WO2010029669A1 - 移動体、及びその制御方法 - Google Patents

移動体、及びその制御方法 Download PDF

Info

Publication number
WO2010029669A1
WO2010029669A1 PCT/JP2009/003076 JP2009003076W WO2010029669A1 WO 2010029669 A1 WO2010029669 A1 WO 2010029669A1 JP 2009003076 W JP2009003076 W JP 2009003076W WO 2010029669 A1 WO2010029669 A1 WO 2010029669A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
passenger
seat
moving body
boarding
Prior art date
Application number
PCT/JP2009/003076
Other languages
English (en)
French (fr)
Inventor
平哲也
松本潔
中井亮仁
大村吉幸
友國伸保
岡部康平
オットクリスティアン
▲高▼畑智之
Original Assignee
トヨタ自動車株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008233592A external-priority patent/JP5044515B2/ja
Priority claimed from JP2008234560A external-priority patent/JP4825856B2/ja
Application filed by トヨタ自動車株式会社, 国立大学法人東京大学 filed Critical トヨタ自動車株式会社
Priority to EP09812818.4A priority Critical patent/EP2332815B1/en
Priority to US13/063,310 priority patent/US8504248B2/en
Priority to CN200980135755XA priority patent/CN102149596B/zh
Publication of WO2010029669A1 publication Critical patent/WO2010029669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1051Arrangements for steering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1056Arrangements for adjusting the seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/38General characteristics of devices characterised by sensor means for torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means
    • A61G2203/44General characteristics of devices characterised by sensor means for weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/22Driver interactions by presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a moving body and a control method thereof.
  • Patent Documents 1 and 2 mobile bodies have been developed that move with passengers on board (Patent Documents 1 and 2).
  • a force sensor pressure sensor
  • a boarding surface surface on which a passenger rides.
  • the wheels are driven by the output from the force sensor. That is, input is performed by using the force sensor as an operation means.
  • Patent Document 1 moves by applying weight in the direction in which it wants to proceed. For example, when going forward, the passenger tilts his upper body forward. That is, the passenger is in a forward leaning posture. And if it becomes a leaning posture, the force added to a boarding seat will change. Then, this force is detected by a force sensor. The spherical tire is driven by the detection result of the force sensor. In FIG. 14 of Patent Document 1, the inverted pendulum control is performed in a state where the passenger sits on the boarding seat.
  • Patent Document 2 discloses a wheelchair-type moving body. This moving body is provided with a chair and a footrest.
  • Patent Document 3 discloses a moving body that actively detects a user's action and operates autonomously in response thereto. For example, the center of gravity of the user is calculated by a plurality of pressure sensors. A wheelchair-shaped moving body operates according to the position of the center of gravity (FIG. 2).
  • Patent Document 4 discloses an interface device for operating a biped walking type moving body.
  • This interface device has a chair shape.
  • a plurality of force sensors are provided on the back surface and the seat surface of the chair.
  • Four force sensors detect the pelvic turning of the passenger and estimate the intention to walk. And both legs are driven according to the will to walk estimated by the force sensor.
  • the interface device is provided with a footrest.
  • JP 2006-282160 A Japanese Patent Laid-Open No. 10-23613 JP-A-11-198075 Japanese Patent Laid-Open No. 7-136957
  • the vehicle is moving according to the posture of the passenger actually on the moving body.
  • operation according to the environment which is actually moving is attained.
  • the passenger can perform an operation as follows.
  • the passenger moves his upper body forward. That is, the passenger is in a forward leaning posture.
  • the position of the center of gravity becomes forward, and the force applied to the force sensor changes.
  • the sensor detects the forward input.
  • the user wants to move backward
  • the occupant is tilted backward.
  • the position of the center of gravity becomes backward, and a backward tilt input is detected.
  • moving left and right the passenger moves the center of gravity in the left-right direction.
  • left and right turning inputs are detected.
  • it can move according to the turning input, the forward input, and the backward input.
  • a moving body in which a force sensor is provided on the boarding surface on which the passenger is boarded has the following problems. For example, it is assumed that the vehicle is traveling forward diagonally to the right. At this time, if the mechanical structure of the moving body is fixed, the passenger receives a centrifugal force. Then, the state will be diverted to the right and the speed will be accelerated. Or, there is a problem that the upper body is deviated to the outside, and it is not possible to proceed forward diagonally as expected. That is, since the input to the force sensor is not transmitted to the passenger, it is difficult to intuitively understand how much the operation has been performed. In particular, when a centrifugal force is applied, it becomes difficult to operate in the direction in which the passenger wants to move.
  • An object of the present invention is to provide a moving body having high operability and a control method thereof.
  • a moving body is added to a boarding seat on which a passenger gets on, a main body that supports the boarding seat, a moving mechanism that moves the main body, and a seating surface of the boarding seat.
  • a sensor that outputs a measurement signal according to force, a passenger seat drive mechanism that drives the passenger seat so as to change an angle of the seat surface of the passenger seat, a drive amount of the passenger seat drive mechanism,
  • a control calculation unit that calculates a command value for driving the moving mechanism and the passenger seat drive mechanism based on an equilibrium position and posture and a measurement signal from the sensor.
  • a mobile body according to a second aspect of the present invention is the mobile body described above, further comprising a posture detection unit that outputs a signal corresponding to a posture angle of the mobile body, wherein the equilibrium position posture of the passenger seat is a posture. It changes according to the output of a detection part, It is characterized by the above-mentioned. Thereby, it can move with an appropriate operation amount.
  • a mobile body according to a third aspect of the present invention is the mobile body described above, wherein the equilibrium position and posture of the boarding seat changes so that a boarding surface of the boarding seat is horizontal. It is. Thereby, riding comfort can be improved.
  • a mobile body according to a fourth aspect of the present invention is the mobile body described above, wherein an equilibrium position / posture of the passenger seat is constant regardless of a movement state of the mobile body. is there. Thereby, operativity can be improved simply.
  • a mobile body is the mobile body described above, wherein the boarding seat is based on a driving amount of the boarding seat drive mechanism, an equilibrium position and orientation of the boarding seat, and a measurement signal from the sensor.
  • a target drive amount of the seat drive mechanism is calculated, and a forward / reverse movement speed of the moving body is calculated based on the target drive amount of the passenger seat drive mechanism. Thereby, it can move at an appropriate speed.
  • a mobile body control method includes a boarding seat on which a passenger gets on, a main body portion that supports the boarding seat, a moving mechanism that moves the main body portion, and a seat on the boarding seat. And a boarding seat drive mechanism that drives the passenger seat so as to change the angle of the seating surface of the passenger seat. Based on the step of inputting the equilibrium position and orientation of the passenger seat, the measurement signal from the sensor, the equilibrium position and orientation, and the driving amount of the passenger seat drive mechanism, the moving mechanism and the passenger seat Calculating a command value for driving the drive mechanism.
  • a control method is the control method described above, wherein a signal corresponding to a posture angle of the mobile body is output by the posture detection unit provided in the mobile body, and the boarding seat The equilibrium position / posture of the head changes in accordance with the output of the posture detector.
  • a control method is the control method described above, wherein the equilibrium position / posture of the passenger seat changes so that the passenger plane of the passenger seat becomes horizontal. It is.
  • a control method is the control method described above, wherein the equilibrium position / posture of the passenger seat is constant regardless of the movement state of the mobile body. is there. Thereby, operativity can be improved simply.
  • a control method is the control method described above, wherein the boarding seat is based on a driving amount of the passenger seat drive mechanism, an equilibrium position and orientation of the passenger seat, and a measurement signal from the sensor.
  • a target drive amount of the seat drive mechanism is calculated, and a forward / reverse movement speed of the moving body is calculated based on the target drive amount of the passenger seat drive mechanism. Thereby, it can move at an appropriate speed.
  • FIG. 3 is a flowchart illustrating control of a moving object according to the first embodiment.
  • 3 is a flowchart showing compliance control in the mobile body according to the first exemplary embodiment;
  • 6 is a flowchart illustrating control of a moving object according to a second embodiment.
  • 6 is a flowchart illustrating compliance control in a mobile object according to a second embodiment.
  • FIG. 10 is a side view for explaining a passenger's posture and input moment value in the third embodiment.
  • FIG. 10 is a side view for explaining a passenger's posture and input moment value in the fourth embodiment.
  • FIG. 10 is a side view for explaining a passenger's posture and input moment value in the fourth embodiment.
  • FIG. 10 is a side view for explaining a passenger's posture and input moment value in the fourth embodiment. It is a side view which shows typically the structure of the footrest used for the moving body in Embodiment 5.
  • FIG. 1 is a front view schematically showing the configuration of the moving body 1
  • FIG. 2 is a side view schematically showing the configuration of the moving body 1.
  • 1 and 2 show an XYZ orthogonal coordinate system.
  • the Y axis indicates the left-right direction of the moving body 1
  • the X axis indicates the front-rear direction of the moving body 1
  • the Z axis indicates the vertical direction. Therefore, the X axis corresponds to the roll axis
  • the Y axis becomes the pitch axis
  • the Z axis becomes the yaw axis.
  • FIGS. 1 and 2 The basic overall configuration of the moving body 1 shown in FIGS. 1 and 2 is common to the embodiments described below.
  • the moving body 1 has a riding section 3 and a chassis 13.
  • the chassis 13 is a main body of the moving body 1 and supports the riding section 3.
  • the chassis 13 includes an attitude detection unit 4, wheels 6, a footrest 10, a housing 11, a control calculation unit 51, a battery 52, and the like.
  • the wheel 6 includes a front wheel 601 and a rear wheel 602.
  • a three-wheeled moving body 1 composed of one front wheel 601 and two rear wheels 602 will be described.
  • the boarding part 3 has a boarding seat 8 and a force sensor 9. And the upper surface of the boarding seat 8 becomes the seat surface 8a. That is, the moving body 1 moves on the seat surface 8a in a state where the passenger is on the seat surface 8a.
  • the seating surface 8a may be a flat surface or may have a shape that matches the shape of the collar. Further, a backrest may be provided on the boarding seat 8. That is, the boarding seat 8 may have a wheelchair shape. In order to improve riding comfort, the passenger seat 8 may be cushioned. When the moving body 1 is on a horizontal plane, the seating surface 8a is horizontal.
  • the force sensor 9 detects the weight shift of the passenger.
  • the force sensor 9 detects the force applied to the seat surface 8 a of the passenger seat 8.
  • the force sensor 9 outputs a measurement signal corresponding to the force applied to the seating surface 8a.
  • the force sensor 9 is disposed below the passenger seat 8. That is, the force sensor 9 is disposed between the chassis 13 and the passenger seat 8.
  • a 6-axis force sensor can be used as the force sensor 9.
  • the translational forces (SFx, SFy, SFz) in the three-axis directions and the moments (SMx, SMy, SMz) around each axis are measured.
  • These translational forces and moments are values with the center of the force sensor 9 as the origin.
  • Mx, My, Mz the measurement signals output to the sensor processing unit of the moving body 1
  • the control coordinate origins of those moments are (a, b, c) shown in FIG. 2
  • Mx, My, Mz Can be expressed as follows.
  • FIG. 3 is a diagram for explaining each axis.
  • Any force sensor 9 that can measure moments (Mx, My, Mz) may be used.
  • a triaxial force sensor capable of measuring moments (SMx, SMy, SMz) around each axis may be arranged at the control coordinate origin to directly measure Mx, My, Mz.
  • Three uniaxial force sensors may be provided.
  • an analog joystick using a strain gauge or a potentiometer may be used. That is, it is only necessary to be able to measure moments around three axes directly or indirectly.
  • the force sensor 9 outputs three moments (Mx, My, Mz) as measurement signals.
  • the boarding seat 8 includes a boarding position detection unit 14 for detecting the boarding position.
  • the boarding position detection unit 14 includes a plurality of contact sensors and the like.
  • the plurality of contact sensors are arranged in an array on the seat surface 8 a of the passenger seat 8.
  • the contact sensor outputs a contact signal in a state where something is in contact with the upper surface.
  • the boarding position detection part 14 detects a passenger's boarding position based on the contact signal from a some contact sensor. Specifically, the deviation amount of the boarding position where the passenger actually boarded is detected with the origin when the passenger is on the reference position on the seating surface 8a.
  • the amount of deviation of the boarding position is detected for each of the X direction and the Y direction.
  • the boarding position can be detected from the difference in the distribution of the contact sensors that output the contact signal.
  • the chassis 13 which is a main body portion of the moving body 1 is provided with an attitude detection unit 4, wheels 6, a footrest 10, a housing 11, a control calculation unit 51, a battery 52, and the like.
  • the housing 11 has a box shape, and the front lower side protrudes.
  • the footrest 10 is arrange
  • the footrest 10 is provided on the front side of the passenger seat 8. Therefore, in the state where the passenger has boarded the boarding seat 8, both feet of the passenger are placed on the footrest 10.
  • the footrest 10 includes a determination unit 12 for determining whether or not the passenger is on board.
  • the determination unit 12 includes, for example, a plurality of contact sensors.
  • the plurality of contact sensors are arranged in an array on the upper surface of the footrest 10, for example.
  • Each contact sensor outputs a contact signal in a state where its upper surface is in contact with something. Based on this contact signal, it is determined whether or not the foot of the passenger is in contact.
  • the set of contact sensors in contact resembles the sole shape, it is determined that the passenger is on board. That is, it is determined whether or not the passenger is on board depending on whether or not the area in contact resembles the shape of the sole. Furthermore, it is possible to determine whether a passenger is on board or an object other than the passenger is on board.
  • the housing 11 includes a drive motor 603, a posture detection unit 4, a control calculation unit 51, and a battery 52.
  • the battery 52 supplies power to each electric device such as the drive motor 603, the posture detection unit 4, the control calculation unit 51, the determination unit 12, the boarding position detection unit 14, and the force sensor 9.
  • the posture detection unit 4 includes, for example, a gyro sensor or an acceleration sensor, and detects the posture of the moving body 1. That is, when the chassis 13 is tilted, the posture detection unit 4 detects the tilt angle and the tilt angular velocity. The posture detection unit 4 detects the inclination angle of the posture around the roll axis and the inclination angle of the posture around the pitch axis. Then, the posture detection unit 4 outputs a posture detection signal to the control calculation unit 51.
  • a wheel 6 is rotatably attached to the housing 11.
  • three wheels 6 on the disk are provided.
  • a part of the wheel 6 protrudes below the lower surface of the housing 11. Therefore, the wheel 6 is in contact with the floor surface.
  • the two rear wheels 602 are provided at the rear part of the housing 11.
  • the rear wheel 602 is a drive wheel and is rotated by a drive motor 603. That is, when the drive motor 603 is driven, the rear wheel 602 rotates around the axle.
  • the rear wheels 602 are provided on both the left and right sides.
  • the rear wheel 602 has a built-in encoder for reading its rotational speed.
  • the axle of the left rear wheel 602 and the axle of the right rear wheel 602 are arranged on the same straight line.
  • the wheel 6 includes a front wheel 601.
  • One front wheel 601 is provided at the center of the front portion of the housing 11. Accordingly, the front wheel 601 is disposed between the two rear wheels 602 in the Y direction.
  • a passenger seat 8 is provided between the axle of the front wheel 601 and the axle of the rear wheel 602 in the X direction.
  • the front wheel 601 is a driven wheel (auxiliary wheel), and rotates according to the movement of the moving body 1. That is, the front wheel 601 rotates according to the moving direction and speed by the rotation of the rear wheel 602.
  • the front wheel 601 is provided below the footrest 10.
  • the control calculation unit 51 is an arithmetic processing unit having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), a communication interface, and the like.
  • the control calculation unit 51 includes a removable HDD, an optical disk, a magneto-optical disk, etc., stores various programs and control parameters, and supplies the programs and data to a memory (not shown) or the like as necessary. To do.
  • the control calculation unit 51 is not physically limited to one configuration.
  • the control calculation unit 51 performs processing for controlling the operation of the drive motor 603 in accordance with the output from the force sensor 9.
  • FIG. 4 is a block diagram illustrating a configuration of a control system for moving the moving body 1.
  • the sensor processing unit 53 processes the measurement signal from the force sensor 9. That is, arithmetic processing is performed on measurement data corresponding to the measurement signal output from the force sensor 9. Thereby, the input moment value input to the control calculation unit 51 is calculated.
  • the sensor processing unit 53 may be built in the force sensor 9 or may be built in the control calculation unit 51.
  • the moments (Mx, My, Mz) measured by the force sensor 9 are converted into input moment values (Mx ′, My ′, Mz ′) around each axis.
  • the input moment value becomes an input value that is input to operate each rear wheel 602.
  • the sensor processing unit 53 calculates an input value for each axis.
  • the magnitude of the input moment value is determined according to the magnitude of the moment.
  • the sign of the input moment value is determined by the sign of the measured moment. That is, when the moment is positive, the input moment value is also positive, and when the moment is negative, the input moment value is also negative. For example, when the moment Mx is positive, the input moment value Mx ′ is also positive. Therefore, this input moment value becomes an input value corresponding to the operation intended by the passenger.
  • the drive motor 603 rotates the rear wheel 602 based on the command value. That is, the drive motor 603 gives a command torque for rotating the rear wheel 602 that is a drive wheel.
  • the drive motor 603 may give a rotational torque to the rear wheel 602 via a reduction gear or the like.
  • the command value is not limited to the torque of the drive motor 603 but may be a rotation speed or a rotation speed.
  • each of the drive motors 603 includes an encoder 603a.
  • the encoder 603a detects the rotational speed of the drive motor 603 and the like. Then, the detected rotation speed is input to the control calculation unit 51.
  • the control calculation unit 51 performs feedback control based on the current rotation speed and the target rotation speed. For example, the command value is calculated by multiplying the difference between the target rotational speed and the current rotational speed by an appropriate feedback gain.
  • the command values output to the left and right drive motors 603 may be different values. That is, when going straight forward or backward, the left and right rear wheels 602 are controlled to have the same rotational speed, and when turning left and right, the left and right rear wheels 602 have different rotational speeds in the same direction. Control to be. Further, when turning on the spot, the left and right rear wheels 602 are controlled to rotate in opposite directions.
  • the force sensor 9 detects a moment of + My (see FIG. 3). Based on this + My moment, the sensor processing unit 53 calculates an input moment value My ′ for translating the moving body 1. Similarly, the sensor processing unit 53 calculates an input moment value Mx ′ based on Mx, and calculates an input moment value Mz ′ based on Mz. Thereby, the torque ⁇ i is obtained.
  • the control calculation unit 51 calculates a command value based on the input moment value and the encoder reading. As a result, the left and right rear wheels 602 rotate at a desired rotational speed. Similarly, when turning rightward, the passenger moves weight to the right. Thereby, a force around the roll axis is applied to the passenger seat, and the force sensor 9 detects a moment of + Mx. Based on this + Mx moment, the sensor processing unit 53 calculates an input moment value Mx ′ for turning the moving body 1 in the right direction. That is, the steering angle corresponding to the direction in which the moving body 1 moves is obtained. Then, the control calculation unit 51 calculates a command value according to the input moment value. Depending on this command value, the left and right rear wheels 602 rotate at different rotational speeds. That is, the left rear wheel 602 rotates at a higher rotational speed than the right rear wheel 602.
  • a component for translational movement in the front-rear direction is obtained. That is, the driving torque for driving the left and right rear wheels 602 in the same direction at the same rotational speed is determined. Therefore, the larger My ′, that is, My, the faster the moving speed of the moving body 1.
  • Mx ′ a component with respect to the moving direction, that is, the steering angle is obtained. That is, the rotational torque difference between the left and right rear wheels 602 is determined. Therefore, the difference in rotational speed between the left and right rear wheels 602 increases as Mx ′, that is, Mx increases.
  • a component for in-situ turning is obtained. That is, a component for turning on the spot by rotating the left and right rear wheels 602 in the opposite direction is obtained. Accordingly, the larger Mz ′, that is, Mz, the greater the rotational speed in the opposite direction of the left and right rear wheels 602. For example, when Mz ′ is positive, a driving torque for turning in the counterclockwise direction as viewed from above is calculated. That is, the right rear wheel 602 rotates forward and the left rear wheel 602 rotates rearward at the same rotational speed.
  • the three components calculated based on the input moment values Mx ′, My ′, and Mz ′ are combined to calculate a command value for driving the two rear wheels 602.
  • the command values for the left and right rear wheels 602 are respectively calculated.
  • Driving torque, rotation speed, etc. are calculated as command values. That is, the command value for the left and right rear wheels 602 is calculated by combining the values calculated for each component corresponding to the input moment values Mx ′, My ′, and Mz ′.
  • the moving body 1 moves by the input moment values Mx ′, My ′, Mz ′ calculated based on the measured moments Mx, My, Mz. That is, the moving direction and moving speed of the moving body 1 are determined by the moments Mx, My, Mz due to the weight movement of the passenger.
  • an input for moving the moving body 1 is performed by the movement of the passenger. That is, a moment around each axis is detected by a change in the posture of the passenger. Based on the measured values of these moments, the moving body 1 moves. Thereby, the passenger can operate the moving body 1 simply. That is, operations such as a joystick and a handle are not necessary, and an operation can be performed only by weight shift. For example, if you want to move forward diagonally to the right, put your weight on the right front. Also, if you want to move diagonally to the left, put your weight on the left rear. As a result, the position of the center of gravity of the occupant changes, and input corresponding to the amount of change is performed. That is, an intuitive operation can be performed by detecting a moment corresponding to the movement of the center of gravity of the passenger.
  • the moving body 1 is provided with a drive unit 5 for driving the boarding seat 8.
  • the control with respect to this drive part 5 is demonstrated.
  • the drive unit 5 includes a yaw axis mechanism 501, a pitch axis mechanism 502, and a roll axis mechanism 503.
  • the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 are rotary joints, and the posture of the passenger seat 8 changes as these operate.
  • the yaw axis mechanism 501 rotates the passenger seat 8 around the yaw axis.
  • the pitch axis mechanism 502 rotates the passenger seat 8 around the pitch axis.
  • the roll shaft mechanism 503 rotates the boarding seat 8 around the roll axis.
  • the angle of the seat surface 8a with respect to the chassis 13 changes. That is, the seating surface 8 a is inclined with respect to the chassis 13. Therefore, the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 each have a motor for driving a joint and a speed reducer as driving sections for driving the passenger seat 8 by the driving section 5. Encoders 501a, 502a, and 503a for detecting the rotation angle of the joint motor are provided.
  • the control calculation unit 51 performs control calculation according to the torque from the sensor processing unit 53 as described above.
  • the control calculation unit 51 then outputs a command value for driving the joints of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503. That is, the control calculation unit 51 calculates the target joint angle of each axis mechanism based on the torque. And the control calculation part 51 calculates the command value according to the target joint angle, and outputs it to each motor.
  • each joint of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 becomes a target joint angle. That is, each axis mechanism is driven so as to follow the target joint angle. Therefore, the posture of the moving body 1 changes and the seating surface 8a of the passenger seat 8 can be set to a desired angle.
  • the inclination angle of the seating surface 8a changes in accordance with the input to the force sensor 9.
  • FIG. 5 is a diagram showing a configuration of a mechanism for changing the posture, and shows an internal configuration of the chassis 13.
  • the chassis 13 is provided with a frame portion 2 for controlling the posture.
  • the frame unit 2 is disposed in the housing 11.
  • the first parallel link mechanism 201 and the second parallel link mechanism 202 are coupled in a T-shape in plan view so as not to restrict mutual rotation at the intersection.
  • the first parallel link mechanism 201 is arranged in the front-rear direction.
  • the first parallel link mechanism 201 includes four horizontal links 201a and front and rear vertical links 201b.
  • the horizontal links 201a are all equal in length. Although not shown in the figure, both ends of the horizontal link 201a are formed with fitting holes for fitting the connecting shaft with the vertical link 201b.
  • the two horizontal links 201a are arranged up and down, and the two horizontal links 201a are arranged on the left and right sides of the vertical link 201b so as to sandwich the vertical link 201b.
  • the connecting shaft with the horizontal link 201a protrudes in the left-right direction in an arrangement in which the vertical links 201b face each other with equal intervals in the vertical direction.
  • the connecting shaft is fitted as a rotating shaft between the horizontal link 201a and the vertical link 201b in a fitting hole of the horizontal link 201a via a bearing or the like.
  • the front vertical link 201b of the present embodiment is formed in an L shape.
  • the horizontal link 201a is rotatably connected to the upper and lower ends of the vertical piece of the vertical link 201b via a connecting shaft.
  • a free caster is provided as the wheel 6 at the tip of the horizontal piece of the vertical link 201b.
  • the rear vertical link 201b includes a protruding portion that protrudes downward from the lower horizontal link 201a.
  • the connecting shaft with the second parallel link mechanism 202 protrudes in the front-rear direction from both the front and rear side portions of the protrusion.
  • the connecting shaft with the second parallel link mechanism 202 is arranged in the front-rear direction in a mutually opposed arrangement. Protruding.
  • the second parallel link mechanism 202 is disposed in the left-right direction.
  • the second parallel link mechanism 202 includes four horizontal links 202a and left and right vertical links 202b.
  • the horizontal links 202a are all equal in length.
  • both ends of the horizontal link 202a are formed with fitting holes for fitting the connecting shaft with the vertical link 202b.
  • a fitting hole for fitting a connecting shaft with the first parallel link mechanism 201 is formed at a substantially central position in the longitudinal direction of the horizontal link 202a.
  • the two horizontal links 202a are arranged vertically, and the two horizontal links 202a are taken as a set, and the vertical link 202b and the vertical link 201b on the rear side of the first parallel link mechanism 201 are sandwiched therebetween.
  • the longitudinal link 202b and the longitudinal link 201b on the rear side of the first parallel link mechanism 201 are disposed on both front and rear sides.
  • the connecting shaft protruding from the longitudinal link 201b on the rear side of the first parallel link mechanism 201 is a rotational axis between the first parallel link mechanism 201 and the second parallel link mechanism 202, and is located at a substantially central position of the lateral link 202a.
  • the fitting hole is fitted through a bearing or the like.
  • the connecting shaft with the horizontal link 202a protrudes in the front-rear direction in an arrangement in which the vertical links 202b face each other at equal intervals in the vertical direction.
  • the connecting shaft is fitted as a rotating shaft between the horizontal link 202a and the vertical link 202b in a fitting hole at an end of the horizontal link 202a via a bearing or the like.
  • the first parallel link mechanism 201 can be rotated in the front-rear direction without being constrained by the second parallel link mechanism 202.
  • the second parallel link mechanism 202 is configured to be rotatable in the left-right direction without being constrained by the first parallel link mechanism 201.
  • the boarding unit 3 is provided on the posture detection unit 4 and interlocks with the rotation of the frame unit 2. Specifically, the riding section 3 is connected to the upper and lower horizontal links 201 a of the first parallel link mechanism 201 via the support shaft 301. Although not shown from the left and right sides of the upper and lower portions of the support shaft 301, a connecting shaft with the upper and lower horizontal links 201 a of the first parallel link mechanism 201 protrudes in the left-right direction. Although not shown, a fitting hole for fitting the connecting shaft protruding from the support shaft 301 is formed at a substantially central position in the longitudinal direction of the horizontal link 201a of the first parallel link mechanism 201.
  • the support shaft 301 is inserted between the horizontal links 201a arranged on the left and right of the vertical link 201b so as to sandwich the vertical link 201b.
  • the connecting shaft protruding from the support shaft 301 is fitted into the fitting hole of the first parallel link mechanism 201 via a bearing or the like.
  • the drive unit 5 is provided with a yaw axis mechanism 501 that rotates around the yaw axis, a pitch axis mechanism 502 that rotates around the pitch axis, and a roll axis mechanism 503 that rotates around the roll axis.
  • the yaw shaft mechanism 501 is provided between the support shaft 301 and the posture detection unit 4, for example. That is, the yaw axis mechanism 501 is provided closest to the riding section 3 among the three mechanisms.
  • the yaw axis mechanism 501 is a turning joint that turns the riding part 3 around the yaw axis
  • the pitch axis mechanism 502 and the roll axis mechanism 503 are rotary joints that rotate the riding part 3 around the axis.
  • FIG. 6 is a flowchart illustrating a method for controlling the moving body 1.
  • FIG. 6 shows one cycle in the control of the moving body 1. According to this flowchart, movement control and posture control of the moving body 1 are performed. That is, FIG. 6 shows a control method for driving the rear wheels 602 and driving the drive unit 5.
  • step S101 the joint angles of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 are detected (step S101). That is, the angle of each joint is detected by encoders 501a, 502a, and 503a provided in each shaft mechanism.
  • the moving body 1 has a posture corresponding to the joint angle.
  • step S102 the value of moment is detected by the force sensor 9 (step S102). That is, moments (Mx, My, Mz) are measured.
  • offset correction of the force sensor 9 is performed (step S103). That is, when the position where the passenger is sitting is shifted, an offset is given to the position. An offset is given to the control target origin so as to correct the displacement of the boarding position with respect to the input moment.
  • moments (Mx ′, My ′, Mz ′) in which the positional deviation is corrected can be calculated.
  • step S101 and step S102 may be reversed, and step S101 and step S102 may be performed in parallel.
  • the equilibrium position / posture ⁇ id of the seat surface is input (step S104).
  • the position where the seat surface 8a is horizontal is the equilibrium position posture.
  • the joint angles of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 at this time correspond to the equilibrium position / posture. Therefore, in this embodiment, the equilibrium position / posture is constant. That is, an equilibrium position / posture is selected so that the joint angle of each axis is constant regardless of the movement state.
  • compliance compensation is performed (step S105).
  • the target joint angles of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 are determined by the compliance control here.
  • Compliance control is control that behaves in a pseudo manner with spring characteristics and damping characteristics.
  • the spring characteristics and damping characteristics are shown by the operations of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503. By introducing this compliance control, the seat surface 8a can be tilted according to the force of the passenger.
  • compliance control is performed using the joint angle of the yaw axis mechanism 501, the pitch axis mechanism 502, the roll axis mechanism 503, the moment of the force sensor 9, and the equilibrium position and orientation of the seating surface 8a.
  • target joint angles of the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 are calculated. Details of this step will be described later.
  • the seating surface 8a is controlled (step S106). That is, the motor provided on each axis is driven so that the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 have the target joint angles. As a result, the inclination of the seating surface 8a is changed to the current target position / posture.
  • the inclination of the seating surface 8a changes according to the output of the force sensor 9. That is, the passenger receives a force from the seating surface 8a according to the force on the seating surface 8a. Therefore, the passenger 19 can intuitively grasp the input to the force sensor 9. Thereby, operativity improves and it can move as the passenger's 19 intent.
  • step S107 the wheel rotation angle, speed, and torque are detected. That is, the operating state of the left and right rear wheels 602 is detected based on the output of the encoder 603a. Then, the forward / reverse speed of the moving body 1 is calculated from the target joint angle around the pitch axis (step S108). At this time, the forward / reverse speed is calculated based on the current target position / posture ⁇ i obtained in step S105. That is, the control calculation unit 51 calculates the forward / reverse speed based on the target joint angle of the pitch axis mechanism 502. Therefore, the target forward / reverse speed is determined by the moment of the force sensor 9, the equilibrium position / posture of the seat surface, and the joint angles.
  • the turning speed of the moving body 1 is calculated from the joint angles of the roll axis and the yaw axis (step S109).
  • the control calculation unit 51 calculates the turning speed based on the current target position and orientation ⁇ i obtained in step S105. That is, the control calculation unit 51 calculates the forward / reverse speed based on the target joint angles of the yaw axis mechanism 501 and the roll axis mechanism 503. Therefore, the target forward / reverse speed is determined by the moment of the force sensor 9, the equilibrium position of the seat surface, and each joint angle.
  • the rotational speed of the left and right rear wheels 602 is calculated by combining the forward / reverse speed and the turning speed (step S110). That is, the rotational torque for rotating the rear wheel 602 is calculated.
  • the torque of the left and right rear wheels 602 becomes a command value and is output to the drive motor 603.
  • feedback control is performed using the rotation angle of the rear wheel 602 detected in step S107 and the target speed.
  • the control calculation unit 51 outputs a command value for driving the drive motor 603.
  • the moving body 1 moves at a speed close to the forward / reverse speed calculated in step S108 and the turning speed calculated in step S109. Accordingly, the moving body 1 moves as intended by the passenger in response to an input from the force sensor 9.
  • FIG. 7 is a flowchart showing details of the compliance control.
  • the equilibrium position and orientation ⁇ id of the seating surface are input (step S203).
  • This equilibrium position / orientation ⁇ id indicates a reference position that serves as a reference for the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503. That is, a joint angle that is a reference for each axis mechanism is input to the control calculation unit 51.
  • the value of the equilibrium position and orientation ⁇ id of the seating surface is fixed.
  • the joint angle used as the equilibrium position / posture ⁇ id is stored in the memory or the like of the control calculation unit 51. Then, the equilibrium position / posture ⁇ id is input by reading the joint angle.
  • the equilibrium position and orientation ⁇ id is determined for each axis.
  • the equilibrium position / posture ⁇ id is composed of three components: an equilibrium position / posture ⁇ xd around the roll axis, an equilibrium position / posture ⁇ yd around the pitch axis, and an equilibrium position / posture ⁇ zd around the yaw axis. These correspond to the joint angle which is the reference of each axis mechanism.
  • the current target position / posture ⁇ i of the seating surface is obtained from the torque ⁇ i and the equilibrium position / posture ⁇ id (step S204).
  • the control calculation unit 51 calculates the current target position and orientation ⁇ i of the riding unit 3 based on the mathematical formula described in step S204. That is, the current target position and orientation ⁇ i can be calculated by solving the equation described in step S204.
  • the current target position / posture ⁇ i includes, for example, a target joint angle of the yaw axis mechanism 501, a target joint angle of the pitch axis mechanism 502, and a target joint angle of the roll axis mechanism 503. Therefore, the current target position / posture ⁇ i is composed of three components of ⁇ x, ⁇ y, and ⁇ z.
  • the target joint angle in each axis mechanism is calculated based on the torque ⁇ i and the equilibrium position / posture ⁇ id.
  • Mi is an inertia matrix
  • Di is a viscosity coefficient matrix
  • Ki is a stiffness matrix
  • these are 3 ⁇ 3 matrices.
  • the inertia matrix, the viscosity coefficient matrix, and the stiffness matrix can be set according to the configuration and operation of the moving body 1.
  • (dot) attached subjected on (phi) i and (phi) id has shown the time differentiation. When one dot is attached, one-time differentiation is indicated, and when two dots are attached, two-time differentiation is indicated. For example, if one dot is attached on ⁇ i, the target posture speed is obtained, and if two dots are attached, the target posture acceleration is obtained.
  • the equilibrium position / posture speed is obtained, and when two dots are attached, the equilibrium position / posture acceleration is obtained.
  • the equilibrium position / posture speed and the parallel position / posture acceleration are basically zero.
  • step S205 movement control is performed based on the current target position and orientation ⁇ i (step S205). Further, in parallel with the movement control, the seat surface tilt control is performed (step S206).
  • the forward / reverse speed and the turning speed are calculated based on the current target position / posture ⁇ i. That is, the forward / reverse speed of the moving body 1 is determined according to the current target position / posture ⁇ y. The greater the value of ⁇ y, the greater the forward / reverse speed. Further, the turning speed of the moving body 1 is determined according to the current target position / posture ⁇ x, ⁇ z. The turning speed increases as the values of ⁇ x and ⁇ z increase.
  • the rotational torque of the left and right rear wheels 602 is calculated from the forward / reverse speed and the turning speed.
  • the target rotational speed for the left and right rear wheels 602 is calculated by combining the forward / reverse speed and the turning speed.
  • feedback control for calculating the rotational torque is performed from the difference between the current rotational speed and the target rotational speed.
  • the control calculation unit 51 outputs this rotational torque as a command value to the drive motor 603. In this way, movement control is performed.
  • the tilt control of the seating surface 8a is also performed based on the current target position / posture ⁇ i. That is, the command value for each axis mechanism is calculated using the current target position / posture ⁇ i as an input. Based on the current target position and orientation ⁇ i, the command value of each axis mechanism is calculated. And according to this command value, the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 are driven. Therefore, the inclination of the seating surface 8 a changes so as to be the target joint angle of the yaw axis mechanism 501, the target joint angle of the pitch axis mechanism 502, and the target joint angle of the roll axis mechanism 503.
  • each axis mechanism is driven so as to follow the target joint angle.
  • position of the riding part 3 changes and the inclination of the seat surface 8a changes. Therefore, the passenger receives force from the seating surface 8a. Then, the seat surface 8a becomes the current target position / posture ⁇ i.
  • the movement control and the tilt control of the seating surface 8a are performed using the current target position / posture ⁇ i. That is, the command value for each motor is calculated based on the current target position and orientation ⁇ i.
  • the control calculation unit 51 drives the rear wheels 602 and the drive unit 5 based on the drive amount of the drive unit 5 that drives the passenger seat, the equilibrium position and orientation of the seating surface 8a, and the measurement signal from the force sensor 9. A command value for calculating is calculated.
  • the method of fixing the passenger seat 8 to the chassis 13 has a structure that is not rigidly coupled but deformed and displaced to some extent with respect to the input. Therefore, it is possible to control to make a soft movement like a spring. That is, if it represents with a motor vehicle, the drive part 5 functions as a suspension. And based on the detection result in the force sensor 9, the drive part 5 is controlled.
  • the joint angle at which the equilibrium position posture is established is constant regardless of the movement state. It becomes easier for the passenger to grasp the operation amount. For example, when the passenger removes the force, the seat surface 8a returns to the equilibrium position / posture. Thereby, operability can be improved.
  • the movement control is also performed based on the current target position / posture ⁇ i. Thereby, the forward / reverse speed and the turning speed can be calculated as intended by the passenger. Therefore, operability can be improved.
  • the control calculation unit 51 generates command values for driving the rear wheels 602 and the driving unit 5 based on the driving amount of the driving unit 5, the equilibrium position and orientation ⁇ id of the passenger seat 8, and the measurement signal from the force sensor 9. calculate. Therefore, the command value can be accurately calculated, and the vehicle can move as intended by the passenger.
  • the input of the equilibrium position and posture is different from that in the first embodiment. That is, in the present embodiment, the equilibrium position / posture changes dynamically. For example, when the moving body 1 moves on an inclined surface or a step surface, the seat surface 8a is inclined according to the inclined surface. Therefore, in the present embodiment, the drive unit 5 is driven according to the inclined surface. Here, even if it is an inclined surface, the drive part 5 is driven so that a seat surface may approach horizontal. Therefore, even when moving on an inclined surface or a single wheel step, the operability is improved. Since the configuration and control other than this are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 8 is a flowchart corresponding to FIG. 6 shown in the first embodiment.
  • FIG. 9 is a flowchart corresponding to FIG. 7 shown in the first embodiment.
  • FIG. 10 is a side view showing the moving body 1 that is moving.
  • the equilibrium position / posture is changed in accordance with the output of the posture detection unit 4. That is, the posture detection unit 4 detects the posture of the moving body 1. Therefore, when the floor on which the moving body 1 is moving is not flat, the output of the posture detection unit 4 changes. For example, as illustrated in FIG. 10, when the moving body 1 moves from a flat surface to an inclined surface, the posture detection unit 4 detects a posture change of the moving body 1. Then, the equilibrium position / posture is dynamically changed according to the posture change. Therefore, the joint angle of the equilibrium position / posture is different when moving on the inclined surface and when moving on the flat surface.
  • step S301 joint angles of the roll axis, pitch axis, and yaw axis are detected in the same manner as in the first embodiment (step S301). Further, the posture is detected by the posture detection unit 4 (step S302). That is, the posture detection unit 4 detects a posture change caused by the floor surface. Thereby, the inclination angle ⁇ i of the inclined surface shown in FIG. 10 can be detected. Note that step S301 and step S302 may be performed in parallel. Then, as in the first embodiment, the moment value detection by the force sensor (step S303) and the offset correction of the force sensor 9 (step S304) are performed.
  • the equilibrium position / posture ⁇ id of the seat surface is input (step S305).
  • the equilibrium position / posture ⁇ id changes according to the posture change detected by the posture detection unit 4. That is, the equilibrium position / posture ⁇ id is input so that the seating surface 8a is horizontal even when moving on the inclined surface. Therefore, the value of the equilibrium position and orientation ⁇ id is corrected by the inclination angle ⁇ i of the inclined surface.
  • the target joint angle is changed by the amount of inclination of the floor.
  • the posture detection unit 4 has a three-axis gyro sensor, a posture change around the roll, pitch, and yaw axes is detected.
  • the equilibrium position and orientation ⁇ xd around the roll axis, the equilibrium position and orientation ⁇ yd around the pitch axis, and the equilibrium position and orientation ⁇ zd around the yaw axis are corrected.
  • the drive unit 5 is controlled so that the seating surface 8a is not a slope but parallel to a horizontal plane.
  • step S306 compliance compensation is performed (step S306).
  • the joint angles of the roll axis, pitch axis, and yaw axis, the value of the moment detected by the force sensor, and the equilibrium position and orientation ⁇ id of the seating surface are used.
  • the equilibrium position and orientation ⁇ id of the seating surface 8a changes according to the floor surface.
  • the seating surface 8a is controlled by compliance control (step S307).
  • the motors provided on the respective axes are driven so that the yaw axis mechanism 501, the pitch axis mechanism 502, and the roll axis mechanism 503 each have a target joint angle.
  • the inclination of the seating surface 8a is changed to the current target position / posture ⁇ i.
  • the wheel rotation angle, speed, and torque are detected (step S308).
  • the forward / reverse speed of the moving body 1 is calculated from the angle around the pitch axis (step S309).
  • the control calculation unit 51 calculates the forward / reverse speed based on the difference obtained by subtracting the inclination angle ⁇ i of the inclined surface from the current target position / posture ⁇ i. That is, the forward / reverse speed is calculated based on the difference between the current target position / posture ⁇ y and ⁇ y.
  • the turning speed of the moving body 1 is calculated from the angles of the roll axis and the yaw axis (step S310).
  • the control calculation unit 51 calculates the turning speed based on the difference obtained by subtracting the inclination angle ⁇ i of the inclined surface from the current target position and orientation ⁇ i. Based on the difference between the current target position / posture ⁇ x and ⁇ x and the difference between the current target position / posture ⁇ z and ⁇ z, the turning speed is calculated. And the torque of the left and right rear wheels is calculated from the forward / reverse speed and the turning speed. Note that the processing in step S311 is the same as that in the first embodiment, and a description thereof will be omitted.
  • the command value is calculated in consideration of the inclination angle ⁇ i of the inclined surface. Therefore, the amount of operation can be accurately transmitted to the passenger even in an environment such as an inclined surface or a single wheel step. As a result, the operation amount is easily understood by the passenger. For example, when the passenger removes the force, the passenger returns to the equilibrium position and the seating surface 8a becomes horizontal.
  • Step S401 when the occupant moves weight (step S401), the force sensor 9 detects the torque ⁇ i (step 402). These steps are the same as those in the first embodiment. Steps S403 and S404 may be performed in parallel with steps S401 and S402.
  • the shift of the posture angle of the moving body 1 is detected, and the tilt angle ⁇ i of the inclined surface is sensed by the posture detection unit 4 (step S403).
  • the equilibrium position / posture ⁇ id of the seating surface 8a obtained by correcting the inclination angle ⁇ i of the inclined surface is input (step S404). That is, the joint angle at which the equilibrium position / posture ⁇ id is input is input to the memory or the like of the control calculation unit 51.
  • the equilibrium position and orientation ⁇ id here changes in accordance with the inclination angle ⁇ i of the inclined surface. Even when the floor surface is an inclined surface or the like, the equilibrium position posture ⁇ id is set so that the seat surface 8a is horizontal. In the equilibrium position / posture ⁇ id, a joint angle is set such that the seating surface 8a is horizontal.
  • step S405 the current target position / orientation ⁇ i is calculated (step S405).
  • Movement control (step S406) is performed from the current target position and orientation ⁇ i calculated in step S405.
  • the command values for the left and right rear wheels 602 are calculated based on the difference obtained by subtracting the inclination angle ⁇ i of the inclined surface from the current target position and orientation.
  • the tilt control of the seating surface is performed from the current target position / posture ⁇ i (step S407).
  • Step 406 is the same as that in the first embodiment, and a description thereof will be omitted.
  • the equilibrium position / orientation ⁇ id changes in accordance with the output of the attitude detection unit 4. This makes it easier for the passenger to grasp the operation amount. For example, when the passenger removes the force, the seat surface 8a returns to the equilibrium position / posture. Thereby, operability can be improved. Moreover, since the seat surface 8a approaches flat, riding comfort can be improved.
  • the control calculation unit 51 drives the rear wheel 602 and the drive unit 5 based on the tilt angle ⁇ i, the drive amount of the drive unit 5, the equilibrium position / posture ⁇ id of the passenger seat 8, and the measurement signal from the force sensor 9.
  • the command value for calculating is calculated. Therefore, the command value can be accurately calculated, and the vehicle can move as intended by the passenger.
  • the moving body 1 shown in FIGS. 1 to 10 may not be able to move as intended by the passenger.
  • the posture change of the passenger is restricted by the thigh of the passenger. Therefore, it may be difficult for the passenger to enter a forward leaning posture and to input a high-speed forward input.
  • the input of the force sensor changes.
  • the input of the force sensor also changes when the sitting position of the passenger changes. Even when moving on an inclined surface, a deviation occurs in the input of the force sensor. Therefore, it may become impossible to move as intended.
  • the moving body 1 cannot be moved as intended by the passenger. Therefore, according to the present embodiment, even in such a situation, the vehicle can be moved as intended by the passenger, and the operability can be further improved.
  • FIG. 11 is a block diagram illustrating a configuration of a control system for moving the moving body 1.
  • the force applied to the seating surface 8a is detected by the force sensor 9.
  • the force sensor 9 outputs moments Mx, My, and Mz that are measurement signals to the sensor processing unit 53.
  • the sensor processing unit 53 processes the measurement signal from the force sensor 9. That is, arithmetic processing is performed on measurement data corresponding to the measurement signal output from the force sensor 9. Thereby, the input moment values (Mx ′, My ′, Mz ′) input to the control calculation unit 51 are calculated.
  • the sensor processing unit 53 may be built in the force sensor 9 or may be built in the control calculation unit 51.
  • the moments (Mx, My, Mz) measured by the force sensor 9 are converted into input moment values (Mx ′, My ′, Mz ′) around each axis.
  • the input moment value becomes an input value that is input to operate each rear wheel 602.
  • the sensor processing unit 53 calculates an input value for each axis.
  • the magnitude of the input moment value is determined according to the magnitude of the moment.
  • the sign of the input moment value is determined by the sign of the measured moment. That is, when the moment is positive, the input moment value is also positive, and when the moment is negative, the input moment value is also negative. For example, when the moment Mx is positive, the input moment value Mx ′ is also positive. Therefore, this input moment value becomes an input value corresponding to the operation intended by the passenger.
  • the control calculation unit 51 performs control calculation based on the input moment value. Thereby, a command value for driving the drive motor 603 is calculated. Of course, the command value increases as the input moment value increases. This command value is output to the drive motor 603.
  • the left and right rear wheels 602 are drive wheels, two drive motors 603 are illustrated. Then, one drive motor 603 rotates the right rear wheel 602, and the other drive motor 603 rotates the left rear wheel 602.
  • the drive motor 603 rotates the rear wheel 602 based on the command value. That is, the drive motor 603 gives a torque for rotating the rear wheel 602 that is a drive wheel.
  • the drive motor 603 may give a rotational torque to the rear wheel 602 via a reduction gear or the like.
  • the drive motor 603 rotates with the command torque.
  • the rear wheel 602 rotates and the moving body 1 moves in a desired direction at a desired speed.
  • the command value is not limited to torque, and may be a rotation speed or a rotation speed.
  • each of the drive motors 603 includes an encoder 603a.
  • the encoder 603a detects the rotational speed of the drive motor 603 and the like. Then, the detected rotation speed is input to the control calculation unit 51.
  • the control calculation unit 51 performs feedback control based on the current rotation speed and the target rotation speed. For example, the command value is calculated by multiplying the difference between the target rotational speed and the current rotational speed by an appropriate feedback gain.
  • the command values output to the left and right drive motors 603 may be different values. That is, when going straight forward or backward, the left and right rear wheels 602 are controlled to have the same rotational speed, and when turning left and right, the left and right rear wheels 602 have different rotational speeds in the same direction. Control to be. Further, when turning on the spot, the left and right rear wheels 602 are controlled to rotate in opposite directions.
  • the force sensor 9 detects a moment of + My (see FIG. 3). Based on this + My moment, the sensor processing unit 53 calculates an input moment value My ′ for translating the moving body 1. Similarly, the sensor processing unit 53 calculates an input moment value Mx ′ based on Mx, and calculates an input moment value Mz ′ based on Mz. That is, the sensor processing unit 53 converts the measurement value into an input moment value.
  • Mx ′ is determined only by Mx
  • My ′ is determined only by My
  • Mz ′ is determined only by Mz.
  • Mx ′, My ′, and Mz ′ are independent of each other.
  • the control calculation unit 51 calculates a command value based on the input moment value and the encoder reading. As a result, the left and right rear wheels 602 rotate at a desired rotational speed. Similarly, when turning rightward, the passenger moves weight to the right. Thereby, a force around the roll axis is applied to the passenger seat, and the force sensor 9 detects a moment of + Mx. Based on this + Mx moment, the sensor processing unit 53 calculates an input moment value Mx ′ for turning the moving body 1 in the right direction. That is, the steering angle corresponding to the direction in which the moving body 1 moves is obtained. Then, the control calculation unit 51 calculates a command value according to the input moment value. Depending on this command value, the left and right rear wheels 602 rotate at different rotational speeds. That is, the left rear wheel 602 rotates at a higher rotational speed than the right rear wheel 602.
  • a component for translational movement in the front-rear direction is obtained based on My ′. That is, the driving torque for driving the left and right rear wheels 602 in the same direction at the same rotational speed is determined. Therefore, the larger My ′, that is, My, the faster the moving speed of the moving body 1.
  • Mx ′ a component with respect to the moving direction, that is, the steering angle is obtained. That is, the rotational torque difference between the left and right rear wheels 602 is determined. Therefore, the difference in rotational speed between the left and right rear wheels 602 increases as Mx ′, that is, Mx increases.
  • a component for in-situ turning is obtained. That is, a component for turning on the spot by rotating the left and right rear wheels 602 in the opposite direction is obtained. Accordingly, the larger Mz ′, that is, Mz, the greater the rotational speed in the opposite direction of the left and right rear wheels 602. For example, when Mz ′ is positive, a driving torque for turning in the counterclockwise direction as viewed from above is calculated. That is, the right rear wheel 602 rotates forward and the left rear wheel 602 rotates rearward at the same rotational speed.
  • the three components calculated based on the input moment values Mx ′, My ′, and Mz ′ are combined to calculate a command value for driving the two rear wheels 602.
  • the command values for the left and right rear wheels 602 are respectively calculated.
  • Driving torque, rotation speed, etc. are calculated as command values. That is, the command value for the left and right rear wheels 602 is calculated by combining the values calculated for each component corresponding to the input moment values Mx ′, My ′, and Mz ′.
  • the moving body 1 moves by the input moment values Mx ′, My ′, Mz ′ calculated based on the measured moments Mx, My, Mz. That is, the moving direction and moving speed of the moving body 1 are determined by the moments Mx, My, Mz due to the weight movement of the passenger.
  • an input for moving the moving body 1 is performed by the movement of the passenger. That is, a moment around each axis is detected by a change in the posture of the passenger. Based on the measured values of these moments, the moving body 1 moves. Thereby, the passenger can operate the moving body 1 simply. That is, operations such as a joystick and a handle are not necessary, and an operation can be performed only by weight shift. For example, if you want to move forward diagonally to the right, put your weight on the right front. Also, if you want to move diagonally to the left, put your weight on the left rear. As a result, the position of the center of gravity of the occupant changes, and input corresponding to the amount of change is performed.
  • the control calculation unit 51 outputs a command value so as to move forward or backward in accordance with the sign of the input moment value at a moving speed corresponding to the absolute value of the input moment value.
  • FIG. 12 is a diagram showing a state in which a passenger 71 is in the boarding seat 8, with a side view on the left side and a plan view of the boarding surface 8a on the right side.
  • the buttock 72 and the thigh 73 of the passenger 71 are in contact with the seat surface 8a.
  • the input in the front-rear direction at this time will be described below.
  • the input in the forward direction is a positive value
  • the input in the reverse direction is a negative value.
  • the speed of the moving body 1 is determined according to the absolute value of the input moment value My ′. For example, the moving speed changes in proportion to My ′. In other words, the absolute value of the moving speed monotonously increases as the absolute value of My ′ increases. In addition, the speed of the moving body 1 is equal in the opposite direction when My ′ is + a (a is an arbitrary positive value) and ⁇ a. Thus, the speed of the moving body 1 is determined according to the tilt angle from the neutral posture of the upper body of the passenger. Therefore, the moving body 1 moves at a higher speed as the passenger tilts the upper body.
  • a determination signal from the determination unit 12 is input to the sensor processing unit 53.
  • the determination unit 12 is provided with a contact sensor 58 and a determination information processing unit 59.
  • the contact sensors 58 are arranged in an array on the upper surface of the footrest 10.
  • Each contact sensor 58 outputs a contact signal when something is in contact therewith.
  • the discrimination information processing unit 59 performs processing based on this contact signal and discriminates whether the passenger is on board. That is, it is determined whether or not the sole is in contact with the footrest 10 according to the distribution of the contact sensor that outputs the contact signal. If the distribution of the contact sensor that outputs the contact signal is close to the sole shape, it is determined that the passenger is on board, and otherwise, it is determined that an object other than a person is in contact.
  • a position signal indicating the boarding position is input to the sensor processing unit 53 from the boarding position detection unit 14. That is, the boarding position detection unit 14 outputs a position signal.
  • the boarding position detection unit 14 includes a contact sensor 56 and a distribution information processing unit 57. A plurality of contact sensors 58 are provided. A plurality of contact sensors 56 are arranged in an array. Each contact sensor 56 outputs a contact signal when something is in contact therewith.
  • the distribution information processing unit 57 performs processing based on the distribution information of the contact signal and calculates the boarding position.
  • a position signal is input to the sensor processing unit 53.
  • the sensor processing unit 53 performs processing according to the position signal.
  • the sensor processing unit 53 changes processing according to the determination signal and the position signal. These processes will be described later. That is, these processes are different in Embodiments 3 to 9 described below.
  • Embodiments 3 to 9 shown below are embodiments relating to the moving body 1 having the configuration shown in FIGS. 1 to 3 and FIG. 11.
  • each processing unit such as the sensor processing unit 53, the distribution information processing unit 57, and the discrimination information processing unit 59 is configured by a CPU, a RAM, and the like, similar to the control calculation unit 51. Then, arithmetic processing is performed according to a predetermined program.
  • each processing unit and the control calculation unit 51 may have the physically same configuration. In other words, processing and calculation may be performed in one arithmetic processing circuit.
  • the moving speed is determined according to the posture of the passenger. Therefore, when it is desired to move forward at a high speed, it is necessary for the occupant to greatly tilt the posture forward.
  • the thigh 73 is restricted by the shape of the seating surface 8a. For this reason, it is difficult to increase the moment My. That is, when the moment My is positive, it is difficult to increase the absolute value compared to the negative case. Therefore, in the present embodiment, the sensor processing unit 53 performs the following processing.
  • the coefficient for calculating My ′ from My is changed according to the sign of My. That is, the coefficient when My is positive is larger than the coefficient when My is negative. Thereby, the value of My ′ can be increased when My is a positive value.
  • the coefficient to be multiplied by My is changed between a positive value and a negative value.
  • the absolute value of My ′ changes according to the sign of My.
  • the input moment value is increased even when the forward tilt angle of the occupant 71 is small.
  • the forward speed can be increased. Therefore, it is not necessary for the passenger 71 to tilt greatly forward, so that the operability can be improved.
  • the passenger since it is not necessary to lean forward greatly, the passenger does not have a posture that makes it difficult to confirm the front. Therefore, safety can be improved even when moving forward at high speed.
  • FIG. 14 is a side view for explaining the posture of the passenger and the input moment value. Even when the forward inclination angle ⁇ of the passenger 71 is small, the input moment value My ′ can be increased. Accordingly, the forward speed can be increased, and control according to the intention of the passenger 71 can be performed. In the present embodiment, when the vehicle is in the neutral posture, that is, when the passenger is riding along the vertical direction, the forward input is not performed.
  • the processing can be easily performed by processing the input moment value My ′ input to the control calculation unit 51. That is, complicated control calculation for obtaining the command value can be performed without distinguishing between forward and reverse. Therefore, it can be easily controlled.
  • the mobile body 1 according to the third embodiment does not use the posture detection unit 4, the determination unit 12, and the boarding position detection unit 14, these need not be provided.
  • the sensor processing unit 53 performs processing for increasing the input moment value My ′ in the forward input as in the third embodiment.
  • the origin position is shifted backward when calculating the input moment value My ′ from the moment My. That is, while the yaw axis of the moment My measured by the force sensor 9 is the center of the force sensor 9, the position of the yaw axis when calculating the input moment value My ′ is the center of the force sensor 9. It is behind.
  • the offset value is given to the position of the yaw axis with respect to the input moment value My ′.
  • the yaw axis position is shifted rearward from the yaw axis position of FIGS. 13 and 14.
  • the absolute value of the input moment value My ′ does not become the same unless the backward tilt angle ⁇ and the forward tilt angle ⁇ are the same. Therefore, in this embodiment, as shown in FIG. 16, an offset is given to the origin position, that is, the yaw axis position. That is, by giving an offset, the forward tilt angle ⁇ is virtually created. The virtual forward tilt angle ⁇ is larger than the actual forward tilt angle. Therefore, the forward speed can be increased as intended.
  • the output when the moment My is positive is +2
  • the output when the moment My is negative is -2.
  • the input moment value is increased and calculated by shifting the position of the yaw axis backward.
  • an offset voltage is applied to the output voltage from the force sensor 9. If a positive voltage is output from the force sensor 9 when tilting forward and a negative voltage is output when tilting backward, the reference potential is set to a negative potential so that the positive voltage increases.
  • the force sensor 9 outputs a voltage of ⁇ 5V to 5V. That is, consider the case where the moment My is represented by ⁇ 5V to + 5V.
  • the sensor processing unit 53 sets the reference potential to ⁇ 2V.
  • the offset voltage is ⁇ 2V.
  • the forward input is made, and the actual input moment value My ′ is calculated from the moment My in the range of 0 to 7V. Therefore, in the case of forward input, the input moment value can be made larger than the moment My output from the force sensor 9.
  • the input moment value is calculated.
  • the forward input can be easily performed as in the third embodiment.
  • an offset voltage may be applied to the force sensor 9 itself.
  • the forward tilt angle of the occupant 71 is small, the forward speed can be increased. Therefore, it is not necessary for the passenger 71 to tilt greatly forward, so that the operability can be improved.
  • the passenger since it is not necessary to lean forward greatly, the passenger does not have a posture that makes it difficult to confirm the front. Therefore, safety can be improved even when moving forward at high speed.
  • the forward input is performed even in the neutral posture, that is, even when the passenger is riding along the vertical direction.
  • the mobile body 1 according to the fourth embodiment does not use the posture detection unit 4, the determination unit 12, and the boarding position detection unit 14, these need not be provided.
  • the relationship between the moment My and the input moment value My ′ is changed depending on whether the moment My is a positive value or a negative value.
  • the absolute value of the moment My is the same when the occupant 71 enters the forward leaning posture and inputs the forward movement and when the backward leaning posture and inputs the backward movement
  • the input moment value My ′ when the forward movement is input Is larger than the absolute value of the input moment value My ′ during reverse input. Therefore, forward input can be performed easily. That is, even if the occupant does not take a forward leaning posture, the moving speed in the forward direction can be increased. Therefore, it is possible to move as the passenger intends.
  • control of the third embodiment or the fourth embodiment is used.
  • control is performed by changing the coefficient shown in the third embodiment according to the situation. That is, when calculating the input moment value My ′ from the moment My, the coefficient by which the moment My is multiplied changes depending on the situation. Specifically, the coefficient is changed depending on whether or not the passenger is on board. Alternatively, the offset value is set to 0 depending on whether the passenger is on board.
  • the determination unit 12 determines whether or not the passenger is on board.
  • a contact sensor 58 is provided on the footrest 10.
  • the contact sensors 58 are arranged in an array on the surface of the footrest 10. Therefore, the shape of the object in contact is recognized by the distribution of the contact sensor 58 that outputs a contact signal.
  • the shape of the object in contact is close to a general sole shape and there are two soles, it is determined that the passenger 71 is on board.
  • the shape of the object in contact is significantly different from the general sole shape, it is determined that the passenger is not on board.
  • the input moment value with respect to the forward input is increased.
  • the control shown in the third and fourth embodiments is not performed. That is, when the absolute value of the moment My is the same, the absolute value of the input moment value My ′ is set to the same value. By doing in this way, it can move as a user intends. That is, even when the passenger 71 operates the moving body 1 without boarding, the passenger 71 can move at the intended speed.
  • the passenger stands on the floor and places his hand on the seating surface 8a.
  • an object to be conveyed is placed on the seating surface 8a and a hand is placed thereon.
  • the moving body 1 moves in that direction.
  • the passenger is not boarding the boarding seat 8 and thus is not restrained by the thigh 73. Therefore, the passenger can freely apply power. That is, since force can be applied in any direction in the same manner, there is almost no difference between the forward input and the backward input.
  • the offset is set to 0 or the coefficient is the same for both forward and backward travel. Thereby, it can move at a speed as intended by the passenger.
  • the forward input is made larger than the backward input. Thereby, movement as a passenger's intention becomes possible.
  • FIG. 18 is a flowchart showing the control method of the present embodiment.
  • the reaction of the contact sensor is observed (step S101). That is, it is determined whether or not they are in contact with the contact sensors 58 arranged in an array. Then, the determination information processing unit 59 determines whether or not the passenger is on board. Here, when there are two soles, it is determined that the passenger is on board. Thereby, it becomes boarding mode. In the boarding mode, coefficient adjustment and offset position are applied (step S102). Thereby, the command value considering the coefficient adjustment and the offset is calculated. Based on this command value, the moving body is operated (step S103).
  • the non-boarding mode is set.
  • the moving body 1 is operated without applying coefficient adjustment or offset setting (step S103). That is, the coefficient is made equal by positive and negative.
  • the offset value is set to 0. Thereby, regardless of the presence or absence of the passenger, the movement intended by the passenger can be performed. Therefore, it can move as the passenger 71 intends and operability can be improved.
  • step S101 is eliminated, and step S102 and step S103 are repeatedly executed.
  • the configuration of the determination unit 12 that determines whether or not the passenger 71 is on board is not particularly limited.
  • the contact sensor 58 may be provided in the boarding seat 8. That is, a plurality of contact sensors 58 are arranged in an array on the seating surface 8a.
  • the presence / absence of a passenger can be determined based on whether or not the distribution of the contact sensor 58 that outputs the contact signal is close to the combined shape of the buttocks and thighs.
  • the determination may be made using not only the contact sensor 58 but also a camera.
  • the presence / absence of a passenger can be determined by recognizing the passenger's face with a camera or the like.
  • FIG. When the weight of the mounting target is a standard human weight, it is determined that the passenger is on board.
  • the presence or absence of a passenger may be determined by combining two or more.
  • the weight of the mounting target measured by the force sensor 9 and the recognition of the sole shape by the contact sensor 58 can be combined.
  • the presence or absence of a passenger can be reliably determined, and switching between the boarding mode and the non-boarding mode can be performed accurately.
  • humans are clearly on board, such as a method of measuring the shape of the buttocks by mounting the contact sensor 58 on the seating surface 8a and a method of detecting a human face, body, etc.
  • a technique capable of determining the situation may be used. Thus, by determining the presence or absence of a passenger by various sensors, optimal control can be performed without the passenger being aware of it. Of course, it can also be determined by providing a switch indicating that the passenger has boarded and operating the switch. In addition, in this Embodiment, since the boarding position detection part 14 and the attitude
  • an offset is given to the output from the force sensor 9. That is, an offset voltage is set for the measurement signal output from the force sensor 9. Furthermore, in the present embodiment, not only the moment My but also the moment Mx is set with an offset value. Then, the offset value is optimized according to the situation.
  • FIG. 19 is a diagram illustrating a state in which a passenger 71 who does not have luggage is on board
  • FIG. 20 is a diagram illustrating a state in which the passenger 71 having a luggage 76 is on board.
  • the center of gravity 75 of the passenger 71 is at the center of the seat surface 8a. In this state, when the load 76 is gripped, the center of gravity position 75 is shifted from the center of the seating surface 8a.
  • the center of gravity position 75 is displaced to the left side.
  • the position of the center of gravity changes in the direction with the load 76. Therefore, when going straight, it is necessary for the passenger to tilt his / her posture obliquely in the left-right direction.
  • the gravity center position 75 is displaced, it becomes difficult to perform an intended operation. That is, since the direction of the center of gravity position 75 from the origin is inclined from the vertical direction, the moments Mx and My corresponding to the load 76 are detected even when the occupant 71 maintains the neutral posture.
  • an offset is set for the output of the force sensor 9.
  • the passenger can move as intended.
  • the weight mounted on the passenger seat 8 is measured by the force sensor 9.
  • the offset is reset.
  • the passenger 71 can move as intended. That is, when carrying a load and wishing to go straight ahead, the passenger 71 takes a forward leaning posture. Similarly, when the user does not have a load and wants to go straight ahead, the passenger 71 is inclined forward.
  • the moving body 1 performs the same operation. Therefore, it can move as intended and operability can be improved.
  • FIG. 21 is a flowchart showing a method for controlling the moving body 1 according to the present embodiment.
  • the load weight of the passenger seat 8 is measured by the force sensor 9 (step S201).
  • the previous weight and the current weight are compared (step S202). If the difference between the previous weight and the current weight is larger than the threshold value, the offset is reset (step S203).
  • the command value is calculated using the reset offset. And it returns to step S201 which measures mounting weight. If the difference between the previous weight and the current weight is smaller than the threshold value, the command value is calculated without changing the offset, and the process returns to step S201 for measuring the mounted weight.
  • the previous weight is replaced with the current weight. Thereby, it is possible to easily reset the offset.
  • the offset is a value corresponding to the moments Mx and My when a weight change occurs.
  • the output voltage corresponding to the moments Mx and My measured by the force sensor 9 is used as the offset voltage.
  • the output voltage corresponding to the moment measured when the weight change occurs is a reference. That is, the output voltage output at the timing when the weight change occurs becomes the offset voltage.
  • the input moment value is calculated based on the difference between the output voltage corresponding to the moment when the weight change occurs and the output voltage corresponding to the moment measured thereafter. For example, it is assumed that when a weight change occurs, the voltage corresponding to the moment Mx becomes 1V, and the voltage corresponding to the moment My becomes 2V. These are set to the offset voltage.
  • the offset is set when the passenger 71 sits down again. That is, when the passenger 71 sits down again, the buttocks leave the seat surface 8a. Then, since the force applied to the seating surface 8a is once weakened, a change in weight is detected. That is, the change weight exceeds the threshold value. Then, the offset is set at this timing. By doing in this way, it can operate, without being conscious of having the load 76. Therefore, operability can be improved.
  • the offset value is set at the timing when the mounting weight of the riding section 3 changes.
  • the measurement result of the force sensor 9 at the timing when the boarding weight changes is used as a reference offset value. Further, the mounted weight is calculated based on the measured value from the force sensor 9.
  • the offset is set according to the weight change, but the timing for setting the offset is not limited to this.
  • an offset setting switch may be provided in the moving body 1 and the offset may be set by switching the switch.
  • a switch 77 is provided in the vicinity of the riding section 3 as shown in FIG. The offset is set when the passenger turns on the changeover switch. Even if it does in this way, the same effect can be acquired. Furthermore, even when the left and right are changed without releasing the load, the offset value is reset.
  • the movement of the passenger may be monitored with a camera to determine whether the passenger has a baggage.
  • position detection part 4 are not used, the discrimination
  • the mounting weight may be detected by a sensor other than the force sensor 9. By detecting the mounting weight with the force sensor 9, it is not necessary to use another sensor.
  • an offset is given according to the distribution information from the boarding position detection unit 14 shown in FIG. That is, the offset is given according to the position where the passenger is sitting. Note that since the method of giving the offset to the moments Mx and My is the same as in the fourth and sixth embodiments, the description thereof is omitted. That is, the reference potential with respect to the output from the force sensor 9 is adjusted.
  • FIG. 22 is a top view showing the configuration of the contact sensor 56 provided on the seating surface 8a.
  • 23A, 23B, and 23C are top views showing the shift of the boarding position on the seating surface 8a.
  • a plurality of contact sensors 56 are arranged in an array on the seating surface 8a. It is assumed that the contact sensor 56 has a resolution that can detect the shape of the buttocks 72 and the thigh 73. That is, the contact sensors 56 are arranged at intervals that allow the shapes of the buttocks and thighs to be distinguished.
  • a boarding position is detected from distribution of the contact sensor 56 which outputs a contact signal. That is, the amount of deviation from the normal boarding position is detected.
  • distribution information for the contact position can be obtained.
  • the boarding position is estimated from this distribution information.
  • FIG. 23A when the occupant sits diagonally to the left of the normal boarding position, the distribution information changes. Therefore, it is determined that the boarding position has changed, and an offset is given to each of the moments Mx and My. Further, as shown in FIG. 23B, when the passenger sits rearward from the normal boarding position, an offset is given to the moment My. Furthermore, as shown in FIG. 23C, when the passenger sits on the right side of the normal boarding position, an offset is given to each of the moments Mx. Thus, by giving an offset to the measured value of the moment, it is possible to move by the same driving method as the normal boarding position.
  • the offset is updated every time a significant change occurs in the boarding position. That is, the offset is reset at the timing when the boarding position deviation amount becomes larger than the threshold value.
  • the moving body 1 does not move when the neutral posture is reached. Further, when the vehicle moves straight ahead, the passenger only needs to be inclined forward. Thus, it can move as intended and operability can be improved.
  • FIG. 24 is a flowchart showing a method for controlling the moving body 1 according to the present embodiment.
  • the boarding position is measured by the boarding position detection unit 14 (step S301).
  • the previous boarding position is compared with the current boarding position (step S302). If the difference between the previous boarding position and the current boarding position is larger than the threshold value, the offset is reset (step S303). And it returns to step S301 which measures a boarding position. If the difference between the previous mounting position and the current mounting position is smaller than the threshold value, the process returns to step S301 for measuring the mounting position.
  • the previous mounting position is replaced with the current mounting position.
  • the offset value can be determined based on distribution information and boarding position.
  • processing is performed with the same offset value.
  • the command value is calculated based on the input moment value obtained from the same offset value.
  • This command value is output to the drive motor 603.
  • a relational expression or table of offset values with respect to distribution information and mounting positions is set in advance. Thereby, an offset value can be easily calculated.
  • an offset may be set for the moment Mz. That is, when the occupant is not in front of the vehicle but boarded in a direction around the yaw axis, an offset with respect to the moment Mz is set. Thereby, operability can be improved.
  • the determination unit 12 and the posture detection unit 4 since the determination unit 12 and the posture detection unit 4 are not used, the determination unit 12 and the posture detection unit 4 may not be provided in the moving body 1.
  • the timing for setting the offset is determined according to the change in the mounted weight or the change in the boarding position, but the timing for setting the offset is not limited to this.
  • An offset can be set based on outputs from other sensors. Further, the offset may be set by combining the sixth and seventh embodiments.
  • the static stability region 78 is a triangle as shown in FIG.
  • FIG. 25 is a top view showing a static stability region of the moving body 1. Wheels 6 are respectively arranged at the three vertices of the triangle. If the passenger tries to speed up, the position of the center of gravity deviates from the static stability region 78. For example, when the angle of the forward leaning posture increases, the barycentric positions 75b to 75d protrude from the static stable region 78. That is, the barycentric positions 75b to 75d are outside the static stable region 78.
  • the moving body 1 becomes very unstable. For example, the moving body 1 falls or the wheel 6 floats. Furthermore, when the rear wheel 602 which is a driving wheel floats, it cannot move as intended. Therefore, in the present embodiment, control is performed so that the position of the center of gravity does not go outside the static stable region 78 in accordance with the measurement signal from the force sensor 9. Specifically, the roll axis mechanism and pitch axis mechanism included in the moving body 1 are actively driven to prevent the position of the center of gravity from protruding from the static stable region 78.
  • the configuration of the roll shaft mechanism and the pitch shaft mechanism shown in FIG. 5 is adopted.
  • the driving unit 5 is driven, the posture of the moving body 1 changes.
  • the yaw axis mechanism 501 is not driven, the yaw axis mechanism 501 may not be provided.
  • FIG. 26 is a block diagram illustrating a configuration of a control system of the moving body 1 according to the present embodiment.
  • the detection result of the force sensor 9 is used to drive each mechanism. That is, the control calculation unit 51 calculates the target angle based on the detection result of the force sensor 9.
  • the pitch axis mechanism 502 and the roll axis mechanism 503 are driven according to the force received by the force sensor 9.
  • the force sensor 9 detects a moment My around the pitch axis and a moment Mx around the roll axis.
  • the control calculation unit 51 estimates the position of the center of gravity according to the moments Mx and My measured by the force sensor 9.
  • target angles of the pitch axis mechanism 502 and the roll axis mechanism 503 are calculated. Thereby, the seat surface 8a rotates around the pitch axis and the roll axis.
  • the pitch axis mechanism 502 and the roll axis mechanism 503 are driven in the direction in which the moments Mx and My are increased. That is, the posture of the moving body 1 is changed so that the input moment values Mx ′ and My ′ are increased. Thereby, even if a passenger does not largely tilt the posture, the moving speed can be increased. Therefore, it is possible to prevent the position of the center of gravity from protruding from the static stable region.
  • the moving body 1 drives the pitch axis mechanism 502 and the roll axis mechanism 503 so that the diagonally right front part of the seating surface 8a is up and the diagonally left rear part is down.
  • the seating surface 8a is tilted so that Thereby, the moments Mx and My are increased, and the moving speed is increased. Therefore, it is possible to prevent the mobile body 1 from overturning and the wheels 6 from floating, and to move stably.
  • FIG. 27 is a flowchart showing a method for controlling the moving body 1 according to the present embodiment.
  • the moments Mx and My are detected by the force sensor 9, and the position of the center of gravity is measured (step S401). Then, it is determined whether or not the gravity center position exceeds a threshold value (step S402). If the gravity center position does not exceed the threshold value (NO in step S402), it is determined that the gravity center position is not likely to come out of the static stability region. For this reason, it returns to the step (step S401) which measures a gravity center position.
  • the control calculation unit 51 refers to the table to determine the joint angle (step S403). That is, the rotation angles of the pitch axis mechanism 502 and the roll axis mechanism 503 are calculated.
  • This table is set in advance according to the weight of the moving body 1 and its balance. That is, for example, a table indicating the relationship between the moments Mx and My and the joint angle is set in advance.
  • the target joint angles of the pitch axis mechanism 502 and the roll axis mechanism 503 are calculated.
  • the target joint angle of the pitch axis mechanism 502 and the roll axis mechanism 503 may be calculated by a control expression.
  • control calculation unit 51 outputs command values to the pitch axis mechanism 502 and the roll axis mechanism 503, and drives the pitch axis mechanism 502 and the roll axis mechanism 503 (step S404).
  • the moments Mx and My are increased, and the moving speed is increased. Therefore, the passenger can be accelerated to a desired speed without further tilting. As a result, both the risk of falling and speeding up can be performed simultaneously.
  • the values of the moments Mx and My are used to determine whether the position of the center of gravity is likely to come out of the static stability region. However, the determination may be made according to the amount of change (time differentiation) of the moments Mx and My. Good. Of course, the determination may be made according to both the moment value and the amount of change in the moment.
  • the posture of the moving body 1 is controlled by inclining the seating surface 8a, but the present embodiment is not limited to this. That is, the configuration for increasing the moment is not limited to the pitch axis mechanism 502 and the roll axis mechanism 503.
  • the moment may be increased by driving the footrest 10. That is, the footrest 10 is provided with a motor and a speed reducer so that it can be driven back and forth or up and down. Then, the footrest 10 that can move up and down or back and forth is driven according to the output from the force sensor 9. Thereby, the same effect as the case where the seating surface 8a is inclined can be acquired.
  • a footrest driving unit 17 that drives the footrest 10 back and forth.
  • the footrest drive unit 17 includes a motor, a speed reducer, and the like.
  • the footrest drive unit 17 moves the upper part of the footrest 10, that is, the surface on which the foot is placed, back and forth.
  • the posture of the occupant changes and the force received by the force sensor 9 changes.
  • the footrest 10 is moved in a direction to increase the force received by the force sensor 9.
  • both the risk of falling and speeding up can be performed simultaneously.
  • position detection part 4 are not used, the discrimination
  • the coefficient adjustment or the offset is changed according to the detection result of the posture detection unit 4 shown in FIG. That is, based on the output from the posture detection unit 4, the coefficient shown in the third embodiment or the offset shown in the fourth and sixth embodiments is changed.
  • the input of the force sensor 9 changes.
  • the moving speed changes.
  • the boarding surface tilts forward.
  • the force sensor 9 detects the backward input. Therefore, it becomes impossible to go downhill.
  • the boarding surface tilts backward. Then, a passenger will lean forward with respect to a boarding surface. Therefore, the forward tilt input is detected more than necessary, and the hill cannot be climbed as intended.
  • a turning input is detected, and the moving body moves to the left and right.
  • the coefficient or the offset is optimized according to the output from the attitude detection unit 4.
  • a table indicating the relationship between the posture angle detected by the posture detection unit 4 and the coefficient is set in advance.
  • a table indicating the relationship between the posture angle detected by the posture detection unit 4 and the offset is set in advance. For example, as shown in FIG. 30, the reference position for calculating the input moment value is lowered later. An offset is given to the moment My so that the yaw axis is rearward. An offset is given to increase the input moment value. Changes in the input moment values Mx ′ and My ′ due to the posture change of the moving body 1 are reduced. Therefore, even when the inclined surface is moved, it can be similarly moved by the same operation as the flat surface. Thereby, operability can be improved.
  • the configuration is not limited to changing the offset setting, and the coefficient may be adjusted according to the posture change. That is, the relationship between the input moment value and the moment may be changed according to the posture angle of the chassis 13 detected by the posture detection unit 4.
  • FIG. 31 is a flowchart showing a method for controlling the moving body 1 according to the present embodiment.
  • the posture is confirmed by the posture detection unit 4 (step S501). That is, the posture angle around each axis is measured. Then, an offset is set according to the measured inclination angle of the moving body 1 (step S502).
  • the offset is determined by a table indicating the relationship between the posture angle and the offset value or a relational expression for calculating the offset from the posture angle.
  • the coefficient adjustment may be performed without being limited to the offset setting.
  • the moving body is controlled based on the force sensor (step S503).
  • the offset changes according to the posture angle. Since the offset is optimized, the origin position of the input moment value changes. Accordingly, the moving body 1 moves on the inclined surface by the normal operation by the passenger. The moving body 1 can be moved as intended by the passenger, and the operability can be improved. In the moving body 1 according to the third embodiment, since the determination unit 12 and the boarding position detection unit 14 are not used, these need not be provided.
  • the present invention can be applied not only to the wheel-type moving body 1 but also to a walking-type moving body. That is, it is only necessary that a moving mechanism for moving the main body such as the chassis 13 with respect to the floor surface is provided.
  • each embodiment may be used in combination as appropriate.
  • the control according to the first embodiment is performed when moving on a flat ground
  • the control according to the second embodiment is performed when moving on an inclined surface.
  • the posture detection unit 4 may determine whether it is flat or inclined.
  • the vehicle can be moved as intended by the passenger, and the operability can be further improved.
  • the present invention can be widely applied to a moving body that moves while a passenger is on board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

 高い操作性を有する移動体、及びその制御方法を提供する。本発明の一態様にかかる移動体1は、搭乗者が搭乗する搭乗席8と、搭乗席8を支持する車台13と、車台13を移動させる車輪6と、搭乗席8の座面に加わる力に応じた計測信号を出力する力センサ9と、搭乗席8の座面8aの角度を変えるように、前記搭乗席を駆動する駆動部5と、駆動部5の駆動量と搭乗席8の平衡位置姿勢と力センサ9からの計測信号とに基づいて、車輪6及び駆動部5を駆動するための指令値を算出する制御計算部51と、を備えるものである。

Description

移動体、及びその制御方法
 本発明は移動体、及びその制御方法に関する。
 近年、搭乗者を搭乗させた状態で移動する移動体が開発されている(特許文献1、2)。例えば、特許文献1~3では、搭乗者が搭乗する搭乗面(座面)に力センサ(圧力センサ)を設けている。そして、力センサからの出力によって、車輪を駆動している。すなわち、力センサが操作手段となって、入力が行われている。
 特許文献1の移動体では、進みたい方向に体重をかけることで移動している。例えば、前方に進みたい場合、搭乗者が上体を前方に傾ける。すなわち、搭乗者が前傾姿勢になる。そして、前傾姿勢になると搭乗席に加わる力が変化する。そして、この力を力センサで検出する。力センサの検出結果によって、球状タイヤを駆動している。特許文献1の図14には、搭乗者が搭乗席に座った状態で、倒立振子制御を行っている。特許文献2には、車椅子型の移動体が開示されている。この移動体には、椅子とフットレストが設けられている。
 また、特許文献3には、利用者の動作を能動的に検知して、それに応じて自律的に動作する移動体が開示されている。例えば、複数の圧力センサによって、利用者の重心を計算している。この重心位置に応じて、車椅子形状の移動体が動作している(図2)。
 さらに、特許文献4では、2足歩行型の移動体を動作させるためのインタフェイス装置が開示されている。このインタフェイス装置は、椅子型形状を有している。そして、椅子の背面と座面に複数の力センサを設けている。4つの力センサによって、搭乗者の骨盤旋回を検知して、歩行意思を推定している。そして、力センサによって推定された歩行意志に応じて両脚を駆動している。また、このインタフェイス装置には、足置き台が設けられている。
特開2006-282160号公報 特開平10-23613号公報 特開平11-198075号公報 特開平7-136957号公報
 特許文献1~3では、実際に移動体に搭乗している搭乗者の姿勢によって、移動している。これにより、実際に移動している環境に応じた操作が可能になる。例えば、搭乗者は、以下のように操作を行うことができる。前進したい場合、搭乗者が前方に上体を移動させる。すなわち、搭乗者が前傾姿勢になる。すると、重心位置が前方になって、力センサに加わる力が変化する。これにより、センサが前進入力を検知する。反対に、後方に移動したい場合は、搭乗者が後傾姿勢になる。すると、重心位置が後方になり、後傾入力が検知される。また、左右に移動する場合は、搭乗者が左右方向に重心を移動する。これにより、左右の旋回入力が検知される。このように、旋回入力、前進入力、後退入力に応じて移動することができる。
 しかしながら、搭乗者が搭乗する搭乗面に力センサが設けられている移動体では、以下に示す問題点がある。例えば、右斜め前方に進んでいる場合を仮定する。この時、移動体のメカ構成が固定されていると、搭乗者が遠心力を受けてしまう。すると、余計に右斜め前に状態をそらし、スピードが加速されてしまう。あるいは、上体が外側にそれてしまい、思い通りに右斜め前方に進むことができないという問題点がある。すなわち、力センサへの入力が搭乗者へ伝わらないため、どれくらいの操作したのか、直感的に分かりにくい。特に、遠心力が加わる場合、搭乗者が移動したい方向に、操作することが困難になってしまう。
 このように、従来の移動体では、搭乗者の意図通りに、操作することができないという問題点がある。
 本発明は、高い操作性を有する移動体、及びその制御方法を提供することを目的とする。
 本発明の第1の態様に係る移動体は、搭乗者が搭乗する搭乗席と、前記搭乗席を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗席の座面に加わる力に応じた計測信号を出力するセンサと、前記搭乗席の座面の角度を変えるように、前記搭乗席を駆動する搭乗席駆動機構と、前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号とに基づいて、前記移動機構、及び前記搭乗席駆動機構を駆動するための指令値を算出する制御計算部と、を備えるものである。これにより、搭乗者が操作量を容易に把握することができるため、操作性を向上することができる。
 本発明の第2の態様に係る移動体は、上記の移動体であって、前記移動体の姿勢角度に応じた信号を出力する姿勢検出部をさらに備え、前記搭乗席の平衡位置姿勢が姿勢検出部の出力に応じて変化することを特徴とするものである。これにより、適切な操作量で移動することができる。
 本発明の第3の態様に係る移動体は、上記の移動体であって、前記搭乗席の搭乗面が水平になるように、前記搭乗席の平衡位置姿勢が変化することを特徴とするものである。これにより、乗り心地を向上することができる。
 本発明の第4の態様に係る移動体は、上記の移動体であって、前記搭乗席の平衡位置姿勢が前記移動体の移動状況によらず一定になっていることを特徴とするものである。これにより、簡便に操作性を向上することができる。
 本発明の第5の態様に係る移動体は、上記の移動体であって、前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号に基づいて、前記搭乗席駆動機構の目標駆動量を算出し、前記搭乗席駆動機構の目標駆動量に基づいて、前記移動体の前後進移動速度が算出されることを特徴とするものである。これにより、適切の速度で移動することができる。
 本発明の第6の態様に係る移動体の制御方法は、搭乗者が搭乗する搭乗席と、前記搭乗席を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗席の座面に加わる力に応じた計測信号を出力するセンサと、前記搭乗席の座面の角度を変えるように、前記搭乗席を駆動する搭乗席駆動機構と、を備えた移動体の制御方法であって、前記搭乗席の平衡位置姿勢を入力するステップと、前記センサからの計測信号と、前記平衡位置姿勢と、前記搭乗席駆動機構の駆動量とに基づいて、前記移動機構、及び前記搭乗席駆動機構を駆動するための指令値を算出するステップと、を備えるものである。
 本発明の第7の態様に係る制御方法は、上記の制御方法であって、前記移動体に設けられた姿勢検出部によって、前記移動体の姿勢角度に応じた信号を出力し、前記搭乗席の平衡位置姿勢が姿勢検出部の出力に応じて変化することを特徴とするものである。
 本発明の第8の態様に係る制御方法は、上記の制御方法であって、前記搭乗席の搭乗面が水平になるように、前記搭乗席の平衡位置姿勢が変化することを特徴とするものである。
 本発明の第9の態様に係る制御方法は、上記の制御方法であって、前記搭乗席の平衡位置姿勢が前記移動体の移動状況によらず一定になっていることを特徴とするものである。これにより、簡便に操作性を向上することができる。
 本発明の第10の態様に係る制御方法は、上記の制御方法であって、前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号に基づいて、前記搭乗席駆動機構の目標駆動量を算出し、前記搭乗席駆動機構の目標駆動量に基づいて、前記移動体の前後進移動速度が算出されることを特徴とするものである。これにより、適切の速度で移動することができる。
 本発明によれば、高い操作性を有する移動体、及びその制御方法を提供することができる。
本発明にかかる移動体を模式的に示す正面図である。 本発明にかかる移動体を模式的に示す側面図である。 各軸周りの動作を説明するための図である。 移動体を移動させるための制御系を示すブロック図である。 移動体の姿勢を変化させるための構成を示す斜視図である。 実施の形態1にかかる移動体の制御を示すフローチャートである。 実施の形態1にかかる移動体におけるコンプライアンス制御を示すフローチャートである。 実施の形態2にかかる移動体の制御を示すフローチャートである。 実施の形態2にかかる移動体におけるコンプライアンス制御を示すフローチャートである。 移動体が下り坂を移動しているときの姿勢を説明するための図である。 移動体を移動させるための制御系を示すブロック図である。 搭乗席に搭乗者が搭乗している状態を示す図である。 搭乗者の姿勢と入力方向を示す図である。 実施の形態3における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態4における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態4における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態5における移動体に用いられたフットレストの構成を模式的に示す側面図である。 本実施の形態5にかかる移動体の制御方法を示すフローチャートである。 搭乗者が荷物を持たない状態での、重心位置を示す図である。 搭乗者が荷物を持った状態での、重心位置を示す図である。 本実施の形態6にかかる移動体の制御方法を示すフローチャートである。 座面に設けられた接触センサの構成を示す上面図である。 座面における搭乗位置のずれを示す上面図である。 座面における搭乗位置のずれを示す上面図である。 座面における搭乗位置のずれを示す上面図である。 本実施の形態8にかかる移動体の制御方法を示すフローチャートである。 移動体の静安定領域を示す上面図である。 本実施の形態8にかかる移動体の制御系の構成を示すブロック図である。 本実施の形態8にかかる移動体の制御方法を示すフローチャートである。 本実施の形態8にかかる移動体に用いられるフットレストの構成を示す側面図である。 傾斜面を移動している移動体の様子を示す側面図である。 傾斜面を移動している移動体に対して、オフセットを与えた時の様子を説明するための図である。 本実施の形態9にかかる移動体の制御方法を示すフローチャートである。
 以下、本発明にかかる小型車両の実施形態を、図面に基づいて詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
<全体構成>
 本発明にかかる移動体1の全体構成について図を参照して説明する。まず、移動体1の全体構成について図1、図2を用いて説明する。図1は、移動体1の構成を模式的に示す正面図であり、図2は、移動体1の構成を模式的に示す側面図である。なお、図1、及び図2には、XYZの直交座標系が示されている。Y軸が移動体1の左右方向を示し、X軸が移動体1の前後方向を示し、Z軸が鉛直方向を示している。従って、X軸がロール軸に対応し、Y軸がピッチ軸、Z軸がヨー軸となる。図1、2において、+X方向が移動体1の前方向であるとして説明する。なお、図1、2に示す移動体1の基本的な全体構成は、以下に説明する各実施の形態において共通である。
 図1に示すように移動体1は、搭乗部3、及び車台13を有している。車台13は、移動体1の本体部であり、搭乗部3を支持している。車台13は、姿勢検出部4、車輪6、フットレスト10、筐体11、制御計算部51、バッテリ52等を備えている。車輪6は、前輪601と後輪602から構成されている。ここでは、1つの前輪601と2つの後輪602からなる3輪型の移動体1を説明する。
 搭乗部3は、搭乗席8、及び力センサ9を有している。そして、搭乗席8の上面が座面8aとなる。すなわち、座面8aの上に、搭乗者が乗った状態で移動体1が移動する。座面8aは平面でもよいし、臀部の形に合わせた形状となっていてもよい。さらに、搭乗席8に背もたれを設けてもよい。すなわち、搭乗席8を車椅子形状としてもよい。乗り心地を向上するために、搭乗席8にクッション性を持たせてもよい。移動体1が水平面上にある場合、座面8aが水平になっている。力センサ9は、搭乗者の体重移動を検知する。すなわち、力センサ9は、搭乗席8の座面8aに加わる力を検出する。そして、力センサ9は、座面8aに加わる力に応じた計測信号を出力する。力センサ9は、搭乗席8の下側に配置される。すなわち、車台13と搭乗席8の間に、力センサ9が配設されている。
 力センサ9としては、例えば、6軸力センサを用いることができる。この場合、図3に示すように、3軸方向の並進力(SFx、SFy、SFz)と各軸周りのモーメント(SMx、SMy、SMz)を計測する。これらの並進力とモーメントは、力センサ9の中心を原点に取った値である。移動体1のセンサ処理部に出力する計測信号をモーメント(Mx、My、Mz)とし、それらのモーメントの制御座標原点を図2に示す(a、b、c)とすると、Mx、My、Mzは、それぞれ以下のように表すことができる。
Mx=SMx+c・SFy-b・SFz
My=SMy+a・SFz-c・SFx
Mz=SMz+b・SFx-a・SFy
 なお、図3は、各軸を説明するための図である。力センサ9として、モーメント(Mx、My、Mz)を計測できるものであればよい。各軸周りのモーメント(SMx、SMy、SMz)を計測できる3軸力センサを制御座標原点に配置して、Mx,My、Mzを直接計測してもよい。また、1軸の力センサを3つ設けてもよい。さらには、歪みゲージや、ポテンショを用いたアナログジョイスティックなどでもよい。すなわち、直接的又は間接的に3軸周りのモーメントを計測できるものであればよい。そして、力センサ9は、3つのモーメント(Mx、My、Mz)を計測信号として出力する。
 さらに、搭乗席8には、搭乗位置を検出するための搭乗位置検出部14が含まれている。搭乗位置検出部14は、複数の接触センサなどを有している。例えば、複数の接触センサは、搭乗席8の座面8aにおいて、アレイ状に配列されている。接触センサは、その上面に何かが接触している状態で、接触信号を出力する。そして、搭乗位置検出部14は、複数の接触センサからの接触信号に基づいて、搭乗者の搭乗位置を検出する。具体的には、座面8aにおける基準位置に搭乗者が搭乗している場合を原点として、実際に搭乗者が搭乗した搭乗位置のずれ量が検出される。搭乗位置のずれ量は、X方向、及びY方向のそれぞれに対して検出される。接触信号が出力されている接触センサの分布の違いから、搭乗位置を検出することができる。
 移動体1の本体部分となる車台13には、姿勢検出部4、車輪6、フットレスト10、筐体11、制御計算部51、及びバッテリ52等が設けられている。筐体11は、箱形状を有しており、前方下側が突出している。そして、この突出した部分の上にフットレスト10が配設されている。フットレスト10は、搭乗席8の前方側に設けられている。従って、搭乗者が搭乗席8に搭乗した状態では、搭乗者の両足がフットレスト10上に乗せられている。
 フットレスト10には、搭乗者が搭乗しているか否かを判別するための判別部12が含まれている。判別部12は、例えば、複数の接触センサなどを有している。複数の接触センサは、例えば、フットレスト10の上面に、アレイ状に配列されている。そして、各接触センサは、その上面が何かに接触している状態で、接触信号を出力する。この接触信号に基づいて、搭乗者の足裏が接触しているか否かを判別している。接触している接触センサの集合が、足裏形状に似ている場合は、搭乗者が搭乗していると判別する。すなわち、接触している領域が、足裏の形状に似ているか否かで、搭乗者が搭乗しているか否かを判別する。さらに、搭乗者が乗っているか、搭乗者以外の物体が乗っているかを判別することができる。力センサ9ではなく、フットレスト10に設けられた判別部12で搭乗者の有無を判別することで、確実に判別することができるようになる。すなわち、搭乗席8に物体を載置した場合でも、搭乗者が搭乗していると誤って認識するのを防ぐことができる。
 筐体11には、駆動モータ603、姿勢検出部4、制御計算部51、及びバッテリ52が内蔵されている。バッテリ52は、駆動モータ603、姿勢検出部4、制御計算部51、判別部12、搭乗位置検出部14、及び力センサ9などの各電気機器に電源を供給する。姿勢検出部4は、例えば、ジャイロセンサまたは加速度センサなどを有しており、移動体1の姿勢を検出する。すなわち、車台13が傾斜すると、姿勢検出部4は、その傾斜角度や傾斜角速度を検出する。姿勢検出部4は、ロール軸周りにおける姿勢の傾斜角度、及びピッチ軸周りにおける姿勢の傾斜角度を検出する。そして、姿勢検出部4は、姿勢検出信号を制御計算部51に出力する。
 筐体11には、車輪6が回転可能に取り付けられている。ここでは、円盤上の車輪6が3つ設けられている。車輪6の一部は、筐体11の下面よりも下側に突出している。従って、車輪6が床面と接触している。2つの後輪602は、筐体11の後部に設けられている。後輪602は、駆動輪であり、駆動モータ603によって回転する。すなわち、駆動モータ603が駆動することによって、後輪602がその車軸周りに回転する。後輪602は、左右両側に設けられている。なお、後輪602には、その回転速度を読み取るためのエンコーダが内蔵されている。左の後輪602の車軸と、右の後輪602の車軸は、同一直線上に配置されている。
 また、車輪6には前輪601が含まれている。そして、1つの前輪601が筐体11の前部中央に設けられている。従って、Y方向において、2つの後輪602の間に、前輪601が配設されている。X方向において、前輪601の車軸と後輪602の車軸との間に、搭乗席8が設けられている。前輪601は、従動輪(補助輪)であり、移動体1の移動に応じて回転する。すなわち、後輪602の回転によって移動する方向、及び速度に応じて、前輪601が回転する。このように、後輪602の前に補助輪である前輪601を設けることで、転倒を防ぐことができる。前輪601は、フットレスト10の下方に設けられている。
 制御計算部51はCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信用のインタフェイスなどを有する演算処理装置である。また、制御計算部51は、着脱可能なHDD、光ディスク、光磁気ディスク等を有し、各種プログラムや制御パラメータなどを記憶し、そのプログラムやデータを必要に応じてメモリ(不図示)等に供給する。もちろん、制御計算部51は、物理的に一つの構成に限られるものではない。制御計算部51には、力センサ9からの出力に応じて駆動モータ603の動作を制御するための処理を行う。
<実施の形態1>
 次に、実施形態1にかかる移動体1を移動させるための制御系について、図4を用いて説明する。図4は、移動体1を移動させるための制御系の構成を示すブロック図である。まず、力センサ9によって、座面8aにかかる力を検出する。センサ処理部53は、力センサ9からの計測信号に対して処理を行う。すなわち、力センサ9から出力される計測信号に対応する計測データに対して、演算処理を行う。これにより、制御計算部51に入力される入力モーメント値が算出される。なお、センサ処理部53は、力センサ9に内蔵されていてもよく、制御計算部51に内蔵されていてもよい。
 このように、力センサ9で計測されたモーメント(Mx、My、Mz)が各軸周りの入力モーメント値(Mx'、My'、Mz')に変換される。そして、入力モーメント値が各後輪602を動作させるために入力される入力値となる。このように、センサ処理部53は、各軸毎に入力値を算出する。入力モーメント値の大きさは、モーメントの大きさに応じて決まる。入力モーメント値の符号は、計測されたモーメントの符号によって決まる。すなわち、モーメントが正の場合、入力モーメント値も正となり、モーメントが負の場合、入力モーメント値も負となる。例えば、モーメントMxが正の場合、入力モーメント値Mx'も正となる。従って、この入力モーメント値が搭乗者の意図する操作に対応する入力値となる。
 制御計算部51は、入力モーメント値(Mx'、My'、Mz')に基づいて、入力トルクτiを求める。例えば、入力トルクτi=(Mx'、My'、Mz')となる。そして、このトルクτiに基づいて制御計算を行う。これにより、駆動モータ603を駆動するための指令値が算出される。通常、トルクτiが大きいほど、指令値が大きくなる。この指令値は、駆動モータ603に出力される。なお、本実施形態では、左右の後輪602が駆動輪であるため、2つの駆動モータ603が図示されている。そして、一方の駆動モータ603が右の後輪602を回転させ、他方の駆動モータ603が左の後輪602を回転させる。駆動モータ603は、指令値に基づいて後輪602を回転させる。すなわち、駆動モータ603は、駆動輪である後輪602を回転させるための指令トルクを与える。もちろん、駆動モータ603は、減速機などを介して、後輪602に回転トルクを与えてもよい。例えば、制御計算部51から、指令値として指令トルクが入力された場合、その指令トルクで、駆動モータ603が回転する。これにより、後輪602が回転して、移動体1が所望の方向に、所望の速度で移動する。もちろん、指令値は、駆動モータ603のトルクに限らず、回転速度、回転数であってもよい。
 さらに、駆動モータ603にはそれぞれ、エンコーダ603aが内蔵されている。このエンコーダ603aは、駆動モータ603の回転速度等を検出する。そして、検出された回転速度は、制御計算部51に入力される。制御計算部51は、現在の回転速度と、目標となる回転速度とに基づいてフィードバック制御を行う。例えば、目標回転速度と現在回転速度との差分に、適当なフィードバックゲインを乗じて、指令値を算出する。もちろん、左右の駆動モータ603に出力される指令値は、異なる値であってもよい。すなわち、前方、又は後方に直進する場合は、左右の後輪602の回転速度が同じになるように制御し、左右に旋回する場合は、左右の後輪602が、同じ方向で異なる回転速度になるよう制御する。また、その場旋回する場合は、左右の後輪602が反対方向に回転するように制御する。
 例えば、搭乗者が前傾姿勢になると、搭乗席8にピッチ軸周りの力が加わる。すると、力センサ9が+Myのモーメントを検出する(図3参照)。この+Myのモーメントによって、センサ処理部53は、移動体1を並進させるための入力モーメント値My'を算出する。同様に、センサ処理部53は、Mxに基づいて入力モーメント値Mx'を算出し、Mzに基づいて、入力モーメント値Mz'を算出する。これにより、トルクτiが求められる。
 制御計算部51が、入力モーメント値とエンコーダの読み値に基づいて、指令値を算出する。これにより、左右の後輪602が所望の回転速度で回転する。同様に、右方向に曲がる場合は、搭乗者が右側に体重移動する。これにより、搭乗席にロール軸周りの力が加わり、力センサ9が+Mxのモーメントを検出する。この+Mxのモーメントによって、センサ処理部53は、移動体1を右方向に旋回させるための入力モーメント値Mx'を算出する。すなわち、移動体1が移動する方向に対応する舵角が求められる。そして、入力モーメント値に応じて、制御計算部51が指令値を算出する。この指令値に応じて、左右の後輪602が異なる回転速度で回転する。すなわち、左側の後輪602が右側の後輪602よりも速い回転速度で回転する。
 My'に基づいて、前後方向の並進移動に対する成分が求められる。すなわち、左右の後輪602を同じ方向に同じ回転速度で駆動するための駆動トルクなどが決定する。従って、My'、すなわち、Myが大きいほど、移動体1の移動速度が速くなる。Mx'に基づいて、移動方向、すなわち、舵角に対する成分が求められる。すなわち、左右の後輪602の回転トルク差が決定される。従って、Mx'、すなわち、Mxが大きいほど、左右の後輪602の回転速度の違いが大きくなる。
 Mz'に基づいて、その場旋回に対する成分が求められる。すなわち、左右の後輪602を反対方向に回転させて、その場旋回するための成分が求められる。従って、Mz'、すなわち、Mzが大きいほど、左右の後輪602における反対方向の回転速度が大きくなる。例えば、Mz'が正の場合、上側から見て、左周りにその場旋回する駆動トルクなどが算出される。すなわち、右側の後輪602が前方に回転し、左側の後輪602が同じ回転速度で後方に回転することとなる。
 そして、それぞれの入力モーメント値Mx'、My'、Mz'に基づいて算出された3つの成分を合成して、2つの後輪602を駆動するための指令値を算出する。これにより、左右の後輪602に対する指令値がそれぞれ算出される。駆動トルクや回転速度などが指令値として算出される。すなわち、入力モーメント値Mx'、My'、Mz'に対応する成分毎に算出された値を合成することで左右の後輪602に対する指令値が算出される。このように、計測されたモーメントMx、My、Mzに基づいて算出された入力モーメント値Mx'、My'、Mz'によって、移動体1が移動する。すなわち、搭乗者の体重移動によるモーメントMx、My、Mzによって、移動体1の移動方向、及び移動速度が決定する。
 このように、搭乗者の動作によって、移動体1を移動させるための入力が行われる。すなわち、搭乗者の姿勢変化によって、各軸周りのモーメントが検出される。そして、これらのモーメントの計測値に基づいて、移動体1が移動する。これにより、搭乗者が、移動体1を簡便に操作することができる。すなわち、ジョイスティックやハンドルなどの操作が不要となり、体重移動のみでの操作が可能となる。例えば、右斜め前方に移動したい場合は、体重を右前方にかける。また、左斜め後方に移動したい場合は、体重を左後方にかける。これにより、搭乗者の重心位置が変化して、その変化量に応じた入力が行われる。すなわち、搭乗者の重心移動に応じたモーメントを検出することで、直感的に操作することができる。
 さらに、移動体1には、搭乗席8を駆動するための駆動部5が設けられている。この駆動部5に対する制御について説明する。駆動部5は、ヨー軸機構501とピッチ軸機構502とロール軸機構503を有している。ヨー軸機構501とピッチ軸機構502とロール軸機構503は、回転関節であり、これらが動作することで、搭乗席8の姿勢が変化する。ヨー軸機構501は、搭乗席8をヨー軸周りに回転させる。ピッチ軸機構502は搭乗席8をピッチ軸周りに回転させる。ロール軸機構503は、搭乗席8をロール軸周りに回転させる。これにより、車台13に対する座面8aの角度が変化する。すなわち、車台13に対して座面8aが傾くようになる。したがって、駆動部5が搭乗席8を駆動する駆動部として、ヨー軸機構501とピッチ軸機構502とロール軸機構503はそれぞれ、関節駆動用のモータや減速器を有している。そして、その関節モータの回転角を検出するためのエンコーダ501a、502a、503aがそれぞれ設けられている。
 制御計算部51は、上記のように、センサ処理部53からのトルクに応じて、制御計算を行う。そして、制御計算部51は、ヨー軸機構501、ピッチ軸機構502、及びロール軸機構503の関節を駆動するための指令値を出力する。すなわち、制御計算部51は、トルクに基づいて、各軸機構の目標関節角度を算出する。そして、制御計算部51は、目標関節角度に応じた指令値を算出して、各モータに出力する。これにより、ヨー軸機構501、ピッチ軸機構502、及びロール軸機構503の各関節が目標関節角度になる。すなわち、目標関節角度に追従するように、各軸機構が駆動する。よって、移動体1の姿勢が変化して、搭乗席8の座面8aを所望の角度にすることができる。
 このように、力センサ9に対する入力に応じて座面8aの傾斜角度が変化する。これにより、搭乗者が入力値を直感的に把握することができる。よって、操作性を向上することができる。
 次に、移動体1の姿勢を変化させるための構成について、図5を用いて説明する。図5は、姿勢を変化させるための機構の構成を示す図であり、車台13の内部構成を示している。図5に示すように、車台13には、姿勢を制御するためのフレーム部2が設けられている。フレーム部2は、筐体11内に配設される。フレーム部2は、第1の平行リンク機構201と第2の平行リンク機構202とが、交差部分で相互の回転を拘束しないように、平面視T字状に連結されている。
 第1の平行リンク機構201は、前後方向に配置されている。この第1の平行リンク機構201は、四本の横リンク201a、前後の縦リンク201bを備えている。
 横リンク201aは、全て等しい長さとされている。横リンク201aの両端には、図示を省略したが、縦リンク201bとの連結軸を嵌め込む嵌合穴が形成されている。二本の横リンク201aは上下に配置されており、当該二本の横リンク201aを一組として、縦リンク201bを挟み込むように、当該縦リンク201bの左右両側に配置されている。
 縦リンク201bの左右両側部からは、図示を省略したが、それぞれ上下方向に等しい間隔を開けて相対峙する配置で、横リンク201aとの連結軸が左右方向に突出している。この連結軸は、横リンク201aと縦リンク201bとの回転軸として、横リンク201aの嵌合穴に軸受け等を介して嵌め込まれている。
 本実施形態の前側の縦リンク201bはL字形状に形成されている。縦リンク201bの垂直片の上下端部に、横リンク201aが連結軸を介して回転可能に連結されている。縦リンク201bの水平片の先端に、車輪6として自在式のキャスターが設けられている。移動体1の移動方向が変化すると、その変化に応じてキャスターの方向が回転する。後側の縦リンク201bは、下側の横リンク201aより下方に突出する突出部を備えている。この突出部の前後両側部からは、図示を省略したが、それぞれ相対峙する配置で第2の平行リンク機構202との連結軸が前後方向に突出している。さらに後側の縦リンク201bの前後両側部における上下の横リンク201aの間の部分からも、図示を省略したが、それぞれ相対峙する配置で第2の平行リンク機構202との連結軸が前後方向に突出している。
 第2の平行リンク機構202は、左右方向に配置されている。この第2の平行リンク機構202は、四本の横リンク202a、左右の縦リンク202bを備えている。
 横リンク202aは、全て等しい長さとされている。横リンク202aの両端には、図示を省略したが、縦リンク202bとの連結軸を嵌め込む嵌合穴が形成されている。さらに横リンク202aの長手方向の略中央位置には、図示を省略したが、第1の平行リンク機構201との連結軸を嵌め込む嵌合穴が形成されている。二本の横リンク202aは上下に配置されており、当該二本の横リンク202aを一組として、縦リンク202b及び第1の平行リンク機構201の後側の縦リンク201bを挟み込むように、当該縦リンク202b及び第1の平行リンク機構201の後側の縦リンク201bの前後両側に配置されている。第1の平行リンク機構201の後側の縦リンク201bから突出する連結軸は、第1の平行リンク機構201と第2の平行リンク機構202との回転軸として、横リンク202aの略中央位置の嵌合穴に軸受け等を介して嵌め込まれている。
 縦リンク202bの前後両側部からは、図示を省略したが、それぞれ上下方向に等しい間隔を開けて相対峙する配置で、横リンク202aとの連結軸が前後方向に突出している。この連結軸は、横リンク202aと縦リンク202bとの回転軸として、横リンク202aの端部の嵌合穴に軸受け等を介して嵌め込まれている。
 その結果、第1の平行リンク機構201は、第2の平行リンク機構202に拘束されることなく、前後方向に回転可能な構成となる。一方、第2の平行リンク機構202は、第1の平行リンク機構201に拘束されることなく、左右方向に回転可能な構成となる。
 搭乗部3は、姿勢検出部4の上に設けられ、フレーム部2の回転に連動する。具体的にいうと、搭乗部3は、第1の平行リンク機構201の上下の横リンク201aに支持軸301を介して連結されている。この支持軸301の上部及び下部の左右両側部からは、図示を省略したが、第1の平行リンク機構201の上下の横リンク201aとの連結軸が左右方向に突出している。第1の平行リンク機構201の横リンク201aにおける長手方向の略中央位置には、図示を省略したが、支持軸301から突出する連結軸を嵌め込む嵌合穴が形成されている。支持軸301は、縦リンク201bを挟み込むように、当該縦リンク201bの左右に配置された横リンク201aの間に挿入されている。支持軸301から突出する連結軸は、第1の平行リンク機構201の嵌合穴に軸受け等を介して嵌め込まれている。その結果、第1の平行リンク機構201が前後方向に回転すると、支持軸301と縦リンク201bとは平行状態を維持した状態で連動する。
 駆動部5が駆動することで、フレーム部2が動作する。これにより、移動体1の姿勢が変化する。車台13が傾くことで、搭乗部3の角度が変化する。なお、駆動部5には、ヨー軸周りに回転するヨー軸機構501と、ピッチ軸周りに回転するピッチ軸機構502と、ロール軸周りに回転するロール軸機構503が設けられている。ヨー軸機構501は、例えば、支持軸301と姿勢検出部4の間に設けられている。すなわち、ヨー軸機構501が3つの機構の中で、最も搭乗部3側に設けられている。なお、ヨー軸機構501は、搭乗部3をヨー軸周りに旋回させる旋回関節であり、ピッチ軸機構502及びロール軸機構503は搭乗部3を軸周りに回転させる回転関節である。
 次に、移動体1の制御方法について図6を用いて説明する。図6は、移動体1の制御方法を示すフローチャートである。図6は、移動体1の制御における1サイクルを示している。このフローチャートにしたがって、移動体1の移動制御と、姿勢制御が行われる。すなわち、図6には、後輪602の駆動と、駆動部5の駆動の制御方法が示されている。
 まず、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503の関節角を検出する(ステップS101)。すなわち、各軸機構に設けられているエンコーダ501a、502a、503aによって、それぞれの関節の角度を検出する。移動体1は、この関節角度に応じた姿勢となっている。次に、力センサ9によって、モーメントの値を検出する(ステップS102)。すなわち、モーメント(Mx,My、Mz)を測定する。そして、力センサ9のオフセット修正を行う(ステップS103)。すなわち、搭乗者が座っている位置がずれている場合に、その位置に対してオフセットを与える。入力されるモーメントに対して、搭乗位置の位置ずれを補正するように、制御目標原点にオフセットを与える。これにより、位置ずれを補正したモーメント(Mx',My'、Mz')を算出することができる。なお、ステップS101とステップS102の順番は反対でもよく、ステップS101とステップS102を並行して行ってもよい。
 座面の平衡位置姿勢φidを入力する(ステップS104)。上記のように、移動体1が平坦な床を移動している時に、座面8aが水平になる位置が平衡位置姿勢となっている。この時のヨー軸機構501、ピッチ軸機構502、ロール軸機構503の関節角度が平衡位置姿勢に対応する。したがって、本実施の形態では、平衡位置姿勢が一定になっている。すなわち、移動状況によらず、各軸の関節角度が一定になるような平衡位置姿勢が選ばれている。
 次に、コンプライアンス補償を行う(ステップS105)。ここでのコンプライアンス制御によって、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503の目標関節角度が決定する。コンプライアンス制御とは、バネ特性、ダンピング特性を擬似的に備えている振る舞いをする制御である。ヨー軸機構501、ピッチ軸機構502、ロール軸機構503の動作によってバネ特性、ダンピング特性が示される。このコンプライアンス制御を導入することで、搭乗者の力に応じて、座面8aを傾けることが可能になる。ここでは、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503の関節角度、力センサ9のモーメント、座面8aの平衡位置姿勢を用いて、コンプライアンス制御が行われる。これにより、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503の目標関節角度が算出される。このステップの詳細については、後述する。
 そして、座面8aを制御する(ステップS106)。すなわち、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503がそれぞれ目標関節角度になるように、各軸に設けられているモータを駆動する。これにより、座面8aの傾きが変化して、現在目標位置姿勢となる。ここでは、力センサ9の出力に応じて、座面8aの傾きが変化している。すなわち、座面8aに対する力に応じて、搭乗者が座面8aから力を受ける。よって、搭乗者19が力センサ9への入力を直感的に把握することができる。これにより、操作性が向上し、搭乗者19の意図通りに移動することができる。
 次に、車輪回転角、速度、トルクを検出する(ステップS107)。すなわち、エンコーダ603aの出力に基づいて、左右の後輪602の動作状態を検知する。そして、ピッチ軸周りの目標関節角度から、移動体1の前後進速度を算出する(ステップS108)。このとき、ステップS105で求めた現在目標位置姿勢φiに基づいて、前後進速度を算出している。すなわち、制御計算部51は、ピッチ軸機構502の目標関節角度に基づいて前後進速度を算出している。よって、目標となる前後進速度は、力センサ9のモーメントと、座面の平衡位置姿勢と、各関節角度によって、決まる。
 さらに、ロール軸、ヨー軸の関節角度から移動体1の旋回速度を算出する(ステップS109)。制御計算部51は、ステップS105で求めた現在目標位置姿勢φiに基づいて旋回速度を算出している。すなわち、制御計算部51は、ヨー軸機構501、ロール軸機構503の目標関節角度に基づいて前後進速度を算出している。よって、目標となる前後進速度は、力センサ9のモーメントと、座面の平衡位置と、各関節角度によって、決まる。
 そして、前後進速度と、旋回速度とを合成して、左右の後輪602の回転トルクを算出する(ステップS110)。すなわち、後輪602を回転させるための回転トルクを、計算する。左右の後輪602のトルクが指令値となって、駆動モータ603に出力される。ここでは、ステップS107で検出された後輪602の回転角と目標速度とを用いてフィードバック制御を行う。制御計算部51が駆動モータ603を駆動するための指令値を出力する。これにより、ステップS108で算出された前後進速度、かつステップS109で算出された旋回速度に近い速度で移動体1が移動する。したがって、力センサ9による入力に応じて、移動体1が搭乗者の意図通りに移動する。
 次に、ステップS105のコンプライアンス補償について、図7を用いて説明する。図7は、コンプライアンス制御の詳細を示すフローチャートである。まず、搭乗者が体重移動する(ステップS201)。すなわち、移動体1を移動させるため、体重移動によって入力を行う。これにより、力センサ9にかかる力が変化する。座面8aにかかる3軸周りのトルクτiを力センサ9で感知する(ステップS201)。このトルクτiは、入力モーメントから算出することができる。ヨー軸周りのトルクτθz(=Mz')、ピッチ軸周りのトルクτθy(=My')、ロール軸周りのトルクτθx(=Mx')がそれぞれ算出される。このように、τiは、トルクであり、ロール、ピッチ、ヨーに対する成分を含んでいる。すなわち、τiは、τθx、τθy、τθzの3成分を含んでいる。
 また、ステップS201、S202と並行して、座面の平衡位置姿勢φidを入力する(ステップS203)。この平衡位置姿勢φidはヨー軸機構501、ピッチ軸機構502、ロール軸機構503の基準となる基準位置を示すものとなる。すなわち、各軸機構の基準となる関節角度が制御計算部51に入力される。本実施の形態では、座面の平衡位置姿勢φidの値が固定されている。制御計算部51のメモリ等に、平衡位置姿勢φidとなる関節角度が記憶されている。そして、この関節角度を読み出すことによって、平衡位置姿勢φidが入力される。移動体1が平坦な床を移動している時に、座面8aが水平になる位置が平衡位置となっている。したがって、各軸機構における一定の関節角度が平衡位置姿勢φidを示すことになる。平衡位置姿勢φidは各軸周りに対して決められている。平衡位置姿勢φidは、ロール軸周り平衡位置姿勢φθxd、ピッチ軸周りの平衡位置姿勢φθyd、ヨー軸周りの平衡位置姿勢φθzdの3成分から構成されている。これらは、各軸機構の基準となる関節角度に対応している。
 次に、トルクτiと平衡位置姿勢φidから座面の現在目標位置姿勢φiを求める(ステップS204)。ここでは、ステップS204に記載されている数式に基づいて、制御計算部51が搭乗部3の現在目標位置姿勢φiを算出している。すなわち、ステップS204に記載されている方程式を解くことで、現在目標位置姿勢φiを算出することができる。現在目標位置姿勢φiは、例えば、ヨー軸機構501の目標関節角度、ピッチ軸機構502の目標関節角度、ロール軸機構503における目標関節角度から構成されている。したがって、現在目標位置姿勢φiはφθx、φθy、φθzの3成分から構成されている。各軸機構における目標関節角度が、トルクτiと平衡位置姿勢φidに基づいて算出される。
 ステップS204の方程式において、Miは慣性行列、Diは粘性係数行列、Kiは剛性行列であり、これらは、3×3の行列である。慣性行列、粘性係数行列、剛性行列は、移動体1の構成、動作に応じて設定することができる。また、φi、φidの上に付されている・(ドット)は、時間微分を示している。ドットが1個付されている場合は、1回微分を、2個付されている場合は、2回微分を示している。例えば、φiの上に1個のドットが付されていると、目標姿勢速度となり、2個のドットが付されていると、目標姿勢加速度となる。同様に、φidの上に1個のドットが付されていると、平衡位置姿勢速度となり、2個のドットが付されていると、平衡位置姿勢加速度となる。本実施形態では、平衡位置姿勢φidが固定されているため、平衡位置姿勢速度、平行位置姿勢加速度は、基本的に0となる。
 そして、現在目標位置姿勢φiに基づいて移動制御を行う(ステップS205)。さらに、移動制御と並行して、座面の傾き制御を行う(ステップS206)。移動制御では、ステップS108、及びステップS109に示したように、現在目標位置姿勢φiに基づいて前後進速度、及び旋回速度を算出する。すなわち、現在目標位置姿勢φθyに応じて、移動体1の前後進速度が決まる。φθyの値が大きいほど、前後進速度が大きくなる。また、現在目標位置姿勢φθx、φθzに応じて移動体1の旋回速度が決まる。φθx、φθzの値が大きいほど、旋回速度が大きくなる。そして、前後進速度、及び旋回速度から、左右の後輪602の回転トルクを算出する。ここでは、前後進速度と旋回速度を合成して、左右の後輪602に対する目標回転速度を算出する。そして、現在の回転速度と目標回転速度との差分から、回転トルクを算出するためのフィードバック制御を行っている。制御計算部51は、この回転トルクを指令値として、駆動モータ603に出力する。このようにして、移動制御が行われる。
 座面8aの傾き制御も現在目標位置姿勢φiに基づいて行われる。すなわち、現在目標位置姿勢φiを入力として、各軸機構に対する指令値を算出する。現在目標位置姿勢φiに基づいて、各軸機構の指令値が算出される。そして、この指令値に応じて、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503が駆動する。よって、ヨー軸機構501の目標関節角度、ピッチ軸機構502の目標関節角度、ロール軸機構503における目標関節角度になるように座面8aの傾きが変化する。このように、各軸機構が目標関節角度に追従するように駆動する。これにより、搭乗部3の姿勢が変化して、座面8aの傾きが変化する。よって、搭乗者が座面8aから力を受ける。そして、座面8aが現在目標位置姿勢φiになる。
 このように、現在目標位置姿勢φiを利用して、移動制御と、座面8aの傾き制御が行われている。すなわち、各モータに対する指令値が現在目標位置姿勢φiに基づいて算出されている。制御計算部51は、搭乗席を駆動する駆動部5の駆動量と、座面8aの平衡位置姿勢と、力センサ9からの計測信号とに基づいて、後輪602、及び駆動部5を駆動するための指令値を算出する。
 このように、車台13に搭乗席8を固定する方法が、剛体結合ではなく、入力に対してある程度変形、変位する構造となっている。よって、バネのような柔らかい動きをさせる制御をすることができる。すなわち、自動車で表すならサスペンションとして、駆動部5が機能する。そして、力センサ9での検出結果に基づいて、駆動部5を制御する。
 これにより、操作性を向上することができる。すなわち、各軸周りの機構が駆動することで、どのくらいの操作量で操作しているかを直感的に把握することができる。実際の操作量と意図する操作量の違いを認識することができる。よって、意図する操作量に対する実際の操作量のずれを抑制することができる。また、搭乗者が遠心力を受けている場合でも、意図する移動を行うための操作が可能となる。すなわち、必要以上にスピードが出たり、必要以上にスピードが低下したりするのを防ぐことができる。これにより、操作性の高い移動体1を実現することができる。
 本実施の形態では、移動状況によらず平衡位置姿勢となる関節角度が一定となっている。搭乗者が操作量を把握し易くなる。例えば、搭乗者が力を抜いた場合、座面8aが平衡位置姿勢に戻る。これにより、操作性を向上することができる。また、移動制御も現在目標位置姿勢φiに基づいて行われている。これにより、搭乗者の意図通りに、前後進速度、及び旋回速度を算出することができる。よって、操作性を向上することができる。制御計算部51は、駆動部5の駆動量と搭乗席8の平衡位置姿勢φidと力センサ9からの計測信号とに基づいて、後輪602、及び駆動部5を駆動するための指令値を算出する。よって、的確に指令値を算出することができ、搭乗者の意図通りに移動することができる。
<実施の形態2>
 本実施の形態では、実施の形態1に比べて、平衡位置姿勢の入力が異なっている。すなわち、本実施の形態では、平衡位置姿勢が動的に変化している。例えば、移動体1が傾斜面や段差面を移動する場合、その傾斜面等に応じて、座面8aが傾く。そこで、本実施の形態では、傾斜面に応じて、駆動部5を駆動している。ここでは、傾斜面であっても座面が水平に近づくように駆動部5を駆動している。したがって、傾斜面や片輪段差を移動する場合でも、操作性が高くなる。なお、これ以外の構成、及び制御については、実施の形態1と同様であるため、説明を省略する。
 本実施の形態にかかる移動体1の制御方法について、図8乃至10を用いて説明する。図8は、実施の形態1で示した図6に対応するフローチャートである。図9は、実施の形態1で示した図7に対応するフローチャートである。図10は、移動中の移動体1を示す側面図である。
 本実施の形態では、姿勢検出部4の出力に応じて、平衡位置姿勢を変化させている。すなわち、姿勢検出部4は、移動体1の姿勢を検出する。したがって、移動体1が移動している床面が平坦でない場合、姿勢検出部4の出力が変化する。例えば、図10に示すように、移動体1が平坦面から傾斜面に移動する場合、姿勢検出部4が移動体1の姿勢変化を検知する。そして、姿勢変化に応じて平衡位置姿勢を動的に変化させる。したがって、傾斜面を移動している時と、平坦面を移動しているときで、平衡位置姿勢の関節角度が異なっている。
 そのため、まず、図8に示すように、ロール軸、ピッチ軸、ヨー軸の関節角度を実施の形態1と同様に検出する(ステップS301)。さらに、姿勢検出部4によって、傾きを検出する(ステップS302)。すなわち、床面に起因する姿勢変化を姿勢検出部4によって検出する。これにより、図10に示した傾斜面の傾斜角度Δφiを検出することができる。なお、ステップS301とステップS302は並行して行われてもよい。そして、実施の形態1と同様に、力センサによるモーメントの値の検出(ステップS303)、及び力センサ9のオフセット修正(ステップS304)を行う。
 その後、座面の平衡位置姿勢φidを入力する(ステップS305)。ここで、平衡位置姿勢φidは、姿勢検出部4で検出された姿勢変化に応じて、変化している。すなわち、傾斜面を移動中でも座面8aが水平になるような、平衡位置姿勢φidが入力される。したがって、傾斜面の傾斜角度Δφi分だけ、平衡位置姿勢φidの値が補正される。床面が傾斜した分だけ、目標関節角度を変化させる。また、姿勢検出部4が3軸ジャイロセンサを有している場合、ロール、ピッチ、ヨー軸周りの姿勢変化が検出される。この場合、ロール軸周り平衡位置姿勢φθxd、ピッチ軸周りの平衡位置姿勢φθyd、ヨー軸周りの平衡位置姿勢φθzdが補正されることになる。座面8aが斜面ではなく、水平面と平行になるように、駆動部5を制御する。
 そして、コンプライアンス補償を行う(ステップS306)。実施形態1と同様に、ロール軸、ピッチ軸、ヨー軸の関節角度と、力センサで検出されたモーメントの値と、座面の平衡位置姿勢φidが利用される。もちろん、座面8aの平衡位置姿勢φidは、床面に応じて変化している。コンプライアンス制御によって、座面8aを制御する(ステップS307)。実施の形態1と同様に、ヨー軸機構501、ピッチ軸機構502、ロール軸機構503がそれぞれ目標関節角度になるように、各軸に設けられているモータを駆動する。これにより、座面8aの傾きが変化して、現在目標位置姿勢φiとなる。
 次に、実施の形態1と同様に、車輪回転角、速度、トルクを検出する(ステップS308)。そして、ピッチ軸周りの角度から、移動体1の前後進速度を算出する(ステップS309)。このとき、制御計算部51が現在目標位置姿勢φiから傾斜面の傾斜角度Δφiを引いた差分に基づいて、前後進速度を算出する。すなわち、現在目標位置姿勢φθyとΔφθyとの差分に基づいて、前後進速度を算出する。
 ロール軸、ヨー軸の角度から移動体1の旋回速度を算出する(ステップS310)。ここでも、ステップS309と同様に、制御計算部51が現在目標位置姿勢φiから傾斜面の傾斜角度Δφiを引いた差分に基づいて、旋回速度を算出する。現在目標位置姿勢φθxとΔφθxとの差分、並びに現在目標位置姿勢φθzとΔφθzとの差分に基づいて、旋回速度を算出する。そして、前後進速度、及び旋回速度から左右の後輪のトルクを算出する。なお、ステップS311における処理は、実施の形態1と同様であるため、説明を省略する。このように、本実施の形態では、傾斜面の傾斜角度Δφiを考慮して、指令値を算出する。よって、傾斜面や片輪段差等の環境下であっても、操作量を搭乗者に正確に伝えることができる。この結果、操作量が搭乗者に分かり易くなる。例えば、搭乗者が力を抜いたら、平衡位置に戻り、座面8aが水平になる。
 次に、本実施の形態におけるコンプライアンス制御について、説明する。まず、図9に示すように、搭乗者が体重移動をした時(ステップS401)に、力センサ9でトルクτiを感知する(ステップ402)。これらのステップは、実施の形態1と同様である。ステップS403、S404をステップS401,S402と並行して行ってもよい。
 移動体1の姿勢角のずれが検出して、傾斜面の傾斜角度Δφiを姿勢検出部4にて感知する(ステップS403)。そして、傾斜面の傾斜角度Δφiを補正した座面8aの平衡位置姿勢φidを入力する(ステップS404)。すなわち、制御計算部51のメモリ等に、平衡位置姿勢φidとなる関節角度を入力する。ここでの平衡位置姿勢φidは傾斜面の傾斜角度Δφiに応じて変化している。床面が傾斜面などである場合でも、座面8aが水平になるように、平衡位置姿勢φidが設定されている。平衡位置姿勢φidでは、座面8aが水平になるような関節角度が設定される。
 その後、現在目標位置姿勢φiを算出する(ステップS405)。ステップS405で算出された現在目標位置姿勢φiから、移動制御(ステップS406)を行う。ここでは、現在目標位置姿勢から傾斜面の傾斜角度Δφiを引いた差分に基づいて、左右の後輪602の指令値を算出している。また、現在目標位置姿勢φiから座面の傾き制御(ステップS407)を行う。なお、ステップ406については、実施の形態1と同様であるため、説明を省略する。
 本実施の形態では、平衡位置姿勢φidが姿勢検出部4の出力に応じて変化している。これにより、搭乗者が操作量を把握し易くなる。例えば、搭乗者が力を抜いた場合、座面8aが平衡位置姿勢に戻る。これにより、操作性を向上することができる。また、座面8aが平坦に近づくため、乗り心地を向上することができる。制御計算部51は、傾斜角度Δφiと、駆動部5の駆動量と搭乗席8の平衡位置姿勢φidと力センサ9からの計測信号とに基づいて、後輪602、及び駆動部5を駆動するための指令値を算出する。よって、的確に指令値を算出することができ、搭乗者の意図通りに移動することができる。
<実施の形態3>
 図1~10で示した移動体1では、搭乗者の意図通りに移動することができない場合がある。例えば、搭乗席に搭乗者が座った場合、搭乗者の大腿によって搭乗者の姿勢変化が拘束されてしまう。したがって、搭乗者が前傾姿勢となって、高速の前進入力を入力することが困難となることがある。さらに、搭乗者が荷物を持った場合、力センサの入力が変化してしまう。また、搭乗者の座り位置が変化した場合も力センサの入力が変化してしまう。傾斜面を移動する場合も、力センサの入力にずれが生じてしまう。したがって、意図通りに移動することができなくなってしまうことがある。すなわち、移動体1を実際に移動させる時に、移動体1を搭乗者の意図通りに移動させることができなくなる状況がある。そこで、本実施の形態によれば、このような状況においても搭乗者の意図通り移動させることができ、操作性をさらに向上することができる。
 次に、実施形態3にかかる移動体1を移動させるための制御系について、図11を用いて説明する。図11は、移動体1を移動させるための制御系の構成を示すブロック図である。まず、力センサ9によって、座面8aにかかる力を検出する。ここでは、上記の通り、力センサ9は、計測信号であるモーメントMx、My、Mzをセンサ処理部53に出力する。センサ処理部53は、力センサ9からの計測信号に対して処理を行う。すなわち、力センサ9から出力される計測信号に対応する計測データに対して、演算処理を行う。これにより、制御計算部51に入力される入力モーメント値(Mx'、My'、Mz')が算出される。なお、センサ処理部53は、力センサ9に内蔵されていてもよく、制御計算部51に内蔵されていてもよい。
 このように、力センサ9で計測されたモーメント(Mx、My、Mz)が各軸周りの入力モーメント値(Mx'、My'、Mz')に変換される。そして、入力モーメント値が各後輪602を動作させるために入力される入力値となる。このように、センサ処理部53は、各軸毎に入力値を算出する。入力モーメント値の大きさは、モーメントの大きさに応じて決まる。入力モーメント値の符号は、計測されたモーメントの符号によって決まる。すなわち、モーメントが正の場合、入力モーメント値も正となり、モーメントが負の場合、入力モーメント値も負となる。例えば、モーメントMxが正の場合、入力モーメント値Mx'も正となる。従って、この入力モーメント値が搭乗者の意図する操作に対応する入力値となる。
 制御計算部51は、入力モーメント値に基づいて、制御計算を行う。これにより、駆動モータ603を駆動するための指令値が算出される。もちろん、入力モーメント値が大きいほど、指令値が大きくなる。この指令値は、駆動モータ603に出力される。なお、本実施形態では、左右の後輪602が駆動輪であるため、2つの駆動モータ603が図示されている。そして、一方の駆動モータ603が右の後輪602を回転させ、他方の駆動モータ603が左の後輪602を回転させる。駆動モータ603は、指令値に基づいて後輪602を回転させる。すなわち、駆動モータ603は、駆動輪である後輪602を回転させるためのトルクを与える。もちろん、駆動モータ603は、減速機などを介して、後輪602に回転トルクを与えてもよい。例えば、制御計算部51から、指令値として指令トルクが入力された場合、その指令トルクで、駆動モータ603が回転する。これにより、後輪602が回転して、移動体1が所望の方向に、所望の速度で移動する。もちろん、指令値は、トルクに限らず、回転速度、回転数であってもよい。
 さらに、駆動モータ603にはそれぞれ、エンコーダ603aが内蔵されている。このエンコーダ603aは、駆動モータ603の回転速度等を検出する。そして、検出された回転速度は、制御計算部51に入力される。制御計算部51は、現在の回転速度と、目標となる回転速度とに基づいてフィードバック制御を行う。例えば、目標回転速度と現在回転速度との差分に、適当なフィードバックゲインを乗じて、指令値を算出する。もちろん、左右の駆動モータ603に出力される指令値は、異なる値であってもよい。すなわち、前方、又は後方に直進する場合は、左右の後輪602の回転速度が同じになるように制御し、左右に旋回する場合は、左右の後輪602が、同じ方向で異なる回転速度になるよう制御する。また、その場旋回する場合は、左右の後輪602が反対方向に回転するように制御する。
 例えば、搭乗者が前傾姿勢になると、搭乗席8にピッチ軸周りの力が加わる。すると、力センサ9が+Myのモーメントを検出する(図3参照)。この+Myのモーメントによって、センサ処理部53は、移動体1を並進させるための入力モーメント値My'を算出する。同様に、センサ処理部53は、Mxに基づいて入力モーメント値Mx'を算出し、Mzに基づいて、入力モーメント値Mz'を算出する。すなわち、センサ処理部53は、計測値を入力モーメント値に変換する。これらは、それぞれの独立に算出される。すなわち、Mx'は、Mxのみによって決まり、My'は、Myのみによって決まり、Mz'は、Mzのみのよって決まる。このように、Mx'、My'、Mz'はそれぞれ独立している。
 制御計算部51が、入力モーメント値とエンコーダの読み値に基づいて、指令値を算出する。これにより、左右の後輪602が所望の回転速度で回転する。同様に、右方向に曲がる場合は、搭乗者が右側に体重移動する。これにより、搭乗席にロール軸周りの力が加わり、力センサ9が+Mxのモーメントを検出する。この+Mxのモーメントによって、センサ処理部53は、移動体1を右方向に旋回させるための入力モーメント値Mx'を算出する。すなわち、移動体1が移動する方向に対応する舵角が求められる。そして、入力モーメント値に応じて、制御計算部51が指令値を算出する。この指令値に応じて、左右の後輪602が異なる回転速度で回転する。すなわち、左側の後輪602が右側の後輪602よりも速い回転速度で回転する。
 このように、My'に基づいて、前後方向の並進移動に対する成分が求められる。すなわち、左右の後輪602を同じ方向に同じ回転速度で駆動するための駆動トルクなどが決定する。従って、My'、すなわち、Myが大きいほど、移動体1の移動速度が速くなる。Mx'に基づいて、移動方向、すなわち、舵角に対する成分が求められる。すなわち、左右の後輪602の回転トルク差が決定される。従って、Mx'、すなわち、Mxが大きいほど、左右の後輪602の回転速度の違いが大きくなる。
 Mz'に基づいて、その場旋回に対する成分が求められる。すなわち、左右の後輪602を反対方向に回転させて、その場旋回するための成分が求められる。従って、Mz'、すなわち、Mzが大きいほど、左右の後輪602における反対方向の回転速度が大きくなる。例えば、Mz'が正の場合、上側から見て、左周りにその場旋回する駆動トルクなどが算出される。すなわち、右側の後輪602が前方に回転し、左側の後輪602が同じ回転速度で後方に回転することとなる。
 そして、それぞれの入力モーメント値Mx'、My'、Mz'に基づいて算出された3つの成分を合成して、2つの後輪602を駆動するための指令値を算出する。これにより、左右の後輪602に対する指令値がそれぞれ算出される。駆動トルクや回転速度などが指令値として算出される。すなわち、入力モーメント値Mx'、My'、Mz'に対応する成分毎に算出された値を合成することで左右の後輪602に対する指令値が算出される。このように、計測されたモーメントMx、My、Mzに基づいて算出された入力モーメント値Mx'、My'、Mz'によって、移動体1が移動する。すなわち、搭乗者の体重移動によるモーメントMx、My、Mzによって、移動体1の移動方向、及び移動速度が決定する。
 このように、搭乗者の動作によって、移動体1を移動させるための入力が行われる。すなわち、搭乗者の姿勢変化によって、各軸周りのモーメントが検出される。そして、これらのモーメントの計測値に基づいて、移動体1が移動する。これにより、搭乗者が、移動体1を簡便に操作することができる。すなわち、ジョイスティックやハンドルなどの操作が不要となり、体重移動のみでの操作が可能となる。例えば、右斜め前方に移動したい場合は、体重を右前方にかける。また、左斜め後方に移動したい場合は、体重を左後方にかける。これにより、搭乗者の重心位置が変化して、その変化量に応じた入力が行われる。すなわち、搭乗者の重心移動に応じたモーメントを検出することで、直感的に操作することができる。制御計算部51は、入力モーメント値の絶対値に応じた移動速度で、入力モーメント値の符号に応じて前方又は後方に移動するように指令値を出力する。
 例えば、図12に示すように、力センサ9が設けられた搭乗席8に搭乗者71が搭乗しているとする。なお、図12は、搭乗席8に搭乗者71が搭乗している状態を示す図であり、左側に側面図が、右側に搭乗面8aの平面図が示されている。この場合、座面8aには、搭乗者71の臀部72と大腿部73が接触している。この時の、前後方向の入力について、以下に説明する。ここでは、図13に示すように、前進方向の入力を正値とし、後進方向の入力を負値としている。すなわち、My'が正のとき、移動体1が前方に移動し、My'が負のとき、移動体1が後方に移動する。したがって、My'が0のとき、移動体1は、その場のまま、前後進しないことになる。すなわち、搭乗者71がピッチ軸周りにおいて中立姿勢になっている場合、移動体1が前進、又は後退しない。入力モーメント値My'の絶対値に応じて、移動体1の速度が決定する。例えば、My'に比例して移動速度が変化する。換言すると、My'の絶対値の増加するにしたがって、移動速度の絶対値が単調増加する。加えて、My'が+a(aは任意の正値)の場合と-aの場合とで、移動体1の速度が反対向きで等しくなる。このように、搭乗者の上体の中立姿勢からの倒れ角に応じて、移動体1の速度が決定する。したがって、搭乗者が上体を傾けるほど、移動体1が高速で移動する。
 センサ処理部53には、判別部12からの判別信号が入力されている。判別部12には、接触センサ58と判別情報処理部59が設けられている。接触センサ58は、上記のように、フットレスト10の上面において、アレイ状に配列されている。そして、各接触センサ58は、上に何かが接触しているときに接触信号を出力する。判別情報処理部59は、この接触信号に基づいて処理を行い、搭乗者が搭乗しているかを判別する。すなわち、接触信号を出力している接触センサの分布に応じて、足裏がフットレスト10に接触しているか否かを判別する。接触信号を出力している接触センサの分布が足裏形状に近い場合は、搭乗者が搭乗していると判別し、それ以外の時は人以外の物が接触していると判別する。
 さらに、センサ処理部53には、搭乗位置検出部14から搭乗位置を示す位置信号が入力されている。すなわち、搭乗位置検出部14からは、位置信号が出力されている。搭乗位置検出部14は、接触センサ56と分布情報処理部57を有している。接触センサ58は、複数設けられている。複数の接触センサ56がアレイ状に配列されている。そして、各接触センサ56は、上に何かが接触しているときに接触信号を出力する。分布情報処理部57は、この接触信号の分布情報に基づいて処理を行い、搭乗位置を算出する。位置信号がセンサ処理部53に入力される。センサ処理部53は、位置信号に応じた処理を行っている。
 センサ処理部53は、判別信号、及び位置信号に応じて、処理を変更している。なお、これらの処理については、後述する。すなわち、以下に示す実施の形態3乃至9において、これらの処理が異なっている。以下に、図1乃至3及び図11に示す移動体の制御に関する実施の形態を説明する。すなわち、以下に示す実施の形態3乃至9は、図1乃至3及び図11の示す構成の移動体1に関する実施の形態である。
 なお、センサ処理部53、分布情報処理部57、及び判別情報処理部59など各処理部は、制御計算部51と同様に、CPUやRAMなどから構成されている。そして、所定のプログラムにしたがって、演算処理を行う。もちろん、各処理部や制御計算部51は、物理的に同じ構成であってもよい。すなわち、1つの演算処理回路において、処理や演算を行ってもよい。
 上記のように、搭乗者の姿勢に応じて、移動速度が決定されている。したがって、前方に高速で移動したい場合、搭乗者が姿勢を大きく前傾させる必要がある。しかしながら、図12に示すように、大腿部73が座面8aと接触しているため、座面8aの形状によって大腿部73が拘束を受けてしまう。このため、モーメントMyを大きくすることが困難になる。すなわち、モーメントMyが正の場合、負の場合に比べて、その絶対値を大きくすることが困難になってしまう。そこで、本実施の形態では、センサ処理部53において、以下に示す処理を行っている。
 本実施の形態では、MyからMy'を算出する時の係数を、Myの符号に応じて、変化させている。すなわち、Myが正の場合の係数は、Myが負の場合の係数よりも大きくなっている。これにより、Myが正値の場合における、My'の値を大きくすることができる。例えば、MyをMy'に変換する変換式において、Myに乗じる係数を正値と負値で変える。すると、Myの絶対値が同じ場合でも、Myの符号に応じて、My'の絶対値が変化する。これにより、搭乗者71の姿勢の前方向への倒れ角が小さい場合でも、入力モーメント値が大きくなる。前進速度を大きくすることができる。よって、搭乗者71が大きく前傾する必要がなくなるため、操作性を向上することができる。また、大きく前傾する必要がないため、搭乗者が前方を確認しづらい姿勢とならない。よって、高速で前進する場合でも、安全性を向上することができる。
 例えば、図14に示すように、搭乗者が前傾角度α(アルファは正の角度)だけ姿勢を倒した場合、後傾角度β(β>α)だけ姿勢を倒した時と同じ速さになる。なお、図14は、搭乗者の姿勢と入力モーメント値を説明するための側面図である。搭乗者71の前傾角度αが小さい場合でも、入力モーメント値My'を大きくすることができる。これにより、前進速度を速くすることができ、搭乗者71の意図に応じた制御を行うことができる。本実施の形態では、中立姿勢の場合、すなわち搭乗者が鉛直方向に沿って搭乗している場合、前進入力が行われないことになる。また、制御計算部51に入力される入力モーメント値My'に対して処理を行うことで、容易に処理を行うことができる。すなわち、指令値を求めるための複雑な制御計算を前進と後進で区別することなく、行うことができる。よって、容易に制御することができる。また、実施の形態3にかかる移動体1では、姿勢検出部4、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。
<実施の形態4>
 本実施の形態でも、実施の形態3と同様に前進入力における入力モーメント値My'を大きくするための処理をセンサ処理部53が行っている。本実施の形態では、モーメントMyから入力モーメント値My'を算出する時の、原点位置を後方にずらしている。すなわち、力センサ9で計測されるモーメントMyのヨー軸が力センサ9の中央になっているのに対して、入力モーメント値My'を算出するときのヨー軸の位置が、力センサ9の中央よりも後方になっている。このように、入力モーメント値My'に対するヨー軸の位置にオフセット値を与えている。本実施の形態では、図13や図14のヨー軸位置よりも、ヨー軸位置が後方にずれる。これにより、モーメントMyの絶対値が正負で同じ値を取る場合、正値に対する入力モーメント値My'の絶対値が、負値に対応する入力モーメント値My'の絶対値よりも大きくなる。よって、モーメントMyが正値の場合において、入力モーメント値My'を大きくすることができる。
 前後進の速度を同じ速度にしようとしても、大腿部73が座面8aによって拘束されているため、前傾姿勢が取りづらい。このため、後退時の速度と同じ速度で前進する意図があったとしても、図15に示すように、前傾角度αが後傾角度βよりも小さくなってしまう。すなわち、搭乗者が後傾角度と同じ角度で傾斜しているつもりでも、大腿部73の動作が座面8aで拘束されているため、前傾角度αが小さくなってしまう。このように、原点位置にオフセットがない場合、前進速度が意図する速度よりも遅くなってしまう。すなわち、本来ならば、後傾角度βと前傾角度αが同じでないと、入力モーメント値My'の絶対値が同じ値にならない。そこで、本実施の形態では、図16に示すように、原点位置、即ち、ヨー軸位置にオフセットを与えている。すなわち、オフセットを与えることで、前傾角度αを仮想的に作り出している。仮想的な前傾角度αは、実際の前傾角度よりも大きくなっている。よって、前進速度を意図通りに速くすることができる。
 例えば、原点位置を-2すると、モーメントMyが正値の場合の出力が+2され、負値の場合の出力が-2される。このように、ヨー軸の位置を後方にずらすことで、入力モーメント値が大きくなって算出される。このような処理を行うため、力センサ9からの出力電圧に対してオフセット電圧を与えている。前傾時に正の電圧、後傾時に負の電圧が力センサ9から出力されるとすると、正の電圧が大きくなるように、基準電位を負電位とする。具体例として、力センサ9が-5V~5Vの電圧を出力する場合について考える。すなわち、-5V~+5VでモーメントMyを表す場合について考える。前傾時に正電圧、後傾時に負電圧を出力する場合、センサ処理部53において基準電位を-2Vとする。この場合、オフセット電圧が-2Vとなる。すると、力センサ9からの出力電圧が-2V~5Vの時が前進入力となり、実際の入力モーメント値My'は、0~7Vの範囲のモーメントMyから算出されることとなる。よって、前進入力の場合に、力センサ9から出力されるモーメントMyに比べて、入力モーメント値を大きくすることができる。
 このように、力センサ9から出力されるモーメントの計測値に対してオフセット値を与えた後、入力モーメント値を算出している。これにより、実施の形態3と同様に、前進入力を容易に行うことができる。もちろん、力センサ9自体にオフセット電圧を与えてもよい。搭乗者71の姿勢の前方向への倒れ角が小さい場合でも、前進速度を大きくすることができる。よって、搭乗者71が大きく前傾する必要がなくなるため、操作性を向上することができる。また、大きく前傾する必要がないため、搭乗者が前方を確認しづらい姿勢とならない。よって、高速で前進する場合でも、安全性を向上することができる。
 なお、本実施の形態では、中立姿勢の場合、すなわち搭乗者が鉛直方向に沿って搭乗している場合でも、前進入力が行われることになる。また、実施の形態4にかかる移動体1では、姿勢検出部4、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。また、本実施の形態と実施の形態3とを組み合わせてもよい。
 このように、実施の形態3、4では、モーメントMyが正値のときと、負値のときとで、モーメントMyと入力モーメント値My'との関係を変えている。搭乗者71が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とでモーメントMyの絶対値が同じ場合に、前進入力時の場合の入力モーメント値My'の絶対値が後退入力時の入力モーメント値My'の絶対値よりも大きくなる。よって、前進入力を容易に行うことができる。すなわち、搭乗者が大きく前傾姿勢にならなくても、前方向の移動速度を大きくすることができる。よって、搭乗者の意図通りに移動が可能となる。
<実施の形態5>
 本実施の形態では、実施の形態3、又は実施の形態4の制御を利用している。本実施形態では、状況に応じて、実施の形態3に示した係数を変えて制御している。すなわち、モーメントMyから入力モーメント値My'を算出するときに、モーメントMyに乗じる係数が、状況に応じて変化している。具体的には、搭乗者が搭乗しているか否かに応じて、係数を変えている。あるいは、搭乗者が搭乗しているか否かに応じて、オフセット値を0にしている。
 本実施の形態では、判別部12において、搭乗者が搭乗しているか否かを判別している。例えば、図17に示すように、フットレスト10に接触センサ58を設ける。接触センサ58は、フットレスト10の表面にアレイ状に配列されている。したがって、接触信号を出力する接触センサ58の分布によって、接触している対象の形状が認識される。接触している対象の形状が、一般的な足裏形状に近く、足裏が2つある場合、搭乗者71が搭乗していると判断する。反対に、接触している対象の形状が一般的な足裏形状と大きく異なっている場合、搭乗者が搭乗していないと判断する。このように、フットレスト10に接触センサ58を設けることで、搭乗者の有無を容易かつ確実に判別することができる。
 搭乗者が搭乗している場合、搭乗者の大腿部73の動作が座面8aで拘束される。したがって、実施の形態3又は4で示したように、前進入力に対する入力モーメント値を大きくする。反対に、搭乗者が搭乗していない場合、実施の形態3、4で示した制御を行わない。すなわち、モーメントMyの絶対値が同じ場合で、入力モーメント値My'の絶対値を同じ値にする。このようにすることで、使用者の意図通りに移動することができる。すなわち、搭乗者71が搭乗せずに移動体1を操作する場合でも、意図通りの速度で移動することができる。
 例えば、搭乗者が床面に立ち、座面8a上に手を当てる。あるいは、座面8aに搬送したい物を載せて、その上に手を当てる。そして、移動体1を移動させたい方向に手で力を加えると、移動体1がその方向に移動する。このような場合、搭乗者が搭乗席8に搭乗していないため、大腿部73による拘束を受けない。よって、搭乗者は自由に力を与えることができる。すなわち、どの方向にも、同じように力を与えることできるため、前進入力も後退入力も、ほとんど差がない。前進時でも後退時でもオフセットを0にする、あるいは、係数を同じにする。これにより、搭乗者の意図通りの速度で移動することができる。また、搭乗席8に搭乗者71が搭乗している場合は、後退入力に比べて前進入力を大きくする。これにより、搭乗者の意図通りの移動が可能になる。
 次に、本実施の形態にかかる移動体1の制御方法について、図18を用いて説明する。図18は、本実施の形態の制御方法を示すフローチャートである。移動体1を起動したら、接触センサの反応を見る(ステップS101)。すなわち、アレイ状に配列された接触センサ58で接触しているか否かを判別する。そして、搭乗者が搭乗しているか否かを判別情報処理部59が判別する。ここでは、足裏が2つある場合に、搭乗者が搭乗していると判別している。これにより、搭乗モードとなる。搭乗モードとなった場合、係数調整やオフセット位置を適用する(ステップS102)。これにより、係数調整やオフセットを考慮した指令値が算出される。そして、この指令値に基づいて、移動体を動作させる(ステップS103)。それ以外の場合、非搭乗モードとなる。非搭乗モードの場合、係数調整やオフセット設定を適用せずに、移動体1を動作させる(ステップS103)。すなわち、正負で係数を等しくする。あるいは、オフセット値を0とする。これにより、搭乗者の有無に関わらず、搭乗者が意図する移動が可能になる。よって、搭乗者71の意図通りに移動することができ、操作性を向上することができる。なお、実施の形態3、4の制御方法では、ステップS101がなくなり、ステップS102とステップS103を繰り返し実行する。
 また、搭乗者71が搭乗しているか否かを判別する判別部12の構成については、特に限定されるものではない。例えば、接触センサ58を搭乗席8に設けたものでよい。すなわち、座面8aに、複数の接触センサ58をアレイ状に配列する。そして、接触信号を出力している接触センサ58の分布が臀部と大腿部とを合わせた形状に近くなっているか否かで、搭乗者の有無を判別することができる。さらには、接触センサ58に限らず、カメラなどを用いて、判別してもよい。例えば、カメラなどで、搭乗者の顔認識を行うことで、搭乗者の有無を判別することができる。また、力センサ9によって搭乗席に搭載されている搭載対象の重量を測定してもよい。そして、搭載対象の重量が標準的な人間の体重である場合、搭乗者が搭乗していると判別する。
 もちろん、2つ以上を組み合わせて、搭乗者の有無を判別してもよい。例えば、力センサ9によって測定された搭載対象の重量と、接触センサ58による足裏形状の認識とを組み合わせることができる。そして、両方ともで、搭乗者が搭乗している条件を満たした場合のみ、搭乗者が搭乗していると判別する。すなわち、一方でも搭乗者が搭乗している条件を満たさない場合は、搭乗者無しと判断する。これにより、搭乗者の有無を確実に判別することができ、搭乗モードと非搭乗モードの切換えを的確に行うことができる。さらに、座面8aに接触センサ58を搭載して、臀部の形を計測する手法や、カメラが搭載されており、人間の顔、体などを検出する手法など、人間が明らかに搭乗している状況を判別できる手法を用いてもよい。このように各種センサによって、搭乗者の有無を判別することで、搭乗者が意識することなく、最適な制御を行うことができる。もちろん、搭乗者が搭乗したことを示すスイッチを設けて、搭乗者などがスイッチを操作することで判別することもできる。なお、本実施の形態では、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。
<実施の形態6>
 本実施の形態では、実施の形態4と同様に、力センサ9からの出力に対して、オフセットを与えている。すなわち、力センサ9から出力される計測信号について、オフセット電圧を設定している。さらに、本実施の形態では、モーメントMyだけでなく、モーメントMxについても、オフセット値を設定している。そして、状況に応じて、オフセット値を最適化している。
 ここで、搭乗者71が荷物を把持した場合について考える。例えば、荷物を持っていない状態から、荷物を持った状態になった場合について、図19及び図20を用いて説明する。図19は、荷物を持っていない搭乗者71が搭乗している状態を示す図であり、図20は、荷物76を持った搭乗者71が搭乗している状態を示す図である。荷物を持っていない状態で、搭乗者71が搭乗席8に座ると、座面8aの中心に搭乗者71の重心位置75があるとする。この状態で、荷物76を把持すると、座面8aの中心から重心位置75がずれる。例えば、荷物76を左手で持つと、重心位置75が左側に変位する。このように荷物76を持った方向に、重心位置が変化する。したがって、直進したい場合、搭乗者が斜めに姿勢を左右方向に傾ける必要が生じる。このように、重心位置75が変位すると、意図する操作をしにくくなる。すなわち、原点から重心位置75の方向が鉛直方向から傾くため、搭乗者71が中立姿勢を保っている場合でも、荷物76に応じたモーメントMx、Myが検出されてしまう。
 荷物76によって生じるモーメントMx、Myをキャンセルするために、力センサ9の出力に対してオフセットを設定している。これにより、荷物76の重量によらず、搭乗者の意図通りに移動することができる。具体的には、搭乗席8に搭載重量を力センサ9で測定する。そして、搭載重量が変化したときに、オフセットを再設定する。これにより、荷物76の有無によらず、搭乗者71の意図通りに移動することができる。すなわち、荷物を持った場合において、前方に直進したい場合、搭乗者71が前傾姿勢となる。同様に、荷物を持たない場合において、前方に直進したい場合、搭乗者71前傾姿勢となる。搭乗者が同じ操作をすると、移動体1が同じ動作をする。よって、意図通りに移動することができ、操作性を向上することができる。
 次に、本実施の形態にかかる移動体1の制御方法について、図21を用いて説明する。図21は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。移動体1を起動したら、力センサ9によって搭乗席8の搭載重量を測定する(ステップS201)。そして、前回の重量と今回の重量とを比較する(ステップS202)。前回の重量と今回の重量の差が、しきい値よりも大きい場合、オフセットを再設定する(ステップS203)。ここでは、再設定されたオフセットを用いて指令値が算出される。そして、搭載重量を測定するステップS201に戻る。また、前回の重量と今回の重量の差が、しきい値よりも小さい場合、オフセットを変更せずに指令値を算出した後、搭載重量を測定するステップS201に戻る。また、ステップS202で比較した後に、前回の重量を今回の重量で置き換える。これにより、オフセットの再設定を容易に行うことができる。
 オフセットは、重量変化が生じた際の、モーメントMx、Myに応じた値となる。オフセットの再設定を行う場合、力センサ9で計測されたモーメントMx、Myに対応する出力電圧をオフセット電圧とする。重量変化が生じた時に計測されたモーメントに対応する出力電圧が基準となる。すなわち、重量変化が生じたタイミングで出力された出力電圧がオフセット電圧になる。オフセット電圧の更新後は、重量変化が生じた際のモーメントに応じた出力電圧と、その後に計測されたモーメントに応じた出力電圧との差分に基づいて、入力モーメント値が算出される。例えば、重量変化が生じた時に、モーメントMxに対応する電圧が1Vとなり、モーメントMyに対応する電圧が2Vとなったとする。これらをオフセット電圧に設定する。この場合、これ以降に計測されたモーメントMxに対応する出力電圧から1V引く。同様に、モーメントMyに対応する出力電圧から2V引く。そして、オフセット電圧を引いた後に入力モーメント値が算出される。換言すると、オフセット設定時のモーメントと姿勢変化で生じたモーメントとの差分が、入力モーメント値に変換される。差分に基づいて、指令値を算出する。荷物76を持った場合も持たない場合も、同じ運転方法で、同じように制御することができる。
 このようにすることで、搭乗者71が座り直したタイミングでオフセットの設定が行われる。すなわち、搭乗者71が座り直すと、座面8aから臀部が離れる。すると座面8aに加わる力が一旦、弱くなるため、重量変化が検知される。すなわち、変化重量がしきい値を越える。そして、このタイミングでオフセットの設定が行われる。このようにすることで、荷物76を持ったことを意識することなく、操作することができる。よって、操作性を向上することができる。このように、搭乗部3の搭載重量の変化したタイミングで、オフセット値の設定を行っている。ここでは、搭乗重量が変化したタイミングにおける力センサ9の計測結果を基準となるオフセット値としている。また、力センサ9からの計測値に基づいて搭載重量が算出されている。
 なお、上記の説明では、重量変化に応じて、オフセットの設定を行ったが、オフセットの設定を行うタイミングはこれに限られるものではない。例えば、移動体1にオフセット設定用のスイッチを設けて、このスイッチの切換えによって、オフセットの設定を行ってもよい。例えば、図20に示すように搭乗部3の近傍にスイッチ77を設ける。搭乗者が切り替えスイッチをONしたタイミングでオフセット設定を行う。このようにしても、同様の効果を得ることができる。さらに、荷物を離さずに左右持ち替えた場合でも、オフセット値の再設定が行われる。
 搭乗者の動作をカメラで監視して、搭乗者が荷物を持ったか否かを判別してもよい。なお、本実施の形態では、判別部12、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に判別部12、搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。もちろん、力センサ9以外のセンサで搭載重量を検出してもよい。力センサ9で搭載重量を検出することで、他のセンサを用いる必要がなくなる。
<実施の形態7>
 本実施の形態では、図11に示した搭乗位置検出部14からの分布情報に応じてオフセットを与えている。すなわち、搭乗者が座っている位置に応じて、オフセットを与えている。なお、モーメントMx、Myに対するオフセットの与え方は、実施の形態4、6等と同様であるため説明を省略する。すなわち、力センサ9からの出力に対して基準となる電位を調整している。
 まず、オフセットを与えるために設けられた接触センサ56の構成について図22、及び図23A、B、Cを用いて説明する。図22は、座面8aに設けられた接触センサ56の構成を示す上面図である。図23A、B、Cは、座面8aにおける搭乗位置のずれを示す上面図である。図22に示すように、座面8a上には、複数の接触センサ56がアレイ状に配列されている。接触センサ56は、臀部72や大腿部73の形状を検知できる程度の分解能を持っているものとする。すなわち、臀部や大腿部の形状を区別できるような間隔で、接触センサ56を配列する。そして、接触信号を出力する接触センサ56の分布から搭乗位置を検出する。すなわち、正常な搭乗位置からのずれ量を検出する。このように、複数の接触センサ56を用いることで、接触位置に対する分布情報が得られる。そして、この分布情報から搭乗位置を推定する。
 例えば、図23Aに示すように、搭乗者が正常な搭乗位置よりも、左斜め前方に座ってしまった場合、分布情報が変化する。よって、搭乗位置が変化したと判断され、モーメントMx、Myのそれぞれに対してオフセットを与える。また、図23Bに示すように搭乗者が正常な搭乗位置よりも、後方に座ってしまった場合、モーメントMyに対してオフセットを与える。さらに、図23Cに示すように、搭乗者が正常な搭乗位置よりも、右側に座ってしまった場合、モーメントMxのそれぞれに対してオフセットを与える。このようにモーメントの計測値に対してオフセットを与えることで、正常な搭乗位置と同じ運転方法で、移動することができる。
 例えば、搭乗位置に大きな変化が生じる毎に、オフセットを更新している。すなわち、搭乗位置のずれ量がしきい値よりも大きくなったタイミングで、オフセットを再設定する。これにより、搭乗者が座り直して、搭乗位置が変化した場合でも、同様に操作することができる。例えば、中立姿勢になったときに、移動体1が移動しなくなる。さらに、まっすぐ前方に移動した場合、搭乗者が前傾姿勢になればよい。このように、意図通りに移動することができ、操作性を向上することができる。
 なお、本実施の形態にかかる移動体1の制御方法について、図24を用いて説明する。図24は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。移動体1を起動したら、搭乗位置検出部14によって搭乗位置を測定する(ステップS301)。そして、前回の搭乗位置と今回の搭乗位置とを比較する(ステップS302)。前回の搭乗位置と今回の搭乗位置との差が、しきい値よりも大きい場合、オフセットを再設定する(ステップS303)。そして、搭乗位置を測定するステップS301に戻る。また、前回の搭載位置と今回の搭載位置の差が、しきい値よりも小さい場合、搭載位置を測定するステップS301に戻る。また、ステップS302で比較した後に、前回の搭載位置を今回の搭載位置で置き換える。これにより、オフセットの再設定を容易に行うことができる。オフセット値は、分布情報や搭乗位置に基づいて決定することができる。ここでは、オフセットが更新される間、同じオフセット値で処理が行われている。そして、同じオフセット値から得られる入力モーメント値に基づいて、指令値を算出している。この指令値を、駆動モータ603に出力している。例えば、分布情報や搭載位置に対するオフセット値の関係式やテーブルを予め設定しておく。これにより、簡便にオフセット値を算出することができる。
 また、車輪6に全方向車輪を用いる場合、モーメントMzに対してオフセットを設定してもよい。すなわち、搭乗者が真正面ではなく、ヨー軸周りの方向にずれて搭乗した場合、モーメントMzに対するオフセットを設定する。これにより、操作性を向上することができる。なお、本実施の形態では、判別部12、及び姿勢検出部4を用いていないため、移動体1に判別部12、及び姿勢検出部4を設けなくてもよい。
 なお、実施の形態6、7では、搭載重量の変化や、搭乗位置の変化に応じて、オフセットを設定するタイミングを決定しているが、オフセットを設定するタイミングはこれに限られるものではない。これら以外のセンサからの出力に基づいて、オフセットを設定することができる。また、実施の形態6、7を組み合わせてオフセットの設定を行ってもよい。
<実施の形態8>
 図1乃至図11で示した移動体1では、搭乗者71が移動速度を速くしようとした場合、搭乗者の姿勢が大きく傾くこととなる。例えば、前方に高速で移動しようとすると、大きく前傾する必要が生じる。すると、搭乗者71の姿勢によっては、搭乗者71を含む移動体1の重心位置がロボットの静安定領域から出てしまうことがある。
 本実施の形態では、図1、2に示したように、3輪型の移動体1を採用している。そのため、静安定領域78は、図25に示すように三角形となる。図25は、移動体1の静安定領域を示す上面図である。三角形の3頂点にそれぞれ車輪6が配置されている。搭乗者がスピードアップしようとすると、静安定領域78から重心位置が外れてしまう。例えば、前傾姿勢の角度が大きくなると重心位置75b~75dが静安定領域78からはみ出す。すなわち、重心位置75b~75dは、静安定領域78の外側になっている。
 このような場合、移動体1が非常に不安定な状態となる。例えば、移動体1が転倒したり、車輪6が浮いてしまう。さらに、駆動輪である後輪602が浮いてしまった場合、意図通りに移動することができなくなる。そこで、本実施の形態では、力センサ9からの計測信号に応じて、重心位置が静安定領域78の外側に出ないように、制御している。具体的には、移動体1が備えるロール軸機構、及びピッチ軸機構をアクティブに駆動することで、重心位置が静安定領域78からはみ出すのを防いでいる。
 本実施の形態では、図5に示したロール軸機構、及びピッチ軸機構の構成を採用している。駆動部5が駆動することで、移動体1の姿勢が変化する。なお、ヨー軸機構501を駆動しない場合、ヨー軸機構501を設けなくてもよい。
 次に、ヨー軸機構501、ピッチ軸機構502及びロール軸機構503を駆動するための制御について、図26を用いて説明する。図26は、本実施の形態にかかる移動体1の制御系の構成を示すブロック図である。本実施の形態では、各機構の駆動に、力センサ9の検出結果が用いられている。すなわち、制御計算部51は、力センサ9の検出結果に基づいて、目標角度を算出している。
 本実施の形態では、力センサ9が受ける力に応じて、ピッチ軸機構502、ロール軸機構503を駆動している。例えば、力センサ9がピッチ軸周りのモーメントMyとロール軸周りのモーメントMxを検出したとする。すると制御計算部51は、この力センサ9での計測されたモーメントMx、Myに応じて、重心位置を推定する。そして、重心位置がはみ出しそうな場合に、ピッチ軸機構502、ロール軸機構503の目標角度を算出する。これにより、座面8aがピッチ軸周り、及びロール軸周りに回転する。
 具体的には、モーメントMx、Myに応じて、重心位置が静安定領域からはみ出そうとしているか否かを判定する。はみ出そうとしている場合、モーメントMx、Myが大きくなる方向に、ピッチ軸機構502、ロール軸機構503を駆動する。すなわち、入力モーメント値Mx'、My'が大きくなるように、移動体1の姿勢を変化させる。これにより、搭乗者が大きく姿勢を傾斜させなくても、移動速度を速くすることができる。よって、重心位置が静安定領域からはみ出すのを防ぐことができる。例えば、搭乗者が右斜め前方に傾斜した場合、移動体1はピッチ軸機構502、ロール軸機構503を駆動して、座面8aの右斜め前方部分が上になり左斜め後方部分が下になるように座面8aを傾ける。これにより、モーメントMx、Myが大きくなり、移動速度は速くなる。よって、移動体1の転倒や車輪6の浮上を防ぐことができ、安定して移動することができる。
 図27を用いて、本実施の形態にかかる移動体1の制御方法について説明する。図27は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。まず、力センサ9でモーメントMx、Myを検出し、重心位置を測定する(ステップS401)。そして、重心位置がしきい値を越えているか否かを判定する(ステップS402)。重心位置がしきい値を越えていない場合(ステップS402のNO)、重心位置が静安定領域から出そうでないと判定する。このため、重心位置を測定するステップ(ステップS401)に戻る。
 一方、重心位置がしきい値を越えている場合(ステップS401のYES)、重心位置が静安定領域78から出そうであると判定する。すると、制御計算部51がテーブルを参照して、関節角度を決定する(ステップS403)。すなわち、ピッチ軸機構502、及びロール軸機構503の回転角度を算出する。なお、このテーブルは、移動体1の重量及びそのバランスなどに応じて、予め設定されている。すなわち、モーメントMx、Myと、関節角度との関係を示す例えばテーブルを予め設定しておく。これにより、モーメントMx、Myが決まると、それに応じた関節角度が決まる。ピッチ軸機構502、ロール軸機構503の目標関節角度が算出される。または、制御式により、ピッチ軸機構502、ロール軸機構503の目標関節角度が算出されてもよい。
 そして、制御計算部51がピッチ軸機構502、及びロール軸機構503に指令値を出力して、ピッチ軸機構502、及びロール軸機構503を駆動する(ステップS404)。これにより、モーメントMx、Myが大きくなり、移動速度が速くなる。よって、搭乗者がさらに姿勢を傾けることなく、所望の速度まで加速することができる。この結果、転倒するリスクの低減と、スピードアップの両方を同時に行うことができる。
 なお、上記の説明では、モーメントMx、Myの値を用いて、重心位置が静安定領域から出そうか判定したが、モーメントMx、Myの変化量(時間微分)に応じて、判定してもよい。もちろん、モーメントの値と、モーメントの変化量の両方に応じて、判定してもよい。
 なお、上記の説明では、座面8aを傾斜させて移動体1の姿勢を制御したが、本実施形態はこれに限られるものではない。すなわち、モーメントを大きくするための構成は、ピッチ軸機構502、及びロール軸機構503に限られるものではない。例えば、フットレスト10を駆動することによって、モーメントを大きくしてもよい。すなわち、フットレスト10にモータや減速器を設けて、前後、又は上下に駆動できるようにする。そして、上下又は前後に移動可能なフットレスト10を力センサ9からの出力に応じて、駆動する。これにより、座面8aを傾斜させた場合と、同様の効果を得ることができる。
 例えば、図28に示すようにフットレスト10を前後に駆動するフットレスト駆動部17を設ける。フットレスト駆動部17は、モータや減速器などからなる。フットレスト駆動部17は、フットレスト10の上部、すなわち足が載置される面を前後に移動させる。フットレスト10の位置を変化させることによって、両脚の膝の角度が変わる。搭乗者の姿勢が変化して、力センサ9が受ける力が変化する。このとき、力センサ9が受ける力を大きくする方向に、フットレスト10を移動させる。この結果、転倒するリスクの低減と、スピードアップの両方を同時に行うことができる。なお、本実施の形態では、判別部12、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に判別部12、搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。
<実施の形態9>
 本実施の形態では、図11に示した姿勢検出部4での検出結果に応じて、係数調整、又はオフセットを変えている。すなわち、姿勢検出部4からの出力に基づいて、実施の形態3で示した係数、又は実施の形態4、6で示したオフセットを変更している。
 図29に示すように、移動体1が平坦面から傾斜面を移動する場合、力センサ9の入力が変化してしまう。この場合、搭乗者が同じ姿勢をしていたとしても、移動速度が変わってしまう。例えば、下り坂を移動する場合、搭乗面が前傾する。すると、図29に示すように、搭乗者71が搭乗面に対して後傾姿勢になってしまうため、力センサ9で後退入力が検知される。従って、下り坂を下ることができなくなってしまう。また、上り坂を移動する場合、搭乗面が後傾する。すると、搭乗者が搭乗面に対して、前傾してしまう。よって、必要以上に前傾入力が検知され、意図通りに坂道を上ることができなくなってしまう。さらに、左右片側に段差がある場合、旋回入力が検知され、移動体が左右に移動してしまう。
 そこで、本実施の形態では、姿勢検出部4からの出力に応じて、係数又はオフセットを最適化している。例えば、姿勢検出部4で検出された姿勢角と、係数の関係を示すテーブルを予め設定しておく。あるいは、姿勢検出部4で検出された姿勢角と、オフセットの関係を示すテーブルを予め設定しておく。例えば、図30に示すように、入力モーメント値を算出するときの基準位置を後に下げる。ヨー軸が後方になるように、モーメントMyに対してオフセットを与える。入力モーメント値を大きくするようにオフセットを与える。移動体1の姿勢変化に起因する入力モーメント値Mx'、My'の変化が軽減される。よって、傾斜面を移動している場合でも、平坦面と同じ操作で同様に移動することができる。これにより、操作性を向上することができる。
 もちろん、オフセットの設定を変える構成に限られるものではなく、姿勢変化に応じて、係数を調整してもよい。すなわち、姿勢検出部4で検出された車台13の姿勢角に応じて入力モーメント値とモーメントの関係を変化させればよい。
 次に、本実施の形態にかかる移動体1に制御方法について、図31を用いて説明する。図31は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。まず、移動体1を駆動すると、姿勢検出部4によって姿勢を確認する(ステップS501)。すなわち、各軸周りの姿勢角を測定する。そして、測定された移動体1の傾斜角度に応じて、オフセットを設定する(ステップS502)。オフセットは、姿勢角とオフセット値の関係を示すテーブルや、姿勢角からオフセットを算出するための関係式によって、決定される。もちろん、オフセットの設定に限らず、係数調整を行ってもよい。
 そして、力センサに基づいて移動体制御を行う(ステップS503)。このとき、姿勢角に応じてオフセットが変化している。オフセットが最適化されているため、入力モーメント値の原点位置が変化する。これにより、搭乗者が通常通りの操作で、移動体1が傾斜面を移動する。搭乗者の意図通りに移動体1を移動させることができ、操作性を向上することができる。実施の形態3にかかる移動体1では、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。
 また、本発明は、車輪型の移動体1に限らず、歩行型の移動体においても適用可能である。すなわち、車台13などの本体部を床面に対して移動させる移動機構が設けられているものであればよい。
 さらに、各実施の形態を適宜組み合わせて使用してもよい。例えば、実施の形態1と2を組み合わせることで、平地を移動している場合は実施の形態1による制御を行い、傾斜面を移動している場合は、実施の形態2による制御を行う。平地か傾斜面かの判定は、姿勢検出部4によって行えばよい。また、例えば、実施の形態1と3を組み合わせることで、より搭乗者の意図通り移動させることができ、操作性をさらに向上することができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年9月12日に出願された日本出願特願2008-234560及び2008年9月11日に出願された日本出願特願2008-233592を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、搭乗者を搭乗させた状態で移動する移動体において、広く適用することができる。
 1 移動体、 2 フレーム部、 3 搭乗部、 4 姿勢検出部、 5 駆動部、
 501 ヨー軸機構、 501a エンコーダ、
 502 ピッチ軸機構、 502a エンコーダ、
 503 ロール軸機構、 503a エンコーダ、
 603 駆動モータ、 603a エンコーダ、
 6 車輪、 601 前輪、 602 後輪、
 603 駆動モータ、 603a エンコーダ、
 8 搭乗席、 8a 座面、 9 力センサ、
 10 フットレスト、 11 筐体、 12 判別部、 13 車台、
 14 搭乗位置検出部、 17 フットレスト駆動部、 51 制御計算部、
 52 バッテリ、 53 センサ処理部、
 71 搭乗者、 72 臀部、 73 大腿部、 75 重心位置、 76 荷物、
 77 スイッチ、 78 静安定領域、
 201 第1の平行リンク機構、 201a 横リンク、 201b 縦リンク、
 202 第2の平行リンク機構、 202a 横リンク、 202b 縦リンク、
 301 支持軸

Claims (10)

  1.  搭乗者が搭乗する搭乗席と、
     前記搭乗席を支持する本体部と、
     前記本体部を移動させる移動機構と、
     前記搭乗席の座面に加わる力に応じた計測信号を出力するセンサと、
     前記搭乗席の座面の角度を変えるように、前記搭乗席を駆動する搭乗席駆動機構と、
     前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号とに基づいて、前記移動機構、及び前記搭乗席駆動機構を駆動するための指令値を算出する制御計算部と、
     を備える移動体。
  2.  前記移動体の姿勢角度に応じた信号を出力する姿勢検出部をさらに備え、
     前記搭乗席の平衡位置姿勢が姿勢検出部の出力に応じて変化する
     ことを特徴とする請求項1に記載の移動体。
  3.  前記搭乗席の搭乗面が水平になるように、前記搭乗席の平衡位置姿勢が変化する
     ことを特徴とする請求項2に記載の移動体。
  4.  前記搭乗席の平衡位置姿勢が前記移動体の移動状況によらず一定になっている
     ことを特徴とする請求項1に記載の移動体。
  5.  前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号に基づいて、前記搭乗席駆動機構の目標駆動量を算出し、
     前記搭乗席駆動機構の目標駆動量に基づいて、前記移動体の前後進移動速度が算出される
     ことを特徴とする請求項1に記載の移動体。
  6.  搭乗者が搭乗する搭乗席と、
     前記搭乗席を支持する本体部と、
     前記本体部を移動させる移動機構と、
     前記搭乗席の座面に加わる力に応じた計測信号を出力するセンサと、
     前記搭乗席の座面の角度を変えるように、前記搭乗席を駆動する搭乗席駆動機構と、を備えた移動体の制御方法であって、
     前記搭乗席の平衡位置姿勢を入力するステップと、
     前記センサからの計測信号と、前記平衡位置姿勢と、前記搭乗席駆動機構の駆動量とに基づいて、前記移動機構、及び前記搭乗席駆動機構を駆動するための指令値を算出するステップと、
     を備える移動体の制御方法。
  7.  前記移動体に設けられた姿勢検出部によって、前記移動体の姿勢角度に応じた信号を出力し、
     前記搭乗席の平衡位置姿勢が姿勢検出部の出力に応じて変化する
     ことを特徴とする請求項6に記載の移動体の制御方法。
  8.  前記搭乗席の搭乗面が水平になるように、前記搭乗席の平衡位置姿勢が変化する
     ことを特徴とする請求項7に記載の移動体の制御方法。
  9.  前記搭乗席の平衡位置姿勢が前記移動体の移動状況によらず一定になっている
     ことを特徴とする請求項8に記載の移動体の制御方法。
  10.  前記搭乗席駆動機構の駆動量と前記搭乗席の平衡位置姿勢と前記センサからの計測信号に基づいて、前記搭乗席駆動機構の目標駆動量を算出し、
     前記搭乗席駆動機構の目標駆動量に基づいて、前記移動体の前後進移動速度が算出される
     ことを特徴とする請求項6に記載の移動体の制御方法。
PCT/JP2009/003076 2008-09-11 2009-07-02 移動体、及びその制御方法 WO2010029669A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09812818.4A EP2332815B1 (en) 2008-09-11 2009-07-02 Moving body and control method thereof
US13/063,310 US8504248B2 (en) 2008-09-11 2009-07-02 Vehicle and its control method
CN200980135755XA CN102149596B (zh) 2008-09-11 2009-07-02 移动体及其控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008233592A JP5044515B2 (ja) 2008-09-11 2008-09-11 移動体、及びその制御方法
JP2008-233592 2008-09-11
JP2008-234560 2008-09-12
JP2008234560A JP4825856B2 (ja) 2008-09-12 2008-09-12 移動体、及びその制御方法

Publications (1)

Publication Number Publication Date
WO2010029669A1 true WO2010029669A1 (ja) 2010-03-18

Family

ID=42004935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003076 WO2010029669A1 (ja) 2008-09-11 2009-07-02 移動体、及びその制御方法

Country Status (4)

Country Link
US (1) US8504248B2 (ja)
EP (1) EP2332815B1 (ja)
CN (1) CN102149596B (ja)
WO (1) WO2010029669A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061057A1 (ja) * 2012-10-16 2014-04-24 トヨタ自動車株式会社 倒立型移動体及びその制御方法
CN106114717A (zh) * 2016-08-01 2016-11-16 林允杜 一种多功能舒适型高稳定性四轮平衡车

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015425A1 (de) * 2010-04-19 2011-10-20 Audi Ag Vorrichtung zum Betreiben einer Antriebseinheit eines Kraftfahrzeugs
US20140367190A1 (en) * 2011-03-21 2014-12-18 4Power4 Sprl Steering Mechanism
JP5916520B2 (ja) * 2012-05-14 2016-05-11 本田技研工業株式会社 倒立振子型車両
CN103385791B (zh) * 2013-08-01 2015-09-02 济南大学 一种残疾人姿态控制多功能轮椅及控制方法
TWI592320B (zh) * 2015-05-15 2017-07-21 Jon Chao Hong 以行動終端控制座椅的控制方法及系統
US9555849B1 (en) * 2015-07-12 2017-01-31 Terracraft Motors Inc. Motorcycle having interactive lean control
US9902300B2 (en) 2015-11-06 2018-02-27 Clearmotion Acquisition I Llc Lean-in cornering platform for a moving vehicle
US9944206B2 (en) 2015-11-06 2018-04-17 Clearmotion Acquisition I Llc Controlling active isolation platform in a moving vehicle
US9758073B2 (en) * 2015-11-06 2017-09-12 Bose Corporation Variable gain control in roll compensating seat
US10029586B2 (en) * 2015-11-06 2018-07-24 Clearmotion Acquisition I Llc Vehicle seat with angle trajectory planning during large events
FR3044148B1 (fr) * 2015-11-25 2017-12-01 Renault Sas Procede et dispositif de detection de la position des membres inferieurs d'un conducteur de vehicule automobile
JP6255591B2 (ja) * 2016-01-29 2018-01-10 株式会社コスモテック 重心移動で動く電動車椅子
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
EP4194971A1 (en) 2016-02-23 2023-06-14 DEKA Products Limited Partnership Method for establishing the center of gravity for a mobility device
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
CA3024145A1 (en) 2016-04-14 2017-10-19 Deka Products Limited Partnership User control device for a transporter
JP6572393B2 (ja) * 2016-08-02 2019-09-11 本田技研工業株式会社 ホイールフレーム、駆動輪、車椅子、エルゴメータ、及び、測定システム
US10772774B2 (en) * 2016-08-10 2020-09-15 Max Mobility, Llc Self-balancing wheelchair
WO2018052401A1 (en) 2016-09-13 2018-03-22 Ford Global Technologies, Llc Methods and apparatus to monitor and control mobility vehicles
JP6571631B2 (ja) * 2016-12-26 2019-09-04 国立大学法人 東京大学 走行車両及び走行車両の制御方法
CN106974780B (zh) * 2017-03-13 2018-06-29 邝子佳 基于差分航姿的智能轮椅控制方法
JP6555597B2 (ja) * 2017-04-10 2019-08-07 本田技研工業株式会社 シート装置
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
USD829612S1 (en) 2017-05-20 2018-10-02 Deka Products Limited Partnership Set of toggles
US11157020B2 (en) 2017-05-26 2021-10-26 Public University Corporation Suwa University Of Science Foundation Omnidirectional moving device and attitude control method for the same
US11304862B2 (en) * 2017-09-14 2022-04-19 Yamaha Hatsudoki Kabushiki Kaisha Power assist wheelchair, power assist unit for wheelchair, control device for power assist wheelchair, control method for power assist wheelchair, program, and terminal
JP6888587B2 (ja) * 2018-05-31 2021-06-16 トヨタ自動車株式会社 シート制御装置
CA3106189A1 (en) 2018-06-07 2019-12-12 Deka Products Limited Partnership System and method for distributed utility service execution
CN111361428B (zh) * 2020-02-28 2022-06-03 浙江吉利汽车研究院有限公司 一种车辆控制方法、装置及存储介质
US11660240B2 (en) * 2020-06-05 2023-05-30 Toyota Motor North America, Inc. Wheelchair systems and methods enabling fine manual motion control
CN114056461B (zh) * 2020-07-30 2023-03-21 魏宏帆 具有悬浮坐垫的自行车以及磁力调控方法
CN113552822B (zh) * 2021-07-01 2022-07-08 浙江益恒悦医疗科技有限公司 智能助行器的助力控制方法及装置、智能助行器、控制器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136957A (ja) 1993-11-10 1995-05-30 Fujitsu Ltd インタフェイス装置
JPH1023613A (ja) 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JPH11198075A (ja) 1998-01-08 1999-07-27 Mitsubishi Electric Corp 行動支援装置
JP2003508285A (ja) * 1999-08-31 2003-03-04 デカ・プロダクツ・リミテッド・パートナーシップ 枢軸旋回可能な支持体を有する乗物安定化装置
JP2004500271A (ja) * 1999-12-08 2004-01-08 デカ・プロダクツ・リミテッド・パートナーシップ 個人用バランス乗物
JP2004129435A (ja) * 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法
JP2006211899A (ja) * 2006-05-08 2006-08-10 Deka Products Lp 輸送車両と方法
JP2006282160A (ja) 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構
JP2007106265A (ja) * 2005-10-13 2007-04-26 Sony Corp 走行装置及びその制御方法
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2008234560A (ja) 2007-03-23 2008-10-02 Shinko Electric Ind Co Ltd 認証装置および認証方法
JP2008233592A (ja) 2007-03-22 2008-10-02 Seiko Epson Corp 液晶装置の製造方法および液滴吐出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722493B2 (ja) * 1995-02-03 2005-11-30 デカ・プロダクツ・リミテッド・パートナーシップ 輸送車両と方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136957A (ja) 1993-11-10 1995-05-30 Fujitsu Ltd インタフェイス装置
JPH1023613A (ja) 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JPH11198075A (ja) 1998-01-08 1999-07-27 Mitsubishi Electric Corp 行動支援装置
JP2003508285A (ja) * 1999-08-31 2003-03-04 デカ・プロダクツ・リミテッド・パートナーシップ 枢軸旋回可能な支持体を有する乗物安定化装置
JP2004500271A (ja) * 1999-12-08 2004-01-08 デカ・プロダクツ・リミテッド・パートナーシップ 個人用バランス乗物
JP2004129435A (ja) * 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法
JP2006282160A (ja) 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構
JP2007106265A (ja) * 2005-10-13 2007-04-26 Sony Corp 走行装置及びその制御方法
JP2006211899A (ja) * 2006-05-08 2006-08-10 Deka Products Lp 輸送車両と方法
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2008233592A (ja) 2007-03-22 2008-10-02 Seiko Epson Corp 液晶装置の製造方法および液滴吐出装置
JP2008234560A (ja) 2007-03-23 2008-10-02 Shinko Electric Ind Co Ltd 認証装置および認証方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2332815A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061057A1 (ja) * 2012-10-16 2014-04-24 トヨタ自動車株式会社 倒立型移動体及びその制御方法
CN106114717A (zh) * 2016-08-01 2016-11-16 林允杜 一种多功能舒适型高稳定性四轮平衡车
CN106114717B (zh) * 2016-08-01 2018-09-21 台州市煜晨车业有限公司 一种多功能舒适型高稳定性四轮平衡车

Also Published As

Publication number Publication date
EP2332815A1 (en) 2011-06-15
EP2332815B1 (en) 2013-10-30
US20110172886A1 (en) 2011-07-14
US8504248B2 (en) 2013-08-06
CN102149596B (zh) 2013-06-05
CN102149596A (zh) 2011-08-10
EP2332815A4 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2010029669A1 (ja) 移動体、及びその制御方法
JP4867823B2 (ja) 倒立車輪型移動体、及びその制御方法
JP5366285B2 (ja) 個人用バランス乗物
JP5024652B2 (ja) 車両
EP2093100B1 (en) Travel gear and its controlling method
JP6081271B2 (ja) 倒立振子型車両
JP2010125969A (ja) 移動体
JP6111119B2 (ja) 倒立振子型車両
JP4825856B2 (ja) 移動体、及びその制御方法
JP5123123B2 (ja) 移動体、及びその制御方法
JP2010117847A (ja) 移動体、移動体制御システム及び移動体の制御方法
JP5044515B2 (ja) 移動体、及びその制御方法
JP5270307B2 (ja) 移動体
JP5328272B2 (ja) 移動体、及びその制御方法
JP2008160935A (ja) 車両
JP5167077B2 (ja) 移動体、及びその制御方法
JP5119098B2 (ja) 移動体、及びその制御方法
JP5261091B2 (ja) 移動体、及びその制御方法
JP5146376B2 (ja) 移動体、及びその制御方法
JP2010068680A (ja) 移動体
JP2011105051A (ja) 移動体
JP2018172058A (ja) 倒立振子型車両
JP2011062330A (ja) 電動車椅子およびその制御方法
JP2012090914A (ja) 可動式椅子
JP2010132110A (ja) 移動体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135755.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812818

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13063310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009812818

Country of ref document: EP