WO2015064999A1 - 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드 - Google Patents

접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드 Download PDF

Info

Publication number
WO2015064999A1
WO2015064999A1 PCT/KR2014/010163 KR2014010163W WO2015064999A1 WO 2015064999 A1 WO2015064999 A1 WO 2015064999A1 KR 2014010163 W KR2014010163 W KR 2014010163W WO 2015064999 A1 WO2015064999 A1 WO 2015064999A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction barrier
schottky diode
forming
barrier grid
substrate
Prior art date
Application number
PCT/KR2014/010163
Other languages
English (en)
French (fr)
Inventor
정진욱
서중원
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2015064999A1 publication Critical patent/WO2015064999A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices

Definitions

  • the present invention relates to a junction barrier Schottky diode and a junction barrier Schottky diode manufactured thereby, more particularly a junction barrier Schottky diode using a Schottky junction and a junction barrier Schottky diode produced thereby It is about.
  • SiC has about 10 times higher breakdown field strength, about 2 times higher saturated electron velocity, and about 3 times higher thermal conductivity than Si. It is a semiconductor material for next generation power devices suitable for operation.
  • SiC Junction Barrier Schottky (JBS) diodes using SiC are superior to conventional Si PiN diodes in the 600 to 3300V range (fast switching speed, small device size, stable high temperature characteristics, etc.). It has been spotlighted as next generation power diode and has been actively researched. SiC junction barrier Schottky diodes exhibit the most balanced ON / OFF characteristics, having only the advantages of conventional Schottky diodes and PiN diodes (low ON resistance of Schottky diodes and high OFF breakdown voltage of PiN diodes).
  • FIG. 1 is a schematic cross-sectional view of a conventional junction barrier Schottky diode.
  • a conventional junction barrier Schottky diode is an n + substrate 10, an n ⁇ epilayer 20 formed on an n + substrate 10, and a p + junction formed in an n ⁇ epilayer 20.
  • Barrier grid 30, floating field guard ring 40 which is formed along the outer periphery of p + junction barrier grid 30 in n- epi layer 20, is formed on the upper surface of n- epi layer 20, but the floating field And a passivation film 60, a cathode electrode 50, and an anode electrode 70 covering the guard ring 40 and a portion of the p + junction barrier grid.
  • the current in the ON state mainly flows through a Schottky junction formed between the anode electrode and the n-k epi layer, whereby the current flows due to the p + k junction barrier grid formed on the n-k epi layer. This is disturbed. That is, the conventional junction barrier Schottky diode has a disadvantage in that the ON resistance is high due to a large loss area in which no current flows in the n- ⁇ epi layer.
  • the present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a junction barrier Schottky diode capable of lowering the ON resistance and a junction barrier Schottky diode manufactured thereby.
  • the present invention provides a method for manufacturing a junction barrier Schottky diode, comprising: forming an n ⁇ epilayer on an upper surface of an n + substrate; Implanting a p-type dopant into an upper surface of the n ⁇ epilayer to form a p + junction barrier grid and a p + floating field guard ring; Forming a cathode on a bottom surface of the n + substrate; Forming a passivation film covering a portion of an outermost junction barrier grid of said p + junction barrier grid and said p + floating field guard ring; Etching through the interior of the p + junction barrier grid to form a trench in the p + junction barrier grid; And forming an anode on top of the n ⁇ epitaxial layer.
  • the forming of the p + junction barrier grid and the p + floating field guard ring may be performed by annealing at a temperature of 1600 to 1700 ° C after injecting a p-type dopant into the top surface of the n ⁇ epilayer.
  • the forming of the cathode electrode may be performed by depositing an ohmic metal on the bottom surface of the n + substrate and performing heat treatment at a temperature of 800 to 1200 ° C.
  • the passivation film may be made of a dielectric.
  • forming a trench in the p + junction barrier grid may be accomplished by dry or wet etching the interior of the p + junction barrier grid.
  • the forming of the anode electrode may be performed by depositing a schottky metal on an upper surface of the n ⁇ epilayer and a portion of the passivation film.
  • the doping concentration of the n + substrate is 10 18 ⁇ 10 21 cm -3
  • the doping concentration of the n- epi layer may be 10 14 ⁇ 10 16 cm -3 .
  • the thickness of the n + substrate is 300 ⁇ 500 ⁇ m
  • the thickness of the n- epi layer may be 5 ⁇ 100 ⁇ m.
  • the implanted concentration of the p-type dopant may be 10 17 ⁇ 10 20 cm -3 .
  • the p + junction barrier grid and p + floating field guard rings formed by forming the p + junction barrier grid and p + floating field guard ring have a spacing of 1 to 5 ⁇ m, and are separated from the surface of the n ⁇ epilayer. It may be formed with a thickness of 0.5 ⁇ 1.5 ⁇ m and a width of 1 ⁇ 20 ⁇ m.
  • junction barrier Schottky diode may be a SiC junction barrier Schottky diode.
  • the present invention is an n + substrate; An n ⁇ epi layer formed on an upper surface of the n + substrate; A p + junction barrier grid formed at a predetermined depth from an upper surface of the n ⁇ epilayer and penetrating therein; A p + floating field guard ring formed along an outer circumference of the p + junction barrier grid at a predetermined depth from an upper surface of the n ⁇ epilayer; A passivation film formed on an upper surface of the n ⁇ epilayer and covering a portion of an outermost junction barrier grid of the p + floating field guard ring and the p + junction barrier grid; A cathode electrode formed on the bottom surface of the n + substrate; And an anode electrode formed on the n ⁇ epitaxial layer.
  • the trench penetrating through the p + junction barrier grid can effectively improve the ON characteristic of the junction barrier Schottky diode.
  • 1 is a schematic cross-sectional view of a conventional junction barrier Schottky diode.
  • FIG. 2 is a conceptual diagram conceptually illustrating a method of manufacturing a junction barrier Schottky diode according to an embodiment of the present invention
  • FIG 3 is a schematic cross-sectional view of a junction barrier Schottky diode in accordance with an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram conceptually illustrating a method of manufacturing a junction barrier Schottky diode according to an embodiment of the present invention.
  • forming an n ⁇ epi layer 200 on an upper surface of an n + substrate 100 (FIG. 2A), forming a p + junction barrier grid 300 and a p + floating field guard ring 400 (FIG. 2B), forming a cathode electrode 500 (FIG. 2C), a passivation film ( Forming a trench 600 (FIG. 2 (d)), forming a trench (T) in the p + junction barrier grid 300 (FIG. 2 e), and the anode electrode 700. It can be made, including the forming step (FIG. 2 (f)).
  • an n ⁇ epilayer 200 is formed on the top surface of the n + substrate 100 (FIG. 2A).
  • the n + substrate 100 is a substrate formed by highly doping an n-type dopant to a semiconductor material.
  • the n + substrate 100 may be a substrate doped with an n-type dopant in a SiC material.
  • the doping concentration of the n + substrate 100 may be 10 18 to 10 21 cm ⁇ 3 , and the n + substrate 100 may have a thickness of 300 ⁇ m to 500 ⁇ m.
  • the n ⁇ epi layer 200 is formed by growing the same material as the n + substrate 100 on the top surface of the n + substrate 100 and then doping the n-type dopant at a concentration lower than that of the dopant doped in the n + substrate 100. .
  • the doping concentration of the n ⁇ epi layer 200 may be 10 14 to 10 16 cm ⁇ 3 .
  • the n ⁇ epi layer 200 may have a thickness of about 5 ⁇ m to about 100 ⁇ m.
  • the n- epi layer 200 When the SiC junction barrier Schottky diode manufactured according to an embodiment of the present invention is used for 600V, the n- epi layer 200 will have a thickness of about 5 ⁇ m, and when used for 1200V, the n- epi layer 200 ) Will have a thickness of about 13 ⁇ m.
  • a p-type dopant is implanted into the top surface of the n- epi layer 200 to form a p + junction barrier grid 300 and a p + floating field guard ring at a predetermined depth from the top surface of the n- epi layer 200.
  • field quard ring) 400 is formed ((b) of FIG. 2).
  • junction barrier Schottky region improves the high current efficiency when forward voltage is applied to the junction barrier Schottky diode and evenly forms a depletion layer when reverse voltage is applied.
  • the p + floating field guard ring 400 formed along the outer circumference of the p + junction barrier grid 300 to form a floating field guard ring region disperses a high electric field generated at the end of the anode electrode 700 to breakdown voltage.
  • Increase The p + floating field guard ring 400 may be formed in plurality.
  • the p + junction barrier grid 300 and the p + floating field guard ring 400 inject a p-type dopant such as Al into the top surface of the n ⁇ epilayer 200 and then anneal it to a temperature of 1600 to 1700 ° C. It can be formed through activation.
  • a p-type dopant such as Al
  • the implantation concentration of the p-type dopant may be 10 17 to 10 20 cm -3 .
  • the amount of dopant doped in the p + junction barrier grid 300 and the p + floating field guard ring 400 may be the same or different from each other.
  • the p + junction barrier grid 300 and each p + floating field guard ring 400 may be formed to have a spacing of 1 to 5 ⁇ m.
  • the p + junction barrier grid 300 and the p + floating field guard ring 400 may have a thickness of 0.5 to 1.5 ⁇ m and a width of 1 to 20 ⁇ m from the surface of the n ⁇ epi layer 200.
  • junction termination extension (JTE) structure can be formed to more effectively alleviate the electric field concentrated at the edge portion.
  • the cathode electrode 500 is formed on the lower surface of the n + substrate 100 (FIG. 2C).
  • the cathode electrode 500 may be formed by depositing an ohmic metal such as Ni and Ti on the bottom surface of the n + substrate 100 and then heat-treating it at a temperature of 800 to 1200 ° C.
  • a passivation film is formed on the upper surface of the n ⁇ epilayer 200 to cover a portion of the outermost junction barrier grid of the p + junction barrier grid 300 and the p + floating field guard ring 400 (FIG. 2). (D)).
  • the portion where the anode electrode 700 is to be formed (except a portion of the outermost junction barrier grid in the region where the p + junction barrier grid 300 is formed). It can be done by dry or wet etching.
  • the dielectric may be made of oxide or nitride.
  • a trench T is formed in the p + junction barrier grid 300 by etching through the inside of the p + junction barrier grid 300 (FIG. 2E).
  • the trench T may be formed by dry or wet etching the interior of the p + junction barrier grid 300. As the dry etching, an inductively coupled plasma (ICP) or an electron cyclotron resonance (ECR) method based on SF 6 and CHF 3 may be used. After the trench T is formed by etching, the trench T may be cleaned.
  • ICP inductively coupled plasma
  • ECR electron cyclotron resonance
  • trenches T formed in the p + junction barrier grid 300 provide additional current flow from the anode electrode 700.
  • junction barrier Schottky diode can be fabricated by forming the anode electrode 700 on the n- epi layer 200 (FIG. 2F).
  • the anode electrode 700 may be formed by depositing a shock metal such as Ni, Ti, Mo, or the like on the top surface of the n ⁇ epi layer 200.
  • the anode electrode 700 may be formed to cover the top surface of the n ⁇ epi layer 200 and a portion of the passivation film 600. That is, by forming both ends of the anode electrode 700 on the upper surface of the passivation film 600, a field plate structure that can more effectively alleviate the electric field concentrated on the end of the anode electrode 700 is formed. can do.
  • the ON characteristic of the junction barrier Schottky diode can be effectively improved.
  • the p + junction barrier grid in the process of forming the p + junction barrier grid, it is very difficult to form the width of the p + junction barrier grid below a certain size. Accordingly, in the present invention, by forming a p + junction barrier grid and etching the inside thereof, the p + junction barrier grid can have a very thin width, thereby reducing the loss area in which no current flows in the n ⁇ epilayer, thereby The ON characteristic of the barrier Schottky diode can be effectively improved.
  • FIG 3 is a schematic cross-sectional view of a junction barrier schottky diode manufactured by a method of manufacturing a junction barrier schottky diode according to an embodiment of the present invention.
  • the n + substrate 100, the n ⁇ epilayer 200 formed on the top surface of the n + substrate 100, and the n ⁇ epilayer 200 are formed to have a predetermined depth from the top surface of the n ⁇ epilayer 200.
  • the p + floating field guard ring 400 and the n ⁇ epilayer formed along the outer circumference of the p + junction barrier grid 300 at a predetermined depth from the top surface of the penetrated p + junction barrier grid 300 and the n ⁇ epilayer 200.
  • the passivation layer 500 is formed on the top surface of the substrate 200 and covers a portion of the outermost junction barrier grid of the p + floating field guard ring 400 and the p + junction barrier grid 300, and the bottom surface of the n + substrate 100. It can be seen that the junction barrier Schottky diode including the cathode electrode 500 and the anode electrode 700 formed on the n- epi layer 200 has a reduced loss area than the conventional junction barrier Schottky diode. have.

Abstract

본 발명은 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드에 관한 것으로서, 더욱 상세하게는 쇼트기 접합(SCHOTTKY CONTACT)을 이용한 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드에 관한 것이다. 이를 위해, 본 발명은 접합 장벽 쇼트키 다이오드의 제조방법으로서, n+ 기판의 상면에 n- 에피층을 형성하는 단계; 상기 n- 에피층의 상면에 p형 도펀트를 주입하여 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계; 상기 n+ 기판의 하면에 캐소드 전극을 형성하는 단계; 상기 p+ 접합 장벽 그리드 중 최외곽 접합 장벽 그리드의 일부 및 상기 p+ 플로팅 필드 가드 링을 커버하는 패시베이션(passivation) 막을 형성하는 단계; 상기 p+ 접합 장벽 그리드의 내부를 관통되게 에칭하여 p+ 접합 장벽 그리드의 내부에 트렌치(trench)를 형성하는 단계; 및 상기 n- 에피층의 상부에 애노드 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법을 제공한다.

Description

접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드
본 발명은 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드에 관한 것으로서, 더욱 상세하게는 쇼트기 접합(SCHOTTKY CONTACT)을 이용한 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드에 관한 것이다.
SiC는 Si에 비해 절연파괴전계(breakdown field strength)가 약 10배 높고, 포화전자이동속도(saturated electron velocity)가 약 2배 높으며, 열전도율 (thermal conductivity)가 약 3배 높아 고내압/고속/고온 동작에 적합한 차세대 전력소자용 반도체 물질이다.
특히, 이와 같은 SiC를 이용한 SiC 접합 장벽 쇼트키(Junction Barrier Schottky; JBS) 다이오드는 600 ~ 3300V 범위에서 종래의 Si PiN 다이오드를 대체할 우수한 특성 (빠른 스위칭 속도, 작은 소자 크기, 안정적 고온 특성 등)을 갖기에 차세대 파워 다이오드로 각광받으며 활발히 연구되고 있다. SiC 접합 장벽 쇼트키 다이오드는 기존 쇼크키 다이오드와 PiN 다이오드의 장점(쇼트키 다이오드의 낮은 ON 저항, PiN 다이오드의 높은 OFF 항복전압)만을 갖기에 가장 균형 잡힌 ON/OFF 특성을 나타낸다.
도 1은 종래 접합 장벽 쇼트키 다이오드의 개략적인 단면도이다. 도 1에 도시된 바와 같이, 종래 접합 장벽 쇼트키 다이오드는 n+ 기판(10), n+ 기판(10) 상에 형성되는 n- 에피층(20), n- 에피층(20) 내에 형성되는 p+ 접합 장벽 그리드(30), n- 에피층(20) 내에 p+ 접합 장벽 그리드(30)의 외주연을 따라 형성되는 플로팅 필드 가드 링(40), n- 에피층(20)의 상면에 형성되되 플로팅 필드 가드 링(40)과 p+ 접합 장벽 그리드의 일부를 커버하는 패시베이션 막(60), 캐소드 전극(50), 및 애노드 전극(70)을 포함하여 이루어진다.
한편, 이와 같은 접합 장벽 쇼트키 다이오드에서 ON 상태의 전류는 주로 애노드 전극과 n- 에피층 사이에 형성된 쇼트키 접합을 통해 흐르는데, 이때 n- 에피층 표면에 형성된 p+ 접합 장벽 그리드로 인해 전류의 흐름이 방해받게 된다. 즉, 종래 접합 장벽 쇼트키 다이오드는 n- 에피층 내에 전류가 흐르지 못하는 손실 면적을 크게 가져 ON 저항이 높다는 단점을 갖는다.
(선행기술문헌)
대한민국 공개특허 제10-2009-0113964호(2009.11.03)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 ON 저항을 낮출 수 있는 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드를 제공하는 것이다.
이를 위해, 본 발명은 접합 장벽 쇼트키 다이오드의 제조방법으로서, n+ 기판의 상면에 n- 에피층을 형성하는 단계; 상기 n- 에피층의 상면에 p형 도펀트를 주입하여 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계; 상기 n+ 기판의 하면에 캐소드 전극을 형성하는 단계; 상기 p+ 접합 장벽 그리드 중 최외곽 접합 장벽 그리드의 일부 및 상기 p+ 플로팅 필드 가드 링을 커버하는 패시베이션(passivation) 막을 형성하는 단계; 상기 p+ 접합 장벽 그리드의 내부를 관통되게 에칭하여 p+ 접합 장벽 그리드의 내부에 트렌치(trench)를 형성하는 단계; 및 상기 n- 에피층의 상부에 애노드 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법을 제공한다.
여기서, 상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계는 상기 n- 에피층의 상면에 p형 도펀트를 주입한 후 1600 ~ 1700℃의 온도로 어닐링하며 이루어질 수 있다.
또한, 상기 캐소드 전극을 형성하는 단계는 상기 n+ 기판의 하면에 오믹 금속(ohmic metal)을 증착한 후 800 ~ 1200℃의 온도로 열처리하며 이루어질 수 있다.
그리고, 상기 패시베이션 막은 유전체로 이루어질 수 있다.
또한, 상기 p+ 접합 장벽 그리드의 내부에 트렌치를 형성하는 단계는 상기 p+ 접합 장벽 그리드의 내부를 건식 또는 습식 에칭하며 이루어질 수 있다.
그리고, 상기 애노드 전극을 형성하는 단계는 상기 n- 에피층 상면 및 상기 패시베이션 막의 일부에 쇼트키 금속(schottky metal)을 증착하며 이루어질 수 있다.
바람직하게, 상기 n+ 기판의 도핑 농도는 1018 ~ 1021-3이고, 상기 n- 에피층의 도핑 농도는 1014 ~ 1016-3일 수 있다.
또한, 상기 n+ 기판의 두께는 300 ~ 500㎛이고, 상기 n- 에피층의 두께는 5 ~ 100㎛일 수 있다.
바람직하게, 상기 p형 도펀트의 주입 농도는 1017 ~ 1020-3일 수 있다.
또한, 상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계에 의해 형성되는 상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링들은 1 ~ 5㎛의 간격을 가지며, 상기 n- 에피층의 표면으로부터 0.5 ~ 1.5㎛의 두께 및 1 ~ 20㎛의 폭으로 형성될 수 있다.
그리고, 상기 접합 장벽 쇼트키 다이오드는 SiC 접합 장벽 쇼트키 다이오드일 수 있다.
또한, 본 발명은 n+ 기판; 상기 n+ 기판의 상면에 형성되는 n- 에피층; 상기 n- 에피층의 상면으로부터 일정 깊이로 형성되되, 내부가 관통된 p+ 접합 장벽 그리드; 상기 n- 에피층의 상면으로부터 일정 깊이로 상기 p+ 접합 장벽 그리드의 외주연을 따라 형성되는 p+ 플로팅 필드 가드 링; 상기 n- 에피층의 상면에 형성되되, 상기 p+ 플로팅 필드 가드 링과 상기 p+ 접합 장벽 그리드 중 최외곽 접합 장벽 그리드의 일부를 커버하는 패시베이션 막; 상기 n+ 기판의 하면에 형성되는 캐소드 전극; 및 상기 n- 에피층의 상부에 형성되는 애노드 전극을 포함하는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드를 제공한다.
본 발명에 따르면, p+ 접합 장벽 그리드 내부를 관통하는 트렌치에 의해 접합 장벽 쇼트키 다이오드의 ON 특성을 효과적으로 향상시킬 수 있다.
도 1은 도 1은 종래 접합 장벽 쇼트키 다이오드의 개략적인 단면도.
도 2는 본 발명의 일 실시예에 따른 접합 장벽 쇼트키 다이오드 제조방법을 개념적으로 나타낸 개념도.
도 3은 본 발명의 일 실시예에 따른 접합 장벽 쇼트키 다이오드의 개략적인 단면도.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 접합 장벽 쇼트키 다이오드 제조방법 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.

도 2는 본 발명의 일 실시예에 따른 접합 장벽 쇼트키 다이오드 제조방법을 개념적으로 나타낸 개념도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 접합 장벽 쇼트키 다이오드 제조방법은 n+ 기판(100)의 상면에 n- 에피층(200)을 형성하는 단계(도 2의 (a)), p+ 접합 장벽 그리드(300) 및 p+ 플로팅 필드 가드 링(400)을 형성하는 단계(도 2의 (b)), 캐소드 전극(500)을 형성하는 단계(도 2의 (c)), 패시베이션 막(600)을 형성하는 단계(도 2의 (d)), p+ 접합 장벽 그리드(300)에 트렌치(trench)(T)를 형성하는 단계(도 2의 (e)), 및 애노드 전극(700)을 형성단계(도 2의 (f))를 포함하여 이루어질 수 있다.

접합 장벽 쇼트키 다이오드를 제조하기 위해, 우선 n+ 기판(100)의 상면에 n- 에피층(200)을 형성한다(도 2의 (a)).
n+ 기판(100)은 반도체 소재에 n형 도펀트를 고농도로 도핑하여 형성된 기판이다. 바람직하게 n+ 기판(100)은 SiC 소재에 n형 도펀트가 도핑된 기판일 수 있다. 그리고, n+ 기판(100)의 도핑 농도는 1018 ~ 1021-3일 수 있으며, n+ 기판(100)은 300 ~ 500㎛의 두께를 가질 수 있다.
n- 에피층(200)은 n+ 기판(100)의 상면에 n+ 기판(100)과 동일한 소재를 성장시킨 후 n형 도펀트를 n+ 기판(100)에 도핑된 도펀트의 농도보다 저농도로 도핑함으로써 형성한다. n- 에피층(200)의 도핑 농도는 1014 ~ 1016-3일 수 있다. 또한, n- 에피층(200)은 5 ~ 100㎛의 두께를 가질 수 있다. 본 발명의 일 실시예에 따라 제조된 SiC 접합 장벽 쇼트키 다이오드가 600V용으로 사용될 경우 n- 에피층(200)은 약 5㎛의 두께를 가질 것이며, 1200V용으로 사용될 경우 n- 에피층(200)은 약 13㎛의 두께를 가질 것이다.

다음으로, n- 에피층(200)의 상면에 p형 도펀트를 주입하여 n- 에피층(200)의 상면으로부터 일정 깊이로 p+ 접합 장벽 그리드(grid)(300) 및 p+ 플로팅 필드 가드 링(floating field quard ring)(400)을 형성한다(도 2의 (b)).
접합 장벽 쇼트키 영역을 형성하는 p+ 접합 장벽 그리드(300)는 접합 장벽 쇼트키 다이오드에 순방향 전압 인가 시 고전류 효율을 높이고 역방향 전압 인가 시 공핍층(depletion layer)이 균등하게 형성되도록 한다.
그리고, p+ 접합 장벽 그리드(300)의 외주연을 따라 형성되어 플로팅 필드 가드 링 영역을 형성하는 p+ 플로팅 필드 가드 링(400)은 애노드 전극(700)의 종단에서 발생하는 높은 전계를 분산시켜 항복전압을 높인다. p+ 플로팅 필드 가드 링(400)은 복수 개로 이루어질 수 있다.
p+ 접합 장벽 그리드(300)와 p+ 플로팅 필드 가드 링(400)은 n- 에피층(200)의 상면에 Al과 같은 p형 도펀트를 주입한 후, 이를 1600 ~ 1700℃의 온도로 어닐링(annealing)하는 활성화를 통해 형성할 수 있다.
여기서, p형 도펀트의 주입 농도는 1017 ~ 1020-3일 수 있다. p+ 접합 장벽 그리드(300)와 p+ 플로팅 필드 가드 링(400)에 도핑되는 도펀트의 양은 서로 동일하거나 다를 수 있다.
그리고, p+ 접합 장벽 그리드(300) 및 각각의 p+ 플로팅 필드 가드 링(400)은 1 ~ 5㎛의 간격을 갖도록 형성될 수 있다. 또한, p+ 접합 장벽 그리드(300) 및 p+ 플로팅 필드 가드 링(400)은 n- 에피층(200)의 표면으로부터 0.5 ~ 1.5㎛의 두께를 가지며 1 ~ 20㎛의 폭으로 형성될 수 있다.
한편, p+ 접합 장벽 그리드(300) 중 애노드 전극(700)의 에지(edge)부에 접하는 최외곽 그리드에 추가적으로 도펀트를 주입하는 공정을 통해 최외곽 그리드의 폭을 넓게하여, 애노드 전극(700)의 에지부에 집중되는 전계를 보다 효과적으로 완화할 수 있는 접합종단연장(JTE, Junction Termination Extension) 구조를 형성할 수 있다.

다음으로, n+ 기판(100)의 하면에 캐소드 전극(500)을 형성한다(도 2의 (c)).
캐소드 전극(500)은 n+ 기판(100)의 하면에 Ni, Ti 등과 같은 오믹 금속(ohmic metal)을 증착한 후, 이를 800 ~ 1200℃의 온도로 열처리함으로써 형성될 수 있다.

다음으로, n- 에피층(200)의 상면에 p+ 접합 장벽 그리드(300) 중 최외곽 접합 장벽 그리드의 일부 및 p+ 플로팅 필드 가드 링(400)을 커버하는 패시베이션(passivation) 막을 형성한다(도 2의 (d)).
이는, n- 에피층(200)의 상면에 유전체를 증착한 후 애노드 전극(700)이 형성될 부분(p+ 접합 장벽 그리드(300)가 형성된 영역 중 최외곽 접합 장벽 그리드의 일부를 제외한 부분)을 건식 또는 습식 에칭하며 이루어질 수 있다. 여기서, 유전체는 산화물 또는 질화물로 이루어질 수 있다.

다음으로, p+ 접합 장벽 그리드(300)의 내부를 관통되게 에칭하여 p+ 접합 장벽 그리드(300)의 내부에 트렌치(trench)(T)를 형성한다(도 2의 (e)).
트렌치(T)는 p+ 접합 장벽 그리드(300)의 내부를 건식 또는 습식 에칭함으로써 형성할 수 있다. 이중, 건식 에칭으로는 SF6, CHF3 등에 기반한 ICP(Inductively Coupled Plasma) 또는 ECR(Electron Cyclotron Resonance) 방식 등을 사용할 수 있다. 에칭에 의해 트렌치(T)를 형성한 후에는 이를 세정하는 공정을 거칠 수 있다.
이와 같이 p+ 접합 장벽 그리드(300)의 내부에 형성된 트렌치(T)는 애노드 전극(700)으로부터의 추가적인 전류 흐름을 제공한다.

마지막으로, n- 에피층(200)의 상부에 애노드 전극(700)을 형성함으로써 접합 장벽 쇼트키 다이오드를 제조할 수 있다(도 2의 (f)).
애노드 전극(700)은 n- 에피층(200)의 상면에 Ni, Ti, Mo 등과 같은 쇼크키 금속을 증착하여 형성할 수 있다.
또한, 애노드 전극(700)은 n- 에피층(200)의 상면 및 패시베이션 막(600)의 일부를 커버하도록 형성될 수 있다. 즉, 애노드 전극(700)의 양 단부가 패시베이션 막(600)의 상면에 형성되도록 함으로써, 애노드 전극(700)의 단부에 집중되는 전계를 보다 효과적으로 완화할 수 있는 전계판(Field Plate) 구조를 형성할 수 있다.

이와 같이, p+ 접합 장벽 그리드를 관통되게 에칭하여 p+ 접합 장벽 그리드 내에 트렌치를 형성한 후, 애노드 전극을 형성함으로써, 접합 장벽 쇼트키 다이오드의 ON 특성을 효과적으로 향상시킬 수 있다.
즉, p+ 접합 장벽 그리드의 형성 공정 상 p+ 접합 장벽 그리드의 폭을 일정 크기 이하로 형성하기는 매우 곤란하다. 이에 본 발명에서는 p+ 접합 장벽 그리드를 형성한 후 그 내부를 에칭함으로써, p+ 접합 장벽 그리드가 매우 얇은 폭을 갖도록 할 수 있고, 이에 의해 n- 에피층에서 전류가 흐르지 못하는 손실 면적을 줄여줌으로써, 접합 장벽 쇼트키 다이오드의 ON 특성을 효과적으로 향상시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른 접합 장벽 쇼트키 다이오드 제조방법에 의해 제조된 접합 장벽 쇼트키 다이오드의 개략적인 단면도이다.
도 3에 도시된 바와 같이, n+ 기판(100), n+ 기판(100)의 상면에 형성되는 n- 에피층(200), n- 에피층(200)의 상면으로부터 일정 깊이로 형성되되, 내부가 관통된 p+ 접합 장벽 그리드(300), n- 에피층(200)의 상면으로부터 일정 깊이로 p+ 접합 장벽 그리드(300)의 외주연을 따라 형성되는 p+ 플로팅 필드 가드 링(400), n- 에피층(200)의 상면에 형성되되 p+ 플로팅 필드 가드 링(400)과 p+ 접합 장벽 그리드(300) 중 최외곽 접합 장벽 그리드의 일부를 커버하는 패시베이션 막(500), n+ 기판(100)의 하면에 형성되는 캐소드 전극(500) 및 n- 에피층(200)의 상부에 형성되는 애노드 전극(700)을 포함하여 이루어진 접합 장벽 쇼트키 다이오드는 종래 접합 장벽 쇼트키 다이오드보다 감소된 손실 면적을 가짐을 알 수 있다.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 접합 장벽 쇼트키 다이오드의 제조방법으로서,
    n+ 기판의 상면에 n- 에피층을 형성하는 단계;
    상기 n- 에피층의 상면에 p형 도펀트를 주입하여 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계;
    상기 n+ 기판의 하면에 캐소드 전극을 형성하는 단계;
    상기 p+ 접합 장벽 그리드 중 최외곽 접합 장벽 그리드의 일부 및 상기 p+ 플로팅 필드 가드 링을 커버하는 패시베이션(passivation) 막을 형성하는 단계;
    상기 p+ 접합 장벽 그리드의 내부를 관통되게 에칭하여 p+ 접합 장벽 그리드의 내부에 트렌치(trench)를 형성하는 단계; 및
    상기 n- 에피층의 상부에 애노드 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  2. 제1항에 있어서,
    상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계는,
    상기 n- 에피층의 상면에 p형 도펀트를 주입한 후 1600 ~ 1700℃의 온도로 어닐링하며 이루어지는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  3. 제1항에 있어서,
    상기 캐소드 전극을 형성하는 단계는,
    상기 n+ 기판의 하면에 오믹 금속(ohmic metal)을 증착한 후 800 ~ 1200℃의 온도로 열처리하며 이루어지는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  4. 제1항에 있어서,
    상기 패시베이션 막은 유전체로 이루어지는 것을 특징으로 접합 장벽 쇼트키 다이오드 제조방법.
  5. 제1항에 있어서,
    상기 p+ 접합 장벽 그리드의 내부에 트렌치를 형성하는 단계는,
    상기 p+ 접합 장벽 그리드의 내부를 건식 또는 습식 에칭하며 이루어지는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  6. 제1항에 있어서,
    상기 애노드 전극을 형성하는 단계는,
    상기 n- 에피층 상면 및 상기 패시베이션 막의 일부에 쇼트키 금속(schottky metal)을 증착하며 이루어지는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  7. 제1항에 있어서,
    상기 n+ 기판의 도핑 농도는 1018 ~ 1021-3이고, 상기 n- 에피층의 도핑 농도는 1014 ~ 1016-3인 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  8. 제1항에 있어서,
    상기 n+ 기판의 두께는 300 ~ 500㎛이고, 상기 n- 에피층의 두께는 5 ~ 100㎛인 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  9. 제1항에 있어서,
    상기 p형 도펀트의 주입 농도는 1017 ~ 1020-3인 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  10. 제1항에 있어서,
    상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링을 형성하는 단계에 의해 형성되는 상기 p+ 접합 장벽 그리드 및 p+ 플로팅 필드 가드 링들은 1 ~ 5㎛의 간격을 가지며, 상기 n- 에피층의 표면으로부터 0.5 ~ 1.5㎛의 두께 및 1 ~ 20㎛의 폭으로 형성되는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  11. 제1항에 있어서,
    상기 접합 장벽 쇼트키 다이오드는 SiC 접합 장벽 쇼트키 다이오드인 것을 특징으로 하는 접합 장벽 쇼트키 다이오드 제조방법.
  12. n+ 기판;
    상기 n+ 기판의 상면에 형성되는 n- 에피층;
    상기 n- 에피층의 상면으로부터 일정 깊이로 형성되되, 내부가 관통된 p+ 접합 장벽 그리드;
    상기 n- 에피층의 상면으로부터 일정 깊이로 상기 p+ 접합 장벽 그리드의 외주연을 따라 형성되는 p+ 플로팅 필드 가드 링;
    상기 n- 에피층의 상면에 형성되되, 상기 p+ 플로팅 필드 가드 링과 상기 p+ 접합 장벽 그리드 중 최외곽 접합 장벽 그리드의 일부를 커버하는 패시베이션 막;
    상기 n+ 기판의 하면에 형성되는 캐소드 전극; 및
    상기 n- 에피층의 상부에 형성되는 애노드 전극을 포함하는 것을 특징으로 하는 접합 장벽 쇼트키 다이오드.
PCT/KR2014/010163 2013-10-28 2014-10-28 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드 WO2015064999A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0128266 2013-10-28
KR1020130128266A KR20150048360A (ko) 2013-10-28 2013-10-28 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드

Publications (1)

Publication Number Publication Date
WO2015064999A1 true WO2015064999A1 (ko) 2015-05-07

Family

ID=53004525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010163 WO2015064999A1 (ko) 2013-10-28 2014-10-28 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드

Country Status (2)

Country Link
KR (1) KR20150048360A (ko)
WO (1) WO2015064999A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910379A (zh) * 2017-11-22 2018-04-13 北京燕东微电子有限公司 一种SiC结势垒肖特基二极管及其制作方法
CN114464531A (zh) * 2022-04-13 2022-05-10 深圳芯能半导体技术有限公司 碳化硅肖特基二极管的结构、制造方法及电力电子设备
US11764361B2 (en) 2017-07-07 2023-09-19 Ppg Industries Ohio, Inc. Electrode slurry composition for lithium ion electrical storage devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571262B (zh) * 2019-09-09 2021-03-30 电子科技大学 一种具有沟槽结构的碳化硅结势垒肖特基二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055627A (ja) * 2002-07-17 2004-02-19 Nippon Inter Electronics Corp 横型トレンチ構造を有するショットキー・バリア・ダイオード及びその製造方法
KR20040019477A (ko) * 2002-08-28 2004-03-06 정상구 쇼트키 다이오드 및 그 제조방법
JP2008282972A (ja) * 2007-05-10 2008-11-20 Denso Corp ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP2011521471A (ja) * 2008-05-21 2011-07-21 クリー インコーポレイテッド 電流サージ能力を有する接合型バリアショットキーダイオード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055627A (ja) * 2002-07-17 2004-02-19 Nippon Inter Electronics Corp 横型トレンチ構造を有するショットキー・バリア・ダイオード及びその製造方法
KR20040019477A (ko) * 2002-08-28 2004-03-06 정상구 쇼트키 다이오드 및 그 제조방법
JP2008282972A (ja) * 2007-05-10 2008-11-20 Denso Corp ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP2011521471A (ja) * 2008-05-21 2011-07-21 クリー インコーポレイテッド 電流サージ能力を有する接合型バリアショットキーダイオード

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764361B2 (en) 2017-07-07 2023-09-19 Ppg Industries Ohio, Inc. Electrode slurry composition for lithium ion electrical storage devices
CN107910379A (zh) * 2017-11-22 2018-04-13 北京燕东微电子有限公司 一种SiC结势垒肖特基二极管及其制作方法
CN114464531A (zh) * 2022-04-13 2022-05-10 深圳芯能半导体技术有限公司 碳化硅肖特基二极管的结构、制造方法及电力电子设备

Also Published As

Publication number Publication date
KR20150048360A (ko) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6407920B2 (ja) 負べベルにより終端された高阻止電圧を有するSiCデバイス
JP5616911B2 (ja) 少数キャリアの注入が抑制される炭化シリコン接合障壁ショットキーダイオード
JP4564510B2 (ja) 電力用半導体素子
JP5774205B2 (ja) 半導体装置
JP6855700B2 (ja) 半導体装置およびその製造方法
US9349797B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
JP5628462B1 (ja) 半導体装置およびその製造方法
JP5642191B2 (ja) 半導体装置
JP5473397B2 (ja) 半導体装置およびその製造方法
JP6139340B2 (ja) 半導体装置およびその製造方法
US9443926B2 (en) Field-stop reverse conducting insulated gate bipolar transistor and manufacturing method therefor
JP2012190981A (ja) 高耐圧半導体整流装置
JPWO2015015808A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2015064999A1 (ko) 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드
CN106611776A (zh) 一种n型碳化硅肖特基二极管结构
CN113644117A (zh) 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法
JP5473398B2 (ja) 半導体装置およびその製造方法
JP2017152489A (ja) 化合物半導体装置およびその製造方法
JP6275353B2 (ja) 炭化珪素半導体装置
JP6335795B2 (ja) 負ベベルにより終端した、高い阻止電圧を有するSiC素子
JP5476439B2 (ja) ジャンクションバリアショットキーダイオード
CN210349845U (zh) 一种碳化硅结势垒肖特基二极管
JP2013074148A (ja) 半導体装置およびその製造方法
KR20160116294A (ko) 쇼트키 다이오드
Deng et al. Fabrication characteristics of 1.2 kV SiC junction barrier schottky rectifiers with etched implant junction termination extension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858893

Country of ref document: EP

Kind code of ref document: A1