CN102054877A - 碳化硅半导体装置 - Google Patents

碳化硅半导体装置 Download PDF

Info

Publication number
CN102054877A
CN102054877A CN2010102435495A CN201010243549A CN102054877A CN 102054877 A CN102054877 A CN 102054877A CN 2010102435495 A CN2010102435495 A CN 2010102435495A CN 201010243549 A CN201010243549 A CN 201010243549A CN 102054877 A CN102054877 A CN 102054877A
Authority
CN
China
Prior art keywords
silicon carbide
carbide semiconductor
manufacturing silicon
semiconductor device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102435495A
Other languages
English (en)
Other versions
CN102054877B (zh
Inventor
樽井阳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN102054877A publication Critical patent/CN102054877A/zh
Application granted granted Critical
Publication of CN102054877B publication Critical patent/CN102054877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及碳化硅半导体装置。存在难以不增加工序数而制造抑制了特性不均的碳化硅半导体装置的问题。本发明的碳化硅半导体装置具备:作为第一导电型的碳化硅半导体衬底的N型SiC衬底(1)和N型SiC外延层(2);多个凹陷部(10),断续地形成在N型SiC外延层(2)的表面;作为第二导电型的半导体层的P型区域(5),在多个凹陷部(10)的各底面中形成于N型SiC外延层(2);以及肖特基电极(6),有选择地形成在N型SiC外延层(2)的表面上,多个凹陷部(10)的深度全部相等。

Description

碳化硅半导体装置
技术领域
本发明涉及碳化硅半导体装置,特别涉及具有使用了碳化硅的、JBS(Junction Barrier controlled Schottky diode,结势垒控制肖特基二极管)或MPS(Merged P-i-N/Schottky diode,肖特基P-i-N混合整流二极管)结构的碳化硅半导体装置。
背景技术
在碳化硅半导体装置中使用的碳化硅,与硅相比绝缘击穿电场为大约10倍,此外与硅相比具有大约宽3倍的能带隙。因此与现在使用的作为利用了硅的半导体装置的功率元件相比,使用了碳化硅的功率元件具有低电阻、能够高温工作的特征。特别是在使用了碳化硅的SBD(肖特基势垒二极管)、MOSFET,以相同的耐压的条件与现在使用的利用了硅的pn二极管、IGBT相比的情况下,工作时的损失小而被非常期待。特别是肖特基二极管的元件结构简单,正积极地进行面向实用化的开发。
肖特基二极管的课题是,在以高耐压化为目的的情况下,反偏压施加时的漏电流增大,以及通电时的损失变大。作为其对策,提出了JBS(Junction Barrier controlled Schottky diode,结势垒控制肖特基二极管)或MPS(Merged P-i-N/Schottky diode,肖特基P-i-N混合整流二极管)。这些结构的特征均是在肖特基电极下、电极端、电极周围部形成有P型的区域。
专利文献1:日本专利第3630594号
专利文献2:日本专利第3551154号
例如在专利文献1中,在肖特基电极下和电极端形成有深度、浓度不同的P型区域。在该情况下,存在为了形成不同的P型区域必须进行2次离子注入的问题。此外在专利文献2中,在肖特基电极下、电极端、周围部形成有相同深度、浓度的P型区域,但由于没有形成掩模配置时的重合标记,所以存在重合时的偏移导致特性不均变大的问题。
在现有的使用了碳化硅的JBS或MPS结构中,难以不增加工序数而制造抑制了上述那样的特性不均的碳化硅半导体装置。
发明内容
本发明正是为了解决上述问题而完成的,其目的在于提供一种碳化硅半导体装置,其能够不增加工序数而制造,并且抑制了特性不均。
本发明的碳化硅半导体装置具备:第一导电型的碳化硅半导体衬底;多个凹陷部,断续地形成在上述碳化硅半导体衬底的表面;第二导电型的半导体层,在上述多个凹陷部的各底面中形成于上述碳化硅半导体衬底;以及肖特基电极,有选择地形成在上述碳化硅半导体衬底的上述表面上,上述多个凹陷部的深度全部相等。
根据本发明的碳化硅半导体装置,通过具备:第一导电型的碳化硅半导体衬底;多个凹陷部,断续地形成在上述碳化硅半导体衬底的表面;第二导电型的半导体层,在上述多个凹陷部的各底面中形成于上述碳化硅半导体衬底;以及肖特基电极,有选择地形成在上述碳化硅半导体衬底的上述表面上,上述多个凹陷部的深度全部相等,从而能够不增加制造工序数,抑制特性不均。
附图说明
图1是表示实施方式1的碳化硅半导体装置及其制造方法的图。
图2是表示实施方式1的碳化硅半导体装置及其制造方法的图。
图3是表示实施方式2的碳化硅半导体装置及其制造方法的图。
图4是表示实施方式3的碳化硅半导体装置及其制造方法的图。
图5是表示实施方式4的碳化硅半导体装置及其制造方法的图。
图6是表示实施方式5的碳化硅半导体装置及其制造方法的图。
附图标记说明
1N型SiC衬底
2N型SiC外延层
3掩模
4定位标记
5p型区域
6肖特基电极
7欧姆电极
10凹陷部
具体实施方式
<A.实施方式1>
<A-1.结构>
图1是表示本发明的实施方式1的碳化硅半导体装置及其制造方法的图。在作为第一导电型的碳化硅半导体衬底的N+型SiC衬底1上通过外延生长形成的N型SiC的N型SiC外延层的表面中,形成有抗蚀剂或氧化膜等的掩模3(图1(a))。
通过使用该掩模3进行离子注入及干法蚀刻,从而在N型SiC外延层2的表面断续地形成多个凹陷部10。进而对该凹陷部10注入离子,在多个凹陷部10的各底面形成作为第二导电型的半导体层的P型区域5(图1(b))。此外,凹陷部10的一部分作为位置对准标记的定位标记4而使用。
最后,通过在N型SiC外延层2的表面上有选择地形成肖特基电极6,从而成为作为使用了碳化硅的JBS或MPS的结构(图1(C))。此外,在N型SiC衬底1的背面形成欧姆电极7。该结构的特征是,各凹陷部10的深度相等,此外P型区域5的深度和浓度相等。
使用同一掩模3,形成包含定位标记4的多个凹陷部10、肖特基电极6下的P型区域5、肖特基电极6周围的P型区域5,因此,不会增加制造工序数。此外,形成的P型区域5与在N型SiC外延层2的表面形成的情况相比形成在更深的区域,由此能够进一步缓和施加在肖特基电极6的电场,能够抑制反偏压施加时的漏电流、通电时的损失。
此外,通过如图2所示那样以使肖特基电极6端的位置成为凹陷部10的底面的方式对其进行形成,从而肖特基电极6端形成于凹陷部10的底面的P型区域5上(图2(b)),与在没有形成凹陷部10的N型SiC衬底1上形成的情况(图2(a))相比,缓和了电场,能够减小反偏压施加时的漏电流。
<A-2.效果>
根据本发明的实施方式1,在碳化硅半导体装置中,具备:作为第一导电型的碳化硅半导体衬底的N型SiC衬底1和N型SiC外延层2;在N型SiC外延层2的表面断续地形成的多个凹陷部10;在多个凹陷部10的各底面中形成于N型SiC外延层2的、作为第二导电型的半导体层的P型区域5;以及在N型SiC外延层2的表面上有选择地形成的肖特基电极6,多个凹陷部10的深度全部相等,由此不增加制造工序数就能够抑制碳化硅半导体装置的特性不均。
此外,根据本发明的实施方式1,在碳化硅半导体装置中,肖特基电极6在作为半导体层的P型区域5上具有端部,由此与在没有形成凹陷部10的N型SiC外延层2上形成的情况相比,能够缓和电场,使反偏压施加时的漏电流变小。
<B.实施方式2>
<B-1.结构>
图3是表示本发明的实施方式2的碳化硅半导体装置及其制造方法的图。在实施方式1的碳化硅半导体装置的制造方法中,使用同一掩模3,如图3(a)所示方式首先进行离子注入,接着进行干法蚀刻(图3(b))。通过在相对于掩模3的SiC的选择比小(SiC的蚀刻速度慢)的条件下进行干法蚀刻,从而凹陷部10的各侧面成为锥状。
通过成为锥状,与各凹陷部10具有垂直的侧面(图3(d))的情况相比,施加到肖特基电极6的电场被缓和(图3(c)),能够减小反偏压施加时的漏电流。此外由于仅在底面形成有P型区域5,所以肖特基电极6的有效面积不减小,能够抑制P型区域5的形成导致的通电时的损失增大。
<B-2.效果>
根据本发明的实施方式2,在碳化硅半导体装置中,通过多个凹陷部10的各侧面是锥状,从而与各凹陷部10具有垂直的侧面的情况相比,施加到肖特基电极6的电场被缓和,能够减小反偏压施加时的漏电流。
此外,通过仅在凹陷部10的底面形成P型区域5,从而肖特基电极6的有效面积不减小,能够抑制通电时的损失增大。
<C.实施方式3>
<C-1.结构>
图4是表示实施方式3的碳化硅半导体装置及其制造方法的图。在实施方式1的碳化硅半导体装置的制造方法中,使用同一掩模3,首先进行干法蚀刻。通过在相对于掩模3的SiC的选择比小(SiC的蚀刻速度慢)的条件下进行干法蚀刻,从而凹陷部10成为锥状(图4(a))。
接着通过进行离子注入而在多个凹陷部10的各侧面也形成P型区域5(图4(b))。通过凹陷部10的上表面的角部成为P型区域5(图4(c)),从而与仅在凹陷部10的底面形成P型区域5的情况(图3(c))相比,能够进一步缓和施加到肖特基电极6的电场。
此外,在使用碳化硅的情况下,由于被离子注入的掺杂物即使通过热处理也不扩散,所以在较深的区域中形成P型区域5的情况下需要在高能量条件下的离子注入,但在通过干法蚀刻形成了凹陷部10之后为了形成P型区域5而进行离子注入,从而不需要高能量的离子注入装置,能够抑制制造成本。
<C-2.效果>
根据本发明的实施方式3,在碳化硅半导体装置中,作为半导体层的P型区域5也形成于多个凹陷部10的各侧面,由此能够缓和施加到肖特基电极6的电场。
<D.实施方式4>
<D-1.结构>
图5是表示本发明的实施方式4的碳化硅半导体装置及其制造方法的图。在实施方式1的碳化硅半导体装置的制造方法中,碳化硅半导体装置具备:在肖特基电极6周围部形成的、不与肖特基电极6相接的凹陷部10,该不与肖特基电极6相接的凹陷部10仅是定位标记4,并且在各凹陷部10形成有P型区域5。与肖特基电极6端相接的P型区域5作为JTE(Junction Termination Extension,结终端扩展)发挥功能,具有缓和肖特基电极6端的电场的效果。
<D-2.效果>
根据本发明的实施方式4,在碳化硅半导体装置中,多个凹陷部10包含不与肖特基电极6相接的一个或多个凹陷部10,一个或多个凹陷部10全部是作为位置对准标记的定位标记4,由此肖特基电极6端部的凹陷部10的P型区域5能够作为JTE发挥功能。
<E.实施方式5>
<E-1.结构>
图6是表示本发明的实施方式5的碳化硅半导体装置及其制造方法的图。在实施方式1的碳化硅半导体装置的制造方法中,碳化硅半导体装置具备:在肖特基电极6的周围部形成的、不与电极相接的一个或多个凹陷部10,凹陷部10的一部分是定位标记4,并且在各凹陷部10形成有P型区域5。在肖特基电极6的周围的、不是定位标记4的凹陷部10的P型区域5作为FLR(Field Limitting Ring,场限环)而发挥功能,具有缓和肖特基电极6端的电场的效果。
此外,通过独立地控制FLR部的P型区域5的宽度和间隔、以及肖特基电极6下的P型区域5的宽度和间隔,从而能够形成用于缓和各自的区域的电场的最优的结构。
<E-2.效果>
根据本发明的实施方式5,在碳化硅半导体装置中,多个凹陷部10包含不与肖特基电极6相接的一个或多个凹陷部10,一个或多个凹陷部10的一部分是作为位置对准标记的定位标记4,由此肖特基电极6端部的凹陷部10的P型区域5能够作为FLR发挥功能。
此外,根据本发明的实施方式5,在碳化硅半导体装置中,形成多个凹陷部10的间隔和多个凹陷部10的各宽度,在肖特基电极6下、和其周围部不同,能够形成用于缓和各自的区域的电场的最优的结构。

Claims (6)

1.一种碳化硅半导体装置,具备:
第一导电型的碳化硅半导体衬底;
多个凹陷部,断续地形成在所述碳化硅半导体衬底的表面;
第二导电型的半导体层,在所述多个凹陷部的各底面中形成于所述碳化硅半导体衬底;以及
肖特基电极,有选择地形成在所述碳化硅半导体衬底的所述表面上,其中,
所述多个凹陷部的深度全部相等。
2.根据权利要求1所述的碳化硅半导体装置,其中,
所述肖特基电极在所述半导体层上具有端部。
3.根据权利要求1或2所述的碳化硅半导体装置,其中,
所述多个凹陷部的各侧面是锥状。
4.根据权利要求1或2所述的碳化硅半导体装置,其中,
所述半导体层也形成在所述多个凹陷部的各侧面。
5.根据权利要求1或2所述的碳化硅半导体装置,其中,
所述多个凹陷部包含不与所述肖特基电极相接的一个或多个凹陷部,所述一个或多个凹陷部的一部分或全部是位置对准标记。
6.根据权利要求1或2所述的碳化硅半导体装置,其中,
形成所述多个凹陷部的间隔以及所述多个凹陷部的各宽度,在所述肖特基电极下、和其周边部不同。
CN2010102435495A 2009-10-28 2010-07-30 碳化硅半导体装置 Active CN102054877B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009247296A JP5600411B2 (ja) 2009-10-28 2009-10-28 炭化珪素半導体装置
JP2009-247296 2009-10-28

Publications (2)

Publication Number Publication Date
CN102054877A true CN102054877A (zh) 2011-05-11
CN102054877B CN102054877B (zh) 2013-07-24

Family

ID=43829009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102435495A Active CN102054877B (zh) 2009-10-28 2010-07-30 碳化硅半导体装置

Country Status (4)

Country Link
US (1) US8513763B2 (zh)
JP (1) JP5600411B2 (zh)
CN (1) CN102054877B (zh)
DE (1) DE102010042998B4 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383969A (zh) * 2012-05-06 2013-11-06 朱江 一种肖特基器件及其制备方法
CN103915486A (zh) * 2012-12-31 2014-07-09 台湾积体电路制造股份有限公司 高效率FinFET二极管
TWI487121B (zh) * 2011-09-11 2015-06-01 Cree Inc 採用凹陷於接合遮障陣列元件之肖特基二極體
CN104795440A (zh) * 2014-01-17 2015-07-22 北大方正集团有限公司 一种vdmos及其制作方法
CN105047547A (zh) * 2015-07-08 2015-11-11 泰科天润半导体科技(北京)有限公司 一种用于碳化硅器件的对准标记及其制备方法
CN105047536A (zh) * 2015-07-22 2015-11-11 泰科天润半导体科技(北京)有限公司 用于碳化硅器件的对准标记及其制备方法
CN109449139A (zh) * 2018-09-27 2019-03-08 全球能源互联网研究院有限公司 半导体器件及定位标记的制备方法
CN110660842A (zh) * 2019-09-10 2020-01-07 大同新成新材料股份有限公司 一种水平结构沟槽肖特基半导体装置及其制备方法
JP2022002333A (ja) * 2020-02-25 2022-01-06 ローム株式会社 ショットキーバリアダイオード

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
JP2012089612A (ja) * 2010-10-18 2012-05-10 Sumitomo Electric Ind Ltd 炭化珪素基板を有する複合基板
DE112011104713T5 (de) * 2011-01-14 2013-10-17 Mitsubishi Electric Corporation Verfahren zum Herstellen einer Halbleitervorrichtung
DE112012001587B4 (de) 2011-04-05 2017-04-06 Mitsubishi Electric Corporation Halbleitereinrichtung und Verfahren zur Herstellung derselben
US9318623B2 (en) * 2011-04-05 2016-04-19 Cree, Inc. Recessed termination structures and methods of fabricating electronic devices including recessed termination structures
JP2013030618A (ja) 2011-07-28 2013-02-07 Rohm Co Ltd 半導体装置
US8618582B2 (en) * 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
JP2013115394A (ja) * 2011-12-01 2013-06-10 Hitachi Ltd ジャンクションバリアショットキーダイオード
WO2013103024A1 (ja) * 2012-01-05 2013-07-11 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
US8952481B2 (en) * 2012-11-20 2015-02-10 Cree, Inc. Super surge diodes
CN107026082B (zh) * 2016-02-02 2019-11-19 璟茂科技股份有限公司 功率整流二极管的制法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041527A (ja) * 1996-07-23 1998-02-13 Toshiba Corp 半導体装置及びその製造方法
US6404032B1 (en) * 2000-03-31 2002-06-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP2006186134A (ja) * 2004-12-28 2006-07-13 Nippon Inter Electronics Corp 半導体装置
JP2009105200A (ja) * 2007-10-23 2009-05-14 Hitachi Ltd ジャンクションバリアショットキーダイオード
JP2009170558A (ja) * 2008-01-14 2009-07-30 Denso Corp 炭化珪素半導体装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748465B2 (ja) * 1988-12-19 1998-05-06 ソニー株式会社 半導体装置の製造方法
JPH08115865A (ja) * 1994-10-18 1996-05-07 Sony Corp アライメントマークの形成方法
SE9700141D0 (sv) 1997-01-20 1997-01-20 Abb Research Ltd A schottky diode of SiC and a method for production thereof
DE19723176C1 (de) 1997-06-03 1998-08-27 Daimler Benz Ag Leistungshalbleiter-Bauelement und Verfahren zu dessen Herstellung
FR2803103B1 (fr) 1999-12-24 2003-08-29 St Microelectronics Sa Diode schottky sur substrat de carbure de silicium
US7186609B2 (en) * 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
JP2002353161A (ja) * 2001-05-25 2002-12-06 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
US7061066B2 (en) * 2001-10-17 2006-06-13 Fairchild Semiconductor Corporation Schottky diode using charge balance structure
US6858441B2 (en) * 2002-09-04 2005-02-22 Infineon Technologies Ag MRAM MTJ stack to conductive line alignment method
JP2007036052A (ja) 2005-07-28 2007-02-08 Toshiba Corp 半導体整流素子
US20070228505A1 (en) * 2006-04-04 2007-10-04 Mazzola Michael S Junction barrier schottky rectifiers having epitaxially grown p+-n junctions and methods of making
WO2009116444A1 (ja) * 2008-03-17 2009-09-24 三菱電機株式会社 半導体装置
US8232558B2 (en) * 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041527A (ja) * 1996-07-23 1998-02-13 Toshiba Corp 半導体装置及びその製造方法
US6404032B1 (en) * 2000-03-31 2002-06-11 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP2006186134A (ja) * 2004-12-28 2006-07-13 Nippon Inter Electronics Corp 半導体装置
JP2009105200A (ja) * 2007-10-23 2009-05-14 Hitachi Ltd ジャンクションバリアショットキーダイオード
JP2009170558A (ja) * 2008-01-14 2009-07-30 Denso Corp 炭化珪素半導体装置の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487121B (zh) * 2011-09-11 2015-06-01 Cree Inc 採用凹陷於接合遮障陣列元件之肖特基二極體
CN103383969A (zh) * 2012-05-06 2013-11-06 朱江 一种肖特基器件及其制备方法
CN103383969B (zh) * 2012-05-06 2017-04-26 朱江 一种肖特基器件及其制备方法
CN103915486B (zh) * 2012-12-31 2017-03-01 台湾积体电路制造股份有限公司 高效率FinFET二极管
CN103915486A (zh) * 2012-12-31 2014-07-09 台湾积体电路制造股份有限公司 高效率FinFET二极管
CN104795440A (zh) * 2014-01-17 2015-07-22 北大方正集团有限公司 一种vdmos及其制作方法
CN104795440B (zh) * 2014-01-17 2018-09-25 北大方正集团有限公司 一种vdmos及其制作方法
CN105047547A (zh) * 2015-07-08 2015-11-11 泰科天润半导体科技(北京)有限公司 一种用于碳化硅器件的对准标记及其制备方法
CN105047536A (zh) * 2015-07-22 2015-11-11 泰科天润半导体科技(北京)有限公司 用于碳化硅器件的对准标记及其制备方法
CN109449139A (zh) * 2018-09-27 2019-03-08 全球能源互联网研究院有限公司 半导体器件及定位标记的制备方法
CN110660842A (zh) * 2019-09-10 2020-01-07 大同新成新材料股份有限公司 一种水平结构沟槽肖特基半导体装置及其制备方法
JP2022002333A (ja) * 2020-02-25 2022-01-06 ローム株式会社 ショットキーバリアダイオード
JP7166416B2 (ja) 2020-02-25 2022-11-07 ローム株式会社 ショットキーバリアダイオード

Also Published As

Publication number Publication date
JP5600411B2 (ja) 2014-10-01
US20110095301A1 (en) 2011-04-28
JP2011096757A (ja) 2011-05-12
US8513763B2 (en) 2013-08-20
DE102010042998B4 (de) 2014-07-03
DE102010042998A1 (de) 2011-05-05
CN102054877B (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
CN102054877B (zh) 碳化硅半导体装置
CN105190852B (zh) 改进的vjfet器件
US7838377B2 (en) Power semiconductor devices with mesa structures and buffer layers including mesa steps
JP5101985B2 (ja) ジャンクションバリアショットキーダイオード
KR101658693B1 (ko) 우묵한 종단 구조 및 우묵한 종단 구조를 포함하는 전자 장치를 제조하는 방법
JP5324603B2 (ja) 炭化ケイ素デバイス用の2重ガード・リング端部終端、及びそれを組み込む炭化ケイ素デバイスを製造する方法
JP6072799B2 (ja) 非注入障壁領域を含む半導体デバイス及びその製造方法
US9230958B2 (en) Wide band gap semiconductor apparatus and fabrication method thereof
US8890169B2 (en) Semiconductor device
CN105474402B (zh) 碳化硅半导体器件及其制造方法
CN104508826A (zh) 自适应电荷平衡的边缘终端
KR101416361B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
US9722029B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR101427948B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
US9947806B2 (en) Semiconductor device
KR101490937B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
KR101438620B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
JP5476439B2 (ja) ジャンクションバリアショットキーダイオード
WO2015064999A1 (ko) 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드
KR20140079027A (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
KR20140086688A (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
JP7055537B2 (ja) 半導体デバイスおよびその製作方法
KR101186920B1 (ko) 탄화 규소 반도체장치
JP6930113B2 (ja) 半導体装置および半導体装置の製造方法
KR20150078454A (ko) 쇼트키 배리어 다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant