CN102055388A - 电动机控制设备 - Google Patents

电动机控制设备 Download PDF

Info

Publication number
CN102055388A
CN102055388A CN2010105321797A CN201010532179A CN102055388A CN 102055388 A CN102055388 A CN 102055388A CN 2010105321797 A CN2010105321797 A CN 2010105321797A CN 201010532179 A CN201010532179 A CN 201010532179A CN 102055388 A CN102055388 A CN 102055388A
Authority
CN
China
Prior art keywords
count
phase
angle
count value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105321797A
Other languages
English (en)
Other versions
CN102055388B (zh
Inventor
真锅镇男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102055388A publication Critical patent/CN102055388A/zh
Application granted granted Critical
Publication of CN102055388B publication Critical patent/CN102055388B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Abstract

本发明提出了一种电动机控制设备,其包括:解算器(12)及R/D转换器(14),其中360度的电气角被设定为比360度的机械角小,并且其输出与电气角相对应的两相编码器信号;两相编码器计数器(41),其对两相编码器信号进行计数,并输出与电气角相对应的数字值;角倍增系数检测部(42),其基于计数值的变化来对由从R/D转换器(14)输出的信号表示的角度所对应的机械角的位置进行检测;以及电动机控制部(44),其根据角倍增系数检测部(42)的输出来对基于转矩命令值(TR)确定的电流命令值进行校正。

Description

电动机控制设备
技术领域
本发明涉及电动机控制设备,具体涉及使用电气角的电动机控制设备,其中,将360度的电气角设定为小于360度的机械角。
背景技术
电动机控制设备被设置在诸如具有电动机的机动车或混合动力车辆之类的车辆中,或被设置在具有电动机的其他电气设备中。在这种电动机控制设备中使用了检测电动机的转角的转角检测设备。
例如,日本专利申请公开号2009-77481(JP-A-2009-77481)揭示了一种技术,其使用解算器(resolver)作为旋转检测传感器,并指示将解算器的输出转换为数字值的R/D(解算器/数字)转换器增大或减小计数值。在日本专利申请公开号2004-242370(JP-A-2004-242370)、日本专利申请公开号2008-259347(JP-A-2008-259347)、日本专利申请公开号11-337371(JP-A-11-337371)、日本专利申请公开号2004-61157(JP-A-2004-61157)以及日本专利申请公开号2000-314639(JP-A-2000-314639)中也描述了相关技术。
利用根据磁极对的数量而变化的电气角来对电动机进行基本的控制。例如,在具有一个磁极对的电动机中,电气角与机械角一致。但是,在具有两个磁极对的电动机中,电气角在每一次机械角从0度到360度变化时均从0度到360变化两次。换言之,在具有两个磁极对的电动机中,不能确定从0度至360度的电气角是对应于0度至180度的机械角还是180度至360度的机械角。
近年来,对于设置在车辆中的电动机日益增长的需求是具有较大转矩、紧凑尺寸和更顺畅的控制,因此电动机中的磁极对的数量有可能例如从两个增加至四个或五个。在此情况下,通常使用具有2、4或5的角倍增系数(也表示为2X、4X或5X)的解算器。角倍增系数是解算器输出的一个周期的角度(通常为电气角θe)与解算器的实际机械角θm的比率。换言之,机械角θm=电气角θe/角倍增系数N。此外,角倍增系数是系数而非角度,因此,在本说明书中,角倍增系数也可被简单地称为倍增系数。
但是,当诸如解算器之类的转角传感器被制造的较小或角倍增系数增大时,即使在电气角相同的情况下,加工精度的问题也会导致与倍增系数对应的特性变化。当传感器的特性存在上述波动时,优选地在首先校正输出以获得理想的特性之后再使用传感器。
图20是示出具有角倍增系数Nx的解算器的特性的校正的曲线图。参考图20,横轴表示解算器的转角,纵轴表示对应于转角的计数值。当解算器的特性被转换为数字值时,输出值与理想值存在偏差。通过校正该输出值以使其与理想值一致,可以正确地计算出转速等。
输出值的上述偏差是因传感器的加工精度等与0度及360度的机械角之间的位置对应的偏差。换言之,即使电气角是相同值,偏差量也将取决于电气角所对应的机械角的位置而不同,由此也必需改变校正值。具体而言,当0度至360度的电气角是2X的角倍增系数时,必需在首先确认输出值(即,电气角)是对应于0度与180度之间的机械角还是对应于180度与360度之间的机械角之后再进行校正。对于5X的角倍增系数,由当前输出值表示的电气角可能对应于五个机械角中的任何一个。
此外,两相编码器输出被用作将解算器的输出转换为数字值的R/D转换器的输出。该两相编码器输出包括A相信号、B相信号及Z相信号。A相信号及B相信号是具有与转角相对应的脉冲数的信号。在A相信号与B相信号之间在脉冲的上升缘及下降缘设置相位差,由此能够通过A相信号与B相信号之间的相位关系来确认旋转是正向还是逆向。此外,Z相信号是每一次电气角旋转一周就输出一次的信号。这种接口(interface)被广泛地应用于电动机控制领域。利用通过接收两相编码器输出来计数的常规两相编码器计数器,可以识别电气角,但不能识别机械角。
此外,还需要使电动机自身被制造的较小,由此绕组(即,线圈)的不平衡卷绕等造成的影响会增大,这会导致不平稳转动。具体而言,在低转速的情况下,乘员易于感到转矩的起伏变化,因此优选地利用电动机控制来执行控制以消除该转矩起伏变化。但是,在此情况下,也需要在校正电动机控制之前识别旋转检测传感器的输出值(即,电气角)是对应于0度至180度的机械角还是对应于180度至360度的机械角。
发明内容
着眼于上述问题,本发明提供了一种电动机控制设备,其能够在使用两相编码器输出的情况下识别机械角的位置,并基于机械角来校正命令值。
因此,本发明的第一方面涉及一种电动机控制设备,其包括:角度检测部,其中与输出信号的一个周期相对应的角度被设定为比360度的机械角小;计数器,其被配置为输出与来自所述角度检测部的所述输出信号相对应的数字值;位置检测部,其被配置为基于所述计数器的计数值的变化,对由从所述角度检测部输出的所述信号表示的角度所对应的所述机械角的位置进行检测;以及电动机控制部,其被配置为基于自所述电动机控制设备的外部发送的转矩指令值来确定电流指令值,并根据所述位置检测部的输出来校正所述电流指令值。
所述角度检测部可以是电气角检测部,其中360度的电气角被设定为比360度的机械角小,并且所述电气角检测部输出与电动机的转子的电气角相对应的两相编码器信号。所述计数器可以是对所述两相编码器信号进行计数并且输出与所述电气角相对应的数字值的两相编码器计数器。所述位置检测部可以是基于所述两相编码器计数器的计数值的变化,来对由从所述电气角检测部输出的信号表示的电气角所对应的所述机械角的位置进行检测的电气角数检测部。
此外,所述电动机控制部可以基于所述电气角数检测部的输出来判定所述电动机的所述转子的转角所对应的所述机械角的位置,并对所述电流指令值执行与所述转子的转角相对应的校正。
此外,所述电动机控制部可以具有保存有所述转矩指令值以及与所述转子的转角相对应的校正系数的对应关系,并通过使所述电流指令值乘以所述校正系数来执行所述校正。
此外,所述电气角数检测部可以生成其中所述两相编码器计数器的高位(bit)被进一步扩展至与360度的机械角相对应的值的计数值,并输出所述扩展得到的计数值。
此外,所述电气角检测部包括其中360度的电气角被设定为比360度的机械角小的解算器,以及将来自所述解算器的信号转换为数字值的解算器/数字转换器。所述解算器/数字转换器可以输出包括A相信号、B相信号以及Z相信号的所述两相编码器信号。
此外,所述两相编码器计数器可以根据所述A相信号及所述B相信号增大或减小计数,并在所述Z相信号被输入时将所述计数值清零。可以在所述两相编码器计数器的所述计数值正在增大的情况下,当所述两相编码器计数器的所述计数值被清零时,所述电气角数检测部在所述两相编码器计数器在即将被清零之前的所述计数值超过阈值时将所述扩展得到的计数值清零。
此外,所述电气角检测部还可以包括检测机械角基准位置的传感器。所述两相编码器计数器根据所述A相信号及所述B相信号增大或减小计数,并根据所述传感器的输出将所述计数值清零。所述电气角数检测部可以根据所述传感器的输出将所述扩展得到的计数值清零。
此外,所述两相编码器计数器根据所述A相信号及所述B相信号增大或减小计数,并在所述Z相信号被输入时将所述计数值清零。所述电动机控制设备还可以包括Z相异常检测部以及Z相异常判定部,所述Z相异常检测部被配置为判定在所述Z相信号已经被输入时所述两相编码器计数器的所述计数值是否处于与异常时机对应的预定范围内,并且所述Z相异常判定部被配置为在由所述Z相异常检测部已经判定得到所述计数值处于所述预定范围内时对所述Z相信号已经被输入的次数进行计数,并在所述Z相信号已经被输入的次数超过错误计数阈值时将由所述电气角数检测部保存的所述扩展得到的计数值清零。
此外,所述角度检测部可以在每一次达到预定角度时输出表示所述一个周期已经结束的信号作为所述输出信号。所述计数器可以包括转子位置检测部,所述转子位置检测部从所述输出信号已经被输入之后直至下一个所述输出信号被输入时基于时钟信号对中间计数值增大计数。所述位置检测部可以生成其中所述计数器的高位被进一步扩展至与360度的机械角相对应的值的计数值,并输出所述扩展得到的计数值。所述电动机控制设备还可以包括Z相异常检测部以及Z相异常判定部,所述Z相异常检测部被配置为判定在所述输出信号已经被输入时所述计数器的所述计数值是否处于与异常时机相对应的预定范围内,所述Z相异常判定部被配置为在由所述Z相异常检测部已经判定得到所述计数值处于所述预定范围内时对所述输出信号已经被输入的次数进行计数,并在所述输出信号已经被输入的次数超过错误计数阈值时将由所述位置检测部保存的所述扩展得到的计数值清零。
此外,所述电动机控制设备还可以包括角度校正部,角度校正部被配置为基于所述位置检测部的输出来对从所述计数器输出的所述数字值执行与机械角的正确位置相对应的校正。
因此,利用本发明,无需大幅改变常规控制方法就能够在使用两相编码器输出的情况下识别出机械角的位置,由此可以根据电动机的特性来校正电动机控制命令值,。
附图说明
参考附图,通过以下对本发明的示例性实施例的详细描述,来说明本发明的特征、优点及技术产业意义,类似的标号表示类似的元件,其中:
图1是车辆结构的框图,可将根据本发明的第一示例性实施例的电动机控制设备应用至该车辆;
图2是示出解算器的角倍增系数的视图;
图3是根据第一示例性实施例的两相编码器计数器的位扩展(bit extension)的视图;
图4是示出通过图1中的逆变器设备执行的电动机控制的流程图;
图5是示出图4中的步骤S3的电气角判定处理的细节的流程图;
图6是示出在图5的步骤S12中用于判定North Marker是否正常的处理的第一图;
图7是示出在图5的步骤S12中用于判定North Marker是否正常的处理的第二图;
图8是示出在图5的步骤S14中执行的用于增大和减小两相编码器计数器的扩展位的处理的流程图;
图9是在使用具有五个磁极对的电动机时,相对于电气角及机械角的变化、计数器的计数值所发生的变化的一个示例的波形图;
图10是在North Marker前后、计数器增大期间计数值的变化的放大波形图;
图11是示出图4的步骤S6中转矩起伏变化校正的细节的第一流程图;
图12是示出图4的步骤S6中转矩起伏变化校正的细节的第二流程图;
图13是在转矩起伏变化校正中使用的校正系数图的一个示例的视图;
图14是使用了根据第二示例性实施例的电动机控制设备的车辆的框图;
图15是示出第二示例性实施例中由CPU执行的两相编码器计数器的扩展位的计数控制的流程图;
图16是使用了根据本发明的第三示例性实施例的电动机控制设备的车辆的框图;
图17是示出第三示例性实施例中执行的例程的流程图;
图18是示出图10中的Xmax及Xmin的视图;
图19是使用了根据本发明的第四示例性实施例的电动机控制设备的车辆的框图;并且
图20是根据现有技术的具有角倍增系数Nx的解算器的特性的校正视图。
具体实施方式
以下将参考附图更详细地描述本发明的示例性实施例。此外,将以类似的附图标记来表示图中类似或对应的部分,并将省略对这些部分的描述。
图1是可应用根据本发明的第一示例性实施例的电动机控制设备的车辆1的结构的框图。
参考图1,车辆1包括逆变器设备2、电动发电机4以及与电动发电机4的转子轴连接的解算器12。如果车辆1是电动车辆、混合动力车辆或燃料电池车辆,则可以使用电动发电机4来驱动车轮。此外,也可为其他目的来使用电动发电机4。
此外,图1示出了解算器12及R/D转换器14被用作检测电气角的电气角检测部(即,转角传感器)的示例。但是,电气角检测部并不限于此。换言之,只要电气角检测部是输出两相编码器输出的装置(例如,旋转编码器、或诸如电磁转角传感器或光学转角传感器之类的各种转角传感器),就可应用本专利申请中的本发明。在下述示例中,电气角检测部是解算器及R/D转换器。
解算器12包括转子轴、主绕组15和两个副绕组16及17,转子轴的外周部被成形为使得距中心的间距周期性地变化,主绕组15设置在定子,两个副绕组16及17以90度的相位差布置在定子上。转子轴的外形是其中定子之间的间隙根据角度以正弦波形变化的形状,并且正弦波的数量根据角倍增系数来确定。如果正弦波sinωt的信号被输入至解算器12的主绕组15,则通过以90度相位差布置的两个副绕组16及17分别获得已经根据电动机转角θ被调制的信号sinωtsinθ以及sinωtcosθ。
逆变器设备2包括CPU(中央处理单元)40、IPM(智能功率模块)7、电流传感器8及9、以及R/D(解算器/数字)转换器14。IPM 7包括用于控制流向电动发电机4的定子线圈的电流的诸如IGBT之类的功率开关器件。电动发电机4的定子线圈包括U相线圈、V相线圈以及W相线圈。这些U、V及W相线圈以Y形连接,由此可以通过分别利用电流传感器8及9来测量V及W相电流,通过计算可获得U相电流。
逆变器设备2还包括分别对电流传感器8及9的输出进行放大的放大器(amp)A1及A2,以及基于来自CPU 40的激励基准信号Ref来对解算器12的主绕组15进行激励的放大器A3。
CPU 40通过对从R/D转换器14输出的两相编码器信号进行计数来获得与电气角θe相对应的计数值θ1。每一个两相编码器信号均包括A相信号PA、B相信号PB以及Z相信号PZ。此外,CPU 40还执行与角倍增系数相对应的计数,并获得与机械角θm相对应的计数值θ2。CPU 40计算其中已经基于计数值θ2对因解算器的加工精度等原因造成的特性变化进行校正了的值θ3,并将该值用于电动机控制。
也可通过软件或硬件来实现CPU 40的这类工作。CPU 40包括两相编码器计数器41、电气角数检测部42、角度校正部43以及电动机控制部44。两相编码器计数器41根据A相信号PA以及B相信号PB来增大和减小计数,并根据Z相信号PZ来清零。电气角数检测部42根据与由两相编码器计数器41输出的电气角相对应的计数值θ1的变化,输出与机械角相对应的计数值θ2,并输出电气角的扩展计数值COUNT。角度校正部43输出与已经基于计数值θ2进行校正的电气角相对应的计数值θ3。电动机控制部44基于计数值θ3、电气角的扩展计数值COUNT、转矩命令值TR以及电动机电流值IV及IW,来输出三相PWM信号,即,U相PWM信号,V相PWM信号以及W相信号。IPM 7中的IGBT受控以接通和关断,使得电动发电机4基于三相PWM信号(即,U相PWM信号、V相PWM信号以及W相PWM信号)而运转。
此外,由电气角数检测部42检测到的电气角数是表示电气角所对应的机械角的位置的数值。例如,计数值θ2或计数值COUNT对应于电气角数。
解算器12的转子轴机械耦合至电动发电机4。由CPU 40内的D/A转换器等所实现的激励信号产生部45所产生的诸如10kHz的激励正弦波信号被电流放大器A3放大,并被供应至解算器12的主绕组15。
解算器12是在电动发电机4旋转时在次级侧(secondary side)的SIN绕组16及COS绕组17中感生诸如10kHz的调制后正弦波的旋转变压器。从SIN绕组16及COS绕组17发送至R/D转换器14的信号被R/D转换器14转换为数字值,并且两相编码器输出信号PA、PB及PZ响应于该数字值的变化而被输出。
IPM 7的V及W相电流值分别由电流传感器8及9检测,并经由缓冲放大器A1及A2被供应至CPU 40中的A/D转换输入(未示出),然后相应的数值被输出至电动机控制部44。
电动机控制部44然后基于从主ECU(诸如混合动力车辆中的混合动力ECU)经由通信发出的转矩命令值TR、校正后电气角θ3以及电流值IV及IW来执行dq轴计算,然后通过与PWM计时器的比较来确定通电占空比。
图2是解算器的角倍增系数的图。将参考图2来描述具有2X的角倍增系数的解算器的示例。如图2所示,具有2X的角倍增系数的解算器12被安装至具有三相及两对磁极对的电动发电机4。电动发电机4具有设置在定子上的两个U相线圈、两个V相线圈以及两个W相线圈,以及设置在转子上的用于两对N和S极的永磁体。选择具有2X的角倍增系数的解算器12以与电动发电机4的两个磁极对匹配。如此进行选择意味着在电动机控制时仅需考虑电气角θe,由此控制能够更为简化。
如果电动发电机4的转子就机械角θm而言从0度到180度转动半圈,则解算器12输出的电气角θe将从0度变化至360度。如果电动发电机4的转子就机械角θm而言从180度至360度又转动半圈,则解算器12输出的电气角θe将再次从0度变化至360度。
这里,如果解算器12的角倍增系数增大,那么除非以更高的精度加工部件,否则将输出具有相同精度的电气角信号。因此必需将解算器12的主体制造的更大。此外,如果解算器12制造的较小,并且以相同的精度制造部件,则电气角信号的精度将降低。因此,可以想到对解算器12的输出进行校正、然后再使用。
但是,在图2所示的示例中,因为由于解算器转子的位置偏移或转子外周加工波动等因素而引起特性的差异,故解算器特性的差异可能会在与0度至180度的机械角相对应的电气角情况下和在与180度至360度的机械角相对应的电气角情况下有所不同。例如,在具有2X的角倍增系数并且转子被加工成使得转子与定子之间的间隙(即,距离)以正弦波(即,正弦曲线)形变化的VR(可变磁阻)解算器的情况下,精度会在转子的与0度至180度的机械角相对应的加工表面和与180度至360度的机械角相对应的加工表面之间有所差异。
因此,必需根据机械角来校正电气角。举例而言,当校正相同的10度电气角的输出值时必须根据机械角是10度还是190度来改变校正值。因此,在第一示例性实施例中,通过根据角倍增系数来扩展解算器的转子位置检测功能而获得机械角。
图3是根据第一示例性实施例的两相编码器计数器的位扩展(bit extension)的视图。
参考图3,10位计数器被用作常规的两相编码器计数器。在此情况下,图1中的两相编码器计数器41是10位计数器。由10位计数值来表示从0度至360度的电气角的范围。
通过使该10位计数器的高位扩展以与角倍增系数匹配,然后进行计数,可以获得机械角。例如,2X的角倍增系数需要0和1两个状态,因此需要一个扩展位。5X的角倍增系数例如要求0至4五个状态(000,001,010,011及100),因此需要三个扩展位。通过图1中的电气角数检测部42来保存与扩展位相对应的计数。
因此,常规两相编码器计数器的计数值是与0度至360度的电气角θe相对应的计数值θ1(即,θe=0度至360度)。扩展得到的计数器的计数值是与0度至360度的机械角θm相对应的计数值θ2。
由此,如果可以识别与机械角相对应的计数值,则可以校正解算器12的特性的偏差。通过图1中的角度校正部43完成上述校正。
例如,通过在电动发电机4运转时进行学习来进行上述校正。例如,可通过将JP-A-2004-242370中描述的方法应用至机械角来进行上述校正。具体而言,针对机械角的第一圈回转(即,0度至360度)获得在规定时段中两相编码器计数器的计数值的平均增大速率。然后,在机械角的第二圈回转(即,0度至360度)中,基于获得的平均增大速率来计算两相编码器计数器的预测值。如果该预测值以及实际上两相编码器计数器的值(即,实际值)落入预定范围内,则将预测值用作校正后值。如果预测值和两相编码器计数器的实际值落在预定范围之外,则使实际值增大或减小基准值一半的值,并将结果用作校正后值。
图4是示出由图1中的逆变器设备2执行的电动机控制的流程图。图4所示流程图中的例程从预定主例程被调用,并以预定时间间隔执行或在每次满足预定条件时执行。
参考图4,首先,当例程开始时,在步骤S1中提取电流。此时,由电流传感器8及9检测到的电流值分别经由放大器A1及A2被输入至电动机控制部44。
然后,在步骤S2中提取电气角,并且在步骤S3中进行判定该电气角对应于机械角的哪个位置的电气角判定处理。这里,解算器12的输出通过R/D转换器14被转换为两相编码器信号。然后,两相编码器计数器41对该两相编码器信号进行计数,以获得与电气角θe相对应的计数值θ1。此外,电气角数检测部42还执行与角倍增系数相对应的计数,获得与机械角θm相对应的计数值θ2,并输出计数值COUNT。角度校正部43计算已经基于计数值θ2校正了因解算器的加工精度等因素而导致的特性变化而得到的值θ3,并且电动机控制部44基于与校正后电气角相对应的值θ3以及计数值COUNT来进行电气角判定处理。
在描述步骤S4及后续步骤之前,将详细描述电气角判定处理。随后将描述步骤S4及后续步骤。
图5是示出图4的步骤S3中的电气角判定处理的细节的流程图。
参考图5,首先,在步骤S11中,判定两相编码器计数器41的计数值是否已经增大或减小。换言之,如果计数值已经变化,则处理从步骤S11进行至步骤S12。如果计数值尚未变化,则处理进行直至步骤S16,并且控制改变至图4中的流程图。
在步骤S12中,判定是否满足θ1(n-1)>X1,且θ1(n-1)<θMAX-X2并且θ1(n)=0的条件。这里θ1(n)是第n个周期的两相编码器计数器41的计数值,并且是在执行图5中流程图中的例程时与第n个周期对应的时间时的电气角所对应的值。此外,这里的θ1(n-1)是第n-1周期的两相编码器计数器41的计数值,并且是在执行图5中流程图中的例程时与第n-1个周期对应的时间时的电气角所对应的值。X1及X2表示阈值,并且θMAX表示两相编码器计数器41的计数值的最大值。将参考图6及图7进行描述。
图6是示出在图5的步骤S12中用于判定North Marker(NM)是否正常的处理的第一图。
图7是示出在图5的步骤S12中用于判定North Marker(NM)是否正常的处理的第二图。
正常工作时编码器计数器的计数值类似于图6中实线的波形而变化。此外,当在处理过程中输入两相编码器输出中的Z相信号(也被称为North Marker(NM))时,两相编码器计数器41被重置,使得值被设定为0。一旦重置,在下一次计数值达到最大值θMAX时,计数就停止增大,并且计数值返回至0。正常情况下,认为该计数值返回至0的时机与下一次Z相信号被输入时的时机一致。
但是,存在因包括在两相编码器输出中的A,B及Z相信号的延迟或两相编码器计数器41的信号读取误差,而造成在两相编码器计数器41的计数值θ1为0时之外的其他时机输入Z相信号的情况。即使在此情况下,如果计数值表示正常转子位置,则即使存在时机偏差,也可以继续电气角判定操作。但是,如果偏差超过阈值,则判定两相编码器计数器41的计数值θ1并未正确地表示出转子位置,由此也进行电气角判定操作的初始化。
如图6所示,正常范围被设定为跨过Z相信号的正常时机,而任何其他时间均落入异常范围内。如果Z相信号在异常范围内被输入,则计数值COUNT被清零。此外,当Z相信号被输入时,两相编码器计数器41的计数值θ1也被清零。
因此,如图7所示,当保存固定时长内的两相编码器计数器41的计数值θ1的变化历史、并且计数值在时间θ(n)时变为0时,如果最近一次的计数值θ1(即,时间θ(n-1)时的计数值θ1)落在X1与θMAX-X2之间,则判定最近的计数值θ1异常。此外,如果时间θ(n-1)时的计数值θ1落在0与X1之间或落在θMAX-X2与θMAX之间,则判定时间θ(n-1)时的计数值θ1正常。此外,阈值X1及X2可以是不同值或相同值。
再参考图5,如果满足步骤S12的条件,则处理进行至计数值COUNT被设定为0的步骤S13。另一方面,如果不满足步骤S12的条件,则处理进行至计数值COUNT增大或减小的步骤S14。后续将参考图8来描述上述增大或减小的细节。
一旦计数值COUNT在步骤S13或S14完成更新,则在步骤S15由两相编码器计数器41的计数值θ1以及与扩展位相对应的计数值COUNT合成得到与机械角θm相对应的计数值θ2。然后在步骤S16,控制返回至图4所示的流程图中的例程。
图8是示出在图5的步骤S14中执行的增大或减少两相编码器计数器的扩展位的处理的流程图。该处理对应于在图1中的电气角数检测部42中执行的处理。
首先,在步骤S21中判定是否满足θ1(n-1)>X且θ1(n)=0的条件。这里,θ1(n)是第n周期的两相编码器计数器41的计数值,并且是与在执行图8的流程图中的例程时在与第n个周期对应的时间时的电气角所对应的值。此外,这里的θ1(n-1)是第n-1周期的两相编码器计数器41的计数值,并且是与在执行图8的流程图中的例程时在与第n-1个周期对应的时间时的电气角所对应的值。X表示阈值。下文将参考图10来描述该阈值X。
步骤S21中的条件被用于判定在Z相信号被输入至两相编码器计数器41并且计数值θ1(n)已经被清零时,一个周期之前的计数值θ1(n-1)是否大于阈值X。如果该条件满足,则处理从步骤S21进行至步骤S22。在此情况下,在两相编码器计数器41增大计数时,两相编码器计数器41被清零,因此,在此情况下,必需对扩展位增大计数。
在步骤S22中,判定扩展位的计数值COUNT是否等于或大于与角倍增系数(或电气角数)相对应的最大值MAX。该最大值MAX例如在解算器具有2X的角倍增系数时(即在电动机具有两个磁极对时)是具有1位的二进制数1,并在解算器具有5X的角倍增系数时(即在电动机具有五个磁极对时)是具有3位的二进制数100。
如果在步骤S22中,计数值COUNT等于或大于最大值MAX,则处理进行至步骤S23,在步骤S23,计数值COUNT被设定为0。另一方面,如果计数值COUNT尚未达到最大值MAX,则处理进行至步骤S24,在步骤S24,将计数值COUNT加1,并且图3中的位扩展部分被增大计数。
如果不满足步骤S21中的条件,则处理进行至步骤S25。在步骤S25中,判定是否满足条件θ1(n-1)=0且θ1(n)≥θMAX。这里,θ1(n)是第n周期的两相编码器计数器41的计数值,并且是在与第n周期对应的时间时的电气角所对应的值。此外,这里的θ1(n-1)是第n-1周期的两相编码器计数器41的计数值,并且是与第n-1周期相对应的时间时的电气角所对应的值。θMAX是与电气角的最大值相对应的两相编码器计数器41的计数值。
步骤S25的条件被用于判定当X相信号被输入至两相编码器计数器41并且计数值θ1(n-1)已经被清零时,一个周期之后的计数值θ1(n)是否大于θMAX。如果满足该条件,则处理从步骤S25进行至步骤S26。在此情况下,两相编码器计数器41在被清零之后减小计数,因此在此情况下,必需对扩展位的计数值COUNT进行减小计数。
在步骤S26判定扩展位的计数值COUNT是否等于或小于零。如果在步骤S26中判定计数值COUNT等于或小于零,则处理进行至将计数值COUNT设定为等于MAX的步骤S27。另一方面,如果计数值COUNT大于零,则处于进行至步骤S28,在此步骤S28,从计数值COUNT减1,并对图3中的扩展位部分进行减小计数。
在已经执行了步骤S23,S24,S27或S28之后,处理进行至步骤S29。在步骤S29,处理改变至图5中流程图中的例程。
然后,在图5的步骤S15中,由作为两相编码器计数器41的输出值的θ1以及与扩展位相对应的计数值COUNT合成得到与参考图3描述的机械角θm相对应的扩展计数值θ2。
图9是在使用具有五个磁极对的电动机时,相对于电气角及机械角的变化,计数器的计数值发生变化的一个示例的波形图。
参考图9,横轴表示机械角(0度至360度)。每一次电气角从0度改变为360度,计数值COUNT就增大计数。与电气角相对应的计数值θ1重复地从零改变至θMAX。当电气角达到360度时,Z相信号被输入,因而已经到达θMAX的计数值θ1被清零。此时,向与扩展位相对应的计数值COUNT加1(图8的步骤S24)。
以此方式,每一次Z相信号被输入时,计数值θ1就被清零,并且计数值COUNT以从000→001→010→011→100的二进制数增大计数。在具有五个磁极对的电动机角的情况下,图8中流程图中的MAX是100,由此当COUNT=100之后下一次输入Z相信号时,计数值COUNT被清零为000(即,步骤S23)。
图9也示出了基于计数值θ1以及计数值COUNT获得与机械角相对应的计数值θ2。
图10是在North Marker前后计数器增大期间计数值的变化的放大波形图。两相编码器输出中的Z相信号也可被称为North Marker(NM)。在图9中,θ1变化至θMAX,并且在θ1随后紧接着变为零时,COUNT值增大。但是,Z相信号的输出时机可能会存在偏差,因此执行处理以允许一定量的偏差。
在图10中示出了图8的步骤S21中的阈值X。根据步骤S21的条件,如果θ1超过阈值X,即使计数值尚未被增大至θMAX,也使计数值COUNT递增。换言之,当在Z相信号被输入至图1中的两相编码器计数器41时,或当两相编码器计数器41达到最大值θMAX并且基于A和/或B相信号的变化而进行下一次增加时,θ1(n)变为等于零。
通过执行步骤S21中的处理,即使Z相信号最终在达到最大值θMAX之前被输入,计数值COUNT也能够在此时适当地增大计数。因此,可以获得正确地对应于机械角的计数值θ2。
因此,在使用两相编码器输出的情况下,也能够识别出机械角的位置,由此无需大幅改变常规控制方法,就可以校正电动机或转角传感器的特性。
现将再次参考图4来描述步骤S4及后续步骤。当步骤S3中的电气角判定结束时,在步骤S4中执行获得转矩命令值的处理。转矩命令值TR是由主ECU(诸如混合动力车辆中的混合动力ECU)基于加速器操作量确定的,并经由通信输出。图1中的电动机控制部44接收该转矩命令值TR。然后,在步骤S5中执行对电流命令值进行计算的处理。当图1中的IPM的直流(DC)电源电压被可变地控制时,获得DC电源电压,并且基于θ3的变化来计算电动发电机4的转速。然后基于转矩命令值、DC电源电压以及转速来计算电流命令值。
然后在步骤S6中,对在步骤S5中获得的电流命令值执行转矩起伏变化校正。转矩起伏变化是尤其是在低速行驶时特别容易感到的转矩的脉冲变化。转矩起伏变化通常周期性地出现。
图11是示出图4的步骤S6中转矩起伏变化校正的细节的第一流程图。
图11中的流程图示出了步骤S6的处理中的步骤S6A,其中转矩起伏变化校正的开始和禁止是相反的。
首先,在图S51中,计算电动发电机4的转速。然后,在步骤S52中,判定转速的绝对值是否低于阈值NA。如果转速低于阈值NA,则意味着车辆正以低速行驶并且转矩起伏变化将成为问题,由此处理进行至步骤S53。例如可将阈值NA设定为50rpm。在步骤S53,进行判定以使转矩起伏变化校正开始。
如果在步骤S52中转速的绝对值并不低于阈值NA,则处理进行至步骤S54。
在步骤S54中,判定转速的绝对值是否大于阈值NB。如果转速的绝对值大于阈值NB,则意味着车辆正以高速行驶并且存在其他振动等,由此转矩起伏变化将不会显现出来,此外,需要较短的处理时间,因此未进行校正。因此,处理从步骤S54进行至步骤S55以判定得到禁止转矩起伏变化校正。此外,如果在步骤S54中转速的绝对值并不大于阈值NB,则转矩起伏变化校正即不开始,也不被禁止。而是,保持当前状态。换言之,如果转矩起伏变化校正处于正在进行的过程中,则继续校正,但如果未进行转矩起伏变化校正,则保持该状态。
以此方式,取决于执行步骤S53或S55中哪一个步骤,进行或不进行校正。如果步骤S54中的判定为否,则保持当前状态,并且处理进行至步骤S56。
图12是示出图4的步骤S6中转矩起伏变化校正的细节的第二流程图。
图13是在转矩起伏变化校正时使用的校正系数对应关系的一个示例的视图。
图12中流程图中的例程是电流校正步骤S6B,从图11中的步骤S6A中进行判定以开始转矩起伏变化校正直至进行判定以禁止转矩起伏变化校正的时间来执行电流校正步骤S6B。
参考图12及图13,首先在步骤S61中计算校正系数。在该校正系数的计算处理中,通过沿机械角方向对图13中的对应关系中存储的校正系数进行线性插值,然后沿转矩方向对校正系数进行线性插值,来获得与机械角相对应的校正系数。
在图13中的对应关系中,针对各个转矩命令值TR=20(N·m),40(N·m),...200(N·m)来界定机械角与校正系数之间的关系。此外,通过使COUNT乘以图1中的θ3(即,COUNT×θ3)而获得机械角。
随后,在步骤S62中执行用于计算对电流命令的校正的处理。具体而言,通过使通过对图13中的对应关系进行插值而获得的系数乘以图4中步骤S4中基于转矩命令值、DC电源电压以及转速计算得到的电流命令值,来获得校正后d轴电流命令值以及q轴电流命令值。在于步骤S62计算得到对电流命令的校正之后,在步骤S63,控制再次返回图4中的流程图,并且执行步骤S7。
在步骤S7,执行电流反馈计算处理以接近对由电流传感器8及9测量的电流值的测量结果进行校正得到的电流命令值。
然后,在步骤S8中计算三相转换处理之后的三相电压命令值,并且利用载频来执行三相PWM开关输出。
如上所述,在第一示例性实施例中,在也利用两相编码器输出的情况下,可以识别机械角的位置,因此能够在无需大幅改变常规控制方法的情况下校正转角传感器的特性。此外,除了校正转角传感器的特性之外,还能够对电动机控制进行校正,由此改善转矩起伏变化情况等。此外,也可以仅校正电动机控制,而不校正转角传感器。
以下将描述本发明的第二示例性实施例。利用例如具有2X的角倍增系数的解算器,对于从0度至360度的每一回转的机械角,电气角均从0度改变至360度达两次。当需要的仅是将第一电气角与第二电气角进行区分并据此执行校正(例如当转动期间可以学习并校正精度时),则可以使用第一示例性实施例。因此,无需确定机械角的绝对位置。
但是,可以理解,会存在预先在工厂里利用精度测量设备来产生校正数据,但该精度测量设备并未被包括在待运产生自身内的情况。在此情况下,如果要向运输后的产品提供校正数据,则当产生校正数据时的机械角必需正确地对应于运输后的产品。换言之,当产生校正数据时的机械角必需与使用校正数据时的机械角匹配。
不仅对于转角传感器的校正数据是如此,当校正电动机控制的电流命令值时也是如此。
图14是使用了根据本发明的第二示例性实施例的电动机控制设备的车辆1A的框图。参考图14,车辆1A与图1中的车辆1不同之处在于其包括解算器12A以及CPU 40A代替解算器12及CPU 40。车辆1A的其他结构与上述车辆1的结构相同,因此将不再重复对其的描述。
解算器12A包括用于检测转子的0度机械角的位置并输出清零信号CLR的传感器18。主绕组15以及副绕组16及17与图1中的相同,故将不再重复对其的描述。
CPU 40A与图1中的CPU 40的不同之处在于其包括两相编码器计数器41A以及电气角数检测部42A而非电气角数检测部42。CPU 40A的其他结构与CPU 40的相同,因此将不再重复对其的描述。
两相编码器计数器41A根据A相信号PA以及B相信号PB来增大或减小计数,并基于清零信号CLR而非Z相信号PZ被清零。此外,该结构也可以是使得当Z相信号PZ或清零信号CLR被输入时,两相编码器计数器41A被清零。
电气角数检测部42A根据与从两相编码器计数器41A输出的电气角相对应的计数值θ1中的变化,输出与机械角对应的计数值θ2,并输出电气角的扩展计数值COUNT。然后,当清零信号CLR被输入时,电气角数检测部42A将计数值θ2以及计数值COUNT清零。
图15是流程图,示出了由第二示例性实施例中的CPU 40A执行的两相编码器计数器41A的扩展位的计数控制。
图15中的流程图与图8中的流程图相同,并增加了步骤S101及S102。因步骤S21至S28与以上参考图8进行描述的相同,故将不再重复对这些步骤的描述。
当步骤S23,S24,S27以及S28中的任一者结束并且计数值COUNT被临时确定时,处理进行至步骤S101。在步骤S101,判定是否已经从传感器18输入清零信号CLR。如果尚未有清零信号CLR被输入,则向图5的步骤S15提供计数值COUNT。另一方面,如果已经输入了清零信号CLR,则在步骤S102将计数值COUNT清零,然后处于进行至步骤S29。
在步骤S29控制变化为图5中的流程图之后,在步骤S15中,由作为两相编码器计数器41A的输出值的θ1以及与扩展位相对应的计数值COUNT来合成出与参考图3描述的机械角θm相对应的扩展计数值θ2。
在该第二示例性实施例中描述的转角检测设备能够基于转角传感器的两相编码器输出而获得机械角的绝对位置。因此,即使在工厂等位置产生了转角传感器的校正数据,也能够将其应用于校正位置,由此可以实现更为精确的转角传感器。
此外,除了对转角传感器的特性进行校正之外,即使在工厂等位置产生了用于电动机控制以改善转矩起伏变化的校正数据,也能够将其应用于校正位置,由此可以实现更为精确的转角传感器。此外,也可以仅校正电动机控制,而不校正转角传感器。
此外,在上述第一及第二示例性实施例中,解算器及R/D转换器被用作检测电气角的电气角检测部(即,转角传感器)。但是,电气角检测部并不限于此。换言之,只要电气角检测部例如是各种转角传感器中任一种(例如电磁转角传感器或光学转角传感器),以及诸如旋转编码器之类的输出两相编码器输出的装置,就可应用本专利申请中的发明。
现将参考图1等对上述第一示例性实施例进行总结。此外,除了附图标记之外,该总结也适用于参考图8等的第二示例性实施例。这些示例性实施例的电动机控制设备包括i)电气角检测部(即,解算器12及R/D转换器14),其中360度的电气角被设定为小于360度的机械角,并且其输出与电动机的转子的电气角相对应的两相编码器信号,ii)两相编码器计数器41,其对两相编码器信号进行计数,并输出与电气角相对应的数字值,iii)电气角数检测部42,其对由电气角检测部输出的信号表示的电气角所对应的机械角的位置进行检测,以及iv)电动机控制部44,其基于转矩命令值TR来确定电流命令值,并根据电气角数检测部42的输出来校正电流命令值。
优选地,电动机控制部44基于电气角数检测部42的输出来判定电动发电机4的转子的转角所对应的机械角的位置,并对电流命令值执行与转子的转角相对应的校正。
更优选地,电动机控制部44具有保存有转矩命令值TR以及与转子的转角相对应的校正系数的对应关系,并通过使电流命令值乘以校正系数来执行校正。
优选地,电气角数检测部42产生其中两相编码器计数器的高位被进一步扩展至与360度的机械角相对应的值的计数值COUNT,并输出扩展计数值COUNT。
更优选地,电气角检测部包括其中360度的电气角被设定为比360度的机械角小的解算器12,以及将信号从解算器12转换为数字值的解算器/数字(R/D)转换器14,并且R/D转换器14输出包括A相信号、B相信号以及Z相信号的两相转换器信号。
更优选地,两相编码器计数器41根据A相信号及B相信号增大或减小计数,并在Z相信号被输入时将计数值清零。如图8及图10所示,在两相编码器计数器41的计数值正在增大的情况下,当两相编码器计数器41的计数值θ1被清零时,电气角数检测部42在两相编码器计数器41在即将被清零之前的计数值θ1已经超过阈值X时,将扩展计数值COUNT清零。
更优选地,电气角检测部还包括传感器18,其检测机械角的基准位置。两相编码器计数器41A根据A相信号及B相信号来增大或减小计数,并响应于自传感器18的输出来将计数值θ1清零。电气角数检测部42A响应于自传感器18的输出将扩展计数值COUNT清零。
优选地,电动机控制设备还包括角度校正部43,其基于电气角数检测部42的输出,对两相编码器计数器输出的数字值执行与机械角的校正位置相对应的校正处理。
下面,将描述本发明的第三示例性实施例。在第一示例性实施例中描述的电动机控制设备接收从位置检测器(即,解算器+R/D转换器,或编码器等)输出的Z相信号、A相信号以及B相信号,并判定电气角数。但是,当因某些原因未预料到会输入Z相信号时,就不能够正确地判定电气角数。例如,如果Z相信号在不接近0度的解算器角度的时机被输入,则两相编码器计数器将被清零,并且会错误地判定电气角是下一轮电气角。
因此,在第三示例性实施例中,当相对于基于A相信号及B相信号获得的解算器角度而未如预料地产生Z相信号时,就忽略该Z相信号。此外,当连续超出预料地产生Z相信号时,就再次检测电气角。
图16是车辆1B的框图,其中使用了根据第三示例性实施例的电动机控制设备。参考图16,车辆1B被构造为使得逆变器设备2包括CPU 40B而非图1中所示车辆1中的CPU 40。车辆1B的其他结构与上述车辆1相同,由此将不再重复对其的描述。
CPU 40B与图1所示的CPU 40的不同之处在于,其包括两相编码器计数器41B以及电气角数检测部42B代替两相编码器计数器41及电气角数检测部42,并且还包括Z相异常检测部46以及Z相异常判定部47。CPU 40B的其他结构与CPU 40的相同,因此将不再重复对其的描述。
两相编码器计数器41B根据A相信号PA以及B相信号PB来对计数值θ1增大或减小计数,并根据Z相信号PZ将计数值θ1清零。
电气角数检测部42B根据与由两相编码器计数器41B输出的电气角相对应的计数值θ1的变化,输出与机械角相对应的计数值θ2,并输出电气角的扩展计数值COUNT。具体而言,根据通过两相编码器计数器41B的传送(carry)或借用(borrow),计数值COUNT被增大或减小。
Z相异常检测部46判定当计数值θ1处于适当范围内时输入的Z相信号为正常,并判定当计数值θ1处于适当范围之外时输入的Z相信号为异常。换言之,Z相异常检测部46将预料到的Z相信号(即,处于预料的时机的Z相信号)与未预料到的Z相信号(处于预料之外的时机的Z相信号)进行区分。
Z相异常判定部47对未预料地输入的Z相信号的数量进行计数,并判定是否存在异常。具体而言,Z相异常判定部47对被Z相异常检测部46判定为异常的Z相信号的数量进行计数,并在计数值超过错误限制值时输出清零信号CLR。通过清零信号CLR,将由两相编码器计数器41B以及电气角数检测部42B保存的值清零。
基于计数值θ3、电气角的扩展得到的计数值COUNT、转矩命令值TR以及电动机电流值IV及IW,电动机控制部44输出三相PWM信号,即U相PWM信号、V相PWM信号以及W相PWM信号。基于三相PWM信号,即U相PWM信号、V相PWM信号以及W相PWM信号,控制IPM 7中的IGBT以接通和关断,由此使电动发电机4运转。
图17是示出在第三示例性实施例中执行的例程的流程图。在该流程图中的例程在第一示例性实施例中描述的图5中的例程之外被执行,并且在每一次Z相信号PZ被输入至Z相异常检测部46时执行。
参考图17,首先在步骤S121,判定在已经输入Z相信号PZ时接收的计数值θ1的值是否满足条件Xmax<θ1(n)<Xmin。此外,n表示已经执行了该流程图中例程的次数(包括当前这一次在内),由此当下一次执行该流程图中的例程时的计数值将是θ1(n+1)。
图18是示出图10中的Xmax及Xmin的图。参考图18,由TA来表示计数值θ1(n)的值不小于Xmin并且不大于θmax的时段,由TB来表示计数值θ1(n)的值不小于θmin并且不大于Xmax的时段,并且由TC来表示任何其他时段。Xmax表示接近+0度的Z相输入正常判定阈值,并且Xmin表示接近-0度的Z相输入正常判定阈值。
初始假定当θ1(n)=θmax时从R/D转换器14输出Z相信号PZ,但存在因为某些原因在计数值θ1与Z相信号PZ之间存在偏差的情况。例如,角度检测器(即,编码器,解算器或R/D转换器)或构成角度检测器的组件(例如,布线及连接器)的失效将导致实际电气角与角度检测器识别的角度之间产生偏差,由此导致输出Z相信号。此外,因噪音的影响,在实际电气角与由角度检测器识别的角度之间会存在偏差,由此导致输出Z相信号。电气噪声也可能会叠加在Z相信号自身上。
因此,在时段TA或时段TB期间输入的Z相信号被认定正常,而在任何其他时段过程中输入的Z相信号被认定为异常。两相编码器计数器41B由被认定为正常的Z相信号清零,但不会由被认定为异常的Z相信号清零。
但是,当在异常时段TC期间多次输入Z相信号时,也不能够信任两相编码器计数器41B的计数值θ1。因此,产生异常Z相信号的次数被计数,如果该数量大于预定值,则执行控制以将两相编码器计数器41B清零,并将由电气角数检测部42B计数的扩展位计数值COUNT清零。
再参考图17,如果在步骤S121中并不满足条件Xmax<θ1(n)<Xmin(即,如果在图18中的时段TA或TB期间输入Z相信号PZ),则处理进行至步骤S125,并且控制改变返回主例程。
另一方面,如果在步骤S121中满足条件Xmax<θ1(n)<Xmin(即,如果在图18中的时段TC期间输入Z相信号PZ),则处于进行至步骤S122。
在步骤S122中,将+1增加至Z相异常时机输入的计数值ERROR_COUNT。计数值ERROR_COUNT是用于对在图18中的时段TC期间输入的Z相信号PZ进行计数的计数值。
然后,在步骤S123中,判定计数值ERROR_COUNT是否已经超过异常判定阈值ERROR。如果ERROR_COUNT大于ERROR,则处理进行至步骤S124。另一方面,如果ERROR_COUNT不大于ERROR,则处理进行至步骤S125,并且控制改变返回至主例程。此外,异常判定阈值ERROR也可以任何整数,只要其等于或大于1即可。当异常判定阈值ERROR被设定为1时,即使在图18中的时段TC期间Z相信号PZ被输入的情况发生了一次,也将计数值COUNT重置(即,将执行重置操作)。通常,异常判定阈值ERROR被设定为二或更大的值,因此将忽略因噪声等原因产生了的单次Z相信号PZ,并且当在图18的时段TC期间输入了多个Z相信号PZ时,将执行重置操作。
在步骤S124中,由电气角数检测部42B计数的计数值COUNT被清零,同时计数值ERROR_COUNT也被清零。然后,处理进行至步骤S125,并且控制改变返回至主例程。
总而言之,对于第三示例性实施例,图16所示的转角检测设备包括i)角度检测部12和14,其中与输出信号的一个周期相对应的角度被设定为比360度的机械角小,ii)计数器41B,其输出与角度检测部的输出信号相对应的数字信号,以及iii)电气角数检测部42B,其基于计数器41B的计数值的变化来对由从角度检测部输出的信号表示的角度所对应的机械角的位置进行检测。
优选地,角度检测部是电气角检测部12和14,其中360度的电气角被设定为比360度的机械角小,并且其输出与转子的电气角相对应的两相编码器信号。计数器是两相编码器计数器41B,其对两相编码器信号进行计数,并输出与电气角相对应的数字值θ1。电气角数检测部42B基于计数器41B的计数值的变化来对由从角度检测部输出的信号表示的电气角所对应的机械角的位置进行检测。
更优选地,电气角数检测部42B产生其中两相编码器计数器41B的高位被进一步扩展至与360度的机械角相对应的值的计数值θ2,并输出扩展得到的计数值COUNT。
更优选地,电气角数检测部42B根据A相信号及B相信号来增大或减小计数,并在Z相信号被输入时将计数值清零。转角检测设备还包括Z相异常检测部46以及Z相异常判定部47,Z相异常检测部46判定当Z相信号被输入时两相编码器计数器41B的计数值是否处于与异常时机相对应的预定范围内(即,处于图18中的时段TC内),并且Z相异常判定部47在由Z相异常检测部46判定得到计数值处于预定范围内时对已经输入Z相信号的次数进行计数,并且当已经输入Z相信号的计数值ERROR_COUNT超过错误计数阈值ERROR时(即,步骤S123中为是),将由电气角数检测部42B保存的扩展计数值θ2以及扩展位COUNT清零。
在第三实施例中,当检测到在异常时机重复输入Z相信号时,计数器就被清零,由此即使存在错误操作,也可增大返回正常操作的几率。
在第一至第三示例性实施例中,解算器被用作转子位置检测设备。现将描述其中替代地使用了霍尔(Hall)元件作为转子位置检测设备的第四示例性实施例。
图19是使用了根据第四示例性实施例的电动机控制设备的车辆1C的框图。在图19中,由Hall元件18C输入与Z相信号相对应的信号。
参考图19,车辆1C包括逆变器设备2C、电动发电机4以及连接至电动发电机4的转子轴的转子位置检测部12C。如果车辆1C是电动车辆、混合动力车辆或燃料电池车辆,则可以使用电动发电机4来驱动车辆。此外,也可将电动发电机4用作其他目的。
转子位置检测部12C还包括Hall元件18C,其对转子中嵌入的磁体的位置进行检测,所述转子固定至电动发电机4的转轴。
逆变器设备2C包括CPU 40C、IPM 7以及电流传感器8及9。IPM 7包括诸如IGBT的功率开关器件,用于控制流向电动发电机4的定子线圈的电流。电动发电机4的定子线圈包括U相线圈、V相线圈以及W相线圈。U、V及W相线圈以Y形连接,由此通过利用电流传感器8及9测量V及W相的电流,通过计算可获得U相的电流。
CPU 40C包括转子位置检测部41C、角度校正部43、电动机控制部44、正常时机判定部48C、Z相异常检测部46C以及Z相异常判定部47C。角度校正部43以及电动机控制部44执行与第一示例性实施例中描述的相同的操作,由此将不再重复对其的描述。
当使用Hall元件时,分辨力较低,因此不能够检测出实际角度原本的大小。因此,假定电动机旋转不会突然改变,并且转子位置检测部41C基于从输入Z相信号之间的时间间隔获得的转速以及在已经输入最近一次Z相信号之后已经经过的时间,来估计角度。
具体而言,例如,转子位置检测部41C包括计时器/计数器,其通过CPU 40C的时钟信号等增大计数,并根据来自Hall元件18C的Z相信号被清零。转子位置检测部41C存储计时器/计数器在即将被清零之前的值作为与360度相对应的值C0,并通过将所存储的值C0与当前计数值C的比率乘以360度来计算与电气角相对应的计数值θ1,即,θ1=C/C0×360。
正常时机判定部48C计算预料下一次将输入Z相信号的输入时段(即,预料输入时段),并向Z相异常检测部46C输出表示当前时间是否与所计算的预料输入时段相对应的信号。该预料输入时段对应于图18的时段TA+TB。
Z相异常检测部46C基于从Hall元件18C输入的Z相信号是否在预料输入时段期间来检测Z相信号异常。已经在图18的时段TC期间输入的Z相信号被判定为异常信号,并被忽略。在此情况下,表示已经输入了异常信号的输出信号被输出至Z相异常判定部47C。
Z相异常判定部47C根据Z相异常检测部46C的输出结果、基于检测的数量以及时长来进行针对异常的判定。例如,Z相异常判定部47C可在在预定时段内已经检测到的异常信号的次数超过错误阈值ERROR_COUNT时判定为Z相信号异常。
如果判定为Z相信号异常,则Z相异常判定部47C将电气角数检测部42C的计数器清零。
根据该第四示例性实施例的转角检测设备包括:其中与输出信号的一个周期相对应的角度被设定为比360度的机械角小的角度检测部18C,输出与角度检测部的输出信号相对应的数字值的计数器(即,转子位置检测部41C),以及基于计数器(即,转子位置检测部41C)的计数值θ1的变化来对由从角度检测部输出的信号表示的角度所对应的机械角的位置进行检测的电气角数检测部42C。
优选地,角度检测部18C是Hall元件,其被构造为输出表示在每一次达到预定角度时一个周期结束的信号,作为输出信号。计数器包括转子位置检测部41C,其基于时钟信号来从已经输入了输出信号之后直至下一次输入该输出信号对中间计数值增大计数。转角检测设备还包括Z相异常检测部46C,其判定在已经输入Z相信号时计数器(即,转子位置检测部41C)的计数值是否处于与预定时间相对应的预定范围内,并且当由Z相异常检测部46C判定得到计数值处于预定范围内时,Z相异常判定部47C对该输出信号已经输入的次数进行计数,并且当该输出信号已经输入的次数超过错误计数阈值时,将由电气角数检测部42C保存的扩展计数值清零。
与第三示例性实施例类似,在第四示例性实施例中,当在异常时机检测到Z相信号的重复输入时,将计数器清零,由此即使存在错误操作,返回至正常操作的几率也能够增大。

Claims (11)

1.一种电动机控制设备,其特征在于包括:
角度检测部,其中与输出信号的一个周期相对应的角度被设定为比360度的机械角小;
计数器,其被配置为输出与来自所述角度检测部的所述输出信号相对应的数字值;
位置检测部,其被配置为基于所述计数器的计数值的变化,对由从所述角度检测部输出的所述信号表示的角度所对应的所述机械角的位置进行检测;以及
电动机控制部(44),其被配置为基于自所述电动机控制设备的外部发送的转矩指令值来确定电流指令值,并根据所述位置检测部的输出来校正所述电流指令值。
2.根据权利要求1所述的电动机控制设备,其特征在于,所述角度检测部是电气角检测部,其中360度的电气角被设定为比360度的机械角小,并且所述电气角检测部输出与电动机(4)的转子的电气角相对应的两相编码器信号;所述计数器是对所述两相编码器信号进行计数并且输出与所述电气角相对应的数字值的两相编码器计数器(41,41A,41B);并且所述位置检测部是基于所述两相编码器计数器(41,41A,41B)的计数值的变化,来对由从所述电气角检测部输出的信号表示的电气角所对应的所述机械角的位置进行检测的电气角数检测部(42,42A,42B)。
3.根据权利要求2所述的电动机控制设备,其特征在于,所述电动机控制部(44)基于所述电气角数检测部(42,42A,42B)的输出来判定所述电动机(4)的所述转子的转角所对应的所述机械角的位置,并对所述电流指令值执行与所述转子的转角相对应的校正。
4.根据权利要求3所述的电动机控制设备,其特征在于,所述电动机控制部(44)具有保存有所述转矩指令值以及与所述转子的转角相对应的校正系数的对应关系,并通过使所述电流指令值乘以所述校正系数来执行所述校正。
5.根据权利要求2所述的电动机控制设备,其特征在于,所述电气角数检测部(42,42A,42B)生成其中所述两相编码器计数器(41,41A,41B)的高位被进一步扩展至与360度的机械角相对应的值的计数值,并输出所述扩展得到的计数值。
6.根据权利要求5所述的电动机控制设备,其特征在于,所述电气角检测部包括其中360度的电气角被设定为比360度的机械角小的解算器(12,12A),以及将来自所述解算器的信号转换为数字值的解算器/数字转换器(14);并且所述解算器/数字转换器(14)输出包括A相信号、B相信号以及Z相信号的所述两相编码器信号。
7.根据权利要求6所述的电动机控制设备,其特征在于,所述两相编码器计数器(41A)根据所述A相信号及所述B相信号增大或减小计数,并在所述Z相信号被输入时将所述计数值清零;并且在所述两相编码器计数器(41A)的所述计数值正在增大的情况下,当所述两相编码器计数器(41A)的所述计数值被清零时,所述电气角数检测部(42A)在所述两相编码器计数器(41A)在即将被清零之前的所述计数值超过阈值时将所述扩展得到的计数值清零。
8.根据权利要求6所述的电动机控制设备,其特征在于,所述电气角检测部还包括检测机械角基准位置的传感器(18);所述两相编码器计数器(41A)根据所述A相信号及所述B相信号增大或减小计数,并根据所述传感器(18)的输出将所述计数值清零;并且所述电气角数检测部(42A)根据所述传感器(18)的输出将所述扩展得到的计数值清零。
9.根据权利要求6所述的电动机控制设备,其特征在于,所述两相编码器计数器(41B)根据所述A相信号及所述B相信号增大或减小计数,并在所述Z相信号被输入时将所述计数值清零;并且所述电动机控制设备还包括Z相异常检测部(46)以及Z相异常判定部(47),所述Z相异常检测部被配置为判定在所述Z相信号已经被输入时所述两相编码器计数器(41B)的所述计数值是否处于与异常时机对应的预定范围内,并且所述Z相异常判定部被配置为在由所述Z相异常检测部已经判定得到所述计数值处于所述预定范围内时对所述Z相信号已经被输入的次数进行计数,并在所述Z相信号已经被输入的次数超过错误计数阈值时将由所述电气角数检测部(42B)保存的所述扩展得到的计数值清零。
10.根据权利要求1所述的电动机控制设备,其特征在于,所述角度检测部在每一次达到预定角度时输出表示所述一个周期已经结束的信号作为所述输出信号;所述计数器包括转子位置检测部(41C),所述转子位置检测部从所述输出信号已经被输入之后直至下一个所述输出信号被输入时基于时钟信号对中间计数值增大计数;所述位置检测部生成其中所述计数器的高位被进一步扩展至与360度的机械角相对应的值的计数值,并输出所述扩展得到的计数值;并且所述电动机控制设备还包括Z相异常检测部(46C)以及Z相异常判定部(47C),所述Z相异常检测部被配置为判定在所述输出信号已经被输入时所述计数器的所述计数值是否处于与异常时机相对应的预定范围内,所述Z相异常判定部被配置为在由所述Z相异常检测部已经判定得到所述计数值处于所述预定范围内时对所述输出信号已经被输入的次数进行计数,并在所述输出信号已经被输入的次数超过错误计数阈值时将由所述位置检测部保存的所述扩展得到的计数值清零。
11.根据权利要求1所述的电动机控制设备,其特征在于,还包括角度校正部(43),角度校正部被配置为基于所述位置检测部的输出来对从所述计数器输出的所述数字值执行与机械角的正确位置相对应的校正。
CN201010532179.7A 2009-10-29 2010-10-29 电动机控制设备 Expired - Fee Related CN102055388B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-248876 2009-10-29
JP2009248876 2009-10-29
JP2010135862A JP5131318B2 (ja) 2009-10-29 2010-06-15 モータ制御装置
JP2010-135862 2010-06-15

Publications (2)

Publication Number Publication Date
CN102055388A true CN102055388A (zh) 2011-05-11
CN102055388B CN102055388B (zh) 2014-01-08

Family

ID=43924670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010532179.7A Expired - Fee Related CN102055388B (zh) 2009-10-29 2010-10-29 电动机控制设备

Country Status (3)

Country Link
US (1) US8471506B2 (zh)
JP (1) JP5131318B2 (zh)
CN (1) CN102055388B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138662A (zh) * 2011-12-05 2013-06-05 株式会社电装 电机控制装置
CN104718103A (zh) * 2012-10-15 2015-06-17 三菱电机株式会社 电动车辆的电动机控制装置
CN107272480A (zh) * 2016-04-08 2017-10-20 英飞凌科技股份有限公司 用于传动系控制的控制系统
CN107340752A (zh) * 2016-04-28 2017-11-10 发那科株式会社 机床的控制装置
CN108073135A (zh) * 2016-11-16 2018-05-25 东芝机械株式会社 工作机械及其控制方法
CN108242902A (zh) * 2016-12-26 2018-07-03 株式会社电装 诊断装置
CN109510538A (zh) * 2017-08-18 2019-03-22 英飞凌科技股份有限公司 电机控制器、电机校准装置、电机的控制方法和校准方法
CN110031228A (zh) * 2017-12-21 2019-07-19 瑞萨电子株式会社 半导体器件和检测其旋转异常的方法
CN111034012A (zh) * 2017-08-31 2020-04-17 三菱电机株式会社 致动器的控制装置及控制方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458341B1 (en) * 2009-07-24 2020-05-06 Toyota Jidosha Kabushiki Kaisha Rotation angle detection device
US8301324B2 (en) * 2011-01-11 2012-10-30 GM Global Technology Operations LLC Wobble compensation of an encoder speed signal for an electric motor
JP5737123B2 (ja) * 2011-10-12 2015-06-17 株式会社デンソー 回転機の制御装置及び回転角算出装置
US8669728B2 (en) * 2012-01-17 2014-03-11 System General Corp. Angle detection apparatus and method for rotor of motor
JP5980095B2 (ja) * 2012-11-06 2016-08-31 株式会社ミツバ スイッチトリラクタンスモータの制御装置
US9778071B2 (en) 2014-06-12 2017-10-03 Lear Corporation Excitation signal generator for resolver
KR101551099B1 (ko) * 2014-06-13 2015-09-08 현대자동차주식회사 모터 시스템의 고장 판정 방법
JP6455111B2 (ja) * 2014-12-05 2019-01-23 株式会社ジェイテクト 回転角検出装置
KR102419489B1 (ko) * 2015-07-13 2022-07-12 현대모비스 주식회사 모터 속도 측정 장치 및 방법
JP6598563B2 (ja) * 2015-08-05 2019-10-30 ルネサスエレクトロニクス株式会社 信号変換器及び制御装置
JP6292208B2 (ja) * 2015-11-05 2018-03-14 トヨタ自動車株式会社 ハイブリッド車両
JP6667320B2 (ja) * 2016-02-26 2020-03-18 ルネサスエレクトロニクス株式会社 信号処理器及び制御装置
KR101836705B1 (ko) * 2016-09-26 2018-03-09 현대자동차주식회사 정현파 생성 장치 및 방법
WO2019207754A1 (ja) * 2018-04-27 2019-10-31 三菱電機株式会社 電動機制御装置
DE102019001461A1 (de) * 2019-03-04 2020-09-10 Nidec Drivexpert Gmbh Verfahren zum schwingungs-und geräuschreduzierten Betreiben einer elektromotorischen Vorrichtung und elektromotorische Vorrichtung
JP7326822B2 (ja) * 2019-04-03 2023-08-16 富士電機株式会社 モータ制御装置
JP7277295B2 (ja) * 2019-07-10 2023-05-18 ファナック株式会社 サーボモータの制御装置
WO2021144965A1 (ja) * 2020-01-17 2021-07-22 ヤマハ発動機株式会社 アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264306A (ja) * 1989-04-04 1990-10-29 Yokogawa Electric Corp モータ・ドライブ・システム
JP2003137110A (ja) * 2001-11-05 2003-05-14 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006246601A (ja) * 2005-03-03 2006-09-14 Hitachi Ltd モータ制御装置およびパワーステアリング装置
JP2006288152A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp モータ制御装置及びこの装置を搭載する車両の制御装置
JP2008259347A (ja) * 2007-04-06 2008-10-23 Toyota Motor Corp モータ制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012169A (en) 1988-07-20 1991-04-30 Yokogawa Electric Corporation Motor drive system
JPH081388B2 (ja) * 1990-05-15 1996-01-10 シーケーディ株式会社 レゾルバにおける補正データ作成方法及び角度検出装置
JPH06288791A (ja) * 1993-04-05 1994-10-18 Sankyo Seiki Mfg Co Ltd エンコーダ装置
US5349294A (en) * 1993-05-12 1994-09-20 Picker International Inc. Two and three-dimensionally selective RF pulses for magnetic resonance imaging
JP3564582B2 (ja) * 1994-12-16 2004-09-15 アイシン精機株式会社 スイッチドレラクタンスモ−タの通電制御装置
JPH11299227A (ja) 1998-04-10 1999-10-29 Sharp Corp チャージポンプ回路
JPH11337371A (ja) 1998-05-27 1999-12-10 Toyota Motor Corp 回転機の回転角検出装置
JP4239291B2 (ja) 1999-04-28 2009-03-18 株式会社安川電機 Acサーボモータ用エンコーダ
JP2004061157A (ja) 2002-07-25 2004-02-26 Toyota Motor Corp レゾルバの信号処理装置及び信号処理方法
JP4059094B2 (ja) 2003-02-03 2008-03-12 トヨタ自動車株式会社 電動機制御装置および回転位置センサーのセンサー値の補正をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
US6906491B2 (en) * 2003-06-20 2005-06-14 Rockwell Automation Technologies, Inc. Motor control equipment
JP2005287133A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd アクチュエータ装置、モータユニット及びコントローラユニット
JP4589093B2 (ja) * 2004-12-10 2010-12-01 日立オートモティブシステムズ株式会社 同期モータ駆動装置及び方法
JP2006238663A (ja) 2005-02-28 2006-09-07 Toshiba Corp 電動機の制御装置
JP2006262668A (ja) 2005-03-18 2006-09-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP2006335252A (ja) * 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
JP5091535B2 (ja) * 2007-04-26 2012-12-05 三洋電機株式会社 モータ制御装置
JP5141149B2 (ja) 2007-09-19 2013-02-13 トヨタ自動車株式会社 モータ制御装置およびそれを搭載する車両
JP5167456B2 (ja) * 2008-03-17 2013-03-21 多摩川精機株式会社 アブソリュートセンサの多回転検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264306A (ja) * 1989-04-04 1990-10-29 Yokogawa Electric Corp モータ・ドライブ・システム
JP2003137110A (ja) * 2001-11-05 2003-05-14 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006246601A (ja) * 2005-03-03 2006-09-14 Hitachi Ltd モータ制御装置およびパワーステアリング装置
JP2006288152A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp モータ制御装置及びこの装置を搭載する車両の制御装置
JP2008259347A (ja) * 2007-04-06 2008-10-23 Toyota Motor Corp モータ制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138662B (zh) * 2011-12-05 2016-04-13 株式会社电装 电机控制装置
CN103138662A (zh) * 2011-12-05 2013-06-05 株式会社电装 电机控制装置
CN104718103A (zh) * 2012-10-15 2015-06-17 三菱电机株式会社 电动车辆的电动机控制装置
CN107272480A (zh) * 2016-04-08 2017-10-20 英飞凌科技股份有限公司 用于传动系控制的控制系统
CN107340752B (zh) * 2016-04-28 2019-09-03 发那科株式会社 机床的控制装置
CN107340752A (zh) * 2016-04-28 2017-11-10 发那科株式会社 机床的控制装置
US10571886B2 (en) 2016-04-28 2020-02-25 Fanuc Corporation Machine tool control device having function of diagnosing malfunction in sensor for detecting one-rotation signal
CN108073135B (zh) * 2016-11-16 2020-07-10 东芝机械株式会社 工作机械及其控制方法
CN108073135A (zh) * 2016-11-16 2018-05-25 东芝机械株式会社 工作机械及其控制方法
CN108242902A (zh) * 2016-12-26 2018-07-03 株式会社电装 诊断装置
CN109510538A (zh) * 2017-08-18 2019-03-22 英飞凌科技股份有限公司 电机控制器、电机校准装置、电机的控制方法和校准方法
CN109510538B (zh) * 2017-08-18 2022-05-24 英飞凌科技股份有限公司 电机控制器、电机校准装置、电机的控制方法和校准方法
CN111034012A (zh) * 2017-08-31 2020-04-17 三菱电机株式会社 致动器的控制装置及控制方法
CN111034012B (zh) * 2017-08-31 2023-09-19 三菱电机株式会社 致动器的控制装置及控制方法
CN110031228A (zh) * 2017-12-21 2019-07-19 瑞萨电子株式会社 半导体器件和检测其旋转异常的方法
CN110031228B (zh) * 2017-12-21 2022-10-04 瑞萨电子株式会社 半导体器件和检测其旋转异常的方法

Also Published As

Publication number Publication date
JP2011120444A (ja) 2011-06-16
JP5131318B2 (ja) 2013-01-30
US20110101899A1 (en) 2011-05-05
US8471506B2 (en) 2013-06-25
CN102055388B (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102055388B (zh) 电动机控制设备
CN102597709B (zh) 旋转角检测装置
CN102916641B (zh) 多相回转机械控制设备及使用其的电动助力转向系统
CN109302112B (zh) 基于矢量的位置传感系统中基本谐波位置测量误差的消除
JP5189659B2 (ja) レゾルバの異常検出装置
US6084376A (en) Low cost resolver system
JP4490401B2 (ja) 車両用操舵装置
EP1085650B1 (en) Method for detecting synchronous motor rotor magnetic pole position
EP1955926A2 (en) Control device for electric power steering apparatus
US6525502B1 (en) Closed loop control of motor position and velocity
US8204641B2 (en) Traction motor control apparatus for vehicle
US20070201171A1 (en) Resolver/digital-converter and control system using the resolver/digital-converter
EP3160824B1 (en) An electric power assisted steering system
CN103085861A (zh) 旋转角检测装置以及扭矩传感器
JP2016082685A (ja) ブラシレスモータ及び電動パワーステアリング装置
US9473054B2 (en) Angle detection apparatus, motor driving control apparatus and angle detection method
CN108063576B (zh) 基于向量的位置感测系统中的误差校正
US10948314B2 (en) Position detector
JP2004147463A (ja) モータ駆動装置
EP1298787A2 (en) Stepping motor controller
JP2018113836A (ja) モータ制御装置、電動パワーステアリング装置及び車両
JP2011169823A (ja) 信号処理回路
JP6690164B2 (ja) 通信システム
JP2010048774A (ja) 位置センサ
WO2000014696A1 (en) Closed loop control of motor position and velocity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140108

CF01 Termination of patent right due to non-payment of annual fee