WO2021144965A1 - アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ - Google Patents

アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ Download PDF

Info

Publication number
WO2021144965A1
WO2021144965A1 PCT/JP2020/001526 JP2020001526W WO2021144965A1 WO 2021144965 A1 WO2021144965 A1 WO 2021144965A1 JP 2020001526 W JP2020001526 W JP 2020001526W WO 2021144965 A1 WO2021144965 A1 WO 2021144965A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase signal
phase
interval
absolute encoder
signal
Prior art date
Application number
PCT/JP2020/001526
Other languages
English (en)
French (fr)
Inventor
俊一 赤間
詩郎 福田
恭規 村山
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2020/001526 priority Critical patent/WO2021144965A1/ja
Priority to PCT/JP2021/001529 priority patent/WO2021145460A1/ja
Priority to JP2021571283A priority patent/JP7368507B2/ja
Publication of WO2021144965A1 publication Critical patent/WO2021144965A1/ja
Priority to US17/866,369 priority patent/US20220364887A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2497Absolute encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales

Definitions

  • the present invention relates to an absolute encoder and an actuator including an absolute encoder.
  • a single-turn absolute encoder that acquires the absolute rotation angle (mechanical angle of 360 degrees) of the rotation axis of a motor or the like by processing the signals of the A / B phase signal sensor and the Z phase signal sensor has been proposed.
  • a signal detection pattern of an A / B phase signal sensor for detecting a relative angle of rotation or the like is formed on a rotating plate at a constant pitch, and rotation is performed within one rotation.
  • the signal detection pattern of the Z-phase signal sensor for detecting the absolute position of the angle is formed on the rotating plate in a predetermined arrangement.
  • the signal detection pattern of the Z-phase signal sensor is a signal detection pattern for detecting an absolute position within one rotation, and a plurality of patterns having different pattern lengths in the circumferential direction of the rotating plate are formed in a predetermined arrangement. There is.
  • the absolute encoder can determine the rotation angle by counting the pulse and phase of the A / B phase signal in the interval from one pulse of the Z signal to the next pulse in the same rotation direction.
  • the computer that processes the signal output from the above-mentioned A / B phase signal sensor and the absolute encoder having the Z phase signal sensor acquires the Z phase signal, it interrupts other processing being executed and performs the A / B phase. From the pulse and phase of the signal, the absolute rotation angle at the moment when the Z-phase signal is acquired is calculated. At this time, the computer generates an interrupt process for calculating the absolute rotation angle each time the Z-phase signal is acquired. Each time an interrupt process occurs, the computer temporarily suspends the process that was being executed. For this reason, when the computer is executing a process that requires high real-time property, the real-time property of the process that has been executed up to that point may not be guaranteed by the interrupt process.
  • the interval between Z-phase signal acquisition timings is arbitrary. It has been decided. Therefore, the computer is required to have a processing capability capable of handling interrupt processing for calculating the absolute rotation angle even when the Z-phase signal is detected at the shortest interval among the Z-phase signal detection patterns of the absolute encoder.
  • an absolute encoder in which the Z-phase signal detection pattern is arbitrarily set requires a high-performance computer or an encoder-dedicated IC that can handle interrupt processing even if Z-phase signals are acquired at various intervals. Therefore, in the absolute encoder in which the above-mentioned Z-phase signal detection pattern is arbitrarily set, the degree of freedom in designing the hardware resources of the computer may be reduced, or the cost may be increased by adding an IC dedicated to the encoder. ..
  • the present invention it is possible to reduce the processing load of a computer that processes a signal and acquire a rotation angle without adding an IC dedicated to an encoder, and to improve the degree of freedom in designing hardware resources of the computer. It is intended to provide an encoder.
  • the present inventor examined the configuration of an absolute encoder in order to reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer. As a result of diligent studies, the present inventor has come up with the following configuration.
  • the absolute encoder includes an A / B phase signal generation unit that generates a plurality of A / B phase signals at equal intervals within a mechanical angle of 360 degrees, and the A / B having a mechanical angle of 360 degrees or less.
  • a member to be detected includes a Z-phase signal generation unit that generates a plurality of Z-phase signals that are smaller than the number of phase signals, and an output unit that can output the A / B-phase signal and the Z-phase signal to a computer. It is an absolute encoder used for acquiring a rotation angle within 360 degrees of the mechanical angle of.
  • the intervals from the rising edge to the falling edge of adjacent signal waveforms are all different in the plurality of Z-phase signals, and the median interval from the rising edge to the falling edge of the adjacent signal waveforms is the highest.
  • the signal waveform in which the difference from the small interval and the difference between the median value and the maximum interval are smaller than half of the median value and the interval from the rising edge to the rising edge of the adjacent signal waveforms in the plurality of Z-phase signals.
  • Signal waveforms that are all different, and the difference between the median and smallest intervals between the rising and rising intervals of adjacent signal waveforms, and the difference between the median and the largest intervals are less than half of the median.
  • the intervals from the falling edge to the falling edge of adjacent signal waveforms are all different, and the difference between the median interval between the falling edge and the falling edge of adjacent signal waveforms and the smallest interval.
  • the intervals from the falling edge to the rising edge of the adjacent signal waveforms are all different and adjacent to each other. At least one of the difference between the median interval between the falling edge and the rising edge of the matching signal waveform and the smallest interval, and the signal waveform in which the difference between the median value and the largest interval is less than half of the median value.
  • the absolute encoder has the A / B phase signal generator that generates a plurality of A / B phase signals at equal intervals within a mechanical angle of 360 degrees, and a smaller number than the A / B phase signals. It includes the Z-phase signal generation unit that generates a plurality of Z-phase signals. In the plurality of Z-phase signals, the Z-phase signal generation unit has an interval from the rise to the fall of adjacent signal waveforms, an interval from the rise to the rise of adjacent signal waveforms, and a fall to fall of adjacent signal waveforms. At least one of the intervals and the intervals between the falling and rising edges of adjacent signal waveforms generate signals that are all different within a mechanical angle of 360 degrees.
  • the absolute encoder outputs all arbitrary intervals among the signal waveforms in the plurality of Z-phase signals at different intervals.
  • the computer connected to the output unit starts the process of acquiring the position of the rotation angle based on the Z-phase signal.
  • the computer obtains the pulse and phase of the A / B phase signal acquired from the rising or falling edge of the signal waveform in the acquired Z-phase signal to the rising or falling edge of the signal waveform in the acquired Z-phase signal. Count.
  • the computer can acquire the position of the rotation angle within the mechanical angle of 360 degrees of the rotation axis. That is, the computer uses a plurality of Z-phase signals having different arbitrary intervals between the A / B phase signal and the signal waveform, so that the machine angle is 360 degrees or less without adding an IC dedicated to the encoder.
  • the process of acquiring the position of the rotation angle of the detection member can be simplified.
  • the computer has both the rise and fall of one Z-phase signal.
  • interrupt processing it is possible to increase the chance of detecting the absolute position during one rotation of the encoder.
  • the computer can suppress the calculation load by generating an interrupt process at one of the rising and falling edges of the Z-phase signal.
  • the absolute encoder has a difference between the median and the smallest spacing within a mechanical angle of 360 degrees and a difference between the median and the largest spacing at an arbitrary interval in the signal waveform of the adjacent Z-phase signals. Are both configured to be less than half of the median. Therefore, the absolute encoder generates the Z-phase signal at a constant rotation speed so as to be within a predetermined variation range with reference to the median value. That is, the absolute encoder generates the Z-phase signal at time intervals of a predetermined time or longer. Therefore, the computer connected to the absolute encoder has an interrupt processing time interval for calculating the absolute rotation angle generated each time the Z-phase signal is acquired, which is equal to or longer than a predetermined time, and the rotation angle is within 360 degrees of the mechanical angle. It is possible to equalize each process of acquiring the position of.
  • the absolute encoder can reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the computer can suppress the maximum processing performance of the computer by reducing the load of signal processing from the absolute encoder.
  • the computer can execute other processing by reducing the load of signal processing from the absolute encoder.
  • the absolute encoder of the present invention preferably includes the following configurations.
  • the Z-phase signal generation unit sets the interval as the smallest interval from the rise to the fall of the adjacent signal waveforms.
  • the Z-phase signal is generated so that the difference from the largest interval is less than half of the median.
  • the Z-phase signal generation unit sets the interval as the smallest interval from the rising edge to the rising edge of the adjacent signal waveforms.
  • the Z-phase signal is generated so that the difference from the largest interval is less than half of the median.
  • the Z-phase signal generating unit sets the intervals from the falling edge to the falling edge of the adjacent signal waveforms.
  • the Z-phase signal is generated so that the difference between the smallest interval and the largest interval is less than half of the median.
  • the Z-phase signal generating unit has the smallest interval from the falling edge to the rising edge of the adjacent signal waveforms.
  • the Z-phase signal is generated so that the difference between the interval and the largest interval is less than half of the median.
  • the absolute encoder generates a Z-phase signal at a constant rotation speed so that the Z-phase signal falls within a predetermined variation range with respect to the median value. That is, the absolute encoder generates the Z-phase signal at intervals of a predetermined time or longer.
  • the absolute encoder can reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the absolute encoder of the present invention preferably includes the following configurations.
  • the absolute encoder further includes a rotating plate that rotates integrally with the rotating shaft.
  • the A-phase signal generation unit includes an A-phase signal generation detection unit and a plurality of A-phase signal generation detection units provided on the rotating plate at equal intervals within a mechanical angle of 360 degrees.
  • the A-phase signal generation detection unit generates the A-phase signal by detecting the A-phase signal generation detected unit.
  • the Z-phase signal generation unit includes a Z-phase signal generation detection unit and a plurality of Z-phase signal generation units provided on the rotating plate in a number smaller than the number of the A-phase signal detection patterns within a mechanical angle of 360 degrees. It has a detection unit, and the Z-phase signal generation detection unit detects the A-phase signal generation detection unit to generate a Z-phase signal.
  • the computer counts the A-phase signal acquired from the rising edge of the Z-phase signal acquired to the rising edge of the Z-phase signal acquired next, so that the computer rotates on the rotation axis of the motor within a mechanical angle of 360 degrees.
  • the position of the angle can be obtained.
  • the absolute encoder can reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the absolute encoder of the present invention preferably includes the following configurations.
  • the absolute encoder is an interval from the rise to the fall of the signal waveform, an interval from the rise to the rise of the adjacent signal waveform, an interval from the fall to the fall of the adjacent signal waveform, or an adjacent interval in the plurality of Z-phase signals. It is provided with an error correction unit that corrects an error of the A phase signal from the number of A phase signals generated at the interval from the falling edge to the rising edge of the matching signal waveform.
  • the absolute encoder causes an error that a part of the A / B phase signal cannot be detected due to dirt or damage of the A / B phase signal generation detection unit or the A / B phase signal generation detection unit.
  • the A / B phase signal that cannot be detected can be easily estimated by using the difference such as the interval from the rising edge to the falling edge of the signal waveform in the Z phase signal.
  • the absolute encoder can reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the actuator according to the embodiment of the present invention includes the absolute encoder described in any one of the above.
  • the actuator has a plurality of engaging portions, includes a rotating body that rotates integrally with the absolute encoder, and includes a braking mechanism that limits a range of rotation angles of the absolute encoder between adjacent engaging portions.
  • the absolute encoder is configured to generate a plurality of the Z-phase signals within a rotation angle range limited by the braking mechanism.
  • the actuator includes the brake mechanism that limits the range of rotation angles of the absolute encoder by the rotating body having the engaging portion.
  • the absolute encoder is configured such that the Z-phase signal generation unit generates a plurality of the Z-phase signals between the adjacent engaging portions of the rotating body. That is, the absolute encoder is configured to generate the Z-phase signal at different intervals between the engaging portions of the rotating body.
  • the actuator acquires the number of the A-phase signals from the acquisition of the Z-phase signal to the acquisition of the next Z-phase signal, thereby causing the rotation divided by the engaging portion. Since the rotation angle of the body can be acquired, the processing load of the computer can be reduced and the degree of freedom in designing the hardware resources of the computer can be improved.
  • the A-phase signal generation unit of the absolute encoder includes an A-phase signal generation detection unit and an A-phase signal generation detection unit.
  • the Z-phase signal generation unit of the absolute encoder includes a Z-phase signal generation detection unit and a Z-phase signal generation detection unit.
  • the rotating body of the brake mechanism is provided with the A-phase signal generation detected portion and the Z-phase signal generation detected portion of the absolute encoder.
  • the actuator in the actuator, the A-phase signal generation detected portion and the Z-phase signal generation detected portion of the absolute encoder rotate integrally with the rotating body of the brake mechanism.
  • the actuator can generate the A / B phase signal and the Z phase signal for calculating the rotation angle of the rotating body for each section separated by the engaging portion. It is possible to reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the Z-phase signal generation detection unit detects the Z-phase signal generation detection unit.
  • the rotating body is rotated a plurality of times clockwise and counterclockwise within a limited rotation angle range so as to detect and generate a plurality of Z-phase signals.
  • the actuator reciprocates the rotating body whose rotation angle range is limited a plurality of times clockwise and counterclockwise immediately after the actuator starts not outputting sufficient torque. Generates a plurality of Z-phase signals and A-phase signals.
  • the computer can reliably acquire the number of pulses of the A-phase signal in the interval from the falling edge to the rising edge of the signal waveform in each of the Z-phase signals from the absolute encoder.
  • the actuator improves the accuracy of detecting the position of the rotating body, so that the processing load of the computer can be reduced and the degree of freedom in designing the hardware resources of the computer can be improved.
  • the actuator of the present invention includes an abnormality detection unit that detects an abnormality of the Z-phase signal due to deformation of the rotating body provided with the Z-phase signal generation detected unit.
  • the computer can quickly detect the abnormality of the absolute encoder, so that the processing load of the computer can be reduced and the degree of freedom in designing the hardware resources of the computer can be improved.
  • the actuator of the present invention includes a motor.
  • the abnormality detection unit detects the abnormality of the Z-phase signal based on the electric angle of the motor. According to this, since the computer can easily detect the abnormality of the absolute encoder, the processing load of the computer can be reduced and the degree of freedom in designing the hardware resource of the computer can be improved.
  • the articulated robot arm means a robot arm having a plurality of joint portions connecting a plurality of links.
  • the articulated robot arm includes a vertical articulated robot arm.
  • the vertical articulated robot arm is a robot arm of a serial link mechanism in which links are connected in series from the root to the tip by a rotary joint or a linear motion joint having one degree of freedom.
  • the vertical articulated robot arm has a plurality of joints.
  • the absolute encoder is a device that detects the position of a mechanical angle on a motor or a rotating shaft as an absolute position from a determined origin and converts it into a signal that can be processed by a computer.
  • the absolute encoder is equipped with a backup power supply that consists of a battery, etc. in addition to the main power supply. Even if the main power supply is turned off, the operation of the detected object is monitored by the power supplied from the backup power supply, and the detected position. Hold information.
  • the A / B phase signal is a pulse signal generated in proportion to the amount of rotation of the motor or the rotating shaft.
  • the A / B phase signal includes a signal generated by the A phase signal generation detection unit and a signal generated by the B phase signal generation detection unit.
  • the Z-phase signal is a pulse signal generated to set the origin.
  • the A / B phase signal generation detected unit is a mark (for example, a slit, a reflective surface, a magnet, etc.) that can be detected by the A / B phase signal generation unit.
  • the A / B phase signal generation unit generates an A / B phase signal which is a pulse signal each time the A / B phase signal generation detected unit is detected.
  • the A / B phase signal generation detection unit is the case where the A phase signal generation detection unit and the B phase signal generation detection unit are provided at different positions on the 1-track mark, and of the 2 track marks.
  • the Z-phase signal generation unit is a mark that can be detected by the Z-phase signal generation unit.
  • the Z-phase signal generation unit generates a Z-phase signal, which is a pulse signal, every time the Z-phase signal generation detected unit 5b is detected.
  • the mechanical angle is the rotation angle of the rotating plate.
  • the electric angle is an angle obtained by multiplying the rotation angle obtained by subtracting the stator offset angle and the rotor offset angle from the mechanical angle by the number of pole pairs.
  • the stator offset angle is, for example, the deviation angle between the Z-phase signal detection unit and the center of the U-phase coil of the stator when the rotating body is viewed along the axis.
  • the rotor offset angle is, for example, the deviation angle between the mark that generates the Z-phase signal generation detected portion, which is the origin of the absolute encoder, and the center of the N-pole magnet when the rotating body is viewed along the axis.
  • the interval between A / B phase signals and the interval between Z phase signals means the time between adjacent A / B phase signals and the time between adjacent Z phase signals.
  • the interval from the rise to the fall of the signal waveform in the adjacent Z-phase signal is from the detection of the rise of the signal waveform in the Z-phase signal to the detection of the fall of the signal waveform in the next Z-phase signal.
  • the interval from the rise to the rise of the signal waveform in the adjacent Z-phase signals is the time from the detection of the rise of the signal waveform in the Z-phase signal to the detection of the rise of the signal waveform in the next Z-phase signal.
  • the interval from the fall to the fall of the signal waveform in the adjacent Z-phase signal is the fall of the signal waveform in the next Z-phase signal after detecting the fall of the signal waveform in the Z-phase signal.
  • the time until. The interval from the fall to the rise of the signal waveform in the adjacent Z-phase signals is from the detection of the fall of the signal waveform in the Z-phase signal to the detection of the rise of the signal waveform in the next Z-phase signal.
  • the abnormality is an abnormal state, for example, the A / B phase signal generation unit or the Z phase signal generation unit has an A / B phase signal at a time interval corresponding to the rotation speed of the rotating body. Or, it means a state in which a Z-phase signal is not generated.
  • an absolute encoder capable of reducing the processing load of a computer that processes a signal to acquire a rotation angle and improving the degree of freedom in designing hardware resources of the computer. be able to.
  • the overall block diagram of the absolute encoder which concerns on Embodiment 1 of this invention is shown.
  • the schematic diagram of the articulated robot arm device which concerns on Embodiment 2 of this invention is shown.
  • the schematic diagram of the S-axis motor unit which concerns on the articulated robot arm which concerns on Embodiment 2 of this invention is shown.
  • the control block diagram of the articulated robot arm device which concerns on Embodiment 2 of this invention is shown.
  • the side view of the brake mechanism which concerns on Embodiment 2 of this invention is shown.
  • the plan view of the brake mechanism which concerns on Embodiment 2 of this invention is shown.
  • the plan view of the absolute encoder which concerns on Embodiment 2 of this invention is shown.
  • the schematic diagram which shows the signal waveform of the A / B phase signal and the signal waveform of the Z phase signal which concerns on Embodiment 2 and Embodiment 3 of this invention is shown.
  • the plan view which shows the positional relationship between the absolute encoder and the rotating body which concerns on Embodiment 2 and Embodiment 3 of this invention is shown.
  • the graph which shows the relationship of the number of pulses of A phase signal in the interval of Z phase signal which concerns on Embodiment 2 of this invention is shown.
  • the plan view which shows the operating state at the time of detecting the rotation angle in the state which the actuator which concerns on Embodiment 2 of this invention is locked is shown.
  • a schematic diagram showing the relationship between the A-phase signal and the Z-phase signal detected in the locked state of the actuator according to the second embodiment of the present invention is shown.
  • the flowchart which shows the control mode of the error correction by the absolute encoder which concerns on Embodiment 4 of this invention is shown.
  • the flowchart which shows the control mode of abnormality detection of the absolute encoder by the actuator which concerns on Embodiment 5 of this invention is shown.
  • the schematic diagram which shows the signal waveform of the A / B phase signal and the signal waveform of the Z phase signal which concerns on Embodiment 6 of this invention is shown.
  • FIG. 1 is a schematic view showing the overall configuration of the absolute encoder 1 according to the embodiment of the present invention.
  • the absolute encoder 1 detects the absolute rotation angle (the number of pulses of the A-phase signal in this embodiment) when the determined origin is used as a reference on the rotation axis to be measured.
  • a rotary encoder that outputs the detection result.
  • the absolute encoder 1 is, for example, a reflection type optical absolute encoder.
  • the absolute encoder 1 generates an A / B phase signal for detecting a rotation angle within a mechanical angle of 360 degrees and a Z phase signal for detecting the origin of the mechanical angle.
  • the absolute encoder 1 includes an A / B phase signal generation unit 2 for generating an A / B phase signal, a Z phase signal generation unit 3 for generating a Z phase signal, and an A / B phase signal and a Z phase signal. Is provided with an output unit 1a that outputs the above to a computer that controls the rotation of the rotation shaft to be measured.
  • the A / B phase signal generation unit 2 includes an A / B phase signal detection unit and an A / B phase signal detection unit.
  • the A / B phase signal generation unit 2 generates an A / B phase signal at the timing when the A / B phase signal detection unit detects the A / B phase signal detected unit.
  • the A / B phase signal detection unit includes, for example, a light emitting element composed of an LED emitting element or the like and a light receiving element composed of a photodiode or the like.
  • the A / B phase signal detection unit is supported by a portion that does not rotate in conjunction with the rotation shaft to be measured.
  • the A / B phase signal detected unit is provided, for example, on a rotating plate fixed to a rotating shaft to be measured.
  • the A / B phase signal detected unit is, for example, a chord wheel provided on the rotating plate.
  • the Z-phase signal generation unit 3 includes a Z-phase signal detection unit and a Z-phase signal detected unit.
  • the Z-phase signal generation unit 3 generates a Z-phase signal at the timing when the Z-phase signal detected unit is detected by the Z-phase signal detection unit.
  • the Z-phase signal detection unit includes, for example, a light emitting element composed of an LED emitting element or the like and a light receiving element composed of a photodiode or the like.
  • the Z-phase signal detection unit is supported by a portion that does not rotate in conjunction with the rotation shaft to be measured.
  • the Z-phase signal detected unit is provided, for example, on a rotating plate fixed to a rotating shaft to be measured.
  • the Z-phase signal detected unit is, for example, a chord wheel provided on the rotating plate.
  • the absolute encoder 1 configured in this way has a mechanical angle of 360 degrees or less based on a determined origin on the rotation axis to be measured from the A / B phase signal generated by the A / B phase signal generation unit 2. The rotation angle of can be obtained. Further, the absolute encoder 1 can acquire the origin within the mechanical angle of 360 degrees of the rotation axis to be measured from the Z-phase signal generated by the Z-phase signal generation unit 3.
  • the Z-phase signal generated by the Z-phase signal generation unit 3 has the same interval Ga from the rising edge to the falling edge of the signal waveform. Further, the Z-phase signals have different intervals Gb from the falling edge to the falling edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gc from the rising edge to the rising edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gd from the falling edge to the rising edge of adjacent signal waveforms.
  • the absolute encoder 1 generates a Z-phase signal having a pulse number smaller than the number of pulses of the A / B-phase signal generated by rotation at a mechanical angle of 360 degrees. Therefore, the intervals Ga, Gb, Gc, and Gd of the signal waveforms in the adjacent Z-phase signals can be expressed by the number of pulses of the A / B-phase signals.
  • the absolute encoder 1 generates an A / B phase signal having the same number of pulses in all of the signal waveform interval Ga in the Z phase signal. Further, the absolute encoder 1 generates A / B phase signals having different pulse numbers at all of the signal waveform interval Gb in the adjacent Z phase signals. Similarly, the absolute encoder 1 produces A / B phase signals with different pulse numbers at all signal waveform spacings Gc in adjacent Z phase signals. Similarly, the absolute encoder 1 produces A / B phase signals with different pulse numbers at all signal waveform spacings Gd in all adjacent Z phase signals.
  • the absolute encoder 1 in the first embodiment generates a Z-phase signal having signal waveforms having the same shape. Therefore, the absolute encoder 1 generates an A / B phase signal having the same number of pulses at the interval Gb and the interval Gc in the signal waveform of the adjacent Z phase signals.
  • the Z-phase signal is generated within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gb of all adjacent signal waveforms.
  • the Z-phase signal has the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gb, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gb. It is generated at intervals smaller than half of the median.
  • the Z-phase signal is generated within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gc of all adjacent signal waveforms.
  • the Z-phase signal is the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gc, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gc. Generated at intervals less than half the median.
  • the Z-phase signal is generated within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gd of all adjacent signal waveforms.
  • the Z-phase signal is the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gd, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gd. Generated at intervals less than half the median.
  • the interval Ga of the signal waveforms in the Z-phase signal is all different, and the difference between the median value of the interval Ga of the adjacent signal waveforms and the smallest interval Ga, and the interval between the median value and the largest interval Ga.
  • the difference between the signal waveform whose difference from Ga is smaller than half of the median value and the interval Gb of the adjacent signal waveforms are all different, and the difference between the median value of the interval Gb of the adjacent signal waveforms and the smallest interval Gb, and the above.
  • the difference between the signal waveform and the difference between the median value and the largest interval Gc is less than half of the median value, and the interval Gd of the adjacent signal waveforms are all different, and the interval Gd of the adjacent signal waveforms is the center.
  • Z-phase signals include at least one of a signal waveform in which the difference between the value and the smallest interval Gd and the difference between the median value and the largest interval Gd is less than half of the median value.
  • the Z-phase signal generation unit 3 has a plurality of Z-phase signals in which at least one of the signal waveform interval Ga, the adjacent signal waveform interval Gb, the interval Gc, and the interval Gd has a mechanical angle of 360 degrees. Generate all different Z-phase signals within.
  • the absolute encoder 1 outputs any intervals among the intervals of the signal waveforms in the plurality of Z-phase signals to the computer that controls the rotation axis to be measured, which is connected to the output unit 1a at different intervals.
  • the computer starts the process of acquiring the position of the rotation angle based on the Z-phase signal.
  • the computer counts the pulse and phase of the acquired A / B phase signal at the interval Gb, interval Gc, and interval Gd of the signal waveform in the acquired Z-phase signal.
  • the computer stores the number of pulses of the A / B phase signal generated by the interval Gb, the interval Gc, and the interval Gd of the signal waveform in the Z phase signal.
  • the computer can acquire the position of the rotation angle within the mechanical angle of 360 degrees of the rotation axis. That is, the computer uses a Z-phase signal in which at least one of the interval Gb, the interval Gc, and the interval Gd of the A / B phase signal and the signal waveform is different, so that the machine angle 360 without adding an IC dedicated to the encoder.
  • the process of acquiring the position of the rotation angle of the member to be detected within a degree can be simplified.
  • the absolute encoder 1 has the difference between the median and the smallest interval and the median of the interval Gb, the interval Gc, and the interval Gd of the signal waveforms in the adjacent Z-phase signals within 360 degrees of the mechanical angle. Both are configured so that the difference from the largest interval is less than half of the median. Therefore, the absolute encoder 1 generates a Z-phase signal at a constant rotation speed so as to be within a predetermined variation range with reference to the median value. That is, the absolute encoder 1 generates a Z-phase signal at a time interval of a predetermined time or longer. Therefore, the computer acquires the position of the rotation angle within the mechanical angle of 360 degrees when the time interval of the interrupt processing for calculating the absolute rotation angle generated each time the Z-phase signal is acquired becomes a predetermined time or more. Leveling can be achieved.
  • the absolute encoder 1 can reduce the processing load of the computer and improve the degree of freedom in designing the hardware resources of the computer.
  • the computer can suppress the maximum processing performance of the computer by reducing the load of signal processing from the absolute encoder.
  • the computer can execute other processing by reducing the load of signal processing from the absolute encoder.
  • the articulated robot arm device 7 includes the above-mentioned absolute encoder 1.
  • FIG. 2 is a schematic view of an articulated robot arm device 7 according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of an S-axis rotary joint 10 according to an articulated robot arm 8 according to an embodiment of the present invention.
  • FIG. 4 is a control block diagram of the articulated robot arm device 7 according to the second embodiment of the present invention.
  • the articulated robot arm device 7 includes an articulated robot arm 8 and an articulated robot arm control device 28.
  • the articulated robot arm 8 is a robot arm of a serial link mechanism in which links are connected in series from the base end to the tip end by a rotary joint having one degree of freedom.
  • the articulated robot arm 8 is, for example, a 6-axis vertical articulated robot arm.
  • the articulated robot arm 8 is provided, for example, on a base of a manufacturing device or a remote-controlled vehicle that can be remotely controlled.
  • the S-axis rotary joint 10 In the articulated robot arm 8, the S-axis rotary joint 10, the L-axis rotary joint 12, the U-axis rotary joint 14, the R-axis rotary joint 16, the B-axis rotary joint 18, and the T-axis rotary joint 20 are arranged in this order from the proximal end. They are connected in series by a housing and a link, respectively. Each shaft is rotatably configured by a motor unit M.
  • the S-axis rotary joint 10, the L-axis rotary joint 12, the U-axis rotary joint 14, the R-axis rotary joint 16, the B-axis rotary joint 18, and the T-axis rotary joint 20 each have a motor unit M.
  • the motor unit M includes a speed reducer 21 and an actuator 22 as described later.
  • the articulated robot arm 8 is controlled by the articulated robot arm control device 28.
  • the articulated robot arm 8 acquires a control signal from the articulated robot arm control device 28 by a drive device 27 included in the actuator 22 of each axis. Further, the articulated robot arm 8 transmits information regarding the output of the motor 23 of the motor unit M of each axis and information from the absolute encoder 1 to the articulated robot arm control device 28.
  • the S-axis rotary joint 10 is a rotary joint that rotates the entire articulated robot arm 8.
  • the S-axis rotary joint 10 is provided in the housing 11 for the SL axis of the articulated robot arm 8.
  • a base member 9 is fixed to the output shaft of the S-axis rotary joint 10.
  • the base member 9 is fixed to the installation surface of the articulated robot arm 8.
  • the S-axis rotary joint 10 is arranged so that the axis of the S-axis rotary joint 10 extends in a direction perpendicular to the installation surface of the articulated robot arm 8.
  • the L-axis rotary joint 12 is a rotary joint that swings the lower bowl link 13.
  • the L-axis rotary joint 12 is provided in the housing 11 for the SL axis.
  • the L-axis rotary joint 12 is arranged so that the axis of the L-axis rotary joint 12 extends in a direction perpendicular to the axis of the S-axis rotary joint 10.
  • One end of the lower bowl link 13 is fixed to the output shaft of the L-axis rotary joint 12.
  • the U-axis rotary joint 14 is a rotary joint that swings the upper arm link 17.
  • the U-axis rotary joint 14 is provided in the housing 15 for the UR axis of the articulated robot arm 8.
  • the output shaft of the U-axis rotary joint 14 is fixed to the other end of the lower bowl link 13.
  • the U-axis rotary joint 14 is arranged so that the axis of the U-axis rotary joint 14 extends in a direction parallel to the axis of the L-axis rotary joint 12.
  • the R-axis rotary joint 16 is a rotary joint that rotates the upper arm link 17.
  • the R-axis rotary joint 16 is provided in the housing 15 for the UR axis.
  • the R-axis rotary joint 16 is arranged so that the axis of the R-axis rotary joint 16 extends in a direction perpendicular to the axis of the U-axis rotary joint 14.
  • One end of the upper arm link 17 is fixed to the output shaft of the R-axis rotary joint 16.
  • the B-axis rotary joint 18 is a rotary joint that swings the T-axis rotary joint 20.
  • the B-axis rotary joint 18 is provided in the housing 19 for the BT axis of the articulated robot arm 8.
  • the output shaft of the B-axis rotary joint 18 is fixed to the other end of the upper arm link 17.
  • the B-axis rotary joint 18 is arranged so that the axis of the B-axis rotary joint 18 extends in a direction perpendicular to the axis of the R-axis rotary joint 16.
  • the T-axis rotary joint 20 is a rotary joint that rotates an end effector (not shown).
  • the T-axis rotary joint 20 is provided in the housing 19 for the BT axis.
  • the T-axis rotary joint 20 is arranged so that the axis of the T-axis rotary joint 20 extends in a direction perpendicular to the axis of the B-axis rotary joint 18.
  • the output shaft of the T-axis rotary joint 20 has an end effector mounting portion.
  • the articulated robot arm 8 configured in this way has three degrees of freedom of translation in the X-axis, Y-axis, and Z-axis directions and three degrees of freedom of rotation around the X-axis, Y-axis, and Z-axis by the motor unit M of each axis. It has a total of 6 degrees of freedom. Therefore, the articulated robot arm 8 can move the output axis of the T-axis to an arbitrary position and can be in an arbitrary posture in the movable space of the articulated robot arm 8.
  • the S-axis, L-axis, U-axis, R-axis, B-axis, and T-axis motor units M each have output axes according to control signals from the articulated robot arm control device 28. It is a drive device that rotates.
  • the motor unit M of each shaft includes a speed reducer 21 and an actuator 22. That is, in the motor unit M, the drive device 27, which is a computer that controls the speed reducer 21, the motor 23, the brake mechanism 24, the absolute encoder 1, and the motor 23, is the housing 11 and the housing 15 of the articulated robot arm 8 (FIG. 2). (See), arranged inside the housing 19 (see FIG. 2). Since the motor unit M of each axis has the same configuration, the S-axis rotary joint 10 will be described below.
  • the speed reducer 21 of the S-axis rotary joint 10 rotates the output shaft in a state of being decelerated with respect to the rotation speed of the input shaft, and outputs the output torque of the output shaft in inverse proportion to the deceleration. It is a device that generates torque.
  • the speed reducer 21 is provided in the housing 11 of the articulated robot arm 8.
  • the housing of the speed reducer 21 is fixed inside the housing 11 of the articulated robot arm 8.
  • the output shaft of the speed reducer 21 is fixed to the base member 9.
  • the actuator 22 of the S-axis rotary joint 10 includes a motor 23, a brake mechanism 24, an absolute encoder 1 and a drive device 27.
  • the S-axis rotary joint 10 is provided in the housing 11 of the articulated robot arm 8. That is, the speed reducer 21, the motor 23, the brake mechanism 24, the absolute encoder 1 and the drive device 27 are arranged in the housing 11 of the articulated robot arm 8.
  • the motor 23 included in the actuator 22 is a power source.
  • the motor 23 is a so-called inner rotor type motor 23 in which a rotor is rotatably arranged in a tubular stator.
  • a rotating shaft 23a extending along the axis is fixed to the rotor in a state of penetrating in the axial direction.
  • the motor 23 is fixed to one end where power is input in the case of the speed reducer 21.
  • One end of the rotating shaft 23a is connected to the input shaft of the speed reducer 21 as an output shaft of the motor 23.
  • the brake mechanism 24 included in the actuator 22 regulates the rotation of the rotating shaft 23a in the motor 23.
  • the brake mechanism 24 is provided at the other end of the rotating shaft 23a.
  • the brake mechanism 24 limits the rotation of the rotating shaft 23a of the motor 23 by mechanical engagement.
  • the brake mechanism 24 may be provided at one end of the rotating shaft 23a.
  • the absolute encoder 1 included in the actuator 22 detects the rotation angle of the rotation shaft 23a in the motor 23 within the mechanical angle of 360 degrees.
  • the absolute encoder 1 transmits an A / B phase signal for detecting a rotation angle within 360 degrees of the mechanical angle and a Z phase signal for detecting the origin of the mechanical angle with the drive device 27 via the output terminal 1a. It is transmitted to the joint robot arm control device 28 (see FIG. 2).
  • the absolute encoder 1 is provided at the other end of the rotating shaft 23a of the motor 23. That is, the brake mechanism 24 and the absolute encoder 1 are provided on the rotating shaft 23a of the motor 23.
  • the drive device 27 included in the actuator 22 controls the drive current supplied to the motor 23.
  • the drive device 27 is, for example, a computer.
  • the drive device 27 is provided in the housing 11 of the articulated robot arm 8.
  • the drive device 27 supplies the motor 23 with a current corresponding to a control signal from the articulated robot arm control device 28. Further, the drive device 27 acquires the A / B phase signal and the Z phase signal of the absolute encoder 1 as feedback pulses.
  • the drive device 27 controls the motor 23 by feedback control that supplies a current corresponding to the difference between the feedback pulses to the command pulses to the motor 23 (see FIG. 4).
  • the S-axis rotary joint 10 configured in this way is integrally composed of the speed reducer 21, the motor 23 constituting the actuator 22, the brake mechanism 24, and the absolute encoder 1. Further, the motor unit M is configured as a mechatronically integrated structure in which the speed reducer 21, the actuator 22, and the drive device 27 are arranged in the housing 11 of the articulated robot arm 8. In the S-axis rotary joint 10, the output shaft of the speed reducer 21 is rotated by the rotation of the motor 23, so that the housing 11 of the articulated robot arm 8 and the actuator 22 are integrally rotated.
  • the articulated robot arm control device 28 is a device that controls the articulated robot arm 8.
  • the articulated robot arm control device 28 may actually have a configuration in which a CPU, ROM, RAM, HDD, etc. are connected by a bus, or may have a configuration including a one-chip LSI or the like.
  • the articulated robot arm control device 28 stores various programs and data for controlling the operation of the articulated robot arm 8.
  • the articulated robot arm control device 28 is a drive device 27 included in the S-axis rotary joint 10, the L-axis rotary joint 12, the U-axis rotary joint 14, the R-axis rotary joint 16, the B-axis rotary joint 18, and the T-axis rotary joint 20. Are connected to each.
  • the articulated robot arm control device 28 can transmit a control signal to the drive device 27 of each axis. Further, the articulated robot arm control device 28 can acquire the rotation position information of the motor 23 from the motor unit M of each axis.
  • FIG. 5 is a side view of the brake mechanism 24 according to the embodiment of the present invention.
  • FIG. 6 is a plan view of the brake mechanism 24 according to the embodiment of the present invention.
  • FIG. 7 is a plan view of the absolute encoder 1 according to the embodiment of the present invention.
  • the brake mechanism 24 is a rotating shaft of the motor 23 when no current is supplied to the motor 23 (see FIG. 3) or when the motor 23 does not output torque. Limit the rotation of 23a.
  • the brake mechanism 24 includes a rotating body 25, an engaging pin 26, and a solenoid 26c.
  • the rotating body 25 rotates integrally with the rotating shaft 23a of the motor 23.
  • the rotating body 25 is a substantially disk-shaped member.
  • the rotating body 25 is provided at one end or the other end of the rotating shaft 23a.
  • the rotating body 25 is fixed to the rotating shaft 23a in a state where the center thereof coincides with the axis of the rotating shaft 23a. That is, the rotating body 25 is rotated integrally with the rotating shaft 23a with the axis of the rotating shaft 23a as the center of rotation.
  • a plurality of engaging portions 25a projecting outward in the radial direction are formed at equal intervals on the outer edge portion of the rotating body 25.
  • the engaging portions 25a are formed at six locations at equal intervals with a central angle of 60 degrees.
  • the rotating body 25 is divided into the first section S1 to the sixth section S6 in the circumferential direction by the engaging portion 25a formed at every 60 degrees of the central angle.
  • the engaging pin 26 is a member that regulates the rotation of the rotating body 25.
  • the engaging pin 26 is supported by a portion that does not rotate in conjunction with the rotating body 25, such as the housing of the motor 23 or the housing of the speed reducer 21.
  • the engaging pin 26 is formed with a contact portion 26a that comes into contact with the engaging portion 25a of the rotating body 25.
  • the engaging pin 26 is configured to be movable in the axial direction.
  • the engagement pin 26 is arranged so that its axis is orthogonal to the rotation direction of the rotating body 25.
  • the positions of the engaging pin 26 are the restricted position (two-dot chain diagram) in which the contact portion 26a contacts the engaging portion 25a of the rotating body 25 due to the movement of the engaging pin 26 in the axial direction, and the contact portion 26a is the rotating body. It can be switched to an open position (solid diagram) that does not contact the engaging portion 25a of the 25. A force is applied to the engaging pin 26 in the axial direction so as to be held at the regulated position by an elastic body 26b such as a spring.
  • the solenoid 26c is an actuator that moves the engagement pin 26.
  • the solenoid 26c is supported by a portion that does not rotate in conjunction with the rotating body 25, such as the housing of the motor 23 or the housing of the speed reducer 21.
  • the solenoid 26c is arranged so as to move the engaging pin 26 held in the regulated position in the ON state to the open position.
  • the brake mechanism 24 configured in this way regulates the rotation angle range, which is the rotation angle range of the rotating body 25, by switching the position of the engagement pin 26 from the open position to the regulation position by the solenoid 26c. It is configured as follows. In the brake mechanism 24, when the engaging pin 26 is located at the restricted position, the contact portion 26a of the engaging pin 26 is located between the adjacent engaging portions 25a of the rotating body 25.
  • the brake mechanism 24 sets the rotation angle range of the rotating body 25 from the position where the engaging portion 25a comes into contact with the contacting portion 26a of the engaging pin 26 to the other engaging portion 25a adjacent to the engaging portion 25a. It is restricted within the rotation angle range up to the position where the engaging portion 25a contacts the contact portion 26a. That is, the brake mechanism 24 switches the position of the engaging pin 26 to the restricted position so that the rotation angle range of the rotating body 25 is within the range of any one of the first section S1 to the sixth section S6. regulate.
  • the brake mechanism 24 regulates the rotation of the rotating shaft 23a of the motor 23 to which the rotating body 25 is fixed by restricting the rotation of the rotating body 25.
  • the absolute encoder 1 has an A / B phase signal for detecting a rotation angle of the rotation shaft 23a of the motor 23 within 360 degrees and a Z phase signal for detecting the origin of the machine angle. And generate.
  • the absolute encoder 1 includes A / B phase signal detection units 4a and 4b for generating A / B phase signals and detected units 4c for A / B phase signal generation. Further, the absolute encoder 1 includes a Z-phase signal detecting unit 5a for generating a Z-phase signal and a detected unit 5b for generating a Z-phase signal. The absolute encoder 1 transmits the generated A / B phase signal and Z phase signal to the drive device 27 of the motor 23.
  • the A / B phase signal detection units 4a and 4b include, for example, an A phase projector and a B phase transmitter / receiver.
  • the A / B phase signal generation detected unit 4c is, for example, an A / that also serves as an A phase code wheel that is an A phase signal generation detected unit and a B phase code wheel that is a B phase signal generation detected unit. Includes B-phase cord wheel.
  • the Z-phase signal detection unit 5a includes a Z-phase light emitting / receiving device.
  • the Z-phase signal generation detected unit 5b includes a Z-phase chord wheel.
  • the A / B phase signal detection units 4a and 4b will be described as the A phase light receiver 4a and the B phase light receiver 4b.
  • the A / B phase signal generation detected unit 4c is described as an A / B phase chord wheel 4c.
  • the Z-phase signal detection unit 5a is described as a Z-phase light emitting / receiving device 5a.
  • the Z-phase signal generation detected unit 5b is described as a Z-phase code wheel 5b.
  • the A-phase light-receiving element 4a, the B-phase light-receiving element 4b, and the Z-phase light-receiving element 5a each include a light-emitting element made of an LED emitting element or the like and a light-receiving element made of a photodiode or the like.
  • the A-phase light receiving receiver 4a, the B phase light receiving receiver 4b, and the Z phase light receiving receiver 5a are supported by a portion that does not rotate in conjunction with the rotating shaft 23a of the motor 23.
  • the A / B phase chord wheel 4c and the Z phase chord wheel 5b are provided on the rotating plate 6.
  • the rotating plate 6 is provided on the surface of the rotating body 25 of the brake mechanism 24. Further, the rotating plate 6 is arranged on the rotating body 25 so that the centers of the A / B phase chord wheel 4c and the Z phase chord wheel 5b coincide with the rotating center of the rotating body 25. That is, the A / B phase chord wheel 4c and the Z phase chord wheel 5b rotate integrally with the rotation shaft 23a with the axis of the rotation shaft 23a of the motor 23 as the center of rotation.
  • the A-phase light receiving receiver 4a is provided at a position where light can be projected onto the A / B phase cord wheel 4c and reflected light from the A / B phase cord wheel 4c can be received.
  • the B-phase light receiving receiver 4b is at a position different from the position of the A phase light receiving receiver 4a, is capable of projecting light on the A / B phase cord wheel 4c, and is reflected from the A / B phase chord wheel 4c. It is provided at a position where it can receive light.
  • the A-phase projector 4a can generate an A-phase signal by receiving the light reflected by the reflecting surface of the A / B-phase chord wheel 4c.
  • the B-phase projector 4b can generate a B-phase signal by receiving the light reflected by the reflecting surface of the A / B-phase chord wheel 4c.
  • the A-phase light receiving receiver 4a and the B-phase light receiving receiver 4b can transmit an A-phase signal or a B-phase signal from the output terminal 1a, which is an output unit, to the drive device 27 via wiring.
  • the Z-phase projector 5a is provided at a position where it can project light on the Z-phase cord wheel 5b and can receive the reflected light from the Z-phase cord wheel 5b. As a result, the Z-phase projector 5a can generate a Z-phase signal from the Z-phase chord wheel 5b by receiving the light reflected by the reflecting surface of the Z-phase chord wheel 5b.
  • the Z-phase light receiving receiver 5a can transmit a Z-phase signal from the output terminal 1a, which is an output unit, to the drive device 27 via wiring.
  • the A / B phase chord wheel 4c and the Z phase chord wheel 5b each include a plurality of reflecting surfaces that reflect light from a light projecting element and a plurality of non-reflecting surfaces that absorb light from a light projecting element. ..
  • the A / B phase cord wheel 4c a series of cords in which a plurality of the reflective surfaces and a plurality of the non-reflective surfaces are alternately arranged at equal intervals are arranged in an annular shape.
  • the A / B phase cord wheel 4c has 360 reflective surfaces formed in a range of, for example, a mechanical angle of 360 degrees. That is, the absolute encoder 1 can generate 360 A-phase signals and 360 B-phase signals by rotating the rotating plate 6 at a mechanical angle of 360 degrees. Further, the generated A-phase signal and B-phase signal are all signal waveforms having the same shape and the same interval.
  • cord rows in which a plurality of the reflective surfaces and the plurality of non-reflective surfaces are alternately arranged at different intervals are arranged in an annular shape. Further, the Z-phase chord wheel 5b is arranged with a number of reflecting surfaces smaller than the number of reflecting surfaces of the A / B-phase chord wheel 4c. The A / B phase chord wheel 4c and the Z phase chord wheel 5b are arranged concentrically on the rotating plate 6.
  • the Z-phase cord wheel 5b has 12 reflective surfaces formed at different intervals within a range of a mechanical angle of 360 degrees. That is, the absolute encoder 1 can generate 12 Z-phase signals from the 1st Z-phase signal Z1 to the 12th Z-phase signal Z12 in order by the reflecting surface, for example, by rotating the rotating plate 6 by a mechanical angle of 360 degrees. .. (See FIG. 8).
  • the absolute encoder 1 configured in this way is integrated with the rotating plate 6 from the A / B phase signal detected by the A-phase light receiving receiver 4a, the B phase light receiving receiver 4b, and the A / B phase chord wheel 4c. It is possible to acquire a rotation angle within 360 degrees of the mechanical angle of the rotation shaft 23a that rotates around. Further, the absolute encoder 1 acquires a reference that becomes the origin within the mechanical angle of 360 degrees of the rotating shaft 23a of the motor 23 from the Z-phase signal detected by the Z-phase light receiving receiver 5a and the Z-phase chord wheel 5b. Can be done.
  • the mechanical angle is the angle from the reflecting surface 5a of the Z-phase cord wheel 5b to the Z-phase projector 5a.
  • the mechanical angle ⁇ z which is a rotation angle within the mechanical angle of 360 degrees, is from the rising edge of the signal waveform in the Z-phase signal generated by the reflecting surface 5a to the rising edge of the signal waveform in any A-phase signal (of the Z-phase projector 5a). The rotation angle to the position).
  • the absolute encoder 1 casts LED light or the like from the A-phase light receiving receiver 4a and the B phase light receiving receiver 4b onto the A / B phase chord wheel 4c that rotates integrally with the rotating shaft 23a and the rotating body 25 of the motor 23. In addition to shining, it receives the reflected light from the A / B phase cord wheel 4c. Similarly, the absolute encoder 1 projects LED light or the like from the Z-phase throwing receiver 5a onto the Z-phase chord wheel 5b, and also receives the reflected light from the Z-phase chord wheel 5b.
  • the absolute encoder 1 When the absolute encoder 1 receives the reflected light from the A / B phase chord wheel 4c and the Z phase chord wheel 5b, it generates an A phase signal, a B phase signal, and a Z phase signal only while receiving the light. The absolute encoder 1 transmits the generated A-phase signal, B-phase signal, and Z-phase signal from the output terminal 1a to the drive device 27 of the motor 23.
  • FIG. 8 is a schematic diagram showing a signal waveform of an A / B phase signal and a signal waveform of a Z phase signal according to the embodiment of the present invention.
  • FIG. 9 is a plan view showing the positional relationship between the absolute encoder 1 and the rotating body 25 according to the embodiment of the present invention.
  • the reflection surface of the Z-phase chord wheel 5b is provided with a corresponding Z-phase signal code for convenience.
  • the A / B phase signals all have the same shape and signal waveforms at the same intervals.
  • the signal waveform of the Z-phase signal is a signal waveform having the same shape as the A / B-phase signal.
  • the absolute encoder 1 is arranged so that the edge of the reflecting surface of the Z-phase chord wheel 5b and the edge of the reflecting surface of the A / B-phase chord wheel 4c coincide with each other. That is, it is assumed that the absolute encoder 1 generates a Z-phase signal and an A / B-phase signal at the same timing.
  • the A-phase signal and the B-phase signal generated based on the A / B-phase chord wheel 4c all have the same interval from the rising edge to the falling edge of the signal waveform. Is. Further, the A-phase signal and the B-phase signal all have the same interval from the rising edge to the rising edge of adjacent signal waveforms. Further, the A-phase signal and the B-phase signal all have the same interval from the falling edge to the falling edge of adjacent signal waveforms. Further, the A-phase signal and the B-phase signal all have the same interval from the falling edge to the rising edge of adjacent signal waveforms.
  • the phases of the signal waveforms of the A-phase signal and the B-phase signal are out of phase because the positions of the A-phase throwing receiver 4a and the B-phase throwing receiver 4b are different.
  • the phase difference between the A-phase signal and the B-phase signal differs depending on the rotation direction of the rotating body. That is, the B-phase signal is a signal for determining the rotation direction of the A / B-phase chord wheel 4c.
  • the Z-phase signal generated based on the Z-phase chord wheel 5b has the same interval from the rising edge to the falling edge of the signal waveform. Further, the Z-phase signals have different intervals Gb from the falling edge to the falling edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gc from the rising edge to the rising edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gd from the falling edge to the rising edge of adjacent signal waveforms.
  • the absolute encoder 1 configured in this way generates a Z-phase signal having a pulse number (12 pulses) smaller than the number of pulses (360 pulses) of the A / B phase signal generated by rotation at a mechanical angle of 360 degrees. Therefore, the intervals Gb, Gc, and Gd of the signal waveforms in the adjacent Z-phase signals can be expressed by the number of pulses of the A / B-phase signal.
  • the absolute encoder 1 generates an A / B phase signal having the same number of pulses at all intervals from the rise to the fall of the signal waveform in the Z phase signal. Further, the absolute encoder 1 generates A / B phase signals having different pulse numbers at all of the signal waveform interval Gb in the adjacent Z phase signals. Similarly, the absolute encoder 1 produces A / B phase signals with different pulse numbers at all signal waveform spacings Gc in adjacent Z phase signals. Similarly, the absolute encoder 1 produces A / B phase signals with different pulse numbers at all signal waveform spacings Gd in all adjacent Z phase signals.
  • the absolute encoder 1 in the present embodiment generates a Z-phase signal having signal waveforms having the same shape. Therefore, the absolute encoder 1 generates an A / B phase signal having the same number of pulses at the interval Gb and the interval Gc in the signal waveform of the adjacent Z phase signals.
  • the Z-phase signal is generated so as to be within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gb of all adjacent signal waveforms.
  • the Z-phase signal has the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gb, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gb. It is generated so as to be smaller than half of the median value.
  • the Z-phase signal is generated so as to fall within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gc of all adjacent signal waveforms.
  • the Z-phase signal is the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gc, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gc. Generated at intervals less than half the median.
  • the Z-phase signal is generated so as to fall within a predetermined interval based on the median number of pulses of the A / B-phase signal generated at the interval Gd of all adjacent signal waveforms.
  • the Z-phase signal is the difference between the median and the number of pulses of the A / B phase signal at the smallest interval Gd, and the difference between the median and the number of pulses of the A / B phase signal at the largest interval Gd. Generated at intervals less than half the median.
  • the absolute encoder 1 has a second Z-phase signal Z2 adjacent to each other in the clockwise direction when viewed from the Z-phase transmitter / receiver 5a from the falling edge of the signal waveform in the first Z-phase signal Z1.
  • the first interval Gd1 hereinafter, the interval Gd of the signal waveform between the adjacent nZ phase signal and the (n + 1) Z phase signal is simply referred to as "nth interval Gdn"
  • Gdn the interval until the rise of the signal waveform in.
  • the absolute encoder 1 generates 31 pulses of the A / B phase signal at the second interval Gd2, 29 pulses of the A / B phase signal at the third interval Gd3, and an A / B phase signal at the fourth interval Gd4. 32 pulses are generated, 28 pulses of A / B phase signal are generated at the 5th interval Gd5, 33 pulses of A / B phase signal are generated at the 6th interval Gd6, and 27 A / B phase signals are generated at the 7th interval Gd7.
  • Pulses are generated, 34 pulses of A / B phase signal are generated at the 8th interval Gd8, 26 pulses of A / B phase signal are generated at the 9th interval Gd9, and 35 pulses of A / B phase signal are generated at the 10th interval Gd10. Then, 25 pulses of the A / B phase signal are generated at the 11th interval Gd11, and 36 pulses of the A / B phase signal are generated at the 12th interval Gd12.
  • the median number of pulses of the A / B phase signal generated from the first interval Gd1 to the twelfth interval Gd12 is 29 pulses of the third interval Gd3.
  • the number of pulses of the A / B phase signal having the smallest interval between the first interval Gd1 and the twelfth interval Gd12 is 24 pulses of the first interval Gd1.
  • the number of pulses of the A / B phase signal having the largest interval in the first interval Gd1 to the twelfth interval Gd12 is 36 pulses in the twelfth interval Gd12.
  • the difference between the median number of pulses of the A / B phase signal at each interval of 29 pulses and the number of pulses of the A / B phase signal at the smallest interval of 24 pulses is 5 It is generated to be a pulse.
  • the difference between the median number of pulses of the A / B phase signal at each interval of 29 pulses and the number of pulses of the A / B phase signal at the largest interval is 36 pulses. It is generated to have 7 pulses.
  • the 1st Z-phase signal Z1 to the 12th Z-phase signal Z12 are generated so that the difference between the median and the smallest interval and the difference between the median and the largest interval are smaller than 14.5 pulses, which is half of the median. Has been done.
  • the absolute encoder 1 is configured so that the number of pulses of the A / B phase signals generated in the first interval Gd1 to the twelfth interval Gd12 of the signal waveforms in the adjacent Z phase signals are all different. Further, the absolute encoder 1 has a variation in the number of pulses smaller than the median and a variation in the number of pulses larger than the median in each pulse number of the A / B phase signal in the first interval Gd1 to the twelfth interval Gd12. However, each is configured to fall within a certain range based on the median value. That is, the absolute encoder 1 generates Z-phase signals so that all the intervals are different while the intervals between adjacent Z-phase signals are close to equal intervals.
  • the rotating plate 6 provided with the A / B phase chord wheel 4c and the Z phase chord wheel 5b is such that two Z phase signals are generated within the range of all sections of the rotating body 25. It is arranged on the rotating body 25. In the present embodiment, the rotating plate 6 is arranged on the rotating body 25 so that the first Z phase signal Z1 and the second Z phase signal Z2 are generated within the range of the first section S1 of the rotating body 25.
  • the absolute encoder 1 generates the first Z phase signal Z1 and the second Z phase signal Z2 within the range of the first section S1 of the rotating body 25, and the third Z phase signal Z3 within the range of the second section S2.
  • the 4th Z phase signal Z4 are generated, the 5th Z phase signal Z5 and the 6th Z phase signal Z6 are generated within the range of the 3rd section S3, and the 7th Z phase signal Z7 and the 7th Z phase signal Z7 are generated within the range of the 4th section S4.
  • 8Z phase signal Z8 is generated, 9Z phase signal Z9 and 10Z phase signal Z10 are generated within the range of the 5th section S5, and 11Z phase signal Z11 and 12Z phase are generated within the range of the 6th section S6.
  • the first section S1 of the rotating body 25 includes the first interval Gd1 of the Z-phase signal.
  • the second section S2 of the rotating body 25 includes a third interval Gd3 of the Z-phase signal.
  • the third section S3 of the rotating body 25 includes a fifth gap Gd5 of the Z-phase signal.
  • the fourth section S4 of the rotating body 25 includes a seventh gap Gd7 of the Z-phase signal.
  • the fifth section S5 of the rotating body 25 includes a ninth gap Gd9 of the Z-phase signal.
  • the sixth section S6 of the rotating body 25 includes the eleventh gap Gd11 of the Z-phase signal.
  • first section S1 and the second section S2 of the rotating body 25 include a second gap Gd2 of the Z-phase signal, respectively.
  • the second section S2 and the third section S3 of the rotating body 25 include a fourth gap Gd4 of the Z-phase signal, respectively.
  • the third section S3 and the fourth section S4 of the rotating body 25 each include a sixth gap Gd6 of the Z-phase signal.
  • the fourth section S4 and the fifth section S5 of the rotating body 25 each include an eighth gap Gd8 of a Z-phase signal.
  • the fifth section S5 and the sixth section S6 of the rotating body 25 each include a tenth gap Gd10 of a Z-phase signal.
  • the sixth section S6 and the first section S1 of the rotating body 25 each include a twelfth gap Gd12 of the Z-phase signal.
  • FIG. 10 is a graph showing the relationship between the number of pulses Pd of the A-phase signal at the interval Gd from the falling edge to the rising edge of the signal waveform in the Z-phase signal.
  • FIG. 11 is a plan view showing an operating state when the rotation angle is detected in a state where the actuator 22 according to the embodiment of the invention is locked.
  • FIG. 12 is a schematic view showing the relationship between the A-phase signal and the Z-phase signal detected in the locked state of the actuator 22 according to the embodiment of the present invention.
  • the drive device 27 (see FIG. 4) stores the positions of the A-phase light receiving receiver 4a, the B phase light receiving receiver 4b, and the Z phase light receiving receiver 5a with respect to the motor 23. Further, the drive device 27 stores the number of pulses of the A-phase signal in the first interval Gd1 to the twelfth interval Gd12 of the Z-phase signal (see FIG. 9). That is, the drive device 27 stores the number of pulses of the A phase signal in the 1st Z phase signal Z1 to the 12th Z phase signal Z12 with reference to the A phase signal when the 1st Z phase signal Z1 is generated.
  • the driving device 27 When the rotating plate 6 (rotating body 25) rotates counterclockwise, the driving device 27 counts up (adds) the number of pulses of the A-phase signal, the B-phase signal, and the Z-phase signal, and the rotating plate 6 (rotating body 25). When 25) rotates counterclockwise, the number of pulses of the A-phase signal, the B-phase signal, and the Z-phase signal shall be counted down (subtracted).
  • the A / B phase signal will be mainly described with the A phase signal.
  • the drive device 27 receives arbitrary Z-phase signals Za, Zb, Zc, Zd ... From the absolute encoder 1. get. Further, the drive device 27 counts up the acquired A-phase signal, B-phase signal, and Z-phase signal. The drive device 27 calculates the number of pulses Pd of the A-phase signal in the interval Gdc from the fall of the signal waveform in the arbitrary Z-phase signal Zc to the rise of the signal waveform in the next acquired Z-phase signal Zd.
  • the drive device 27 determines whether the calculated pulse number Pd of the A-phase signal is equal to any of the pulses of the A-phase signal in each of the first interval Gd1 to the twelfth interval Gd12 of the Z-phase signal stored in advance. ..
  • the drive device 27 identifies an arbitrary Z-phase signal Zc and the next acquired Z-phase signal Zd from an interval of a number of pulses equal to the calculated number of pulses.
  • the drive device 27 sets the mechanical angle ⁇ z from the specified Z-phase signal Zd (the position of the Z-phase transmitter / receiver 5a) to the first Z-phase signal Z1 which is the origin of the mechanical angle within 360 degrees of the mechanical angle. It is calculated as the rotation angle of the rotation shaft 23a at the time when Zd is acquired (see FIG. 7).
  • the drive device 27 detects the rotation angle of the rotation shaft 23a within 360 degrees in real time by counting the number of pulses of the A-phase signal from the time when the Z-phase signal Zd is acquired.
  • the drive device 27 has a mechanical angle of 360 degrees or less of the rotating shaft 23a based on the number of pulses of the A-phase signal in the interval Gd from the falling edge to the rising edge of the signal waveform in the adjacent Z-phase signals among the Z-phase signals to be sequentially acquired. Calculate the rotation angle on a regular basis.
  • the drive device 27 has a pulse of the A-phase signal in the interval Gdc from the fall of the signal waveform in the Z-phase signal Zc acquired at an arbitrary timing to the rise of the signal waveform in the next acquired Z-phase signal Zd.
  • the number Pd is 32 pulses, it is determined that it is equal to the number of pulses generated in the fourth interval Gd4.
  • the driving device 27 identifies that the Z-phase signal Zc and the Z-phase signal Zd are the 4th Z signal and the 5th Z signal constituting the 4th interval Gd4.
  • the drive device 27 calculates the mechanical angle ⁇ z from the 5th Z signal to the 1st Z phase signal Z1 as the rotation angle at the time when the 5th Z signal is acquired.
  • the drive device 27 detects the rotation angle of the rotation shaft 23a within 360 degrees in real time by counting the number of pulses of the A-phase signal from the time when the 5th Z signal is acquired.
  • the drive device 27 to which the above-mentioned absolute encoder 1 is connected stores the number of pulses of the A-phase signal generated at all intervals Gd from the falling edge to the rising edge of the signal waveform in the adjacent Z-phase signals. Therefore, the drive device 27 counts the number of pulses and the phase of the A-phase signal generated at the interval Gd from the falling edge to the rising edge of the signal waveforms of the adjacent Z-phase signals, so that the first Z-phase signals Z1 to the first It is possible to acquire a rotation angle within 360 degrees of the mechanical angle of the rotation shaft 23a based on the 12Z phase signal Z12. As a result, the drive device 27 can simplify and improve the accuracy of the process of acquiring the rotation angle of the rotation shaft 23a of the motor 23 without adding an IC dedicated to the encoder.
  • the absolute encoder 1 has a variation in the number of pulses smaller than the median of the median and a variation in the number of pulses larger than the median in the number of pulses of the A-phase signal generated at all intervals Gd from the falling edge to the rising edge. And are configured to fall within a certain range based on the median value. Therefore, the absolute encoder 1 generates Z-phase signals at substantially equal intervals at a constant rotation speed. Therefore, since the time interval of the interrupt process for calculating the rotation angle to be executed when the drive device 27 acquires the Z-phase signal is within a certain range, it is possible to equalize each process for calculating the rotation angle. can.
  • the absolute encoder 1 can reduce the processing load of the drive device 27 and improve the degree of freedom in designing the hardware resources of the drive device 27.
  • the drive device 27 can suppress the maximum processing performance by reducing the load of signal processing from the absolute encoder 1.
  • the drive device 27 can execute other processing by reducing the load of signal processing from the absolute encoder 1.
  • the drive device 27 When starting to supply current to the motor 23 (see FIG. 3), the drive device 27 turns the motor 23 counterclockwise with the engagement pin 26 switched to the regulated position in order to detect the rotation angle of the motor 23. Rotate alternately clockwise (see CCW arrow) and clockwise (see CW arrow). At this time, the drive device 27 resets the number of pulses of the A-phase signal to zero and then rotates it counterclockwise and clockwise.
  • the drive device 27 determines from the output current value, the rotation angle, and the like that the engaging portion 25a of the rotating body 25 has come into contact with the engaging pin 26, the drive device 27 rotates the motor 23 in the opposite direction. The drive device 27 rotates the motor 23 each time it detects contact between the engaging portion 25a of the rotating body 25 and the engaging pin 26 in the section of the rotating body 25.
  • the absolute encoder 1 generates an A-phase signal and a Z-phase signal as the rotation shaft 23a rotates in the counterclockwise and clockwise directions, and transmits the A-phase signal and the Z-phase signal to the drive device 27.
  • the drive device 27 counts the number of pulses of the acquired A-phase signal and Z-phase signal.
  • the drive device 27 counts up the number of pulses of the A-phase signal during counterclockwise rotation, and counts down the number of pulses of the A-phase signal during clockwise rotation.
  • two drive devices 27 are generated for each rotation in one direction in a plurality of counterclockwise (CCW) rotations and clockwise (CW) rotations.
  • the number of pulses of the A-phase signal at each rising timing of the signal waveform in the Z-phase signal (hereinafter, simply referred to as “rising pulse number”) is acquired.
  • the drive device 27 sets the number of pulses of the A-phase signal at an arbitrary rotation angle in an arbitrary section to 0, and reverses the motor 23 until the engagement pin 26 contacts the engagement portion 25a of one of the rotating bodies 25. Rotate clockwise (see arrow CCW in FIG. 11 and arrow A1 in FIG. 12). The drive device 27 counts up the pulse of the generated A-phase signal. When the driving device 27 detects the contact between the engaging portion 25a of one of the rotating bodies 25 and the engaging pin 26, the driving device 27 stops the motor 23. At the same time, the drive device 27 stops the count-up of the A-phase signal at the time of the pulse number P1.
  • the drive device 27 rotates the motor 23 clockwise until the engaging pin 26 comes into contact with the other engaging portion 25a of the rotating body 25 (see arrow CW in FIG. 11 and arrow A2 in FIG. 12).
  • the drive device 27 counts down from the number of pulses P1 according to the pulse of the generated A-phase signal.
  • the drive device 27 acquires the Z-phase signal, it stores the number of pulses P2 and the number of pulses P4 as the number of rising pulses.
  • the driving device 27 stops the motor 23.
  • the drive device 27 stops the countdown of the A-phase signal at the time of the pulse number P6.
  • the drive device 27 rotates the motor 23 counterclockwise until the engaging pin 26 comes into contact with the engaging portion 25a of one of the rotating bodies 25 (see arrow CCW in FIG. 11 and arrow A3 in FIG. 12). ..
  • the drive device 27 counts up from the number of pulses P6 according to the pulse of the generated A-phase signal.
  • the drive device 27 acquires the Z-phase signal, it stores the number of pulses P5 and the number of pulses P3 as the number of rising pulses.
  • the driving device 27 detects the contact between the engaging portion 25a of one of the rotating bodies 25 and the engaging pin 26, the driving device 27 stops the motor 23. At the same time, the drive device 27 stops the count-up of the A-phase signal at the time of the pulse number P1.
  • the drive device 27 calculates the average value of the pulse number P2, which is the maximum value of the obtained rising pulse number, and the pulse number P5, which is the minimum value. Next, the drive device 27 has the smallest number of rising pulses P4, which is the maximum number of rising pulses among the number of rising pulses smaller than the average value of the number of rising pulses, and the smallest number of rising pulses larger than the average value of the number of rising pulses. The difference from the number of pulses P3, which is the number of rising pulses, is calculated.
  • the drive device 27 determines which of the number of pulses of the A-phase signal in each of the first interval Gd1 to the twelfth interval Gd12 of the Z-phase signal stored in advance is equal to the calculated difference in the number of rising pulses.
  • the drive device 27 identifies the section of the rotating body 25 with which the engagement pin 26 is engaged from the gap of the Z-phase signals determined to be equal.
  • the drive device 27 rotates the motor 23 counterclockwise.
  • the driving device 27 detects the contact between the engaging portion 25a of one of the rotating bodies 25 and the engaging pin 26
  • the driving device 27 stops the motor 23 when the A-phase signal is counted up to 8 pulses, which is the number of pulses P1.
  • the drive device 27 rotates the motor 23 clockwise.
  • the drive device 27 counts down from 8 pulses, which is the number of pulses P1.
  • the drive device 27 acquires -2 pulses as the number of pulses P2 which is the number of rising pulses and -32 pulses as the number of pulses P4 which is the number of rising pulses.
  • the driving device 27 stops the motor 23 when the A-phase signal is counted down to ⁇ 43 pulses, which is the number of pulses P6.
  • the drive device 27 rotates the motor 23 counterclockwise.
  • the drive device 27 counts up from ⁇ 43 pulses, which is the number of pulses P6.
  • the drive device 27 acquires ⁇ 33 pulses as the number of rising pulses P5 and -3 pulses as the number of rising pulses P3.
  • the driving device 27 detects the contact between the engaging portion 25a of one of the rotating bodies 25 and the engaging pin 26, the driving device 27 stops the motor 23 when the A-phase signal is counted up to 8 pulses, which is the number of pulses P1.
  • the drive device 27 calculates -17.5 pulses, which is the average value of -2 pulses, which is the maximum value of the obtained number of rising pulses, and -33 pulses, which is the minimum value. Next, the drive device 27 has the largest number of rising pulses among the number of rising pulses smaller than the average value of the number of rising pulses -32 pulses and the smallest number of rising pulses larger than the average value of the number of rising pulses. 29 pulses, which is the difference from -3 pulses, which is the number of rising pulses, is calculated.
  • the drive device 27 determines from the calculated difference in the number of rising pulses that it is equal to the number of pulses generated at the third interval Gd3.
  • the drive device 27 identifies that the section in which the engagement pin 26 is engaged is the second section S2 that includes the third interval Gd3.
  • the actuator 22 includes a brake mechanism 24 (see FIGS. 5 and 6) that limits the rotation angle range of the motor 23 by the rotating body 25 having the engaging portion 25a.
  • the absolute encoder 1 is arranged so that the Z-phase projector / receiver 5a generates a plurality of Z-phase signals between adjacent engaging portions 25a of the rotating body 25. As a result, the absolute encoder 1 generates Z-phase signals at different intervals in each section of the rotating body 25.
  • the A / B phase chord wheel 4c and the Z phase chord wheel 5b of the absolute encoder 1 rotate integrally with the rotating body 25 of the brake mechanism 24.
  • the drive device 27 counts the number of pulses of the A-phase signal based on the adjacent Z-phase signals generated at different intervals for each section of the rotating body 25, so that the mechanical angle of the rotating body 25 is within 360 degrees.
  • the rotation angle can be calculated.
  • the actuator 22 can reduce the processing load of the drive device 27 and improve the degree of freedom in designing the hardware resources of the drive device 27.
  • the actuator 22 is limited in the rotation angle range to any one of the first section S1 to the sixth section S6 by the engaging pin 26.
  • the drive device 27 reciprocates the rotating body 25 a plurality of times clockwise and counterclockwise within any section.
  • the drive device 27 passes the range of the center angle ⁇ (see FIG. 11) of the Z-phase chord wheel 5b a plurality of times, so that the Z-phase light receiving / receiving device 5a passes the interval Gb, the interval Gc, or the interval Gd from the absolute encoder 1.
  • the number of pulses of the A-phase signal in the above can be surely acquired.
  • the drive device 27 identifies a section whose rotation is restricted by the engagement pin 26 from the number of pulses of the acquired A-phase signal. As a result, the actuator 22 improves the position detection accuracy of the rotating body 25 even immediately after the motor 23 does not output sufficient torque. Therefore, the actuator 22 can reduce the processing load of the drive device 27 and improve the degree of freedom in designing the hardware resources of the drive device 27.
  • the Z-phase signals generated based on the Z-phase chord wheel 5b have the same interval Ga from the rising edge to the falling edge of the signal waveform. Further, the Z-phase signals have different intervals Gb from the falling edge to the falling edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gc from the rising edge to the rising edge of adjacent signal waveforms. Further, the Z-phase signals have different intervals Gd from the falling edge to the rising edge of adjacent signal waveforms.
  • the Z-phase signal is generated within a predetermined interval based on the median number of pulses of the A-phase signal generated at the interval Gb from the falling edge to the falling edge of all adjacent signal waveforms. Is generated in.
  • the difference between the number of pulses of the A-phase signal at the largest interval Gb and the number of pulses of the A-phase signal at the smallest interval Gb is smaller than half of the median number of pulses of the A-phase signal. Is generated in.
  • the Z-phase signal is generated so as to be generated within a predetermined interval based on the median number of pulses of the A-phase signal generated at the interval Gc from the rising edge to the rising edge of all adjacent signal waveforms. Will be done.
  • the difference between the number of pulses of the A-phase signal at the largest interval Gc and the number of pulses of the A-phase signal at the smallest interval Gc is smaller than half of the median number of pulses of the A-phase signal. Is generated in.
  • the Z-phase signal is generated within a predetermined interval based on the median number of pulses of the A-phase signal generated at the interval Gd from the falling edge to the rising edge of all adjacent signal waveforms. Generated. For the Z-phase signal, the difference between the number of pulses of the A-phase signal at the largest interval Gd and the number of pulses of the A-phase signal at the smallest interval Gd is smaller than half of the median number of pulses of the A-phase signal. Is generated in.
  • the 1st Z-phase signal Z1 to the 12th Z-phase signal Z12 have 36 pulses of the A-phase signal with the largest interval and 24 pulses of the A-phase signal with the smallest interval among the pulses of the A-phase signal at each interval.
  • the difference of 12 pulses is generated so as to be smaller than 14.5 pulses, which is half of the median 29 pulses.
  • the variation in the number of pulses of the A-phase signal from the first interval Gd1 to the twelfth interval Gd12 is based on the median number of pulses of the A-phase signal from the first interval Gd1 to the twelfth interval Gd12. It is configured to be within a certain range. That is, the absolute encoder 1X is generated so that the intervals between adjacent Z-phase signals are close to equal intervals and all the intervals are different.
  • the absolute encoder 1X generates a Z-phase signal at a time interval of a predetermined time or more with reference to the median number of pulses of the A-phase signal at a constant rotation speed.
  • the absolute encoder 1X can reduce the processing load of the drive device 27 and improve the degree of freedom in designing the hardware resources of the drive device 27.
  • FIG. 13 is a flowchart showing a control mode of error correction by the absolute encoder 1Y according to another embodiment of the present invention.
  • the absolute encoder 1Y may have a correction unit 29 which is an error correction unit for correcting an error of the A-phase signal.
  • the correction unit 29 of the absolute encoder 1Y cannot generate a part of the A-phase signal due to damage or dirt on the A / B-phase cord wheel 4c, the A-phase light-receiving receiver 4a, and the B-phase light-receiving receiver 4b.
  • the rotation angle of the rotation shaft 23a within the mechanical angle of 360 degrees is corrected.
  • the correction unit 29 is provided in the absolute encoder 1Y.
  • the correction unit 29 stores all the number of pulses of the A phase signal generated in the first interval Gd1 to the twelfth interval Gd12 from the falling edge to the rising edge of the signal waveform in the adjacent Z phase signals (see FIG. 8). ..
  • the correction unit 29 acquires the A-phase signal and the Z-phase signal from the A-phase light-receiving receiver 4a, the B-phase light-receiving receiver 4b, and the Z-phase light-receiving receiver 5a (step S110). .. Further, the correction unit 29 starts counting (integrating) the A-phase signal (step S120).
  • step S130 When the correction unit 29 acquires the next Z-phase signal (step S130), the correction unit 29 in the Z-phase signal acquired in the step of this time (step S130) from the rise of the signal waveform in the Z-phase signal acquired immediately before (step S110).
  • step S140 The pulse number Pb1 of the A-phase signal acquired at the interval Gdb until the rise of the signal waveform is calculated (step S140).
  • the correction unit 29 calculates the pulse number Pb2 of the interval Gdb estimated based on the pulse number Pa1 of the A phase signal calculated by the interval Gda immediately before that (step S150). The correction unit 29 determines whether or not the calculated pulse number Pb1 of the A-phase signal matches the pulse number Pb2 of the interval Gdb estimated from the pulse number Pa1 at the interval Gda immediately before it (step S160).
  • the correction unit 29 makes an error about the portion corresponding to the interval Gdb in the A / B-phase code wheel 4c. Is not generated, and no correction is made (step S170).
  • the correction unit 29 makes a correction to change the calculated pulse number Pb1 to the pulse number Pb2 estimated from the pulse number Pa1 of the A-phase signal calculated at the immediately preceding interval Gda.
  • the absolute encoder 1Y generates 27 pulses of the A / B phase signal at the 7th interval Gd7, which is the interval between the 7th Z phase signal Z7 and the 8th Z phase signal Z8, and the 8Z phase signal Z8. It is assumed that 33 pulses of the A / B phase signal are generated at the 8th interval Gd8, which is the interval from the 9th Z phase signal Z9.
  • the correction unit 29 determines that the 33 pulses, which is the number of pulses generated in the 8th interval Gd8, is the correct number of pulses in the 8th interval Gd8. It is determined that the pulse is not 34 (error).
  • the correction unit 29 corrects the number of pulses generated at the eighth interval Gd8 to 34 pulses.
  • the absolute encoder 1Y generates Z-phase signals at different intervals, so that the relationship between the number of pulses of the A-phase signals generated at the intervals of adjacent Z-phase signals is predetermined. Therefore, even if an error occurs in which the absolute encoder 1Y cannot generate a part of the A-phase signal at a specific Z-phase signal interval, the pulse of the A-phase signal generated at the interval of the adjacent Z-phase signal by the correction unit 29 occurs.
  • the A-phase signal at the interval of the specific Z-phase signal in which the error occurred is estimated from the number.
  • the absolute encoder 1Y can reduce the processing load of the drive device 27 and improve the degree of freedom in designing the hardware resources of the drive device 27.
  • FIG. 14 is a flowchart showing a control mode of abnormality detection of the absolute encoder 1 by the actuator 22 according to another embodiment of the present invention.
  • the abnormality detection unit 30 of the actuator 22 is provided in the drive device 27 of the motor 23 which is a part of the actuator 22.
  • the abnormality detection unit 30 has a magnetic flux observer.
  • the magnetic flux observer is a mathematical model that calculates the state of the internal magnetic flux of the motor 23 from the voltage and current applied to the motor 23, and estimates the speed or electric angle of the rotating shaft 23a (rotor) in the motor 23. ..
  • the abnormality detection unit 30 can acquire an A-phase signal and a Z-phase signal from the absolute encoder 1.
  • the abnormality detection unit 30 acquires an A-phase signal and a Z-phase signal from the absolute encoder 1 (step S210).
  • the abnormality detection unit 30 calculates the electric angle ⁇ x of the rotating shaft 23a based on the acquired A-phase signal and Z-phase signal (step S220).
  • the abnormality detection unit 30 estimates the electric angle ⁇ y of the rotating shaft 23a with the magnetic flux observer (step S230).
  • the abnormality detection unit 30 compares the electric angle ⁇ x calculated from the A-phase signal and the Z-phase signal of the absolute encoder 1 with the electric angle ⁇ y estimated by the magnetic flux observer. When the difference between the electric angle ⁇ x and the electric angle ⁇ y (
  • the abnormality detecting unit 30 is used for the A / B phase due to deformation such as plastic deformation of the rotating body 25. It is determined that distortion occurs in the chord wheel 4c and the Z-phase chord wheel 5b, and an abnormality occurs in the generation of the A-phase signal and the Z-phase signal (step S251).
  • the drive device 27 can quickly detect the abnormality of the absolute encoder 1, so that the processing load of the drive device 27 can be reduced and the degree of freedom in designing the hardware resources of the drive device 27 can be improved. ..
  • FIG. 15 is a schematic diagram showing a signal waveform of an A / B phase signal and a signal waveform of a Z phase signal according to another embodiment of the present invention.
  • the absolute encoder 1Z generates a Z-phase signal so that the intervals Ga from the rising edge to the falling edge of the signal waveform in the Z-phase signal are all different. Therefore, the absolute encoder 1Z generates A / B phase signals having different pulse numbers at all intervals Ga from the rising edge to the falling edge of the signal waveforms in the adjacent Z phase signals.
  • the absolute encoder 1Z generates A / B phase signals having different pulse numbers at all intervals Gb from the falling edge to the falling edge of the signal waveforms in the adjacent Z phase signals. Similarly, the absolute encoder 1Z generates A / B phase signals having different pulse numbers at all intervals Gc from the rising edge to the rising edge of the signal waveforms in adjacent Z phase signals. Similarly, the absolute encoder 1Z generates A / B phase signals having different pulse numbers at all intervals Gd from the falling edge to the rising edge of the signal waveform in the adjacent Z phase signals.
  • the drive device 27 can generate interrupt processing at both the rise and fall of the signal waveform in one Z-phase signal. As a result, the drive device 27 can increase the chance of detecting the rotation angle during one rotation of the rotation shaft 23a. On the other hand, the drive device 27 can suppress the calculation load by generating an interrupt process at either the rising edge or the falling edge of the signal waveform in one Z-phase signal.
  • the articulated robot arm 8 which is a 6-axis vertical articulated robot arm, is, for example, an S-axis rotating joint 10, an L-axis rotating joint 12, a U-axis rotating joint 14, and an R-axis rotating.
  • the joint 16, the B-axis rotary joint 18, and the T-axis rotary joint 20 are each connected in series by a link, but the present invention is not limited to this.
  • the articulated robot arm 8 may have a structure in which the motor unit M of each axis is connected in the order of connection, the axial direction at the time of connection, and the like are established as an articulated robot arm.
  • the motor unit M is provided as a rotary joint of each axis of the articulated robot arm 8.
  • the configuration of the motor unit M is not limited to the configuration of the above-described embodiment.
  • the motor unit M may be applied to a device that requires position control, such as an XY table or a vertical transfer device. Further, the motor unit M may have only the actuator 22.
  • the actuator 22 is provided with the motor 23, the brake mechanism 24, the absolute encoder, and the drive device 27 in the housing 11, the housing 15, and the housing 19 of the articulated robot arm 8, respectively. It is configured as an integrated mechanical and electrical structure.
  • the configuration of the actuator is not limited to the configuration of the above-described embodiment.
  • the drive device 27 may be provided outside the housing 11, the housing 15, and the housing 19 of the articulated robot arm 8.
  • the absolute encoder is a reflective optical absolute encoder.
  • the configuration of the absolute encoder is not limited to the configuration of the above-described embodiment.
  • the absolute encoder may be a transmissive optical absolute encoder, a magnetic absolute encoder, an electromagnetic induction type absolute encoder, or the like.
  • the absolute encoder generates 360 pulses of A / B phase signal per 360 degrees of mechanical angle.
  • the configuration of the absolute encoder is not limited to the configuration of the above-described embodiment.
  • the absolute encoder may be configured to generate the number of pulses required to ensure the required rotation accuracy.
  • the absolute encoder generates 12 pulses of a Z-phase signal for every 360 degrees of mechanical angle.
  • the configuration of the motor unit is not limited to the configuration of the above-described embodiment.
  • the absolute encoder may be 2 pulses or more per 360 degrees of mechanical angle and less than the number of pulses of the A / B phase signal.
  • the absolute encoder has an interval in which the number of pulses of the same A-phase signal is the same in the interval from the rise or fall of the signal waveform to the rise or fall of all adjacent Z-phase signals.
  • a Z-phase signal may be generated so that it exists.
  • the drive device 27 acquires three Z-phase signals and compares the pulse numbers of the A-phase signals to rotate the rotation angle of the rotation shaft 23a in the motor 23. Can be detected.
  • the rotating plate 6 of the absolute encoder is provided on the rotating body 25 of the brake mechanism 24.
  • the configuration of the rotating plate of the absolute encoder is not limited to the configuration of the above-described embodiment.
  • the rotating plate 6 of the absolute encoder may be directly fixed to the rotating shaft 23a of the motor 23.
  • the rotating body 25 of the brake mechanism 24 is formed with six engaging portions 25a at equal intervals.
  • the configuration of the rotating body of the brake mechanism is not limited to the configuration of the above-described embodiment.
  • the rotating body 25 of the brake mechanism 24 may have a plurality of engaging portions 25a formed at equal intervals.
  • the embodiment of the present invention has been described above, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the embodiment is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.
  • the present invention can be used for an absolute encoder and an actuator including an absolute encoder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

エンコーダ専用のICを追加することなく、信号を処理して回転角を取得するコンピュータの処理負荷を低減して、前記コンピュータのハードウェアリソースの設計自由度を向上することができるアブソリュートエンコーダを提供する。アブソリュートエンコーダ1は、モータ23における回転軸23aの機械角360度以内の回転角度の取得に用いられる。Z相信号生成部である相用投受光器25は、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち上がりから立ち上がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形を含むZ相信号を生成する。

Description

アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ
 本発明は、アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータに関する。
 例えばモータ等の回転軸の絶対回転角(機械角360度)を、A/B相信号センサ及びZ相信号センサの信号を処理して取得するシングルターンのアブソリュートエンコーダが提案されている。特許文献1に開示されているアブソリュートエンコーダでは、相対的な回転角等を検出するためのA/B相信号センサの信号検出パターンが回転板に一定ピッチで形成されると共に、1回転以内の回転角の絶対位置を検出するためのZ相信号センサの信号検出パターンが所定の配列で回転板に形成されている。
 前記Z相信号センサの信号検出パターンは、1回転以内の絶対位置を検出するための信号検出パターンであり、回転板の周方向にパターン長が異なる複数個のパターンが所定の配列で形成されている。前記アブソリュートエンコーダは、同一回転方向におけるZ信号の1パルスから次のパルスまでの間隔におけるA/B相信号のパルスと位相をカウントすることによって、回転角を決定することができる。
特開平10-38557号公報
 上述のA/B相信号センサ及びZ相信号センサを有するアブソリュートエンコーダから出力される信号を処理するコンピュータは、Z相信号を取得すると、実行中の他の処理を中断して、A/B相信号のパルスと位相から、Z相信号を取得した瞬間の絶対回転角を算出する。この際、コンピュータは、Z相信号を取得する度に絶対回転角を算出する割り込み処理が発生する。コンピュータは、割り込み処理が発生する度にそれまで実行していた処理を一時的に中断する。このため、コンピュータは、高い実時間性を要求される処理を実行していた場合、割り込み処理によってそれまで実行していた処理の実時間性が担保できない場合があった。
 さらに、特許文献1に開示されるアブソリュートエンコーダのように、パターン長が異なる複数個のZ相信号検出パターンが回転板に形成されているアブソリュートエンコーダでは、Z相信号の取得タイミングの間隔が任意に定められている。従って、コンピュータは、アブソリュートエンコーダのZ相信号検出パターンのうち最も短い間隔でZ相信号を検出した場合でも絶対回転角を算出する割り込み処理に対応できる処理能力が求められる。
 このため、Z相信号検出パターンが任意に設定されたアブソリュートエンコーダでは、様々な間隔でZ相信号を取得しても割り込み処理に対応可能な高性能のコンピュータもしくはエンコーダ専用のICを必要とする。よって、上述のZ相信号検出パターンが任意に設定されたアブソリュートエンコーダでは、コンピュータのハードウェアリソースの設計自由度が低下したり、エンコーダ専用のICの追加によりコストが上昇したりする場合があった。
 本発明は、エンコーダ専用のICを追加することなく、信号を処理して回転角を取得するコンピュータの処理負荷を低減して、前記コンピュータのハードウェアリソースの設計自由度を向上することができるアブソリュートエンコーダを提供することを目的とする。
 本発明者は、コンピュータの処理負荷を低減して、コンピュータのハードウェアリソースの設計自由度を向上するために、アブソリュートエンコーダの構成について検討した。鋭意検討の結果、本発明者は、以下のような構成に想到した。
 本発明の一実施形態に係るアブソリュートエンコーダは、機械角360度以内に等間隔で複数のA/B相信号を生成するA/B相信号生成部と、機械角360度以内で前記A/B相信号よりも少ない数の複数のZ相信号を生成するZ相信号生成部と、前記A/B相信号と前記Z相信号とをコンピュータに出力可能な出力部と、を備え、被検出部材の機械角360度以内の回転角度の取得に用いられるアブソリュートエンコーダである。
 前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち上がりから立ち下がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち上がりから立ち下がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、複数の前記Z相信号において、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち上がりから立ち上がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、複数の前記Z相信号において、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち下がりから立ち下がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、複数の前記Z相信号において、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち下がりから立ち上がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、のうち少なくとも一つの信号波形を含むZ相信号を生成する。
 上述の構成では、前記アブソリュートエンコーダは、機械角360度以内に等間隔で複数のA/B相信号を生成する前記A/B相信号生成部と、前記A/B相信号よりも少ない数の複数のZ相信号を生成する前記Z相信号生成部とを備える。前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち上がりから立ち下がりの間隔、隣り合う信号波形の立ち上がりから立ち上がりの間隔、隣り合う信号波形の立ち下がりから立ち下がりの間隔及び隣り合う信号波形の立ち下がりから立ち上がりの間隔のうち少なくとも一つの間隔が機械角360度以内で全て異なる信号を生成する。これにより、前記アブソリュートエンコーダは、複数の前記Z相信号における信号波形のうち任意の間隔を全て異なる間隔で出力する。前記出力部に接続されているコンピュータは、回転角度の位置を取得する処理を前記Z相信号に基づいて開始する。
 前記コンピュータは、取得した前記Z相信号における信号波形の立ち上がりまたは立ち下がりから、次に取得した前記Z相信号における信号波形の立ち上がりまたは立ち下がりまでに取得するA/B相信号のパルスと位相をカウントする。これにより、前記コンピュータは、回転軸の機械角360度以内の回転角度の位置を取得することができる。つまり、前記コンピュータは、前記A/B相信号及び信号波形の任意の間隔が全て異なる複数の前記Z相信号を用いることで、エンコーダ専用のICを追加することなく、機械角360度以内の被検出部材の回転角度の位置を取得する処理を簡易にすることができる。
 また、前記Z相信号の立ち上がりから立ち下がりまでの間隔が全て異なる場合、つまり、前記Z相信号の信号波形が全て異なる場合、前記コンピュータは、一つのZ相信号の立ち上がりと立ち下がりの両方で割り込み処理を発生させることで、エンコーダの1回転中における絶対位置の検出機会を増やすことができる。一方、前記コンピュータは、一つの前記Z相信号の立ち上がりもしくは立ち下がりの一方に割り込み処理を発生させることで計算負荷を抑えることができる。
 前記アブソリュートエンコーダは、隣り合う前記Z相信号の信号波形における任意の間隔において、機械角360度以内の間隔の中央値と一番小さい間隔との差及び前記中央値と一番大きい間隔との差が両方とも前記中央値の半分より小さくなるように構成されている。このため、前記アブソリュートエンコーダは、一定の回転速度において、前記中央値を基準として、所定のばらつきの範囲内に収まるように前記Z相信号を生成させる。つまり、前記アブソリュートエンコーダは、前記Z相信号を所定時間以上の時間間隔で生成する。従って、前記アブソリュートエンコーダに接続される前記コンピュータは、前記Z相信号を取得する度に発生する絶対回転角を算出する割り込み処理の時間間隔が所定時間以上になり、機械角360度内の回転角度の位置を取得する各処理の平準化を図ることができる。
 これにより、前記アブソリュートエンコーダは、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上させることができる。例えば、前記コンピュータは、前記アブソリュートエンコーダからの信号処理の負荷を低減することで、前記コンピュータの最大処理性能を抑制することができる。また、例えば、同じ処理性能のハードウェアである場合、前記コンピュータは、前記アブソリュートエンコーダからの信号処理の負荷が低減することで他の処理を実行することができる。
 他の観点によれば、本発明のアブソリュートエンコーダは、以下の構成を含むことが好ましい。前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち上がりから立ち下がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち上がりから立ち下がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるように前記Z相信号を生成する。
 また、前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるように前記Z相信号を生成する。
 また、前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるように前記Z相信号を生成する。
 また、前記Z相信号生成部は、複数の前記Z相信号において、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるように前記Z相信号を生成する。
 上述の構成では、前記アブソリュートエンコーダは、一定の回転速度において、前記Z相信号が前記中央値を基準として所定のばらつきの範囲内に収まるようにZ相信号を生成する。つまり、前記アブソリュートエンコーダは、前記Z相信号を所定時間以上の間隔で生成する。これにより、前記アブソリュートエンコーダは、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアブソリュートエンコーダは、以下の構成を含むことが好ましい。アブソリュートエンコーダは、回転軸と一体で回転する回転板をさらに備える。前記A相信号生成部は、A相信号生成用検出部と、機械角360度以内に等間隔で前記回転板に設けられた複数のA相信号生成用被検出部とを有する。前記A相信号生成用検出部が前記A相信号生成用被検出部を検出することにより、前記A相信号を生成する。前記Z相信号生成部は、Z相信号生成用検出部と、機械角360度以内に前記A相信号検出パターンの数よりも少ない数で前記回転板に設けられた複数のZ相信号生成用被検出部とを有し、前記Z相信号生成用検出部が前記A相信号生成用被検出部を検出することにより、Z相信号を生成する。
 前記コンピュータは、取得した前記Z相信号の立ち上りから、次に取得した前記Z相信号の立ち上りまでに取得する前記A相信号をカウントすることで機械角360度内の前記モータの回転軸における回転角度の位置を取得することができる。これにより、前記アブソリュートエンコーダは、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアブソリュートエンコーダは、以下の構成を含むことが好ましい。アブソリュートエンコーダは、複数の前記Z相信号において、信号波形の立ち上がりから立ち下がりまでの間隔、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔または隣り合う前記信号波形の立ち下がりから立ち上がりまでの間隔で生成されるA相信号の数からA相信号のエラー訂正を行うエラー訂正部を備える。
 前記アブソリュートエンコーダは、前記A/B相信号生成用検出部または前記A/B相信号生成用被検出部の汚れや破損等によって、前記A/B相信号の一部が検出できないエラーが生じても、前記Z相信号における信号波形の立ち上がりから立ち下がりまでの間隔等の差異を利用することで検出できない前記A/B相信号を容易に推測することができる。これにより、前記アブソリュートエンコーダは、前記コンピュータの処理負荷を低減してコンピュータのハードウェアリソースの設計自由度を向上することができる。
 また、本発明の一実施形態に係るアクチュエータは、上述のいずれか一つに記載のアブソリュートエンコーダを備える。前記アクチュエータは、複数の係合部を有し、前記アブソリュートエンコーダと一体で回転する回転体を含み、隣り合う係合部の間で前記アブソリュートエンコーダの回転角度の範囲を制限するブレーキ機構を備える。前記アブソリュートエンコーダは、前記ブレーキ機構によって制限される回転角度範囲内に複数の前記Z相信号を生成するように構成される。
 上述の構成では、前記アクチュエータは、前記係合部を有する前記回転体によって前記アブソリュートエンコーダの回転角度の範囲を制限する前記ブレーキ機構を備える。前記アブソリュートエンコーダは、前記Z相信号生成部が前記回転体の隣り合う前記係合部の間で複数の前記Z相信号を生成するように構成される。つまり、前記アブソリュートエンコーダは、前記回転体の各係合部間にそれぞれ異なる間隔で前記Z相信号を生成するように構成されている。これにより、前記アクチュエータは、前記Z相信号を取得してから次の前記Z相信号を取得するまでの間の前記A相信号の数を取得することで、前記係合部で区切られた回転体の回転角を取得することができるので、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアクチュエータは、前記アブソリュートエンコーダの前記A相信号生成部は、A相信号生成用検出部と、A相信号生成用被検出部とを備える。前記アブソリュートエンコーダのZ相信号生成部は、Z相信号生成用検出部と、Z相信号生成用被検出部とを備える。前記ブレーキ機構の前記回転体には、前記アブソリュートエンコーダの前記A相信号生成用被検出部及び前記Z相信号生成用被検出部が設けられている。
 上述の構成では、前記アクチュエータは、前記アブソリュートエンコーダの前記A相信号生成用被検出部及び前記Z相信号生成用被検出部が前記ブレーキ機構の前記回転体と一体に回転する。これにより、前記アクチュエータは、前記回転体の回転角を算出するための前記A/B相信号と前記Z相信号とを、前記係合部で区切られた区間毎に生成することができるので、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアクチュエータは、前記ブレーキ機構によって前記回転体の回転角度範囲が制限されている場合、前記Z相信号生成用検出部が前記Z相信号生成用被検出部を検出して複数のZ相信号を生成させるように、前記回転体を、制限されている回転角度範囲内で時計回りと反時計回りとに複数回、回転させる。
 上述の構成では、前記アクチュエータは、前記アクチュエータが十分なトルクを出力していない起動直後に、前記回転角度範囲が制限されている前記回転体を時計回りと反時計回りに複数回、往復回転させて複数のZ相信号とA相信号とを生成する。前記コンピュータは、アブソリュートエンコーダから各前記Z相信号における信号波形の立ち下がりから立ち上がりまでの間隔におけるA相信号のパルス数を確実に取得することができる。これにより、前記アクチュエータは、回転体の位置の検出精度が向上するので、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアクチュエータは、前記Z相信号生成用被検出部が設けられた前記回転体の変形による前記Z相信号の異常を検出する異常検出部を備える。これにより、前記コンピュータは、前記アブソリュートエンコーダの異常を速やかに検出することができるので、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 他の観点によれば、本発明のアクチュエータは、モータを含む。前記異常検出部は、前記Z相信号の異常を前記モータの電気角に基づいて検出する。これによれば、前記コンピュータは、前記アブソリュートエンコーダの異常を容易に検出することができるので、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上することができる。
 本明細書で使用される専門用語は、特定の実施例のみを定義する目的で使用されるのであって、前記専門用語によって発明を制限する意図はない。
 本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。
 本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの1つまたは複数を含むことができる。
 本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な接続または結合を含むことができる。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。
 一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。
 本明細書では、本発明に係るアブソリュートエンコーダ及びアクチュエータの実施形態について説明する。
 以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。
 よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 [多関節ロボットアーム]
 本明細書において、多関節ロボットアームとは、複数のリンクを連結する関節部を複数有するロボットアームを意味する。前記多関節ロボットアームは、垂直多関節ロボットアームを含む。具体的には、前記垂直多関節ロボットアームは、リンクが1自由度の回転関節または直動関節で根元から先端まで直列に連結されたシリアルリンク機構のロボットアームである。前記垂直多関節ロボットアームは、複数の関節部を有する。
 [アブソリュートエンコーダ]
 本明細書において、アブソリュートエンコーダとは、モータや回転軸における機械角の位置を決められた原点からの絶対位置として検出し、コンピュータで処理が可能な信号に変換する装置である。アブソリュートエンコーダは、主電源と別に電池などにより構成されるバックアップ電源を備えており、主電源がオフになってもバックアップ電源から供給される電力で被検出体の動作を監視し、検出された位置情報を保持する。
 [A/B相信号、Z相信号]
 本明細書において、A/B相信号とは、モータや回転軸の回転量に比例して生成されるパルス信号である。A/B相信号は、A相信号生成用検出部が生成する信号とB相信号生成用検出部が生成する信号とを含む。Z相信号とは、原点を設定するために生成されるパルス信号である。
 [A/B相信号生成用被検出部、Z相信号生成用被検出部]
 本明細書において、前記A/B相信号生成用被検出部とは、前記A/B相信号生成部が検出することができる印(例えばスリット、反射面、磁石等)である。前記A/B相信号生成部は、前記A相信号生成用被検出部を検出する度にパルス信号であるA/B相信号を生成する。A/B相信号生成用被検出部は、1トラックの印において異なる位置にA相信号生成用検出部とB相信号生成用検出部が設けられている場合と、2トラックの印のうち、一方のトラックの印にA相信号生成用検出部が設けられ、他方のトラックの印にB相信号生成用被検出部に設けられた場合とを含む。前記Z相信号生成部は、Z相信号生成部が検出することができる印である。Z相信号生成部は、Z相信号生成用被検出部5bを検出する度にパルス信号であるZ相信号を生成する。
 [機械角、電気角]
 本明細書において、機械角とは、回転板の回転角度である。機械角がゼロの場合、例えば、回転板のZ相信号生成用被検出部は、Z相信号検出部の検出位置に位置付けられている。電気角とは、機械角からステータオフセット角とロータオフセット角とを除いた回転角度に、極対数を乗じた角度である。前記ステータオフセット角は、例えば回転体を軸線に沿って見た場合において、Z相信号検出部とステータのU相コイル中心とのずれ角である。前記ロータオフセット角は、例えば回転体を軸線に沿って見た場合において、アブソリュートエンコーダの原点であるZ相信号生成用被検出部を生成する印とN極磁石中心とのずれ角である。
 [A/B相信号の間隔、Z相信号の間隔]
 本明細書において、A/B相信号の間隔およびZ相信号の間隔とは、隣り合うA/B相信号間の時間、及び隣り合うZ相信号間の時間をいう。また、隣り合うZ相信号における信号波形の立ち上がりから立ち下がりまでの間隔とは、Z相信号における信号波形の立ち上がりを検出してから次のZ相信号における信号波形の立ち下がりを検出するまでの時間をいう。また、隣り合うZ相信号における信号波形の立ち上がりから立ち上がりまでの間隔とは、Z相信号における信号波形の立ち上がりを検出してから次のZ相信号における信号波形の立ち上がりを検出するまでの時間をいう。また、隣り合うZ相信号における信号波形の立ち下がりから立ち下がりまでの間隔とは、Z相信号における信号波形の立ち下がりを検出してから次のZ相信号における信号波形の立ち下がりを検出するまでの時間をいう。また、隣り合うZ相信号における信号波形の立ち下がりから立ち上がりまでの間隔とは、Z相信号における信号波形の立ち下がりを検出してから次のZ相信号における信号波形の立ち上がりを検出するまでの時間をいう。
 [異常]
 本明細書において、異常とは、正常でない状態であり、例えば、前記A/B相信号生成部又は前記Z相信号生成部が前記回転体の回転速度に応じた時間間隔でA/B相信号またはZ相信号を生成していない状態をいう。
 本発明の一実施形態によれば、信号を処理して回転角を取得するコンピュータの処理負荷を低減して、前記コンピュータのハードウェアリソースの設計自由度を向上することができるアブソリュートエンコーダを提供することができる。
本発明の実施形態1に係るアブソリュートエンコーダの全体構成図を示す。 本発明の実施形態2に係る多関節ロボットアーム装置の模式図を示す。 本発明の実施形態2に係る多関節ロボットアームに係るS軸モータユニットの模式図を示す。 本発明の実施形態2に係る多関節ロボットアーム装置の制御ブロック図を示す。 本発明の実施形態2に係るブレーキ機構の側面図を示す。 本発明の実施形態2に係るブレーキ機構の平面図を示す。 本発明の実施形態2に係るアブソリュートエンコーダの平面図を示す。 本発明の実施形態2及び実施形態3に係るA/B相信号の信号波形とZ相信号の信号波形を表す模式図を示す。 本発明の実施形態2及び実施形態3に係るアブソリュートエンコーダと回転体との位置関係を表す平面図を示す。 本発明の実施形態2に係るZ相信号の間隔におけるA相信号のパルス数の関係を表すグラフを示す。 発明の実施形態2に係るアクチュエータがロックされている状態で回転角度を検出する際の作動状態を表す平面図を示す。 本発明の実施形態2に係るアクチュエータがロックされている状態で検出するA相信号とZ相信号との関係を表す模式図を示す。 本発明の実施形態4に係るアブソリュートエンコーダによるエラー訂正の制御態様を表すフローチャートを示す。 本発明の実施形態5に係るアクチュエータによるアブソリュートエンコーダの異常検知の制御態様を表すフローチャートを示す。 本発明の実施形態6に係るA/B相信号の信号波形とZ相信号の信号波形を表す模式図を示す。
 以下で、各実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [実施形態1]
 <アブソリュートエンコーダの全体構成>
 図1を用いて本発明の実施形態1に係るアブソリュートエンコーダ1の全体構成について説明する。図1は、本発明の実施形態に係るアブソリュートエンコーダ1の全体構成を表す模式図である。
 図1に示すように、アブソリュートエンコーダ1は、計測対象である回転軸において、決められた原点を基準とした場合の絶対的な回転角度(本実施例においてA相信号のパルス数)を検出し、その検出結果を出力するロータリーエンコーダである。アブソリュートエンコーダ1は、例えば、反射型の光学式アブソリュートエンコーダである。アブソリュートエンコーダ1は、機械角360度以内の回転角度を検出するためのA/B相信号と機械角の原点を検出するためのZ相信号とを生成する。
 アブソリュートエンコーダ1は、A/B相信号を生成するためのA/B相信号生成部2と、Z相信号を生成するためのZ相信号生成部3と、A/B相信号及びZ相信号を計測対象である回転軸の回転を制御しているコンピュータに出力する出力部1aと、を備える。
 A/B相信号生成部2は、A/B相信号検出部とA/B相信号被検出部とを含む。A/B相信号生成部2は、A/B相信号検出部によって、A/B相信号被検出部を検出したタイミングでA/B相信号を生成する。
 A/B相信号検出部は、例えば、LED発行素子等からなる投光素子とフォトダイオード等からなる受光素子とを含む。A/B相信号検出部は、計測対象である回転軸と連動して回転しない部分に支持されている。
 A/B相信号被検出部は、例えば、計測対象である回転軸に固定された回転板に設けられている。A/B相信号被検出部は、例えば、前記回転板に設けられたコードホイールである。
 Z相信号生成部3は、Z相信号検出部とZ相信号被検出部とを含む。Z相信号生成部3は、Z相信号検出部によって、Z相信号被検出部を検出したタイミングでZ相信号を生成する。
 Z相信号検出部は、例えば、LED発行素子等からなる投光素子とフォトダイオード等からなる受光素子とを含む。Z相信号検出部は、計測対象である回転軸と連動して回転しない部分に支持されている。
 Z相信号被検出部は、例えば、計測対象である回転軸に固定された回転板に設けられている。Z相信号被検出部は、例えば、前記回転板に設けられたコードホイールである。
 このように構成されるアブソリュートエンコーダ1は、A/B相信号生成部2が生成したA/B相信号から、計測対象である回転軸において、決められた原点を基準とする機械角360度以内の回転角度を取得することができる。また、アブソリュートエンコーダ1は、Z相信号生成部3が生成したZ相信号から計測対象である回転軸の機械角360度以内の原点を取得することができる。
 Z相信号生成部3で生成されるZ相信号は、信号波形の立ち上がりから立ち下がりまでの間隔Gaが全て同じである。また、前記Z相信号は、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔Gbが全て異なる。また、前記Z相信号は、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔Gcが全て異なる。また、前記Z相信号は、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔Gdが全て異なる。
 また、アブソリュートエンコーダ1は、機械角360度の回転で生成するA/B相信号のパルス数よりも少ないパルス数のZ相信号を生成する。従って、隣り合うZ相信号における信号波形の間隔Ga、Gb、Gc、Gdは、A/B相信号のパルス数で表現することができる。
 本実施形態1においてアブソリュートエンコーダ1は、Z相信号における信号波形の間隔Gaの全てにおいて、同じパルス数のA/B相信号を生成する。また、アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の間隔Gbの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の間隔Gcの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1は、全ての隣り合うZ相信号における信号波形の間隔Gdの全てにおいて、異なるパルス数のA/B相信号を生成する。
 なお、本実施形態1におけるアブソリュートエンコーダ1は、全て同じ形状の信号波形からなるZ相信号を生成する。従って、アブソリュートエンコータ1は、隣り合うZ相信号の信号波形において、間隔Gbと間隔Gcとで同じパルス数のA/B相信号を生成する。
 この際、Z相信号は、全ての隣り合う信号波形の間隔Gbでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に生成される。Z相信号は、前記中央値と最も小さい間隔GbでのA/B相信号のパルス数との差、及び前記中央値と最も大きい間隔GbでのA/B相信号のパルス数との差が前記中央値の半分よりも小さい間隔で生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の間隔Gcでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に生成される。Z相信号は、前記中央値と最も小さい間隔GcでのA/B相信号のパルス数との差、及び中央値と最も大きい間隔GcでのA/B相信号のパルス数との差が前記中央値の半分よりも小さい間隔で生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の間隔Gdでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に生成される。Z相信号は、前記中央値と最も小さい間隔GdでのA/B相信号のパルス数との差、及び中央値と最も大きい間隔GdでのA/B相信号のパルス数との差が前記中央値の半分よりも小さい間隔で生成される。
 このように、アブソリュートエンコーダ1は、Z相信号における信号波形の間隔Gaが全て異なり、且つ隣り合う信号波形の間隔Gaの中央値と最も小さい間隔Gaとの差、及び前記中央値と最も大きい間隔Gaとの差が前記中央値の半分よりも小さい信号波形と、隣り合う信号波形の間隔Gbが全て異なり、且つ隣り合う信号波形の間隔Gbの中央値と最も小さい間隔Gbとの差、及び前記中央値と最も大きい間隔Gbとの差が前記中央値の半分よりも小さい信号波形と、隣り合う信号波形の間隔Gcが全て異なり、且つ隣り合う信号波形の間隔Gcの中央値と最も小さい間隔Gcとの差、及び前記中央値と最も大きい間隔Gcとの差が前記中央値の半分よりも小さい信号波形と、隣り合う信号波形の間隔Gdが全て異なり、且つ隣り合う信号波形の間隔Gdの中央値と最も小さい間隔Gdとの差、及び前記中央値と最も大きい間隔Gdとの差が前記中央値の半分よりも小さい信号波形と、のうち少なくとも一つの信号波形を含むようにZ相信号を生成する。
 上述の構成では、Z相信号生成部3は、複数のZ相信号において、信号波形の間隔Ga、隣り合う信号波形の間隔Gb、間隔Gc及び間隔Gdのうち少なくとも一つの間隔が機械角360度以内で全て異なるZ相信号を生成する。これにより、アブソリュートエンコーダ1は、複数のZ相信号における信号波形の間隔のうち任意の間隔を全て異なる間隔で出力部1aに接続されている計測対象である回転軸を制御するコンピュータに出力する。前記コンピュータは、回転角度の位置を取得する処理を前記Z相信号に基づいて開始する。
 前記コンピュータは、取得したZ相信号における信号波形の間隔Gb、間隔Gc及び間隔Gdに取得するA/B相信号のパルスと位相をカウントする。前記コンピュータは、Z相信号における信号波形の間隔Gb、間隔Gc及び間隔Gdで生成されるA/B相信号のパルス数を記憶している。これにより、前記コンピュータは、回転軸の機械角360度以内の回転角度の位置を取得することができる。つまり、前記コンピュータは、A/B相信号及び信号波形の間隔Gb、間隔Gc及び間隔Gdの少なくとも一つが全て異なるZ相信号を用いることで、エンコーダ専用のICを追加することなく、機械角360度以内の被検出部材の回転角度の位置を取得する処理を簡易にすることができる。
 アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の間隔Gb、間隔Gc及び間隔Gdのいずれか一つの機械角360度以内の間隔における中央値と一番小さい間隔との差及び前記中央値と一番大きい間隔との差が両方とも前記中央値の半分より小さくなるように構成されている。このため、アブソリュートエンコーダ1は、一定の回転速度において、前記中央値を基準として、所定のばらつきの範囲内に収まるようにZ相信号を生成させる。つまり、アブソリュートエンコーダ1は、Z相信号を所定時間以上の時間間隔で生成する。従って、前記コンピュータは、Z相信号を取得する度に発生する絶対回転角を算出する割り込み処理の時間間隔が所定時間以上になり、機械角360度内の回転角度の位置を取得する各処理の平準化を図ることができる。
 これにより、アブソリュートエンコーダ1は、前記コンピュータの処理負荷を低減して前記コンピュータのハードウェアリソースの設計自由度を向上させることができる。例えば、前記コンピュータは、前記アブソリュートエンコーダからの信号処理の負荷を低減することで、前記コンピュータの最大処理性能を抑制することができる。また、例えば、同じ処理性能のハードウェアである場合、前記コンピュータは、前記アブソリュートエンコーダからの信号処理の負荷が低減することで他の処理を実行することができる。
  [実施形態2]
  <多関節ロボットアーム装置>
 図2から図4を用いて、本発明の実施形態2に係る多関節ロボットアーム装置7の全体構成について説明する。なお、以下の実施形態において、既に説明した実施形態と同様の点に関してはその具体的説明を省略し、相違する部分を中心に説明する。
 多関節ロボットアーム装置7は、上述のアブソリュートエンコーダ1を含む。図2は、本発明の実施形態に係る多関節ロボットアーム装置7の模式図である。図3は、本発明の実施形態に係る多関節ロボットアーム8に係るS軸回転関節10の模式図である。図4は、本発明の実施形態2に係る多関節ロボットアーム装置7の制御ブロック図である。
 (多関節ロボットアーム)
 図2に示すように、多関節ロボットアーム装置7は、多関節ロボットアーム8及び多関節ロボットアーム制御装置28を含む。多関節ロボットアーム8は、本実施形態において、リンクが1自由度の回転関節で基端から先端まで直列に連結されたシリアルリンク機構のロボットアームである。多関節ロボットアーム8は、例えば6軸の垂直多関節ロボットアームである。多関節ロボットアーム8は、例えば製造装置の基台や遠隔操作可能な遠隔操作車両に設けられている。
 多関節ロボットアーム8では、基端部から順に、S軸回転関節10、L軸回転関節12、U軸回転関節14、R軸回転関節16、B軸回転関節18及びT軸回転関節20が、それぞれ、筐体及びリンクによって、直列に連結されている。各軸は、モータユニットMによって回転可能に構成されている。S軸回転関節10、L軸回転関節12、U軸回転関節14、R軸回転関節16、B軸回転関節18及びT軸回転関節20は、それぞれ、モータユニットMを有する。
 モータユニットMは、後述するように、減速機21、アクチュエータ22を含む。多関節ロボットアーム8は、多関節ロボットアーム制御装置28によって制御される。多関節ロボットアーム8は、多関節ロボットアーム制御装置28からの制御信号を各軸のアクチュエータ22に含まれる駆動装置27で取得する。また、多関節ロボットアーム8は、各軸のモータユニットMのモータ23の出力に関する情報及びアブソリュートエンコーダ1からの情報を、多関節ロボットアーム制御装置28に送信する。
 S軸回転関節10は、多関節ロボットアーム8全体を旋回させる回転関節である。S軸回転関節10は、多関節ロボットアーム8のSL軸用の筐体11に設けられている。S軸回転関節10の出力軸には、ベース部材9が固定されている。ベース部材9は、多関節ロボットアーム8の設置面に固定されている。S軸回転関節10は、多関節ロボットアーム8の設置面に対して垂直な方向にS軸回転関節10の軸線が延びるように配置されている。
 L軸回転関節12は、下碗リンク13を揺動させる回転関節である。L軸回転関節12は、SL軸用の筐体11に設けられている。L軸回転関節12は、S軸回転関節10の軸線に対して垂直な方向にL軸回転関節12の軸線が延びるように配置されている。L軸回転関節12の出力軸には、下碗リンク13の一端部が固定されている。
 U軸回転関節14は、上腕リンク17を揺動させる回転関節である。U軸回転関節14は、多関節ロボットアーム8のUR軸用の筐体15に設けられている。U軸回転関節14の出力軸は、下碗リンク13の他端部に固定されている。U軸回転関節14は、L軸回転関節12の軸線に対して平行な方向にU軸回転関節14の軸線が延びるように配置されている。
 R軸回転関節16は、上腕リンク17を回転させる回転関節である。R軸回転関節16は、UR軸用の筐体15に設けられている。R軸回転関節16は、U軸回転関節14の軸線に対して垂直な方向にR軸回転関節16の軸線が延びるように配置されている。R軸回転関節16の出力軸には、上腕リンク17の一端部が固定されている。
 B軸回転関節18は、T軸回転関節20を揺動させる回転関節である。B軸回転関節18は、多関節ロボットアーム8のBT軸用の筐体19に設けられている。B軸回転関節18の出力軸は、上腕リンク17の他端部に固定されている。B軸回転関節18は、R軸回転関節16の軸線に対して垂直な方向にB軸回転関節18の軸線が延びるように配置されている。
 T軸回転関節20は、図示しないエンドエフェクタを回転させる回転関節である。T軸回転関節20は、BT軸用の筐体19に設けられている。T軸回転関節20は、B軸回転関節18の軸線に対して垂直な方向にT軸回転関節20の軸線が延びるように配置されている。T軸回転関節20の出力軸は、エンドエフェクタ取り付け部を有している。
 このように構成される多関節ロボットアーム8は、各軸のモータユニットMによってX軸、Y軸、Z軸方向の併進3自由度とX軸、Y軸、Z軸まわりの回転3自由度の合計6自由度を有する。従って、多関節ロボットアーム8は、多関節ロボットアーム8の可動空間内において、T軸の出力軸を任意の位置に移動させることができるとともに任意の姿勢にすることができる。
 (モータユニット)
 図2と図3に示すように、S軸、L軸、U軸、R軸、B軸、T軸のモータユニットMは、それぞれ、多関節ロボットアーム制御装置28からの制御信号に従って、出力軸を回転させる駆動装置である。各軸のモータユニットMは、減速機21と、アクチュエータ22とを含む。つまり、モータユニットMは、減速機21、モータ23、ブレーキ機構24、アブソリュートエンコーダ1及びモータ23を制御するコンピュータである駆動装置27が多関節ロボットアーム8の筐体11,筐体15(図2参照),筐体19(図2参照)の内部に配置されている。なお、各軸のモータユニットMは同一の構成を有するため、以下では、S軸回転関節10について説明を行う。
 図3に示すように、S軸回転関節10の減速機21は、出力軸を入力軸の回転速度に対して減速した状態で回転させるとともに、前記出力軸の出力トルクとして前記減速に反比例した出力トルクを生成する装置である。減速機21は、多関節ロボットアーム8の筐体11内に設けられている。減速機21のハウジングは、多関節ロボットアーム8の筐体11の内部に固定されている。減速機21の出力軸は、ベース部材9に固定されている。
 S軸回転関節10のアクチュエータ22は、モータ23、ブレーキ機構24、アブソリュートエンコーダ1及び駆動装置27を含む。S軸回転関節10は、多関節ロボットアーム8の筐体11内に設けられている。つまり、多関節ロボットアーム8の筐体11内には、減速機21、モータ23、ブレーキ機構24、アブソリュートエンコーダ1及び駆動装置27が配置されている。
 アクチュエータ22に含まれるモータ23は、動力の発生源である。本実施形態では、モータ23は、筒状のステータ内に、ロータが回転可能に配置された、いわゆるインナーロータ型のモータ23である。ロータには、軸心に沿って延びる回転軸23aが軸方向に貫通した状態で固定される。モータ23は、減速機21のケースにおいて動力が入力される一端部に固定されている。回転軸23aの一端部は、モータ23の出力軸として減速機21の入力軸に連結されている。
 アクチュエータ22に含まれるブレーキ機構24は、モータ23における回転軸23aの回転を規制する。本実施形態では、ブレーキ機構24は、回転軸23aの他端部に設けられている。ブレーキ機構24は、機械的な係合によってモータ23の回転軸23aの回転を制限する。なお、ブレーキ機構24は、回転軸23aの一端部に設けられていてもよい。
 アクチュエータ22に含まれるアブソリュートエンコーダ1は、モータ23における回転軸23aの機械角360度以内の回転角度を検出する。アブソリュートエンコーダ1は、機械角360度以内の回転角度を検出するためのA/B相信号と機械角の原点を検出するためのZ相信号とを、出力端子1aを介して駆動装置27と多関節ロボットアーム制御装置28(図2参照)とに送信する。アブソリュートエンコーダ1は、モータ23における回転軸23aの他端部に設けられている。つまり、ブレーキ機構24とアブソリュートエンコーダ1とは、モータ23の回転軸23aに設けられている。
 アクチュエータ22に含まれる駆動装置27は、モータ23に供給する駆動電流を制御する。駆動装置27は、例えば、コンピュータである。駆動装置27は、多関節ロボットアーム8の筐体11内に設けられている。駆動装置27は、多関節ロボットアーム制御装置28からの制御信号に応じた電流をモータ23に供給する。また、駆動装置27は、アブソリュートエンコーダ1のA/B相信号とZ相信号とをフィードバックパルスとして取得する。駆動装置27は、指令パルスに対するフィードバックパルスの差分に応じた電流をモータ23に供給するフィードバック制御によって、モータ23を制御する(図4参照)。
 このように構成されるS軸回転関節10は、減速機21とアクチュエータ22を構成するモータ23、ブレーキ機構24及びアブソリュートエンコーダ1が一体に構成されている。また、モータユニットMは、減速機21、アクチュエータ22及び駆動装置27が多関節ロボットアーム8の筐体11内に配置された機電一体構造として構成されている。S軸回転関節10では、モータ23の回転によって減速機21の出力軸が回転することにより、多関節ロボットアーム8の筐体11とアクチュエータ22とを一体に回転させる。
 図4に示すように、多関節ロボットアーム制御装置28は、多関節ロボットアーム8を制御する装置である。多関節ロボットアーム制御装置28は、実体的には、CPU、ROM、RAM、HDD等がバスで接続された構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。多関節ロボットアーム制御装置28には、多関節ロボットアーム8の動作を制御するために種々のプログラムやデータが格納されている。
 多関節ロボットアーム制御装置28は、S軸回転関節10、L軸回転関節12、U軸回転関節14、R軸回転関節16、B軸回転関節18及びT軸回転関節20に含まれる駆動装置27にそれぞれ接続されている。多関節ロボットアーム制御装置28は、各軸の駆動装置27に制御信号を送信することができる。また、多関節ロボットアーム制御装置28は、各軸のモータユニットMからモータ23の回転位置情報を取得することができる。
 次に、図5から図7を用いて、ブレーキ機構24とアブソリュートエンコーダ1とについて詳細に説明する。図5は、本発明の実施形態に係るブレーキ機構24の側面図である。図6は、本発明の実施形態に係るブレーキ機構24の平面図である。図7は、本発明の実施形態に係るアブソリュートエンコーダ1の平面図である。
 (ブレーキ機構)
 図5と図6とに示すように、ブレーキ機構24は、モータ23(図3参照)に電流が供給されていない場合、又はモータ23がトルクを出力していない場合に、モータ23の回転軸23aの回転を制限する。ブレーキ機構24は、回転体25、係合ピン26及びソレノイド26cを備える。
 回転体25は、モータ23の回転軸23aと一体で回転する。回転体25は、略円板状の部材である。回転体25は、回転軸23aの一端部または他端部に設けられている。回転体25は、その中心が回転軸23aの軸心と一致した状態で回転軸23aに固定されている。つまり、回転体25は、回転軸23aの軸心を回転中心として回転軸23aと一体に回転される。
 回転体25の外縁部には、径方向外方に向かって突出した複数の係合部25aが等間隔で形成されている。本実施形態において、係合部25aは、中心角を60度として等間隔に6か所形成されている。これにより、回転体25は、中心角60度毎に形成されている係合部25aにより周方向に第1セクションS1から第6セクションS6までに区切られている。
 係合ピン26は、回転体25の回転を規制する部材である。係合ピン26は、モータ23のハウジング又は減速機21のハウジング等、回転体25と連動して回転しない部分に支持されている。係合ピン26には、回転体25の係合部25aと接触する接触部26aが形成されている。係合ピン26は、軸線方向に移動可能に構成されている。係合ピン26は、その軸線が回転体25の回転方向に直交するように配置されている。
 係合ピン26の位置は、係合ピン26の軸線方向の移動により、接触部26aが回転体25の係合部25aに接触する規制位置(二点鎖線図)と、接触部26aが回転体25の係合部25aに接触しない開放位置(実線図)とに切り替えられる。係合ピン26には、ばね等の弾性体26bによって規制位置に保持されるように軸線方向に力が加えられている。
 ソレノイド26cは、係合ピン26を移動させるアクチュエータである。ソレノイド26cは、モータ23のハウジング又は減速機21のハウジング等、回転体25と連動して回転しない部分に支持されている。ソレノイド26cは、ON状態により規制位置に保持されている係合ピン26を開放位置に移動させるように配置されている。
 このように構成されるブレーキ機構24は、ソレノイド26cによって係合ピン26の位置を前記開放位置から前記規制位置に切り替えることで、回転体25が回転可能な角度範囲である回転角度範囲を規制するように構成されている。ブレーキ機構24では、係合ピン26が前記規制位置に位置する場合、係合ピン26の接触部26aが回転体25の隣り合う係合部25aの間に位置する。
 これにより、ブレーキ機構24は、回転体25の回転角度範囲を、或る係合部25aが係合ピン26の接触部26aに接触する位置から、前記或る係合部25aと隣り合う他の係合部25aが接触部26aに接触する位置までの回転角度範囲内に規制する。つまり、ブレーキ機構24は、係合ピン26の位置を前記規制位置に切り替えることで、回転体25の回転角度範囲を、第1セクションS1から第6セクションS6のいずれか一つのセクションの範囲内に規制する。ブレーキ機構24は、回転体25の回転を規制することで、回転体25が固定されているモータ23の回転軸23aの回転を規制する。
 (アブソリュートエンコーダ)
 図7に示すように、アブソリュートエンコーダ1は、モータ23における回転軸23aの機械角360度以内の回転角度を検出するためのA/B相信号と機械角の原点を検出するためのZ相信号とを生成する。
 アブソリュートエンコーダ1は、A/B相信号を生成するためのA/B相信号検出部4a、4bとA/B相信号生成用被検出部4cとを備える。また、アブソリュートエンコーダ1は、Z相信号を生成するためのZ相信号検出部5aとZ相信号生成用被検出部5bとを備える。アブソリュートエンコーダ1は、生成したA/B相信号及びZ相信号をモータ23の駆動装置27に送信する。
 A/B相信号検出部4a、4bは、例えばA相用投受光器とB相用投受光器とを含む。A/B相信号生成用被検出部4cは、例えばA相信号生成用被検出部であるA相用コードホイールとB相信号生成用被検出部であるB相用コードホイールとを兼ねるA/B相用コードホイールを含む。Z相信号検出部5aは、Z相用投受光器を含む。Z相信号生成用被検出部5bは、Z相用コードホイールを含む。
 なお、以下の説明において、A/B相信号検出部4a、4bは、A相用投受光器4a、B相用投受光器4bとして記載する。A/B相信号生成用被検出部4cは、A/B相用コードホイール4cとして記載する。Z相信号検出部5aは、Z相用投受光器5aとして記載する。Z相信号生成用被検出部5bは、Z相用コードホイール5bとして記載する。
 A相用投受光器4a、B相用投受光器4b及びZ相用投受光器5aは、それぞれ、LED発行素子等からなる投光素子とフォトダイオード等からなる受光素子とを含む。A相用投受光器4a、B相用投受光器4b及びZ相用投受光器5aは、モータ23の回転軸23aと連動して回転しない部分に支持されている。
 A/B相用コードホイール4c及びZ相用コードホイール5bは、回転板6に設けられている。回転板6は、ブレーキ機構24の回転体25の表面に設けられている。また、回転板6は、A/B相用コードホイール4c及びZ相用コードホイール5bの中心が回転体25の回転中心と一致するように回転体25に配置されている。つまり、A/B相用コードホイール4cとZ相用コードホイール5bとは、モータ23の回転軸23aの軸心を回転中心として回転軸23aと一体に回転する。
 A相用投受光器4aは、A/B相用コードホイール4cに投光可能かつ、A/B相用コードホイール4cからの反射光を受光可能な位置に設けられている。B相用投受光器4bは、A相用投受光器4aの位置と異なる位置であって、A/B相用コードホイール4cに投光可能かつ、A/B相用コードホイール4cからの反射光を受光可能な位置に設けられている。
 これにより、A相用投受光器4aは、A/B相用コードホイール4cの反射面で反射した光を受光することで、A相信号を生成することができる。同様に、B相用投受光器4bは、A/B相用コードホイール4cの反射面で反射した光を受光することで、B相信号を生成することができる。A相用投受光器4aとB相用投受光器4bとは、出力部である出力端子1aから配線を介してA相信号またはB相信号を駆動装置27に送信することができる。
 Z相用投受光器5aは、Z相用コードホイール5bに投光可能かつ、Z相用コードホイール5bからの反射光を受光可能な位置に設けられている。これにより、Z相用投受光器5aは、Z相用コードホイール5bの反射面で反射した光を受光することでZ相用コードホイール5bからZ相信号を生成することができる。Z相用投受光器5aは、出力部である出力端子1aから配線を介してZ相信号を駆動装置27に送信することができる。
 A/B相用コードホイール4c及びZ相用コードホイール5bは、それぞれ、投光素子からの光を反射する複数の反射面と投光素子からの光を吸収する複数の非反射面とを含む。
 A/B相用コードホイール4cは、複数の前記反射面と複数の前記非反射面とが等間隔で交互に並んだコード列が円環状に配置されている。本実施形態において、A/B相用コードホイール4cは、例えば機械角360度の範囲に反射面が360面形成されている。つまり、アブソリュートエンコーダ1は、回転板6が機械角360度回転することで、A相信号とB相信号とをそれぞれ360個生成することができる。また、生成されるA相信号とB相信号とは、全て同じ形状、且つ同じ間隔の信号波形である。
 Z相用コードホイール5bは、複数の前記反射面と複数の前記非反射面とが異なる間隔で交互に並んだコード列が円環状に配置されている。また、Z相用コードホイール5bは、A/B相用コードホイール4cの反射面の数よりも少ない数の反射面が配置されている。A/B相用コードホイール4cとZ相用コードホイール5bとは、回転板6上で同心円状に配置されている。
 本実施形態において、Z相用コードホイール5bは、機械角360度の範囲に反射面が全て異なる間隔で12面形成されている。つまり、アブソリュートエンコーダ1は、例えば回転板6が機械角360度回転することで、反射面によって第1Z相信号Z1から順に第12Z相信号Z12までの12個のZ相信号を生成することができる。(図8参照)。
 このように構成されるアブソリュートエンコーダ1は、A相用投受光器4a及びB相用投受光器4bとA/B相用コードホイール4cとによって検出したA/B相信号から回転板6と一体に回転する回転軸23aの機械角360度以内の回転角度を取得することができる。また、アブソリュートエンコーダ1は、Z相用投受光器5aとZ相用コードホイール5bとによって検出したZ相信号からモータ23の回転軸23aの機械角360度以内の原点となる基準を取得することができる。
 本実施形態において、機械角は、Z相用コードホイール5bの反射面5aを基準としたZ相用投受光器5aまでの角度とする。機械角360度以内の回転角度である機械角θzは、反射面5aで生成されたZ相信号における信号波形の立ち上がりから任意のA相信号における信号波形の立ち上がり(Z相用投受光器5aの位置)までの回転角度である。
 アブソリュートエンコーダ1は、モータ23の回転軸23a及び回転体25と一体に回転するA/B相用コードホイール4cにA相用投受光器4a及びB相用投受光器4bからLED光等を投光するとともに、A/B相用コードホイール4cからの反射光を受光する。同様に、アブソリュートエンコーダ1は、Z相用コードホイール5bにZ相用投受光器5aからLED光等を投光するとともに、Z相用コードホイール5bからの反射光を受光する。
 アブソリュートエンコーダ1は、A/B相用コードホイール4c、Z相用コードホイール5bからの反射光を受光すると、受光している間だけA相信号、B相信号及びZ相信号を生成する。アブソリュートエンコーダ1は、生成したA相信号、B相信号及びZ相信号を出力端子1aからモータ23の駆動装置27に送信する。
 (回転体とアブソリュートエンコーダの位置関係)
 次に、図8と図9とを用いて、アブソリュートエンコーダ1のA/B相用コードホイール4c及びZ相用コードホイール5bとブレーキ機構24の回転体25との位置関係について詳細に説明する。図8は、本発明の実施形態に係るA/B相信号の信号波形とZ相信号の信号波形を表す模式図である。図9は、本発明の実施形態に係るアブソリュートエンコーダ1と回転体25との位置関係を表す平面図である。なお、図9において、Z相用コードホイール5bの反射面には、対応するZ相信号の符号を便宜的に付してある。
 以下の実施形態において、A/B相信号は、全て同じ形状、且つ同じ間隔の信号波形とする。また、Z相信号の信号波形は、A/B相信号と同じ形状の信号波形とする。また、アブソリュートエンコーダ1は、Z相用コードホイール5bの反射面のエッジとA/B相用コードホイール4cの反射面のエッジが一致するように配置されている。つまり、アブソリュートエンコーダ1は、Z相信号とA/B相信号とを同じタイミングで生成するものとする。
 図8に示すように、A/B相用コードホイール4c(図9参照)に基づいて生成されるA相信号とB相信号とは、それぞれ信号波形の立ち上がりから立ち下がりまでの間隔が全て同じである。また、A相信号とB相信号とは、それぞれ隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て同じである。また、A相信号とB相信号とは、それぞれ隣り合う信号波形の立ち下がりから立ち下がりまでの間隔が全て同じである。また、A相信号とB相信号とは、それぞれ隣り合う信号波形の立ち下がりから立ち上がりまでの間隔が全て同じである。
 一方、A相信号とB相信号とは、A相用投受光器4aとB相用投受光器4bの位置が異なるため信号波形の位相がずれている。これにより、A相信号とB相信号とは、回転体の回転方向によって信号波形の位相差が異なる。つまり、B相信号は、A/B相用コードホイール4cの回転方向を判別する信号である。
 Z相用コードホイール5b(図9参照)に基づいて生成されるZ相信号は、信号波形の立ち上がりから立ち下がりまでの間隔が全て同じである。また、Z相信号は、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔Gbが全て異なる。また、Z相信号は、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔Gcが全て異なる。また、Z相信号は、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔Gdが全て異なる。
 このように構成されるアブソリュートエンコーダ1は、機械角360度の回転で生成するA/B相信号のパルス数(360パルス)よりも少ないパルス数(12パルス)のZ相信号を生成する。従って、隣り合うZ相信号における信号波形の間隔Gb、Gc、Gdは、A/B相信号のパルス数で表現することができる。
 アブソリュートエンコーダ1は、Z相信号における信号波形の立ち上がりから立ち下がりまでの間隔の全てにおいて、同じパルス数のA/B相信号を生成する。また、アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の間隔Gbの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の間隔Gcの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1は、全ての隣り合うZ相信号における信号波形の間隔Gdの全てにおいて、異なるパルス数のA/B相信号を生成する。
 なお、本実施形態におけるアブソリュートエンコーダ1は、全て同じ形状の信号波形からなるZ相信号を生成する。従って、アブソリュートエンコータ1は、隣り合うZ相信号の信号波形において、間隔Gbと間隔Gcとで同じパルス数のA/B相信号を生成する。
 この際、Z相信号は、全ての隣り合う信号波形の間隔Gbでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に収まるように生成される。Z相信号は、前記中央値と最も小さい間隔GbでのA/B相信号のパルス数との差、及び前記中央値と最も大きい間隔GbでのA/B相信号のパルス数との差が前記中央値の半分よりも小さくなるように生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の間隔Gcでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に収まるように生成される。Z相信号は、前記中央値と最も小さい間隔GcでのA/B相信号のパルス数との差、及び中央値と最も大きい間隔GcでのA/B相信号のパルス数との差が前記中央値の半分よりも小さい間隔で生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の間隔Gdでそれぞれ生成されるA/B相信号のパルス数の中央値を基準とする所定の間隔内に収まるように生成される。Z相信号は、前記中央値と最も小さい間隔GdでのA/B相信号のパルス数との差、及び中央値と最も大きい間隔GdでのA/B相信号のパルス数との差が前記中央値の半分よりも小さい間隔で生成される。
 図9に示すように、本実施形態において、アブソリュートエンコーダ1は、第1Z相信号Z1における信号波形の立ち下がりから、Z相用投受光器5aからみて時計回り方向に隣り合う第2Z相信号Z2における信号波形の立ち上がりまでの間隔である第1間隔Gd1(以下、隣り合う第nZ相信号と第(n+1)Z相信号とにおける信号波形の間隔Gdを単に「第n間隔Gdn」と記す)においてA/B相信号を24パルス生成する。
 同様に、アブソリュートエンコーダ1は、第2間隔Gd2においてA/B相信号を31パルス生成し、第3間隔Gd3においてA/B相信号を29パルス生成し、第4間隔Gd4においてA/B相信号を32パルス生成し、第5間隔Gd5においてA/B相信号を28パルス生成し、第6間隔Gd6においてA/B相信号を33パルス生成し、第7間隔Gd7においてA/B相信号を27パルス生成し、第8間隔Gd8においてA/B相信号を34パルス生成し、第9間隔Gd9においてA/B相信号を26パルス生成し、第10間隔Gd10においてA/B相信号を35パルス生成し、第11間隔Gd11においてA/B相信号を25パルス生成し、第12間隔Gd12においてA/B相信号を36パルス生成する。
 第1間隔Gd1から第12間隔Gd12で生成されるA/B相信号のパルス数の中央値は、第3間隔Gd3の29パルスである。また、第1間隔Gd1から第12間隔Gd12における最も小さい間隔のA/B相信号のパルス数は、第1間隔Gd1の24パルスである。また、第1間隔Gd1から第12間隔Gd12における最も大きい間隔のA/B相信号のパルス数は、第12間隔Gd12の36パルスである。
 第1Z相信号Z1から第12Z相信号Z12は、各間隔のA/B相信号のパルス数の中央値29パルスと最も小さい間隔でのA/B相信号のパルス数24パルスとの差が5パルスになるように生成されている。また、第1Z相信号Z1から第12Z相信号Z12は、各間隔のA/B相信号のパルス数の中央値29パルスと最も大きい間隔のA/B相信号のパルス数36パルスとの差が7パルスになるように生成されている。従って、第1Z相信号Z1から第12Z相信号Z12は、中央値と最も小さい間隔の差、及び中央値と最も大きい間隔の差が中央値の半分の14.5パルスよりも小さくなるように生成されている。
 このように、アブソリュートエンコーダ1は、隣り合うZ相信号における信号波形の第1間隔Gd1から第12間隔Gd12で生成するA/B相信号のパルス数が全て異なるように構成されている。また、アブソリュートエンコーダ1は、第1間隔Gd1から第12間隔Gd12でのA/B相信号の各パルス数において、中央値よりも小さいパルス数のばらつきと、中央値よりも大きいパルス数のばらつきとが、それぞれ中央値を基準とする一定の範囲内に収まるように構成されている。つまり、アブソリュートエンコーダ1は、隣り合うZ相信号の間隔がほぼ等間隔に近い状態で、全ての間隔が異なるようにZ相信号を生成する。
 A/B相用コードホイール4cとZ相用コードホイール5bが設けられている回転板6は、回転体25の全ての各セクションの範囲内で2個のZ相信号が生成されるように、回転体25に配置されている。本実施形態において、回転板6は、回転体25の第1セクションS1の範囲内で第1Z相信号Z1と第2Z相信号Z2とが生成されるように、回転体25に配置されている。
 これにより、アブソリュートエンコータ1は、回転体25の第1セクションS1の範囲内で第1Z相信号Z1と第2Z相信号Z2とを生成し、第2セクションS2の範囲内で第3Z相信号Z3と第4Z相信号Z4とを生成し、第3セクションS3の範囲内で第5Z相信号Z5と第6Z相信号Z6とを生成し、第4セクションS4の範囲内で第7Z相信号Z7と第8Z相信号Z8とを生成し、第5セクションS5の範囲内で第9Z相信号Z9と第10Z相信号Z10とを生成し、第6セクションS6の範囲内で第11Z相信号Z11と第12Z相信号Z12とを生成する。
 回転体25の第1セクションS1には、Z相信号の第1間隔Gd1が含まれる。回転体25の第2セクションS2には、Z相信号の第3間隔Gd3が含まれる。回転体25の第3セクションS3には、Z相信号の第5隙間Gd5が含まれる。回転体25の第4セクションS4には、Z相信号の第7隙間Gd7が含まれる。回転体25の第5セクションS5には、Z相信号の第9隙間Gd9が含まれる。回転体25の第6セクションS6には、Z相信号の第11隙間Gd11が含まれる。
 さらに、回転体25の第1セクションS1と第2セクションS2とには、それぞれZ相信号の第2隙間Gd2が含まれる。回転体25の第2セクションS2と第3セクションS3とには、それぞれZ相信号の第4隙間Gd4が含まれる。回転体25の第3セクションS3と第4セクションS4とには、それぞれZ相信号の第6隙間Gd6が含まれる。回転体25の第4セクションS4と第5セクションS5とには、それぞれZ相信号の第8隙間Gd8が含まれる。回転体25の第5セクションS5と第6セクションS6とには、それぞれZ相信号の第10隙間Gd10が含まれる。回転体25の第6セクションS6と第1セクションS1とには、それぞれZ相信号の第12隙間Gd12が含まれる。
 (連続回転時の回転角度検出)
 次に、図10から図12を用いて、駆動装置27によるモータユニットMのアブソリュートエンコーダ1を用いた回転軸23aの機械角360度以内の回転角度の検出について説明する。図10は、Z相信号における信号波形の立ち下がりから立ち上がりの間隔GdにおけるA相信号のパルス数Pdの関係を表すグラフである。図11は、発明の実施形態に係るアクチュエータ22がロックされている状態で回転角度を検出する際の作動状態を表す平面図である。図12は、本発明の実施形態に係るアクチュエータ22がロックされている状態で検出するA相信号とZ相信号との関係を表す模式図である。
 駆動装置27(図4参照)は、モータ23に対するA相用投受光器4a、B相用投受光器4b及びZ相用投受光器5aの位置を記憶している。また、駆動装置27は、Z相信号の第1間隔Gd1から第12間隔Gd12におけるA相信号のパルス数を記憶している(図9参照)。つまり、駆動装置27は、第1Z相信号Z1が生成された際のA相信号を基準として、第1Z相信号Z1から第12Z相信号Z12におけるA相信号のパルス数を記憶している。
 駆動装置27は、回転板6(回転体25)が反時計回りに回転する場合、A相信号、B相信号及びZ相信号のパルス数をカウントアップ(加算)し、回転板6(回転体25)が反時計回りに回転する場合、A相信号、B相信号及びZ相信号のパルス数をカウントダウン(減算)するものとする。なお、以下の説明において、A/B相信号については、A相信号を中心に説明を行う。
 図10に示すように、モータユニットMのモータ23が反時計回りに連続回転している場合、駆動装置27は、アブソリュートエンコーダ1から任意のZ相信号Za、Zb、Zc、Zd・・・を取得する。また、駆動装置27は、取得したA相信号、B相信号及びZ相信号をカウントアップする。駆動装置27は、任意のZ相信号Zcにおける信号波形の立ち下がりから次に取得したZ相信号Zdにおける信号波形の立ち上がりまでの間隔GdcにおけるA相信号のパルス数Pdを算出する。
 駆動装置27は、算出したA相信号のパルス数Pdが、予め記憶しているZ相信号の第1間隔Gd1から第12間隔Gd12のそれぞれにおけるA相信号のパルス数のいずれに等しいか判断する。駆動装置27は、算出したパルス数と等しいパルス数の間隔から、任意のZ相信号Zcと次に取得したZ相信号Zdとを特定する。
 駆動装置27は、特定したZ相信号Zd(Z相用投受光器5aの位置)から機械角360度以内の機械角の原点である第1Z相信号Z1までの機械角θzを、Z相信号Zdを取得した時点での回転軸23aの回転角として算出する(図7参照)。駆動装置27は、Z相信号Zdを取得した時点からのA相信号のパルス数をカウントすることで、実時間における回転軸23aの機械角360度以内の回転角度を検出する。
 駆動装置27は、順次取得するZ相信号のうち隣り合うZ相信号における信号波形の立ち下がりから立ち上がりまでの間隔GdにおけるA相信号のパルス数に基づいて回転軸23aの機械角360度以内の回転角度を定期的に算出する。
 本実施形態において、駆動装置27は、任意のタイミングで取得したZ相信号Zcにおける信号波形の立ち下がりから次に取得したZ相信号Zdにおける信号波形の立ち上がりまでの間隔GdcにおけるA相信号のパルス数Pdが32パルスである場合、第4間隔Gd4において生成されるパルス数に等しいと判断する。これにより、駆動装置27は、Z相信号ZcとZ相信号Zdとが、第4間隔Gd4を構成する第4Z信号と第5Z信号であると特定する。
 駆動装置27は、第5Z信号から第1Z相信号Z1までの機械角θzを、第5Z信号を取得した時点での回転角として算出する。駆動装置27は、第5Z信号を取得した時点からのA相信号のパルス数をカウントすることで、実時間における回転軸23aの機械角360度以内の回転角度を検出する。
 上述のアブソリュートエンコーダ1が接続された駆動装置27は、隣り合うZ相信号における信号波形の立ち下がりから立ち上がりまでの全ての間隔Gdで生成されるA相信号のパルス数を記憶している。従って、駆動装置27は、隣り合うZ相信号の信号波形の立ち下がりから立ち上がりまでの間隔Gdで生成されるA相信号のパルス数と位相とをカウントすることで、第1Z相信号Z1から第12Z相信号Z12を基準とする回転軸23aの機械角360度以内の回転角度を取得することができる。これにより、駆動装置27は、エンコーダ専用のICを追加することなく、モータ23の回転軸23aの回転角を取得する処理を簡易かつ高精度にすることができる。
 アブソリュートエンコーダ1は、立ち下がりから立ち上がりまでの全ての間隔Gdで生成されるA相信号のパルス数において、パルス数の中央値よりも小さいパルス数のばらつきと、中央値よりも大きいパルス数のばらつきとが、それぞれ中央値を基準とする一定の範囲内に収まるように構成されている。このため、アブソリュートエンコーダ1は、一定の回転速度においてほぼ等間隔でZ相信号を生成する。従って、駆動装置27は、Z相信号を取得した際に実施する回転角を算出する割り込み処理の時間間隔が一定の範囲内に収まるので、回転角を算出する各処理の平準化を図ることができる。
 これにより、アブソリュートエンコーダ1は、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上させることができる。例えば、駆動装置27は、アブソリュートエンコーダ1からの信号処理の負荷を低減することで、最大処理性能を抑制することができる。また、駆動装置27は、アブソリュートエンコーダ1からの信号処理の負荷が低減することで他の処理を実行することができる。
 (起動時の回転角度検出)
 図11に示すように、モータユニットのモータ23(図4参照)に電流が供給されていない場合、又はモータ23がトルクを出力していない場合、回転体25は、規制位置に切り替えられた係合ピン26によって回転可能な範囲である回転角度範囲が制限されている。この際、回転体25は、セクションを構成している一の係合部25aが係合ピン26の接触部26aに接触する位置からセクションを構成している他の係合部25aが係合ピン26の接触部26aに接触する位置までの角度θの範囲だけ回転可能な状態である。
 モータ23(図3参照)に電流の供給を開始する場合、駆動装置27は、モータ23の回転角を検出するために、係合ピン26を規制位置に切り替えた状態で、モータ23を反時計回り(CCW矢印参照)と時計回り(CW矢印参照)に交互に回転させる。この際、駆動装置27は、A相信号のパルス数をゼロにリセットしてから反時計回りと時計回りとに回転させる。駆動装置27は、出力電流値、回転角度等から、回転体25の係合部25aが係合ピン26に接触したと判断すると、モータ23を逆の方向に回転させる。駆動装置27は、回転体25のセクション内において、回転体25の係合部25aと係合ピン26との接触を検出する度にモータ23を回転させる。
 アブソリュートエンコーダ1は、回転軸23aの反時計回り方向と時計回り方向の回転に伴ってA相信号及びZ相信号を生成しつつ、駆動装置27に送信する。
 駆動装置27は、取得したA相信号及びZ相信号のパルス数をカウントする。駆動装置27は、反時計回りの回転時においてA相信号のパルス数をカウントアップし、時計回りの回転時においてA相信号のパルス数をカウントダウンする。
 図11と図12とに示すように、駆動装置27は、複数回の反時計回り(CCW)方向の回転と時計回り(CW)方向の回転において、一方向の回転毎に生成される2個のZ相信号における信号波形の各立ち上がりのタイミングでのA相信号のパルス数(以下、単に「立ち上がりパルス数」と記す)を取得する。
 例えば駆動装置27は、任意のセクション内の任意の回転角度でのA相信号のパルス数を0として、係合ピン26が回転体25の一の係合部25aに接触するまでモータ23を反時計回りに回転させる(図11の矢印CCW、図12の矢印A1参照)。駆動装置27は、生成されるA相信号のパルスをカウントアップする。駆動装置27は、回転体25の一の係合部25aと係合ピン26との接触を検出すると、モータ23を停止させる。同時に、駆動装置27は、A相信号のカウントアップをパルス数P1の時点で停止する。
 次に、駆動装置27は、係合ピン26が回転体25の他の係合部25aに接触するまでモータ23を時計回りに回転させる(図11の矢印CW、図12の矢印A2参照)。駆動装置27は、生成されるA相信号のパルスに応じてパルス数P1からカウントダウンする。駆動装置27は、Z相信号を取得すると、立ち上がりパルス数としてパルス数P2、パルス数P4を記憶する。駆動装置27は、回転体25の他の係合部25aと係合ピン26との接触を検出すると、モータ23を停止させる。同時に、駆動装置27は、A相信号のカウントダウンをパルス数P6の時点で停止する。
 次に、駆動装置27は、係合ピン26が回転体25の一の係合部25aに接触するまでモータ23を反時計回りに回転させる(図11の矢印CCW、図12の矢印A3参照)。駆動装置27は、生成されるA相信号のパルスに応じてパルス数P6からカウントアップする。駆動装置27は、Z相信号を取得すると、立ち上がりパルス数としてパルス数P5、パルス数P3を記憶する。駆動装置27は、回転体25の一の係合部25aと係合ピン26との接触を検出すると、モータ23を停止させる。同時に、駆動装置27は、A相信号のカウントアップをパルス数P1の時点で停止する。
 駆動装置27は、求めた立ち上がりパルス数の最大値であるパルス数P2と最小値であるパルス数P5との平均値を算出する。次に、駆動装置27は、立ち上がりパルス数の平均値よりも小さい立ち上がりパルス数のうち最大の立ち上がりパルス数であるパルス数P4と、立ち上がりパルス数の平均値よりも大きい立ち上がりパルス数のうち最小の立ち上がりパルス数であるパルス数P3との差を算出する。
 駆動装置27は、算出した立ち上がりパルス数の差が、予め記憶しているZ相信号の第1間隔Gd1から第12間隔Gd12のそれぞれにおけるA相信号のパルス数のいずれに等しいか判定する。駆動装置27は、等しいと判定したZ相信号の隙間から係合ピン26が係合されている回転体25のセクションを特定する。
 本実施形態において、駆動装置27は、モータ23を反時計回りに回転させる。駆動装置27は、回転体25の一の係合部25aと係合ピン26との接触を検出すると、A相信号をパルス数P1である8パルスまでカウントアップした時点でモータ23を停止させる。
 次に、駆動装置27は、モータ23を時計回りに回転させる。駆動装置27は、パルス数P1である8パルスからカウントダウンする。駆動装置27は、立ち上がりパルス数であるパルス数P2として-2パルス、立ち上がりパルス数であるパルス数P4として-32パルスを取得する。駆動装置27は、回転体25の他の係合部25aと係合ピン26との接触を検出すると、A相信号をパルス数P6である-43パルスまでカウントダウンした時点でモータ23を停止させる。
 次に、駆動装置27は、モータ23を反時計回りに回転させる。駆動装置27は、パルス数P6であるー43パルスからカウントアップする。駆動装置27は、立ち上がりパルス数であるパルス数P5として-33パルス、立ち上がりパルスであるパルス数P3として-3パルスを取得する。駆動装置27は、回転体25の一の係合部25aと係合ピン26との接触を検出すると、A相信号をパルス数P1である8パルスまでカウントアップした時点でモータ23を停止させる。
 駆動装置27は、求めた立ち上がりパルス数の最大値である-2パルスと最小値である-33パルスとの平均値である-17.5パルスを算出する。次に、駆動装置27は、立ち上がりパルス数の平均値よりも小さい立ち上がりパルス数のうち最大の立ち上がりパルス数である-32パルスと、立ち上がりパルス数の平均値よりも大きい立ち上がりパルス数のうち最小の立ち上がりパルス数である-3パルスとの差である29パルスを算出する。
 駆動装置27は、算出した立ち上がりパルス数の差から第3間隔Gd3で生成されるパルス数に等しいと判定する。駆動装置27は、係合ピン26が係合されているセクションが第3間隔Gd3を含む第2セクションS2であると特定する。
 上述の構成では、アクチュエータ22は、係合部25aを有する回転体25によってモータ23の回転角度範囲を制限するブレーキ機構24(図5、図6参照)を備える。アブソリュートエンコーダ1は、Z相用投受光器5aが回転体25の隣り合う係合部25a間で複数のZ相信号を生成するように配置されている。これにより、アブソリュートエンコーダ1は、回転体25の各セクションにおいてそれぞれ異なる間隔でZ相信号を生成する。
 また、アクチュエータ22は、アブソリュートエンコーダ1のA/B相用コードホイール4c及びZ相用コードホイール5bがブレーキ機構24の回転体25と一体に回転する。これにより、駆動装置27は、回転体25のセクション毎に異なる間隔で生成された隣り合うZ相信号に基づいてA相信号のパルス数をカウントすることで回転体25の機械角360度以内の回転角度を算出することができる。これにより、アクチュエータ22は、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上することができる。
 上述の構成では、アクチュエータ22は、係合ピン26によって回転角度範囲が第1セクションS1から第6セクションS6いずれかに制限されている。駆動装置27は、いずれかのセクション内で回転体25を時計回りと反時計回りに複数回、往復回転させる。駆動装置27は、Z相用コードホイール5bの中心角度θの範囲(図11参照)をZ相用投受光器5aが複数回通過することで、アブソリュートエンコーダ1から間隔Gb、間隔Gc又は間隔GdにおけるA相信号のパルス数を確実に取得することができる。
 駆動装置27は、取得したA相信号のパルス数から、係合ピン26によって回転が制限されているセクションを特定する。これにより、アクチュエータ22は、モータ23が十分なトルクを出力していない起動直後でも回転体25の位置検出精度が向上する。従って、アクチュエータ22は、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上することができる。
 [実施形態3]
 <他のZ相信号の間隔のばらつき>
 以下に、図8と図9とを用いて、本発明の実施形態3に係るアブソリュートエンコーダ1Xについて説明する。
 図8と図9とに示すように、Z相用コードホイール5bに基づいて生成されるZ相信号は、信号波形の立ち上がりから立ち下がりまでの間隔Gaが全て同じである。また、Z相信号は、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔Gbが全て異なる。また、Z相信号は、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔Gcが全て異なる。また、Z相信号は、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔Gdが全て異なる。
 この際、Z相信号は、全ての隣り合う信号波形の立ち下がりから立ち下がりまでの間隔Gbでそれぞれ生成されるA相信号のパルス数の中央値を基準とする所定の間隔内に生成するように生成される。Z相信号は、最も大きい間隔GbでのA相信号のパルス数と最も小さい間隔GbでのA相信号のパルス数との差がA相信号のパルス数の中央値の半分よりも小さくなるように生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の立ち上がりから立ち上がりまでの間隔Gcでそれぞれ生成されるA相信号のパルス数の中央値を基準とする所定の間隔内に生成するように生成される。Z相信号は、最も大きい間隔GcでのA相信号のパルス数と最も小さい間隔GcでのA相信号のパルス数との差がA相信号のパルス数の中央値の半分よりも小さくなるように生成される。
 同様に、Z相信号は、全ての隣り合う信号波形の立ち下がりから立ち上がりまでの間隔Gdでそれぞれ生成されるA相信号のパルス数の中央値を基準とする所定の間隔内に生成するように生成される。Z相信号は、最も大きい間隔GdでのA相信号のパルス数と最も小さい間隔GdでのA相信号のパルス数との差がA相信号のパルス数の中央値の半分よりも小さくなるように生成される。
 第1Z相信号Z1から第12Z相信号Z12は、各間隔のA相信号のパルス数のうち最も大きい間隔のA相信号のパルス数36パルスと最も小さい間隔のA相信号のパルス数24パルスとの差である12パルスが中央値29パルスの半分14.5パルスよりも小さくなるように生成される。
 このようにアブソリュートエンコーダ1Xは、第1間隔Gd1から第12間隔Gd12までのA相信号のパルス数のばらつきが第1間隔Gd1から第12間隔Gd12までのA相信号のパルス数の中央値を基準とする一定の範囲内になるように構成されている。つまり、アブソリュートエンコーダ1Xは、隣り合うZ相信号の間隔がほぼ等間隔に近い状態で、全ての間隔が異なるように生成する。
 上述の構成では、アブソリュートエンコーダ1Xは、一定の回転速度において、A相信号のパルス数の中央値を基準として所定時間以上の時間間隔でZ相信号を生成する。これにより、アブソリュートエンコーダ1Xは、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上することができる。
 [実施形態4]
 <訂正部>
 以下に、図4と図13とを用いて、本発明の実施形態4に係るアブソリュートエンコーダ1Yについて説明する。図13は、本発明の他の実施形態に係るアブソリュートエンコーダ1Yによるエラー訂正の制御態様を表すフローチャートである。
 図4に示すように、アブソリュートエンコーダ1Yは、A相信号のエラーを訂正するエラー訂正部である訂正部29を有していてもよい。
 アブソリュートエンコーダ1Yの訂正部29は、A/B相用コードホイール4cやA相用投受光器4a及びB相用投受光器4bの破損や汚れによってA相信号の一部が生成できなかった場合に、回転軸23aの機械角360度以内の回転角度の訂正を行う。訂正部29は、アブソリュートエンコーダ1Yに設けられている。訂正部29は、隣り合うZ相信号における信号波形の立ち下がりから立ち上がりまでの第1間隔Gd1から第12間隔Gd12で生成されるA相信号のパルス数を全て記憶している(図8参照)。
 図13に示すように、訂正部29は、A相用投受光器4a、B相用投受光器4b及びZ相用投受光器5aからA相信号及びZ相信号を取得する(ステップS110)。さらに、訂正部29は、A相信号のカウント(積算)を開始する(ステップS120)。
 訂正部29は、次のZ相信号を取得すると(ステップS130)、その直前(ステップS110)に取得したZ相信号における信号波形の立ち上がりから今回(ステップS130)のステップで取得したZ相信号における信号波形の立ち上がりまでの間隔Gdbで取得したA相信号のパルス数Pb1を算出する(ステップS140)。
 訂正部29は、その直前の間隔Gdaで算出したA相信号のパルス数Pa1に基づいて推測される間隔Gdbのパルス数Pb2を算出する(ステップS150)。訂正部29は、算出したA相信号のパルス数Pb1が、その直前の間隔Gdaでのパルス数Pa1から推測される間隔Gdbのパルス数Pb2に一致しているか否か判定する(ステップS160)。
 訂正部29は、算出したA相信号のパルス数Pb1が、推測されるA相信号のパルス数Pb2と一致している場合、A/B相用コードホイール4cにおける間隔Gdbに該当する部分についてエラーが生じていないと判定し、訂正を行わない(ステップS170)。
 訂正部29は、算出したA相信号のパルス数Pb1が、その直前の間隔Gdaで算出したA相信号のパルス数Pa1から推測される間隔Gdbのパルス数Pb2に一致していない場合、A/B相用コードホイール4cにおける間隔Gbbに該当する部分においてエラーが生じていると判定する(ステップS171)。訂正部29は、算出したパルス数Pb1を、直前の間隔Gdaで算出したA相信号のパルス数Pa1から推測されるパルス数Pb2に変更する訂正を実施する。
 本実施形態において、アブソリュートエンコーダ1Yは、例えば、第7Z相信号Z7と第8Z相信号Z8との間隔である第7間隔Gd7においてA/B相信号を27パルス生成し、第8Z相信号Z8と第9Z相信号Z9との間隔である第8間隔Gd8においてA/B相信号を33パルス生成すると仮定する。第7間隔Gd7で生成したパルス数が正しいパルス数である場合、訂正部29は、第8間隔Gd8で生成されたパルス数である33パルスが、記憶している第8間隔Gd8の正しいパルス数である34パルスでない(エラーである)と判定する。訂正部29は、第8間隔Gd8で生成されたパルス数を34パルスに訂正する。
 このように、アブソリュートエンコーダ1Yは、全て異なる間隔でZ相信号を生成することで、隣接するZ相信号の間隔で生成されるA相信号のパルス数の関係が予め定められている。従って、アブソリュートエンコーダ1Yは、特定のZ相信号の間隔でA相信号の一部が生成できないエラーが生じても、訂正部29によって隣接するZ相信号の間隔で生成されたA相信号のパルス数からエラーが生じた特定のZ相信号の間隔のA相信号を推測する。これにより、アブソリュートエンコーダ1Yは、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上することができる。
 [実施形態5]
 <異常検出部>
 以下に、図4と図14とを用いて、本発明の実施形態5に係るアブソリュートエンコーダ1について説明する。図14は、本発明の他の実施形態に係るアクチュエータ22によるアブソリュートエンコーダ1の異常検知の制御態様を表すフローチャートである。
 図4に示すように、アクチュエータ22の異常検出部30は、アクチュエータ22の一部であるモータ23の駆動装置27に設けられている。異常検出部30は、磁束オブザーバを有している。磁束オブザーバとは、モータ23に印可される電圧と電流とから、モータ23の内部磁束等の状態を算出し、モータ23における回転軸23a(ロータ)の速度又は電気角を推定する数理モデルである。異常検出部30は、アブソリュートエンコーダ1からA相信号とZ相信号とを取得することができる。
 図14に示すように、異常検出部30は、アブソリュートエンコーダ1からA相信号とZ相信号とを取得する(ステップS210)。異常検出部30は、取得したA相信号とZ相信号とに基づいて回転軸23aの電気角θxを算出する(ステップS220)。
 次に、異常検出部30は、磁束オブザーバで回転軸23aの電気角θyを推定する(ステップS230)。
 異常検出部30は、アブソリュートエンコーダ1のA相信号及びZ相信号から算出した電気角θxと磁束オブザーバで推定した電気角θyとを比較する。異常検出部30は、電気角θxと電気角θyとの差異(|θx-θy|)が基準値θs以下の場合、A/B相用コードホイール4c及びZ相用コードホイール5bに異常は生じていないと判定する(ステップS250)。
 一方、異常検出部30は、電気角θxと電気角θyとの差異(|θx-θy|)が基準値θsよりも大きい場合、回転体25の塑性変形等の変形により、A/B相用コードホイール4c及びZ相用コードホイール5bにひずみが生じ、A相信号及びZ相信号の生成に異常が発生していると判定する(ステップS251)。
 これにより、駆動装置27は、アブソリュートエンコーダ1の異常を速やかに検出することができるので、駆動装置27の処理負荷を低減して駆動装置27のハードウェアリソースの設計自由度を向上することができる。
 [実施形態6]
 <他のZ相信号の信号波形>
 以下に、図15を用いて、本発明の実施形態5に係るアブソリュートエンコーダ1Zについて説明する。図15は、本発明の他の実施形態に係るA/B相信号の信号波形とZ相信号の信号波形を表す模式図である。
 図15に示すように、アブソリュートエンコーダ1Zは、Z相信号における信号波形の立ち上がりから立ち下がりまでの間隔Gaが全て異なるようにZ相信号を生成する。従って、アブソリュートエンコーダ1Zは、隣り合うZ相信号における信号波形の立ち上がりから立ち下がりまでの間隔Gaの全てにおいて、異なるパルス数のA/B相信号を生成する。
 同様に、アブソリュートエンコーダ1Zは、隣り合うZ相信号における信号波形の立ち下がりから立ち下がりまでの間隔Gbの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1Zは、隣り合うZ相信号における信号波形の立ち上がりから立ち上がりまでの間隔Gcの全てにおいて、異なるパルス数のA/B相信号を生成する。同様に、アブソリュートエンコーダ1Zは、隣り合うZ相信号における信号波形の立ち下がりから立ち上がりまでの間隔Gdの全てにおいて、異なるパルス数のA/B相信号を生成する。
 Z相信号における信号波形の立ち上がりから立ち下がりまでの間隔Gaが全て異なる場合、駆動装置27は、一つのZ相信号における信号波形の立ち上がりと立ち下がりの両方で割り込み処理を発生させることができる。これにより、駆動装置27は、回転軸23aの1回転中における回転角の検出機会を増やすことができる。一方、駆動装置27は、一つのZ相信号における信号波形の立ち上がりもしくは立ち下がりの一方に割り込み処理を発生させることで計算負荷を抑えることができる。
 (その他の実施形態)
 なお、上述の全ての実施形態において、6軸の垂直多関節ロボットアームである多関節ロボットアーム8は、一例としてS軸回転関節10、L軸回転関節12、U軸回転関節14、R軸回転関節16、B軸回転関節18及びT軸回転関節20がそれぞれリンクによって直列に連結されているが、これに限定されない。多関節ロボットアーム8は、各軸のモータユニットMの連結順、連結される際の軸線方向等は、多関節ロボットアームとして成立する構造であればよい。
 また、上述の全ての実施形態において、モータユニットMは、多関節ロボットアーム8の各軸の回転関節として設けられている。しかしながら、モータユニットMの構成は、上述の実施形態の構成に限定されない。例えば、モータユニットMは、XYテーブルや垂直搬送装置等、位置制御が必要な装置等に適用してもよい。また、モータユニットMは、アクチュエータ22のみの構成でもよい。
 また、上述の全ての実施形態において、アクチュエータ22は、モータ23、ブレーキ機構24、アブソリュートエンコーダ及び駆動装置27が多関節ロボットアーム8の筐体11、筐体15、筐体19内にそれぞれ設けられている機電一体構造として構成されている。しかしながら、アクチュエータの構成は、上述の実施形態の構成に限定されない。例えば、アクチュエータ22は、駆動装置27が多関節ロボットアーム8の筐体11、筐体15、筐体19の外部に設けられてもよい。
 また、上述の全ての実施形態において、アブソリュートエンコーダは、反射型の光学式アブソリュートエンコーダである。しかしながら、アブソリュートエンコーダの構成は、上述の実施形態の構成に限定されない。例えば、アブソリュートエンコーダは、透過型の光学式アブソリュートエンコーダ、磁気式アブソリュートエンコーダ又は電磁誘導式アブソリュートエンコーダ等でもよい。
 また、上述の全ての実施形態において、アブソリュートエンコーダは、機械角360度につきA/B相信号を360パルス生成する。しかしながら、アブソリュートエンコーダの構成は、上述の実施形態の構成に限定されない。例えば、アブソリュートエンコーダは、必要な回転精度を確保するために必要なパルス数を生成する構成であればよい。
 また、上述の全ての実施形態において、アブソリュートエンコーダは、機械角360度につきZ相信号が12パルス生成する。しかしながら、モータユニットの構成は、上述の実施形態の構成に限定されない。例えば、アブソリュートエンコーダは、機械角360度につき2パルス以上、且つA/B相信号のパルス数未満であればよい。
 また、上述の全ての実施形態において、アブソリュートエンコーダは、全ての隣り合うZ相信号における信号波形の立ち上がり又は立ち下がりから立ち上がり又は立ち下がりまでの間隔において同一のA相信号のパルス数となる間隔が存在するようにZ相信号を生成してもよい。例えば12の間隔が6種類のパルス数で構成される場合、駆動装置27は、Z相信号を3個取得し、A相信号のパルス数を比較することでモータ23における回転軸23aの回転角を検出することができる。
 また、上述の全ての実施形態において、アブソリュートエンコーダの回転板6は、ブレーキ機構24の回転体25に設けられている。しかしながら、アブソリュートエンコーダの回転板の構成は、上述の実施形態の構成に限定されない。例えば、アブソリュートエンコーダの回転板6は、モータ23の回転軸23aに直接固定されていてもよい。
 また、上述の全ての実施形態において、ブレーキ機構24の回転体25には、係合部25aが等間隔に6ケ所形成されている。しかしながら、ブレーキ機構の回転体の構成は、上述の実施形態の構成に限定されない。例えば、ブレーキ機構24の回転体25は、複数の係合部25aが等間隔に形成されていればよい。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明は、アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータに利用可能である。
  1  アブソリュートエンコーダ
  2  A/B相信号生成部
  3  Z相信号生成部
  4a A相用投受光器
  4b B相用投受光器
  4c A/B相用コードホイール
  5a Z相用投受光器
  5bZ相用コードホイール
  6 回転板
  7 多関節ロボットアーム装置
  8 多関節ロボットアーム
 21 減速機
 22 アクチュエータ
 23 モータ
 24 ブレーキ機構
 25 回転体
 26 係合ピン
 27 駆動装置
 28 多関節ロボットアーム制御装置

Claims (9)

  1.  機械角360度以内に等間隔で複数のA相信号を生成するA相信号生成部と、
     機械角360度以内で前記A相信号よりも少ない数の複数のZ相信号を生成するZ相信号生成部と、
     前記A相信号と前記Z相信号とをコンピュータに出力可能な出力部と、を備え、被検出部材の機械角360度以内の回転角度の取得に用いられるアブソリュートエンコーダであって、
     前記Z相信号生成部は、
     複数の前記Z相信号において、
     隣り合う信号波形の立ち上がりから立ち下がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち上がりから立ち下がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、
     隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち上がりから立ち上がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、
     隣り合う信号波形の立ち下がりから立ち下がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち下がりから立ち下がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、
     隣り合う信号波形の立ち下がりから立ち上がりまでの間隔が全て異なり、且つ隣り合う信号波形の立ち下がりから立ち上がりまでの間隔の中央値と最も小さい間隔との差、及び前記中央値と最も大きい間隔との差が前記中央値の半分よりも小さい信号波形と、のうち少なくとも一つの信号波形を含むZ相信号を生成するアブソリュートエンコーダ。
  2.  請求項1に記載のアブソリュートエンコーダにおいて、
     前記Z相信号生成部は、
     複数の前記Z相信号において、
     信号波形の立ち上がりから立ち下がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち上がりから立ち下がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるようにZ相信号を生成し、
     隣り合う信号波形の立ち上がりから立ち上がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるようにZ相信号を生成し、
     隣り合う信号波形の立ち下がりから立ち下がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるようにZ相信号を生成し、
     隣り合う信号波形の立ち下がりから立ち上がりまでの間隔が全て異なる場合、隣り合う信号波形の立ち下がりから立ち上がりまでの間隔における最も小さい間隔と最も大きい間隔との差が前記中央値の半分よりも小さくなるようにZ相信号を生成する、アブソリュートエンコーダ。
  3.  請求項1または請求項2に記載のアブソリュートエンコーダにおいて、
     回転軸と一体で回転する回転板をさらに備え、
     前記A相信号生成部は、
     A相信号生成用検出部と、機械角360度以内に等間隔で前記回転板に設けられた複数のA相信号生成用被検出部とを有し、
     前記A相信号生成用検出部が前記A相信号生成用被検出部を検出することにより、A相信号を生成し、
     前記Z相信号生成部は、
     Z相信号生成用検出部と、機械角360度以内に前記A相信号生成用被検出部の数よりも少ない数で前記回転板に設けられた複数のZ相信号生成用被検出部とを有し、
     前記Z相信号生成用検出部が前記Z相信号生成用被検出部を検出することにより、Z相信号を生成する、アブソリュートエンコーダ。
  4.  請求項1から請求項3のいずれか一項に記載のアブソリュートエンコーダにおいて、
     複数の前記Z相信号において、
     信号波形の立ち上がりから立ち下がりまでの間隔、隣り合う信号波形の立ち上がりから立ち上がりまでの間隔、隣り合う信号波形の立ち下がりから立ち下がりまでの間隔または隣り合う信号波形の立ち下がりから立ち上がりまでの間隔で生成するA相信号の数からA相信号のエラー訂正を行うエラー訂正部を備える、アブソリュートエンコーダ。
  5.  請求項1から4のいずれか一項に記載のアブソリュートエンコーダを備えたアクチュエータであって、
     複数の係合部を有し、前記アブソリュートエンコーダと一体で回転する回転体を含み、
     隣り合う係合部の間で前記アブソリュートエンコーダの回転角度の範囲を制限するブレーキ機構を備え、
     前記アブソリュートエンコーダは、
     前記ブレーキ機構によって制限される回転角度範囲内に複数の前記Z相信号を生成するように構成される、アクチュエータ。
  6.  請求項5に記載のアクチュエータにおいて、
     前記アブソリュートエンコーダの前記A相信号生成部は、A相信号生成用検出部と、A相信号生成用被検出部とを備え、
     前記アブソリュートエンコーダのZ相信号生成部は、Z相信号生成用検出部と、Z相信号生成用被検出部とを備え、
     前記ブレーキ機構の前記回転体には、前記アブソリュートエンコーダの前記A相信号生成用被検出部及び前記Z相信号生成用被検出部が設けられている、アクチュエータ。
  7.  請求項5又は6に記載のアクチュエータにおいて、
     前記ブレーキ機構によって前記回転体の回転角度範囲が制限されている場合、前記Z相信号生成用検出部が前記Z相信号生成用被検出部を検出して複数の前記Z相信号を生成させるように前記回転体を制限されている回転角度範囲内で時計回りと反時計回りとに複数回、回転させるアクチュエータ。
  8.  請求項5から7のいずれか一項に記載のアクチュエータにおいて、
     前記Z相信号生成用被検出部が設けられた前記回転体の変形による前記Z相信号の異常を検出する異常検出部を備える、アクチュエータ。
  9.  請求項8に記載のアクチュエータにおいて、
     モータを含み、
     前記異常検出部は、前記Z相信号の異常を前記モータの電気角に基づいて検出する、アクチュエータ。
PCT/JP2020/001526 2020-01-17 2020-01-17 アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ WO2021144965A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/001526 WO2021144965A1 (ja) 2020-01-17 2020-01-17 アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ
PCT/JP2021/001529 WO2021145460A1 (ja) 2020-01-17 2021-01-18 アブソリュートエンコーダ
JP2021571283A JP7368507B2 (ja) 2020-01-17 2021-01-18 アブソリュートエンコーダ
US17/866,369 US20220364887A1 (en) 2020-01-17 2022-07-15 Absolute encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001526 WO2021144965A1 (ja) 2020-01-17 2020-01-17 アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ

Publications (1)

Publication Number Publication Date
WO2021144965A1 true WO2021144965A1 (ja) 2021-07-22

Family

ID=76864079

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/001526 WO2021144965A1 (ja) 2020-01-17 2020-01-17 アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ
PCT/JP2021/001529 WO2021145460A1 (ja) 2020-01-17 2021-01-18 アブソリュートエンコーダ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001529 WO2021145460A1 (ja) 2020-01-17 2021-01-18 アブソリュートエンコーダ

Country Status (3)

Country Link
US (1) US20220364887A1 (ja)
JP (1) JP7368507B2 (ja)
WO (2) WO2021144965A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289417A (ja) * 1987-05-21 1988-11-25 Hitachi Seiko Ltd パルス・エンコ−ダ
JPH1038557A (ja) * 1996-07-26 1998-02-13 Alps Electric Co Ltd 多回転体の回転角検出装置
JP2005207864A (ja) * 2004-01-22 2005-08-04 Denso Corp エンコーダ検査装置
JP2006329783A (ja) * 2005-05-25 2006-12-07 Sokkia Co Ltd インクリメンタルエンコーダ
KR100863096B1 (ko) * 2007-07-11 2008-10-13 현대자동차주식회사 조향각 검출 장치
JP2011120444A (ja) * 2009-10-29 2011-06-16 Toyota Motor Corp モータ制御装置
JP2017181235A (ja) * 2016-03-30 2017-10-05 日本電産サンキョー株式会社 モータシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474411A (en) * 1987-09-16 1989-03-20 Yamaha Corp Position detector
JPH0740269A (ja) * 1993-07-30 1995-02-10 Yamaha Motor Co Ltd 産業用ロボットの原点調整方法および同装置
CN105228799A (zh) * 2013-06-26 2016-01-06 株式会社安川电机 制动器机构、关节机构及机器人
US9300528B2 (en) 2013-12-13 2016-03-29 International Business Machines Corporation Trill network with multipath redundancy
WO2018055752A1 (ja) * 2016-09-26 2018-03-29 ヤマハ発動機株式会社 減速機付きモータ及び産業用ロボット
JP2020122659A (ja) * 2019-01-29 2020-08-13 日本電産株式会社 位置検出装置、モータシステム及び位置検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289417A (ja) * 1987-05-21 1988-11-25 Hitachi Seiko Ltd パルス・エンコ−ダ
JPH1038557A (ja) * 1996-07-26 1998-02-13 Alps Electric Co Ltd 多回転体の回転角検出装置
JP2005207864A (ja) * 2004-01-22 2005-08-04 Denso Corp エンコーダ検査装置
JP2006329783A (ja) * 2005-05-25 2006-12-07 Sokkia Co Ltd インクリメンタルエンコーダ
KR100863096B1 (ko) * 2007-07-11 2008-10-13 현대자동차주식회사 조향각 검출 장치
JP2011120444A (ja) * 2009-10-29 2011-06-16 Toyota Motor Corp モータ制御装置
JP2017181235A (ja) * 2016-03-30 2017-10-05 日本電産サンキョー株式会社 モータシステム

Also Published As

Publication number Publication date
US20220364887A1 (en) 2022-11-17
WO2021145460A1 (ja) 2021-07-22
JP7368507B2 (ja) 2023-10-24
JPWO2021145460A1 (ja) 2021-07-22

Similar Documents

Publication Publication Date Title
US9020774B2 (en) Encoder system, signal processing method, and transmission signal generation and output device
US10363658B2 (en) Angle detection method, angle detection apparatus, rotation drive apparatus, robot apparatus, and storage medium
US9151645B2 (en) Method for testing the plausability of output signals of a resolver
CN109605344B (zh) 一种多自由度开环步进串联机械臂及其控制方法
JP6578499B1 (ja) 汎用型ロータリーエンコーダ及びそれを用いたサーボモータ
CN112313789B (zh) 对准器以及对准器的修正值计算方法
JP7368584B2 (ja) トルクセンサ
WO2021144965A1 (ja) アブソリュートエンコーダ及びアブソリュートエンコーダを備えるアクチュエータ
JP2012141217A (ja) 回転センサ
JP5640732B2 (ja) エンコーダ装置、駆動装置、及びロボット装置
WO2002101914A1 (fr) Servoactionneur et dispositif de detection de position associe
JP2015132496A (ja) 磁気式エンコーダー、電気機械装置、移動体およびロボット
US10119842B1 (en) Encoder design and use
JP2014163873A (ja) 磁気式エンコーダー、電気機械装置、移動体およびロボット
JP6970727B2 (ja) 角度センサーの補正方法及び角度センサーの補正装置
CN110199177B (zh) 用于监控位置变化传感器的轨迹信号的方法和装置
TWI553297B (zh) Magnetic coding device
KR101881047B1 (ko) 복수의 절대값 엔코더를 이용한 위치 측정 시스템 및 방법
JPWO2021145460A5 (ja)
CN110945332B (zh) 扭矩传感器、致动器和机器人
US20200249055A1 (en) Position detection method, control method, manufacturing method, position detection apparatus, robot apparatus, optical device, and non-transitory recording medium
JP2014238117A (ja) 減速機内蔵アクチュエータ及びこれを備える多関節ロボット
JP2020072571A (ja) ロータリアクチュエータ、シフトバイワイヤシステム、補正装置、ロータリアクチュエータの補正方法
JP2008289361A (ja) モータ駆動装置
KR20170073351A (ko) 모터 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP