绕横摆轴的平衡位置姿态φθzd这三个分量。这些分量对应于成为各轴机构的基准的关节角度。
接着,基于转矩τi和平衡位置姿态φid来求出座面的当前目标位置姿态φi(步骤S204)。这里,控制计算部51基于步骤S204中记载的方程式来计算搭乘部3的当前目标位置姿态φi。即,通过求解步骤S204中记载的方程式,能够算出当前目标位置姿态φi。当前目标位置姿态φi例如包含横摆轴机构501的目标关节角度、俯仰轴机构502的目标关节角度、侧倾轴机构503中的目标关节角度。从而,当前目标位置姿态φi包括φθx、φθy、φθz这三个分量。各轴机构中的目标关节角度基于转矩τi和平衡位置姿态φid来算出。
在步骤S204的方程式中,Mi是惯性矩阵,Di是粘性系数矩阵,Ki是刚度矩阵,它们均为3×3的矩阵。惯性矩阵、粘性系数矩阵、刚度矩阵能够根据移动体1的结构、动作来设定。另外,φi、φid上标注的“·”(点)表示时间微分。当标注一个点时,表示一次微分,当标注两个点时,表示二次微分。例如,当在φi上标注一个点时,变为目标姿态速度,当在φi上标注两个点时,变为目标姿态加速度。同样地,当在φid上标注一个点时,变为平衡位置姿态速度,当在φid上标注两个点时,变为平衡位置姿态加速度。在本实施方式中,由于平衡位置姿态φid固定,因此平衡位置姿态速度、平行位置姿态加速度基本为0。
另外,基于当前目标位置姿态φi来进行移动控制(步骤S205)。另外,与移动控制同时进行座面的倾斜度控制(步骤S206)。在移动控制中,如步骤S108和步骤S109所示,基于当前目标位置姿态φi来计算前进后退速度和转弯速度。即,根据当前目标位置姿态φθy来确定移动体1的前进后退速度。φθy的值越大,前进后退速度就越大。另外,根据当前目标位置姿态φθx、φθz来确定移动体1的转弯速度。φθx、φθz的值越大,转弯速度就越大。另外,基于前进后退速度和转弯速度来计算左右后轮602的旋转转矩。这里,通过合成前进后退速度和转弯速度来计算针对左右后轮602的目标旋转速度。另外,基于当前旋转速度和目标旋转速度之差来进行用于计算旋转转矩的反馈控制。控制计算部51将该旋转转矩作为指令值输出给驱动马达603。如此来进行移动控制。
座面8a的倾斜度控制也基于当前目标位置姿态φi来进行。即,将当前目标位置姿态φi作为输入,计算针对各轴机构的指令值。基于当前目标位置姿态φi来计算各轴机构的指令值。并且,横摆轴机构501、俯仰轴机构502、侧倾轴机构503根据该指令值而驱动。由此,座面8a的倾斜度发生变化,以达到横摆轴机构501的目标关节角度、俯仰轴机构502的目标关节角度、侧倾轴机构503的目标关节角度。如此,各轴机构进行驱动以追随目标关节角度。由此,搭乘部3的姿态发生变化,座面8a的倾斜度发生变化。由此搭乘者从座面8a受力。并且,座面8a被调整到当前目标位置姿态φi。
如此,利用当前目标位置姿态φi来进行移动控制、座面8a的倾斜度控制。即,基于当前目标位置姿态φi算出了针对各马达的指令值。控制计算部51基于驱动搭乘座席的驱动部5的驱动量、座面8a的平衡位置姿态、以及来自力传感器9的测量信号来计算用于驱动后轮602和驱动部5的指令值。
如此,在底盘13上固定搭乘座席8的方法没有采用刚性结合,而是利用了相对于输入进行某种程度的变形、位移的构造。由此能够进行如弹簧那样进行柔性动作的控制。即,驱动部5起到如汽车的悬架那样的作用。另外,基于力传感器9的检测结果来控制驱动部5。
由此能够改善操作性能。即,通过绕各轴的机构进行驱动,能够直观地掌握以多少的操作量进行了操作。能够识别实际操作量和想要的操作量的差异。因此能够抑制实际操作量相对于想要的操作量的偏差。另外,即使在搭乘者受离心力的情况下,也可进行用于按意图移动的操作。即,能够防止速度过度提高或速度过度下降。由此能够实现操作性能高的移动体1。
在本实施方式中,不管移动状况如何,成为平衡位置姿态的关节角度均为恒定。搭乘者容易掌握操作量。例如,当搭乘者放松时,座面8a恢复到平衡位置姿态。由此能够改善操作性能。另外,移动控制也基于当前目标位置姿态φi来进行。由此能够按照搭乘者的意图来计算前进后退速度和转弯速度。由此能够改善操作性能。控制计算部51基于驱动部5的驱动量、搭乘座席8的平衡位置姿态φid以及来自力传感器9的测量信号来计算用于驱动后轮602和驱动部5的指令值。由此,能够可靠地计算出指令值,能够按搭乘者的意图移动。
<实施方式2>
本实施方式与实施方式1相比不同点在于平衡位置姿态的输入。即,在本实施方式中,平衡位置姿态是动态变化的。例如,当移动体1在倾斜面或台阶面上移动时,座面8a根据该倾斜面等而倾斜。因此,在本实施方式中,依照倾斜面来驱动驱动部5。这里,驱动驱动部5,使得即使在倾斜面上座面也接近水平。从而,即使在倾斜面上移动或者以一个轮子位于台阶上的状态移动的情况下,操作性能也变高。其余的结构和控制由于与实施方式1相同,因此省略说明。
使用图8至图10来说明本实施方式涉及的移动体1的控制方法。图8是与实施方式1所示的图6对应的流程图。图9是与于实施方式1所示的图7对应的流程图。图10是示出移动当中的移动体1的侧视图。
在本实施方式中,根据姿态检测部4的输出来改变平衡位置姿态。即,姿态检测部4检测移动体1的姿态。因此,当移动体1移动的地面不平坦时,姿态检测部4的输出发生变化。例如,如图10所示,当移动体1从平坦面向倾斜面移动时,姿态检测部4检测移动体1的姿态变化。并且,根据姿态变化来动态地改变平衡位置姿态。从而,在倾斜面上移动时和在平坦面上移动时,平衡位置姿态的关节角度是不同的。
因此,首先,如图8所示,与实施方式1同样地检测侧倾轴、俯仰轴、横摆轴的关节角度(步骤S301)。并且,通过姿态检测部4来检测倾斜度(步骤S302)。即,通过姿态检测部4来检测由地面引起的姿态变化。由此能够检测出图10所示的倾斜面的倾斜角度Δφi。另外,步骤S301和步骤S302也可以同时进行。然后,与实施方式1同样地通过力传感器来检测力矩的值(步骤S303),并且进行传感器9的偏移修正(步骤S304)。
之后,输入座面的平衡位置姿态φid(步骤S305)。这里,平衡位置姿态φid依据由姿态检测部4检测出的姿态变化而变化。即,在倾斜面上移动的过程中,也输入使座面8a变为水平的平衡位置姿态φid。因此,平衡位置姿态φid的值被修正与倾斜面的倾斜角度Δφi相应的量。目标关节角度被改变与地面倾斜相应的量。另外,当姿态检测部4具有三轴陀螺传感器时,能够检测出绕侧倾、俯仰、横摆轴的姿态变化。在此情况下,修正绕侧倾轴的平衡位置姿态φθxd、绕俯仰轴的平衡位置姿态φθyd、绕横摆轴的平衡位置姿态φθzd。控制驱动部5,以使座面8a而与水平面平行,而不变为斜面。
然后,进行柔性补偿(步骤S306)。与实施方式1同样,利用侧倾轴、俯仰轴、横摆轴的关节角度、由力传感器检测出的力矩的值、以及座面的平衡位置姿态φid。当然,座面8a的平衡位置姿态φid依据地面而变化。通过柔性控制来控制座面8a(步骤S307)。与实施方式1同样,驱动设置于各轴的马达,以使横摆轴机构501、俯仰轴机构502、侧倾轴机构503分别被调整到目标关节角度。由此座面8a的倾斜度改变,达到当前目标位置姿态φi。
接着,与实施方式1同样,检测车轮转角、速度、转矩(步骤S308)。然后,根据绕俯仰轴的角度来计算移动体1的前进后退速度(步骤S309)。此时,控制计算部51基于从当前目标位置姿态φi减去倾斜面的倾斜角度Δφi而得的差来计算前进后退速度。即,基于当前目标位置姿态φθy和Δφθy之差来计算出前进后退速度。
基于侧倾轴、横摆轴的角度来计算移动体1的转弯速度(步骤S310)。这里,也与步骤S309同样地,控制计算部51基于从当前目标位置姿态φi减去倾斜面的倾斜角度Δφi而得的差来计算转弯速度。基于当前目标位置姿态φθx和Δφθx的差、以及当前目标位置姿态φθz和Δφθz的差来计算转弯速度。然后,基于前进后退速度和转弯速度来计算左右后轮的转矩。另外,步骤S311中的处理与实施方式1相同,因此省略说明。这样,在本实施方式中,考虑倾斜面的倾斜角度Δφi计算出指令值。因此,即使是在倾斜面上移动或者以一个轮子位于台阶上的状态移动,或者类似的环境下,也能够将操作量准确地传递给搭乘者。其结果,搭乘者容易知道操作量。例如,当搭乘者放松时,恢复到平衡位置,座面8a变为水平。
接着,对本实施方式中的柔性控制进行说明。首先,如图9所示,当搭乘者进行了体重移动时(步骤S401),由力传感器9检测转矩τi(步骤402)。这些步骤与实施方式1相同。也可以将步骤S403、S404与步骤S401、S402同时进行。
检测出移动体1的姿态角的偏差,并通过姿态检测部4检测倾斜面的倾斜角度Δφi(步骤S403)。然后,输入修正了倾斜面的倾斜角度Δφi的座面8a的平衡位置姿态φid(步骤S404)。即,向控制计算部51的存储器等中输入成为平衡位置姿态φid的关节角度。这里的平衡位置姿态φid依据倾斜面的倾斜角度Δφi而变化。平衡位置姿态φid按照即使在地面为倾斜面等的情况下也使座面8a变为水平的方式被设定。在平衡位置姿态φid中,设定以使座面8a变为水平的关节角度。
之后,计算当前目标位置姿态φi(步骤S405)。基于在步骤S405中计算出的当前目标位置姿态φi来进行移动控制(步骤S406)。这里,基于从当前目标位置姿态减去倾斜面的倾斜角度Δφi而得的差来计算左右后轮602的指令值。另外,基于当前目标位置姿态φi来进行座面的倾斜度控制(步骤S407)。步骤406由于与实施方式1相同,因此省略说明。
在本实施方式中,平衡位置姿态φid依据姿态检测部4的输出而变化。由此,搭乘者容易掌握操作量。例如,当搭乘者放松时,座面8a恢复到平衡位置姿态。由此能够提高操作性能。另外,由于座面8a接近平坦,因此能够提高乘坐舒适性。控制计算部51基于倾斜角度Δφi、驱动部5的驱动量、搭乘座席8的平衡位置姿态φid、以及来自力传感器9的测量信号来计算用于驱动后轮602和驱动部5的指令值。因此,能够可靠地计算指令值,能够按照搭乘者的意图移动。
<实施方式3>
在图1~10所示的移动体1中,有时无法按照搭乘者的意图移动。例如,当搭乘者坐在搭乘座席上时,搭乘者的姿态变化受搭乘者大腿的限制。从而,搭乘者有时难以取前倾姿态来输入高速的前进输入。另外,当搭乘者携带了行李时,力传感器的输入将会改变。另外,当搭乘者的坐下位置发生了变化时,力传感器的输入也发生变化。当在倾斜面上移动时,力传感器的输入也产生偏差。因此有时无法按照意图移动。即存在当实际使移动体1移动时无法使移动体1按搭乘者的意图移动的状况。因此,根据本实施方式,即使在这样的状况下也能够按照搭乘者的意图移动,能够进一步提高操作性能。
接着,使用图11来说明用于使实施方式3涉及的移动体1移动的控制系统。图11是示出用于使移动体1移动的控制系统的结构的框图。首先,通过力传感器9检测施加到座面8a的力。这里,如上所述,力传感器9将作为测量信号的力矩Mx、My、Mz输出给传感器处理部53。传感器处理部53对来自力传感器9的测量信号进行处理。即,对与从力传感器9输出的测量信号对应的测量数据进行计算处理。由此计算出向控制计算部51输入的输入力矩值(Mx′、My′、Mz′)。另外,传感器处理部53既可以内置于力传感器9中,也可以内置于控制计算部51中。
这样,由力传感器9测量出的力矩(Mx、My、Mz)被变换为绕各轴的输入力矩值(Mx′、My′、Mz′)。并且,输入力矩值成为为使各后轮602动作而输入的输入值。这样,传感器处理部53针对各轴计算出输入值。输入力矩值的大小根据力矩的大小而确定。输入力矩值的符号根据测量出的力矩的符号而定。即,当力矩为正时,输入力矩值也为正,当力矩为负时,输入力矩值也为负。例如,当力矩Mx为正时,输入力矩值Mx′也为正。因此,该输入力矩值成为与搭乘者想要的操作对应的输入值。
控制计算部51基于输入力矩值来进行控制计算。由此,计算出用于驱动驱动马达603的指令值。当然,输入力矩值越大,指令值也越大。该指令值被输出给驱动马达603。另外,在本实施方式中,由于左右后轮602是驱动轮,因此图中示出了两个驱动马达603。并且,一个驱动马达603使右后轮602旋转,另一个驱动马达603使左后轮602旋转。驱动马达603基于指令值使后轮602旋转。即,驱动马达603施加用于使作为驱动轮的后轮602旋转的转矩。当然,驱动马达603也可以经由减速器等向后轮602施加旋转转矩。例如,当从控制计算部51输入了作为指令值的指令转矩时,驱动马达603以该指令转矩旋转。由此,后轮602旋转,移动体1以期望的速度向期望的方向移动。当然,指令值不限于转矩,也可以是旋转速度、转数。
另外,在驱动马达603中分别内置有编码器603a。该编码器603a检测驱动马达603的旋转速度等。并且,所检测出的旋转速度被输入给控制计算部51。控制计算部51基于当前旋转速度和作为目标的旋转速度来进行反馈控制。例如,通过对目标旋转速度和当前旋转速度的差乘以适当的反馈增益来计算出指令值。当然,输出到左右驱动马达603的指令值也可以是不同的值。即,当向前方或后方直线前进时,进行控制使得左右的后轮602的旋转速度相同,当左右转弯时,进行控制使得左右后轮602方向相同但旋转速度不同。另外,当就地转弯时,进行控制使得左右后轮602向相反方向旋转。
例如,当搭乘者采取前倾姿态时,就会有绕俯仰轴的力施加在搭乘座席8上。于是,力传感器9检测出+My的力矩(参照图3)。根据该+My的力矩,传感器处理部53计算出用于使移动体1平移的输入力矩值My′。同样地,传感器处理部53基于Mx计算出输入力矩值Mx′,基于Mz计算出输入力矩值Mz′。即,传感器处理部53将测量值变换为输入力矩值。这些输入力矩值分别被独立地计算出。即,Mx′仅根据Mx确定,My′仅根据My确定,Mz′仅根据Mz确定。如此,Mx′、My′、Mz′分别独立。
控制计算部51基于输入力矩值和编码器的读取值来计算指令值。由此,左右后轮602以期望的旋转速度旋转。同样地,当向右方向转弯时,搭乘者向右侧移动体重。由此,对搭乘座席施加绕侧倾轴的力,力传感器9检测出+Mx的力矩。根据该+Mx的力矩,传感器处理部53计算出用于使移动体1向右方向转弯的输入力矩值Mx′。即,能够求出与移动体1移动的方向对应的转向角。并且,根据输入力矩值,控制计算部51计算出指令值。根据该指令值,左右后轮602以不同的旋转速度旋转。即,左侧后轮602以比右侧后轮602快的旋转速度旋转。
如此,基于My′,求出针对前后方向的平移移动的分量。即,确定以相同的旋转速度向相同的方向驱动左右的后轮602的驱动转矩等。因此,My′、即My越大,移动体1的移动速度就越快。基于Mx′,求出移动方向、即针对转向角的分量。即,确定左右后轮602的旋转转矩差。从而,Mx′、即Mx越大,左右后轮602的旋转速度的差异就越大。
基于Mz′,求出针对就地转弯的分量。即,求出通过使左右后轮602向相反方向旋转而就地转弯的分量。因此,Mz′、即Mz越大,左右后轮602的相反方向上的旋转速度就越大。例如,在Mz′为正的情况下,计算出从上侧观察时绕左侧就地转弯的驱动转矩等。即,右侧后轮602向前方旋转,左侧后轮602以相同的旋转速度向后方旋转。
另外,通过合成基于各自的输入力矩值Mx′、My′、Mz′算出的三个分量,计算出用于驱动两个后轮602的指令值。由此,分别计算出针对左右后轮602的指令值。计算驱动转矩、旋转速度等,作为指令值。即,通过合成针对与输入力矩值Mx′、My′、Mz′对应的每个分量计算出的值,来计算出针对左右的后轮602的指令值。这样,移动体1根据基于测得的力矩Mx、My、Mz算出的输入力矩值Mx′、My′、Mz′而移动。即,基于通过搭乘者的体重移动产生的力矩Mx、My、Mz来确定移动体1的移动方向和移动速度。
这样,通过搭乘者的动作来进行用于使移动体1移动的输入。即,根据搭乘者的姿态变化来检测绕各轴的力矩。并且,移动体1基于这些力矩的测量值而移动。由此搭乘者能够简便地操作移动体1。即,不需要操纵杆或方向盘等的操作,可以仅通过移动体重来进行操作。例如,当想要向斜右前方移动时,向右前方施加体重。另外,当想要向斜左后方移动时,向左后方施加体重。由此,搭乘者的重心位置发生变化,从而进行与其变化量相应的输入。即,通过检测与搭乘者的重心移动相应的力矩,能够直观地进行操作。控制计算部51输出指令值,以使车辆以与输入力矩值的绝对值相应的移动速度并依据输入力矩值的符号向前方或后方移动。
例如,如图12所示,假定搭乘者71搭乘在设置有力传感器9的搭乘座席8上。图12是示出搭乘者71搭乘在搭乘座席8上的状态的图,左侧示出了侧视图,右侧示出了搭乘面8a的平面图。在此情况下,搭乘者71的臀部72和大腿部73与座面8a接触。以下说明此时的前后方向的输入。这里,如图13所示,将前进方向的输入设为正值,将后退方向的输入设为负值。即,当My′为正时,移动体1向前方移动,当My′为负时,移动体1向后方移动。从而,当My′为0时,移动体1保持原位,不前进后退。即,当搭乘者71绕俯仰轴成为中立姿态时,移动体1不前进或后退。移动体1的速度依据输入力矩值My′的绝对值而确定。例如,移动速度与My′成比例地变化。换言之,随着My′的绝对值增加,移动速度的绝对值单调增加。此外,在My′为+a(a为任意的正值)的情况下和为-a的情况下,移动体1的速度相等但方向相反。如此,移动体1的速度根据搭乘者的上身相对于中立姿态的倾斜角而确定。因此,搭乘者的上身越倾斜,移动体1就越快地移动。
来自辨别部12的辨别信号被输入到传感器处理部53。在辨别部12中设置有接触传感器58和辨别信息处理部59。接触传感器58如上所述在脚踏板10的上表面被排列成阵列状。并且,各接触传感器58在有物体接触到其上时输出接触信号。辨别信息处理部59基于该接触信号进行处理,辨别是否搭乘了搭乘者。即,依据正在输出接触信号的接触传感器的分布信息来辨别脚掌是否接触在脚踏板10上。当正在输出接触信号的接触传感器的分布接近脚掌形状时,辨别为搭乘了搭乘者,除此之外,辨别为人以外的其它物体接触在脚踏板10上。
另外,传感器处理部53从搭乘位置检测部14输入表示搭乘位置的位置信号。即,从搭乘位置检测部14输出位置信号。搭乘位置检测部14具有接触传感器56和分布信息处理部57。接触传感器58被设置了多个。多个接触传感器56被排列成阵列状。并且,各接触传感器56在有物体接触到其上时输出接触信号。分布信息处理部57基于该接触信号的分布信息进行处理,计算出搭乘位置。位置信号被输入给传感器处理部53。传感器处理部53进行与位置信号相应的处理。
传感器处理部53基于辨别信号和位置信号来改变处理。另外,后面将叙述这些处理。即,在以下所示的实施方式3至9中,这些处理是不同的。以下说明与图1至3以及图11所示的移动体的控制相关的实施方式。即,以下所示的实施方式3至9是与图1至3以及图11所示的结构的移动体1相关的实施方式。
另外,传感器处理部53、分布信息处理部57、以及辨别信息处理部59等各处理部与控制计算部51同样地包括CPU、RAM等。并且,按照预定的程序进行计算处理。当然,各处理部和控制计算部51也可以具有相同的物理结构。即,也可以在一个计算处理电路中进行处理和运算。
如上所述,移动速度依据搭乘者的姿态而确定。因此,当想要向前方高速移动时,搭乘者需要将其姿态大幅度地前倾。但是,如图12所示,大腿部73与座面8a接触,因此大腿部73受座面8a形状的限制。因此,难以增大力矩My。即,当力矩My为正时,与力矩My为负时相比,难以增大其绝对值。因此,在本实施方式中,传感器处理部53进行以下所示的处理。
在本实施方式中,根据My的符号来改变基于My计算My′时的系数。即,当My为正时的系数大于My为负时的系数。由此,能够增大My为正值时的My′的值。例如,在将My变换为My′的变换公式中,依据My是正值还是负值来改变与My相乘的系数。于是,即使在My的绝对值相同的情况下,My′的绝对值也根据My的符号而变化。由此,即使在搭乘者71的姿态向前方向的倾斜角小的情况下,输入力矩值也变大。能够增大前进速度。由此,搭乘者71无需大幅度前倾,因此能够改善操作性能。另外,由于无需大幅度前倾,因此搭乘者不会取难以确认前方的姿态。由此,即使在高速前进的情况下,也能够提高安全性。
例如,如图14所示,当搭乘者将姿态倾斜了前倾角度α(阿尔法为正的角度)时,速度将与将姿态倾斜了后倾角度β(β>α)时的速度相等。图14是用于说明搭乘者的姿态和输入力矩值的侧视图。即使在搭乘者71的前倾角度α小的情况下,也能够增大输入力矩值My′。由此,能够加快前进速度,能够进行与搭乘者71的意图相应的控制。在本实施方式中,当搭乘者取中立姿态、即搭乘者以沿竖直方向的姿态搭乘时,不进行前进输入。另外,通过对要输入给控制计算部51的输入力矩值My′进行处理,能够容易地进行处理。即能够不区分前进和后退而进行用于求出指令值的复杂的控制计算。由此能够容易控制。另外,在实施方式3涉及的移动体1中,由于不使用姿态检测部4、辨别部12、搭乘位置检测部14,因此也可以不设置它们。
<实施方式4>
在本实施方式中,与实施方式3同样,传感器处理部53也进行用于增大前进输入的输入力矩值My′的处理。在本实施方式中,向后方偏移了基于力矩My计算输入力矩值My′时的原点位置。即,相对于由力传感器9测量的力矩My的横摆轴位于力传感器9的中央,计算输入力矩值My′时的横摆轴的位置比力传感器9的中央靠后。如此,对针对输入力矩值My′的横摆轴的位置施加了偏移值。在本实施方式中,横摆轴位置比图13和图14的横摆轴位置向后方偏移。由此,当比较力矩My分别取正值和负值但绝对值相同的两个状态时,从正值的力矩My变换的输入力矩值My′的绝对值大于从负值的力矩My变换的输入力矩值My′的绝对值。由此,在力矩My为正值的情况下,能够增大输入力矩值My′。
即使想要使前进后退的速度达到相同的速度,也由于大腿部73受座面8a的限制而难以取前倾姿态。因此,即使有以与后退时的速度相同的速度前进的意图,也如图15所示前倾角度α比后倾角度β小。即,即使搭乘者想要以与后倾角度相同的角度倾斜,也由于大腿部73的动作受座面8a的限制而导致前倾角度α小。这样,当原点位置没有偏移时,前进速度比想要的速度慢。即,原本如果后倾角度β和前倾角度α不同,则输入力矩值My′的绝对值也不会成为相同的值。因此,在本实施方式中,如图16所示,对原点位置、即横摆轴位置施加偏移。即,通过施加偏移,可虚拟地得到前倾角度α。虚拟的前倾角度α比实际的前倾角度大。因此能够按意图加快前进速度。
例如,当将原点位置设为-2时,力矩My为正值时的输出为+2,力矩My为负值时的输出为-2。如此,通过将横摆轴的位置向后方偏移,栓出变大的输入力矩值。由于进行这样的处理,因此对来自力传感器9的输出电压施加偏移电压。如果在前倾时从力传感器9输出正的电压、在后倾时从力传感器9输出负的电压,则将基准电位设为负电位,以使正的电压变大。作为具体例,考虑力传感器9输出-5V~5V的电压的情况。即,考虑以-5V~+5V表示力矩My的情况。当在前倾时输出正电压、在后倾时输出负电压时,在传感器处理部53中,将基准电位设为-2V。在此情况下,偏移电压为-2V。于是,来自力传感器9的输出电压为-2V~5V时为前进输入,实际的输入力矩值My′将基于0~7V范围的力矩My而被算出。因此,在前进输入的情况下,与从力传感器9输出的力矩My相比,能够增大输入力矩值。
如此,在对从力传感器9输出的力矩的测量值施加偏移值之后计算输入力矩值。由此,与实施方式3相同,能够容易进行前进输入。当然,也可以对力传感器9自身施加偏移电压。即使在搭乘者71的姿态向前方向的倾斜角度小的情况下,也能够增大前进速度。因此,搭乘者71无需大幅度前倾,能够改善操作性能。另外,由于无需大幅度前倾,因此搭乘者不会取难以确认前方的姿态。因此,即使在高速前进的情况下,也能够提高安全性。
在本实施方式中,即使在搭乘者取中立姿态、即搭乘者以沿竖直方向的姿态搭乘时,也进行前进输入。另外,在实施方式4涉及的移动体1中,不使用姿态检测部4、辨别部12、搭乘位置检测部14,因此也可以它们。另外,也可以将本实施方式和实施方式3组合起来。
这样,在实施方式3、4中,在力矩My为正值时和力矩My为负值时改变力矩My和输入力矩值My′的关系。如果在搭乘者71取前倾姿态来输入前进时和取后倾姿态来输入后退时力矩My的绝对值相同,则前进输入时的输入力矩值My′的绝对值大于后退输入时的输入力矩值My′的绝对值。因此,能够容易进行前进输入。即,即使搭乘者不取大幅度前倾的姿态,也能够增大前方向的移动速度。因此能够按搭乘者的意图移动。
<实施方式5>
在本实施方式中,利用了实施方式3或实施方式4的控制。在本实施方式中,根据状况来改变实施方式3所示的系数后进行控制。即,当基于力矩My计算输入力矩值My′时,与力矩My相乘的系数根据情况而变化。具体地说,根据是否搭乘了搭乘者来改变系数。或者,根据是否搭乘了搭乘者来将偏移值设为0。
在本实施方式中,辨别部12辨别是否搭乘了搭乘者。例如,如图17所示,在脚踏板10上设置接触传感器58。接触传感器58在脚踏板10的表面上被排列成阵列状。从而,根据输出接触信号的接触传感器58的分布来识别正在接触的对象的形状。当正在接触的对象的形状接近通常的脚掌形状、并且有两个脚掌时,判断为搭乘了搭乘者71。相反地,当正在接触的对象的形状与通常的脚掌形状有很大不同时,判断为未搭乘搭乘者。如此,通过在脚踏板10上设置接触传感器58,能够容易且可靠地辨别搭乘者的有无。
当搭乘了搭乘者时,搭乘者的大腿部73的动作受座面8a的限制。因此,如实施方式3或4所示那样增大与前进输入相对的输入力矩值。相反地,当未搭乘搭乘者时,不进行实施方式3、4所示的控制。即,当力矩My的绝对值相同时,使输入力矩值My′的绝对值为相同的值。这样一来,能够按照使用者的意图移动。即,即使当搭乘者71在不搭乘移动体1上的状态下操作移动体1时,也能够按想要的速度移动。
例如,搭乘者站在地面上,并将手放在座面8a上。或者,将要运送的物体载置在座面8a上,并将手放在该物体上。并且,当用手向想要使移动体1移动的方向施加力时,移动体1向该方向移动。在此情况下,由于搭乘者未搭乘在搭乘座席8上,因此不会因为大腿部73而受限制。由此搭乘者能够自由地施加力。即,无论哪个方向均能够相同地施加力,因此前进输入和后退输入几乎没有差异。前进时和后退时均将偏移设为0,或者将系数设为相同。由此,能够按搭乘者意图的速度移动。另外,当搭乘者71搭乘在搭乘座席8上时,与后退输入相比,增大前进输入。由此能够按搭乘者的意图进行移动。
接着,使用图18来说明本实施方式涉及的移动体1的控制方法。图18是示出本实施方式的控制方法的流程图。在起动移动体1后,观察接触传感器的反应(步骤S101)。即,通过被排列成阵列状的接触传感器58来辨别是否有接触。并且,辨别信息处理部59辨别是否搭乘了搭乘者。这里,当有两个脚掌时,辨别为搭乘了搭乘者。由此进入搭乘模式。在进入搭乘模式的情况下,应用系数调整或偏移位置(步骤S102)。由此计算出考虑了系数调整或偏移的指令值。另外,基于该指令值使移动体动作(步骤S103)。在除此以外的情况下进入非搭乘模式。在非搭乘模式的情况下,不应用系数调整或偏移设定,并使移动体1动作(步骤S103)。即,在正、负两个状态下使系数相等。或者,将偏移值设为0。由此,不管有无搭乘者,都可进行搭乘者想要的移动。因此,能够按照搭乘者71的意图移动,能够改善操作性能。另外,在实施方式3、4的控制方法中,没有步骤S101,并反复执行步骤S102和步骤S103。
另外,辨别是否搭乘了搭乘者71的辨别部12的结构不特别限定。例如,也可以将接触传感器58设置在搭乘座席8上。即,在座面8a上将多个接触传感器58排列成阵列状。并且,能够根据正在输出接触信号的接触传感器58的分布是否接近将臀部和大腿部相加的形状来辨别搭乘者的有无。另外,不限于接触传感器58,也可以使用照相机等来辨别。例如,通过用照相机等来进行搭乘者的脸部识别,能够辨别搭乘者的有无。另外,也可以通过力传感器9来测定搭载在搭乘座席上的搭载对象的重量。另外,当搭载对象的重量是标准人类的体重时,辨别为搭乘了搭乘者。
当然,也可以组合两个以上来辨别有无搭乘者。例如,可以将由力传感器9测定的搭载对象的重量以及接触传感器58对脚掌形状的识别组合起来。并且,仅当两者均满足搭乘了搭乘者的条件时,才辨别为搭乘了搭乘者。即,当有至少一者不满足搭乘了搭乘者的条件时,判断为没有搭乘者。由此能够可靠地辨别搭乘者的有无,能够可靠地进行搭乘模式和非搭乘模式的变换。另外,也可以使用座面8a上搭载接触传感器58并测量臀部形状的方法、搭载照相机并检测人脸、身体等的方法等能够辨别明显地搭乘了人的情况的方法。如此通过各种传感器来辨别搭乘者的有无,能够进行最优的控制,而不会使搭乘者察觉到。当然,也可以设置表示搭乘者搭乘了的开关,并通过由搭乘者等操作开关来辨别。在本实施方式中,未使用搭乘位置检测部14、姿态检测部4,因此移动体1也可以不设置搭乘位置检测部14和姿态检测部4。
<实施方式6>
在本实施方式中,与实施方式4同样地对来自力传感器9的输出施加偏移。即,对于从力传感器9输出的测量信号,设定偏移电压。另外,在本实施方式中,不仅对于力矩My,对力矩Mx也设定偏移值。另外,根据情况使偏移值最优化。
这里,考虑搭乘者71拿着行李的情况。例如,使用图19和图20来说明从未携带行李的状态变为携带有行李的状态的情况。图19是示出搭乘了未携带行李的搭乘者71的状态的图,图20是示出搭乘者71携带行李76搭乘的状态的图。当在未携带行李的状态下搭乘者71坐在搭乘座席8上时,搭乘者71的重心位置75处于座面8a的中心。在该状态下,如果握持行李76,重心位置75就会偏离座面8a的中心。例如,当左手拿行李76时,重心位置75向左侧位移。如此,重心位置向携带行李76的方向变化。从而,当想直线前进时,搭乘者需要将姿态向左右方向倾斜。如此,当重心位置75位移时,难以进行想要的操作。即,由于从原点到重心位置75的方向相对于竖直方向倾斜,因此即使在搭乘者71保持中立姿态的情况下,也会检测出与行李76相应的力矩Mx、My。
为了消除由于行李76产生的力矩Mx、My,对力传感器9的输出设定偏移。由此,不管行李76的重量如何,都能够按照搭乘者的意图移动。具体地说,通过力传感器9测定搭乘座席8搭载的重量。并且,当搭载重量发生了变化时,重新设定偏移。由此,不管有无行李76,都能够按照搭乘者71的意图移动。即,在携带有行李的情况下,当想要向前方直线前进时,搭乘者71取前倾姿态。同样地,在未携带行李的情况下,当想要向前方直线前进时,搭乘者71取前倾姿态。如果搭乘者进行相同的操作,则移动体1进行相同的动作。因此能够按照意图移动,能够改善操作性能。
接着,使用图21来说明本实施方式涉及的移动体1的控制方法。图21是示出本实施方式涉及的移动体1的控制方法的流程图。在起动移动体1后,通过力传感器9测定搭乘座席8的搭载重量(步骤S201)。然后,比较上次的重量和这次的重量(步骤S202)。当上次的重量和这次的重量之差大于阈值时,重新设定偏移(步骤S203)。这里,使用重新设定的偏移来计算指令值。然后,返回到测定搭载重量的步骤S201。另外,当上次的重量和这次的重量的差小于阈值时,不改变偏移,并计算指令值,然后返回到测定搭载重量的步骤S201。另外,在步骤S202中进行比较后,用这次的重量置换上次的重量。由此能够容易地进行偏移的重新设定。
偏移是重量发生了变化时的与力矩Mx、My相应的值。当进行偏移的重新设定时,将与由力传感器9测量出的力矩Mx、My对应的输出电压设为偏移电压。与在重量发生了变化时所测量出的力矩对应的输出电压成为基准。即,在重量发生变化的定时所输出的输出电压成为偏移电压。在更新偏移电压后,基于与重量发生了变化时的力矩相应的输出电压和与之后测量出的力矩相应的输出电压的差来计算输入力矩值。例如,当重量发生了变化时,与力矩Mx对应的电压变为1V,与力矩My对应的电压变为2V。将这些电压设定为偏移电压。在此情况下,从与之后测量出的力矩Mx对应的输出电压减去1V。同样地,从与力矩My对应的输出电压中减去2V。并且在减去偏移电压后计算出输入力矩值。换言之,设定偏移时的力矩与由于姿态变化产生的力矩的差被变换为输入力矩值。基于该差,计算出指令值。无论是携带行李76的情况还是未携带行李76的情况,均能够通过相同的驾驶方法同样地进行控制。
如此,在搭乘者71重新坐下的定时进行偏移的设定。即,当搭乘者71重新坐下时,臀部离开座面8a。于是施加到座面8a的力暂且减弱,因此检测出重量变化。即,变化重量超过阈值。并且在该蚀刻进行偏移的设定。如此搭乘者能够在不在意携带了行李76的情况下进行操作。因此,能够改善操作性能。这样,在搭乘部3的搭载重量发生了变化的定时进行偏移值的设定。这里,将搭乘重量发生了变化的定时的力传感器9的测量结果设为成为基准的偏移值。另外,基于来自力传感器9的测量值来计算搭载重量。
另外,在上述的说明中,根据重量变化进行了偏移的设定,但进行偏移设定的定时不限于此。例如,也可以在移动体1上设置用于偏移设定的开关,通过切换该开关来进行偏移的设定。例如,如图20所示,在搭乘部3的附近设置开关77。在搭乘者接通切换开关的定时进行偏移设定。如此也能够得到相同的效果。另外,即使是在不拿走行李而左右换手的情况下,也可进行偏移值的重新设定。
也可以通过照相机来监视搭乘者的动作,辨别搭乘者是否携带了行李。另外,在本实施方式中,未使用辨别部12、搭乘位置检测部14、姿态检测部4,因此移动体1也可以不设置辨别部12、搭乘位置检测部14、以及姿态检测部4。当然,也可以通过力传感器9以外的传感器检测搭载重量。通过用力传感器9检测搭载重量,不需要使用其他的传感器。
<实施方式7>
在本实施方式中,根据来自图11所示的搭乘位置检测部14的分布信息来施加偏移。即,根据搭乘者坐下的位置来施加偏移。另外,对力矩Mx、My的偏移的施加方法与实施方式4、6等相同,因此省略说明。即,对于来自力传感器9的输出,调整成为基准的电位。
首先,使用图22、和图23A、图23B、图23C来说明为施加偏移而设置的接触传感器56的结构。图22是示出设置于座面8a的接触传感器56的结构的顶视图。图23A、图23B、图23C是示出座面8a上的搭乘位置的偏差的顶视图。如图22所示,个接触传感器56在座面8a上多被排列成阵列状。接触传感器56具有能够检测臀部72和大腿部73的形状的程度的分辨率。即,以能够区分臀部和大腿部的形状的间隔来排列接触传感器56。并且,基于输出接触信号的接触传感器56的分布来检测搭乘位置。即,检测相对于正常的搭乘位置的偏差量。这样,通过使用多个接触传感器56,能够得到针对接触位置的分布信息。并且,基于该分布信息来估计搭乘位置。
例如,如图23A所示,当搭乘者比正常的搭乘位置向斜左前方坐下了时,分布信息发生变化。由此判断为搭乘位置发生了变化,对力矩Mx、My的每一个施加偏移。另外,如图23B所示,当搭乘者比正常的搭乘位置向后方坐下了时,对力矩My施加偏移。另外,如图23C所示,当搭乘者比正常的搭乘位置向右侧坐下了时,对力矩Mx的每一个施加偏移。通过如此对力矩的测量值施加偏移,能够以与正常的搭乘位置相同的驾驶方法进行移动。
例如,每当搭乘位置发生大的变化时,更新偏移。即,在搭乘位置的偏差量比阈值大的定时重新设定偏移。由此,即使在搭乘者重新坐下从而搭乘位置发生了变化的情况下,也能够同样地进行操作。例如,当搭乘者取中立姿态时,移动体1不移动。另外,当向正前方移动时,搭乘者取前倾姿态即可。如此能够按意图移动,能够改善操作性能。
另外,使用图24来说明本实施方式涉及的移动体1的控制方法。图24是示出本实施方式涉及的移动体1的控制方法的流程图。在起动移动体1后,通过搭乘位置检测部14测定搭乘位置(步骤S301)。然后,比较上次的搭乘位置和这次的搭乘位置(步骤S302)。当上次的搭乘位置和这次的搭乘位置的差大于阈值时,重新设定偏移(步骤S303)。然后,返回到测定搭乘位置的步骤S301。另外,当上次的搭载位置和这次的搭载位置的差小于阈值时,返回到测定搭载位置的步骤S301。另外,在步骤S302中进行比较后,用这次的搭载位置置换上次的搭载位置。由此,能够容易地进行偏移的重新设定。偏移值可基于分布信息和搭乘位置来确定。这里,在更新偏移的期间,以相同的偏移值进行处理。并且,基于根据相同的偏移值得到的输入力矩值来计算指令值。将该指令值输出给驱动马达603。例如预先设定偏移值相对于分布信息或搭载位置的关系式或表。由此能够简单地计算出偏移值。
另外,也可以在车轮6使用全方位车轮时,对力矩Mz设定偏移。即,当搭乘者不是正面而是向绕横摆轴的方向偏转搭乘时,设定对力矩Mz的偏移。由此能够改善操作性能。另外,在本实施方式中,未使用辨别部12以及姿态检测部4,因此移动体1也可以不设置辨别部12以及姿态检测部4。
另外,在实施方式6、7中,根据搭载重量的变化、搭乘位置的变化来确定设定偏移的定时,但设定偏移的定时不限于此。也可以基于除此以外的来自传感器的输出来设定偏移。另外,也可以组合实施方式6、7来进行偏移的设定。
<实施方式8>
在图1至图11所示的移动体1中,当搭乘者71想要加快移动速度时,搭乘者的姿态就会大幅度地倾斜。例如,当想要向前方高速移动时,需要大幅度地前倾。于是,包括搭乘者71在内的移动体1的重心位置根据搭乘者71的姿态有时会脱离机器人的静态稳定区域。
在本实施方式中,如图1、2所示,采用了三轮型的移动体1。因此,静态稳定区域78如图25所示那样成为三角形。图25是示出移动体1的静态稳定区域的顶视图。在三角形的三个顶点分别配置有车轮6。当搭乘者想要提高速度时,重心位置会脱离静态稳定区域78。例如,如果前倾姿态的角度变大,重心位置75b~75d就会超出静态稳定区域78。即,重心位置75b~75d跑到静态稳定区域78的外侧。
在此情况下,移动体1变成非常不稳定的状态。例如,移动体1会跌倒,或者车轮6悬空。而且,如果作为驱动轮的后轮602悬空,则无法按照意图移动。因此,在本实施方式中,根据来自力传感器9的测量信号进行控制,以使重心位置不跑到达静态稳定区域78的外侧。具体地说,通过主动驱动移动体1具有的侧倾轴机构以及俯仰轴机构,能够防止重心位置超出静态稳定区域78。
在本实施方式中,采用了图5所示的侧倾轴机构以及俯仰轴机构的结构。通过驱动部5进行驱动,移动体1的姿态发生变化。在不驱动横摆轴机构501的情况下,也可以不设置横摆轴机构501。
接着,使用图26来说明用于驱动横摆轴机构501、俯仰轴机构502和侧倾轴机构503的控制。图26是示出本实施方式涉及的移动体1的控制系统的结构的框图。在本实施方式中,力传感器9的检测结果用于各机构的驱动。即,控制计算部51基于力传感器9的检测结果来计算目标角度。
在本实施方式中,根据力传感器9受到的力来驱动俯仰轴机构502、侧倾轴机构503。例如,力传感器9检测出绕俯仰轴的力矩My和绕侧倾轴的力矩Mx。于是,控制计算部51基于由该力传感器9测得的力矩Mx、My来估计重心位置。并且,在重心位置可能要超出的情况下,计算出俯仰轴机构502、侧倾轴机构503的目标角度。由此,座面8a绕俯仰轴以及绕侧倾轴旋转。
具体地说,根据力矩Mx、My来判定重心位置是否将要超出静态稳定区域。如果将要超出,则向力矩Mx、My变大的方向驱动俯仰轴机构502、侧倾轴机构503。即,改变移动体1的姿态,以使输入力矩值Mx′、My′变大。由此,即使搭乘者不大幅度地倾斜姿态,也能够加快移动速度。由此能够防止重心位置超出静态稳定区域。例如,当搭乘者向斜右前方倾斜时,移动体1驱动俯仰轴机构502、侧倾轴机构503,从而倾斜座面8a,以使座面8a的斜右前方部分变为上、斜左后方部分变为下。由此力矩Mx、My变大,移动速度变快。从而能够防止移动体1跌倒和车轮6悬空,能够稳定地进行移动。
使用图27来说明本实施方式涉及的移动体1的控制方法。图27是示出本实施方式涉及的移动体1的控制方法的流程图。首先,通过力传感器9检测出力矩Mx、My,测定重心位置(步骤S401)。然后,判定重心位置是否大于阈值(步骤S402)。当重心位置不大于阈值时(步骤S402的“否”),判定为重心位置未要离开静态稳定区域。因此返回到测定重心位置的步骤(步骤S401)。
另一方面,当重心位置大于阈值时(步骤S401的“是”),判定为重心位置将要离开静态稳定区域78。于是,控制计算部51参考表来确定关节角度(步骤S403)。即,计算出俯仰轴机构502以及侧倾轴机构503的旋转角度。另外,该表依据移动体1的重量及其平衡等而预先设定。即,预先设定表示力矩Mx、My和关节角度的关系的例如表。由此,在确定了力矩Mx、My后,确定与之相应的关节角度。计算出俯仰轴机构502、侧倾轴机构503的目标关节角度。或者也可以通过控制公式来计算俯仰轴机构502、侧倾轴机构503的目标关节角度。
然后,控制计算部51向俯仰轴机构502以及侧倾轴机构503输出指令值,来驱动俯仰轴机构502以及侧倾轴机构503(步骤S404)。由此力矩Mx、My变大,移动速度变快。因此,搭乘者能够在不进一步倾斜姿态倾斜的情况下加速到期望的速度。从而,能够降低跌倒的风险并提高速度。
另外,在上述的说明中,使用力矩Mx、My的值判定了重心位置是否将要离开静态稳定区域,但也可以根据力矩Mx、My的变化量(时间微分)来判定。当然,也可以根据力矩的值、力矩的变化量这两者来判定。
另外,在上述的说明中,通过倾斜座面8a来控制了移动体1的姿态,但本实施方式不限于此。即,用于增大力矩的结构不限于俯仰轴机构502、以及侧倾轴机构503。例如,也可以通过驱动脚踏板10来增大力矩。即,在脚踏板10上设置马达或減速器,使得能够前后或上下驱动。并且,根据来自力传感器9的输出来驱动能够上下或前后移动的脚踏板10。由此能够得到与倾斜座面8a的情况相同的效果。
例如,如图28所示,设置前后驱动脚踏板10的脚踏板驱动部17。脚踏板驱动部17包括马达或減速器等。脚踏板驱动部17使脚踏板10的上部、即放置脚的面前后移动。通过改变脚踏板10的位置,双腿膝盖的角度变化。搭乘者的姿态发生变化,从而力传感器9受到的力发生变化。此时,向增大力传感器9受到的力的方向移动脚踏板10。其结果,能够降低跌倒的风险并提高速度。在本实施方式中,未使用辨别部12、搭乘位置检测部14、姿态检测部4,因此移动体1也可以不设置辨别部12、搭乘位置检测部14、以及姿态检测部4。
<实施方式9>
在本实施方式中,根据图11所示的姿态检测部4的检测结果来改变系数调整或偏移。即,基于来自姿态检测部4的输出来改变实施方式3所述的系数或者实施方式4、6所述的偏移。
如图29所示,当移动体1从平坦面移动到倾斜面时,力传感器9的输入会发生变化。在此情况下,即使搭乘者取相同的姿态,移动速度也会发生变化。例如,当在下坡路上移动时,搭乘面前倾。于是,如图29所示,搭乘者71相对于搭乘面成为后倾姿态,因此通过力传感器9能够检测出后退输入。因此无法在下坡路上向下移动。另外,当在上坡路上移动时,搭乘面后倾。于是搭乘者相对于搭乘面前倾。由此,将检测出过度的前倾输入,无法按意图在坡道上向上移动。另外,当左右单侧具有台阶时,将检测出转弯输入,从而导致移动体向左右移动。
因此,在本实施方式中,根据来自姿态检测部4的输出来最优化系数或偏移。例如预先设定表示系数与由姿态检测部4检测出的姿态角之间的关系的表。或者预先设定表示偏移与由姿态检测部4检测出的姿态角之间的关系的表。例如,如图30所示,将计算输入力矩值时的基准位置后移。对力矩My施加偏移,以使横摆轴向后移。施加偏移以增大输入力矩值。能够减少由于移动体1的姿态变化而引起的输入力矩值Mx′、My′的变化。因此,即使是在倾斜面上移动的情况下,也能够以与平坦面相同的操作相同地移动。由此能够改善操作性能。
当然,不限于改变偏移的设定的结构,也可以根据姿态变化来调整系数。即,依据由姿态检测部4检测出的底盘13的姿态角来改变输入力矩值和力矩的关系即可。
接着,使用图31来说明本实施方式涉及的移动体1的控制方法。图31是示出本实施方式涉及的移动体1的控制方法的流程图。首先,在驱动移动体1时,通过姿态检测部4确认姿态(步骤S501)。即,测定绕各轴的姿态角。然后,根据所测定的移动体1的倾斜角度来设定偏移(步骤S502)。偏移通过表示姿态角和偏移值的关系的表、或者根据从姿态角计算偏移的关系式来确定。当然不限于偏移的设定,也可以进行系数调整。
然后,基于力传感器来进行移动体控制(步骤S503)。此时,偏移依据姿态角而改变。由于优化了偏移,因此输入力矩值的原点位置发生变化。由此,搭乘者通过通常的操作使得移动体1在倾斜面上移动。能够按照搭乘者的意图使移动体1移动,能够改善操作性能。在实施方式3涉及的移动体1中,未使用辨别部12、搭乘位置检测部14,因此也可以它们。
另外,本发明不限于车轮型的移动体1,也能够应用于行走型的移动体。即,设置有使底盘13等主体部相对于地面移动的移动机构的移动体即可。
另外,也可以将各实施方式酌情组合使用。例如,通过组合实施方式1、2,当在平地移动时进行基于实施方式1的控制,当在倾斜面上移动时,进行基于实施方式2的控制。平地或倾斜面的判定可通过姿态检测部4来进行。另外,例如通过组合实施方式1、3,能够进一步按搭乘者的意图移动,能够进一步改善操作性能。
以上,参照实施方式说明了本发明,但本发明不受上述记载限定。能够在发明的范围内对本发明的结构或细节进行本领域技术人员能够理解的各种变更。
该申请主张基于2008年9月12日提出的日本申请特愿2008-234560以及2008年9月11日提出的日本申请特愿2008-233592的优先权,其中公开的全部内容被合并于此。
产业上的可利用性
本发明能够广泛地应用于在使搭乘者搭乘的状态下移动的移动体。

Claims (10)

1.一种移动体,包括:
搭乘座席,所述搭乘座席用于搭乘者搭乘;
主体部,所述主体部支承所述搭乘座席;
移动机构,所述移动机构使所述主体部移动;
传感器,所述传感器输出与施加到所述搭乘座席的座面的力相应的测量信号;
搭乘座席驱动机构,所述搭乘座席驱动机构驱动所述搭乘座席,以改变所述搭乘座席的座面的角度;以及
控制计算部,所述控制计算部基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算用于驱动所述移动机构和所述搭乘座席驱动机构的指令值。
2.如权利要求1所述的移动体,其特征在于,
还包括姿态检测部,所述姿态检测部输出与所述移动体的姿态角度相应的信号,
所述搭乘座席的平衡位置姿态根据姿态检测部的输出而改变。
3.如权利要求2所述的移动体,其特征在于,
所述搭乘座席的平衡位置姿态发生改变,以使所述搭乘座席的搭乘面变为水平。
4.如权利要求1所述的移动体,其特征在于,
所述搭乘座席的平衡位置姿态不管所述移动体的移动状况如何都保持恒定。
5.如权利要求1所述的移动体,其特征在于,
基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算所述搭乘座席驱动机构的目标驱动量,
基于所述搭乘座席驱动机构的目标驱动量来计算所述移动体的前进后退移动速度。
6.一种移动体的控制方法,其中,
所述移动体包括:
搭乘座席,所述搭乘座席用于搭乘者搭乘;
主体部,所述主体部支承所述搭乘座席;
移动机构,所述移动机构使所述主体部移动;
传感器,所述传感器输出与施加到所述搭乘座席的座面的力相应的测量信号;以及
搭乘座席驱动机构,所述搭乘座席驱动机构驱动所述搭乘座席,以改变所述搭乘座席的座面的角度;
所述控制方法包括以下步骤:
输入所述搭乘座席的平衡位置姿态;以及
基于来自所述传感器的测量信号、所述平衡位置姿态以及所述搭乘座席驱动机构的驱动量来计算用于驱动所述移动机构和所述搭乘座席驱动机构的指令值。
7.如权利要求6所述的移动体的控制方法,其特征在于,
通过设置在所述移动体上的姿态检测部来输出与所述移动体的姿态角度相应的信号,
所述搭乘座席的平衡位置姿态根据姿态检测部的输出而改变。
8.如权利要求7所述的移动体的控制方法,其特征在于,
所述搭乘座席的平衡位置姿态发生改变,以使所述搭乘座席的搭乘面变为水平。
9.如权利要求8所述的移动体的控制方法,其特征在于,
所述搭乘座席的平衡位置姿态不管所述移动体的移动状况如何都保持恒定。
10.如权利要求6所述的移动体的控制方法,其特征在于,
基于所述搭乘座席驱动机构的驱动量、所述搭乘座席的平衡位置姿态以及来自所述传感器的测量信号来计算所述搭乘座席驱动机构的目标驱动量,
基于所述搭乘座席驱动机构的目标驱动量来计算所述移动体的前进后退移动速度。
CN200980135755XA 2008-09-11 2009-07-02 移动体及其控制方法 Active CN102149596B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008-233592 2008-09-11
JP2008233592A JP5044515B2 (ja) 2008-09-11 2008-09-11 移動体、及びその制御方法
JP2008234560A JP4825856B2 (ja) 2008-09-12 2008-09-12 移動体、及びその制御方法
JP2008-234560 2008-09-12
PCT/JP2009/003076 WO2010029669A1 (ja) 2008-09-11 2009-07-02 移動体、及びその制御方法

Publications (2)

Publication Number Publication Date
CN102149596A true CN102149596A (zh) 2011-08-10
CN102149596B CN102149596B (zh) 2013-06-05

Family

ID=42004935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980135755XA Active CN102149596B (zh) 2008-09-11 2009-07-02 移动体及其控制方法

Country Status (4)

Country Link
US (1) US8504248B2 (zh)
EP (1) EP2332815B1 (zh)
CN (1) CN102149596B (zh)
WO (1) WO2010029669A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103385791A (zh) * 2013-08-01 2013-11-13 济南大学 一种残疾人姿态控制多功能轮椅及控制方法
CN106974780A (zh) * 2017-03-13 2017-07-25 邝子佳 基于差分航姿的智能轮椅控制方法
CN107019603A (zh) * 2016-01-29 2017-08-08 株式会社科斯莫特克 借由重心移动而移动的电动轮椅
CN108431825A (zh) * 2015-11-25 2018-08-21 雷诺股份公司 用于检测机动车辆驾驶员下肢位置的方法和装置
CN109562009A (zh) * 2016-08-02 2019-04-02 本田技研工业株式会社 车轮框架、驱动轮、轮椅、测力计以及测定系统
CN109715118A (zh) * 2016-09-13 2019-05-03 福特全球技术公司 用于监测和控制机动车辆的方法和设备
CN110709316A (zh) * 2017-05-26 2020-01-17 学校法人东京理科大学 全向移动装置及其姿态控制方法
CN111361428A (zh) * 2020-02-28 2020-07-03 浙江吉利汽车研究院有限公司 一种车辆控制方法、装置及存储介质
US11304862B2 (en) * 2017-09-14 2022-04-19 Yamaha Hatsudoki Kabushiki Kaisha Power assist wheelchair, power assist unit for wheelchair, control device for power assist wheelchair, control method for power assist wheelchair, program, and terminal

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015425A1 (de) * 2010-04-19 2011-10-20 Audi Ag Vorrichtung zum Betreiben einer Antriebseinheit eines Kraftfahrzeugs
EP2688784B1 (fr) * 2011-03-21 2016-11-02 4Power4 Sprl Mécanisme de direction
JP5916520B2 (ja) * 2012-05-14 2016-05-11 本田技研工業株式会社 倒立振子型車両
CN104703871B (zh) * 2012-10-16 2016-12-21 丰田自动车株式会社 倒立型移动体及其控制方法
TWI592320B (zh) * 2015-05-15 2017-07-21 Jon Chao Hong 以行動終端控制座椅的控制方法及系統
US9555849B1 (en) * 2015-07-12 2017-01-31 Terracraft Motors Inc. Motorcycle having interactive lean control
US9758073B2 (en) * 2015-11-06 2017-09-12 Bose Corporation Variable gain control in roll compensating seat
US10029586B2 (en) * 2015-11-06 2018-07-24 Clearmotion Acquisition I Llc Vehicle seat with angle trajectory planning during large events
US9944206B2 (en) 2015-11-06 2018-04-17 Clearmotion Acquisition I Llc Controlling active isolation platform in a moving vehicle
US9902300B2 (en) 2015-11-06 2018-02-27 Clearmotion Acquisition I Llc Lean-in cornering platform for a moving vehicle
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
MX2018010241A (es) 2016-02-23 2019-06-06 Deka Products Lp Sistema de control de dispositivo de movilidad.
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
JP6916812B2 (ja) 2016-04-14 2021-08-11 デカ・プロダクツ・リミテッド・パートナーシップ トランスポータのためのユーザ制御デバイス
CN106114717B (zh) * 2016-08-01 2018-09-21 台州市煜晨车业有限公司 一种多功能舒适型高稳定性四轮平衡车
US10772774B2 (en) * 2016-08-10 2020-09-15 Max Mobility, Llc Self-balancing wheelchair
JP6571631B2 (ja) * 2016-12-26 2019-09-04 国立大学法人 東京大学 走行車両及び走行車両の制御方法
JP6555597B2 (ja) * 2017-04-10 2019-08-07 本田技研工業株式会社 シート装置
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
USD829612S1 (en) 2017-05-20 2018-10-02 Deka Products Limited Partnership Set of toggles
JP6888587B2 (ja) * 2018-05-31 2021-06-16 トヨタ自動車株式会社 シート制御装置
MX2020013312A (es) 2018-06-07 2021-06-08 Deka Products Lp Sistema y método para la ejecución de servicios públicos distribuidos.
US11660240B2 (en) * 2020-06-05 2023-05-30 Toyota Motor North America, Inc. Wheelchair systems and methods enabling fine manual motion control
CN114056461B (zh) * 2020-07-30 2023-03-21 魏宏帆 具有悬浮坐垫的自行车以及磁力调控方法
CN113552822B (zh) * 2021-07-01 2022-07-08 浙江益恒悦医疗科技有限公司 智能助行器的助力控制方法及装置、智能助行器、控制器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136957A (ja) 1993-11-10 1995-05-30 Fujitsu Ltd インタフェイス装置
US6543564B1 (en) 1994-05-27 2003-04-08 Deka Products Limited Partnership Balancing personal vehicle
US6561294B1 (en) 1995-02-03 2003-05-13 Deka Products Limited Partnership Balancing vehicle with passive pivotable support
CA2431070C (en) * 1995-02-03 2008-09-16 Deka Products Limited Partnership Transportation vehicles and methods
JPH1023613A (ja) * 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JPH11198075A (ja) 1998-01-08 1999-07-27 Mitsubishi Electric Corp 行動支援装置
JP2004129435A (ja) 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
JP2004276727A (ja) 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法
JP2006282160A (ja) 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構
JP4556831B2 (ja) 2005-10-13 2010-10-06 トヨタ自動車株式会社 走行装置及びその制御方法
JP2006211899A (ja) * 2006-05-08 2006-08-10 Deka Products Lp 輸送車両と方法
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2008233592A (ja) 2007-03-22 2008-10-02 Seiko Epson Corp 液晶装置の製造方法および液滴吐出装置
JP2008234560A (ja) 2007-03-23 2008-10-02 Shinko Electric Ind Co Ltd 認証装置および認証方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103385791B (zh) * 2013-08-01 2015-09-02 济南大学 一种残疾人姿态控制多功能轮椅及控制方法
CN103385791A (zh) * 2013-08-01 2013-11-13 济南大学 一种残疾人姿态控制多功能轮椅及控制方法
CN108431825A (zh) * 2015-11-25 2018-08-21 雷诺股份公司 用于检测机动车辆驾驶员下肢位置的方法和装置
CN107019603A (zh) * 2016-01-29 2017-08-08 株式会社科斯莫特克 借由重心移动而移动的电动轮椅
CN109562009B (zh) * 2016-08-02 2020-06-19 本田技研工业株式会社 车轮框架、驱动轮及轮椅
CN109562009A (zh) * 2016-08-02 2019-04-02 本田技研工业株式会社 车轮框架、驱动轮、轮椅、测力计以及测定系统
CN109715118B (zh) * 2016-09-13 2024-05-24 福特全球技术公司 用于监测和控制机动车辆的方法和设备
CN109715118A (zh) * 2016-09-13 2019-05-03 福特全球技术公司 用于监测和控制机动车辆的方法和设备
US11119486B2 (en) 2016-09-13 2021-09-14 Ford Global Technologies, Llc Methods and apparatus to monitor and control mobility vehicles
CN106974780B (zh) * 2017-03-13 2018-06-29 邝子佳 基于差分航姿的智能轮椅控制方法
CN106974780A (zh) * 2017-03-13 2017-07-25 邝子佳 基于差分航姿的智能轮椅控制方法
CN110709316B (zh) * 2017-05-26 2021-09-07 学校法人东京理科大学 全向移动装置及其姿态控制方法
CN110709316A (zh) * 2017-05-26 2020-01-17 学校法人东京理科大学 全向移动装置及其姿态控制方法
US11157020B2 (en) 2017-05-26 2021-10-26 Public University Corporation Suwa University Of Science Foundation Omnidirectional moving device and attitude control method for the same
US11304862B2 (en) * 2017-09-14 2022-04-19 Yamaha Hatsudoki Kabushiki Kaisha Power assist wheelchair, power assist unit for wheelchair, control device for power assist wheelchair, control method for power assist wheelchair, program, and terminal
CN111361428A (zh) * 2020-02-28 2020-07-03 浙江吉利汽车研究院有限公司 一种车辆控制方法、装置及存储介质
CN111361428B (zh) * 2020-02-28 2022-06-03 浙江吉利汽车研究院有限公司 一种车辆控制方法、装置及存储介质

Also Published As

Publication number Publication date
EP2332815A1 (en) 2011-06-15
EP2332815B1 (en) 2013-10-30
WO2010029669A1 (ja) 2010-03-18
CN102149596B (zh) 2013-06-05
US20110172886A1 (en) 2011-07-14
US8504248B2 (en) 2013-08-06
EP2332815A4 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102149596B (zh) 移动体及其控制方法
US8014923B2 (en) Travel device
US7962256B2 (en) Speed limiting in electric vehicles
JP5366285B2 (ja) 個人用バランス乗物
CN101573250B (zh) 行驶装置及其控制方法
CN100431906C (zh) 共轴两轮车辆
CN101687529B (zh) 车轮倒立摆型移动体及其控制方法
CN106572935A (zh) 行走装置
MXPA01012557A (es) Metodo para fabricar un articulo vehicular para la mobilizacion de personas.
CN106564546A (zh) 全姿态电动平衡扭扭车
CN102341298A (zh) 倒立二轮装置及其控制方法以及控制程序
CN101772436A (zh) 车辆
JP2007336785A (ja) 走行装置及びその制御方法
JP2003011863A (ja) 自動二輪車
JP4825856B2 (ja) 移動体、及びその制御方法
JP5123123B2 (ja) 移動体、及びその制御方法
JP5044515B2 (ja) 移動体、及びその制御方法
JP5328272B2 (ja) 移動体、及びその制御方法
JPWO2016181532A1 (ja) 一人乗り移動機器
CN109987184A (zh) 滑板车
JP5119098B2 (ja) 移動体、及びその制御方法
JP2021160610A (ja) 移動装置
JP2010068680A (ja) 移動体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant