CN113644117A - 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 - Google Patents
具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 Download PDFInfo
- Publication number
- CN113644117A CN113644117A CN202110920166.5A CN202110920166A CN113644117A CN 113644117 A CN113644117 A CN 113644117A CN 202110920166 A CN202110920166 A CN 202110920166A CN 113644117 A CN113644117 A CN 113644117A
- Authority
- CN
- China
- Prior art keywords
- type
- silicon carbide
- epitaxial layer
- groove
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 54
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 210000003850 cellular structure Anatomy 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims description 5
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000005468 ion implantation Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000002347 injection Methods 0.000 claims abstract description 6
- 239000007924 injection Substances 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 30
- 150000002500 ions Chemical class 0.000 claims description 30
- -1 aluminum ions Chemical class 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 7
- 238000000137 annealing Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229910002601 GaN Inorganic materials 0.000 description 9
- 229910003465 moissanite Inorganic materials 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012300 argon atmosphere Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/6606—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开一种具有新型深沟槽的碳化硅JBS器件元胞结构,所述元胞结构包括:N+型衬底,形成于N+型衬底上表面的N‑型外延层,形成于N‑型外延层上方的沟槽,位于沟槽底部及沟槽顶部拐角处的P+型离子注入区,位于N‑型外延层上方的N‑型肖特基接触区,以及位于衬底下方的N+型欧姆接触区。能够避免器件设计时沟槽结构导致的器件正向导通阻抗与肖特基区耐压及表面电场可靠性之间的矛盾,在正向导通时增加了横向肖特基接触通道,大大降低了正向导通电阻;在浪涌情况下,增加了P型接触面积,增加抵抗浪涌能力;通过多层的P型注入协同保护,能够有效的提高肖特基区耐压及表面电场可靠性。
Description
技术领域
本发明属于半导体技术领域,更具体地,本发明涉及一种具有新型深沟槽的碳化硅JBS器件元胞结构及其制备方法。
背景技术
宽禁带半导体材料是以碳化硅、氮化镓等材料为代表的第三代半导体材料,在近些年中SiC材料得到了快速的发展。SiC材料禁带宽度大,可达到3eV以上,具有优秀的抗辐射性能。临界击穿电场可达到2MV/cm以上。SiC材料热导率高(4.9W/cm.K左右),并且器件耐高温,比Si更适合于大电流器件。因此,自20世纪90年代以来,SiC MOSFET和SBD等功率器件已在开关稳压电源、高频加热、汽车电子以及功率放大器等方面取得了广泛的应用。并且在未来的新能源领域有极其良好的应用前景。
肖特基二极管由于其低压降和大电流在功率器件中被广泛应用。为了实现更大的电流,90年代就有人提出了SiC沟槽式的肖特基二极管(TSBD)。沟槽式的肖特基二极管大大增加了肖特基接触的面积,实现了更低的压降和更大的电流。但是SiC沟槽式的肖特基二极管会在沟槽的拐角处引入峰值电场。肖特基二极管在反向偏压下会在肖特基的势垒降低效应、场发射模型和热场发射模型的作用下产生漏电流,并且随电场呈指数增长,而沟槽的拐角处引入峰值电场大大增大器件的反向漏电流。因此其击穿电压和导通电阻的优化设计是互相影响和相互矛盾的。单一宽度沟槽的SBD结构沟槽深度与器件正向导通阻抗之间需要折中考虑,而在沟槽间距和沟槽间肖特基区的耐压和表面电场强度之间也需要折中考虑,这给高耐压SBD器件的设计带来矛盾。
发明内容
本发明提供一种具有新型深沟槽的碳化硅JBS器件元胞结构,旨在避免器件设计时器件正向导通阻抗与肖特基区耐压及表面电场可靠性之间的矛盾,进一步增强SBD器件的耐压能力和浪涌能力的同时保持较低的正向导通阻抗。
本发明是这样实现的,一种具有新型深沟槽的碳化硅JBS器件元胞结构,所述元胞结构包括:
N+型衬底,形成于N+型衬底上表面的N-型外延层,形成于N-型外延层上方的沟槽,位于沟槽底部及沟槽顶部拐角处的P+型离子注入区,位于N-型外延层上方的N-型肖特基接触区,以及位于衬底下方的N+型欧姆接触区。
进一步的,P+型离子注入区覆盖整个沟槽底部及沟槽顶部的拐角区域,其厚度为0.2μm~1μm。
进一步的,P+型离子注入区的注入离子为铝离子或硼离子,掺杂浓度为1x1018cm-3~1x1020cm-3。
进一步的,所述沟槽为矩形或倒梯形,所述沟槽的垂直深度为0.5μm~5μm。
本发明是这样实现的,一种具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,所述方法具体如下:
S1、在N+型衬底上外延N-外延层,在N-型外延层上方形成沟槽;
S2、在沟槽底部及沟槽顶部拐角处注入离子,形成P+型离子注入区;
S3、在N+型衬底下方沉积接触金属,形成N+型欧姆接触区;
S4、在N-型外延层上方沉积接触金属,形成N-型肖特基接触区。
进一步的,P+型离子注入区覆盖整个沟槽底部及沟槽顶部的拐角区域,厚度为0.2μm~1μm。
进一步的,P+型离子注入区的注入离子为铝离子或硼离子,掺杂浓度为1x1018cm-3~1x1020cm-3。
进一步的,所述沟槽为矩形或倒梯形,所述沟槽的垂直深度为0.5μm~5μm。
进一步的,N-型外延层厚度为5um~50um,氮原子掺杂浓度为1x1015cm-3~5x1016cm-3。
进一步的,在向P+型离子注入区注入离子后,对器件进行高温退火,退火温度1700℃-1800℃。
本发明提供的具有新型深沟槽的碳化硅JBS器件元胞结构具有如下有益技术效果:
1)能够避免器件设计时沟槽结构导致的器件正向导通阻抗与肖特基区耐压及表面电场可靠性之间的矛盾,在正向导通时增加了横向肖特基接触通道,大大降低了正向导通电阻;2)在浪涌情况下,增加了P型接触面积,增加抵抗浪涌能力;3)通过多层的P型注入协同保护,能够有效的提高肖特基区耐压及表面电场可靠性,综上所述,本发明可以获得正向特性、器件耐压的双重提高。
附图说明
图1为本发明实施例提供的具有矩形深沟槽的碳化硅JBS器件元胞结构示意图;
图2为本发明实施例提供的具有梯形深沟槽的碳化硅JBS器件元胞结构示意图;
图3为本发明实施例提供的具有矩形深沟槽的碳化硅JBS器件元胞结构制备方法流程图,其中,(a)为衬底上外延N-型外延层,(b)为对N-型外延层进行矩形沟槽的刻蚀,(c)为在矩形沟槽的底部及顶部拐角处形成P+型离子注入区,(d)形成N+型欧姆接触区及N-型肖特基接触区;
图4为本发明实施例提供的具有梯形深沟槽的碳化硅JBS器件元胞结构制备方法流程图,其中,(a)为衬底上外延N-型外延层,(b)为对N-型外延层进行梯形沟槽的刻蚀,(c)为在梯形沟槽的底部及顶部拐角处形成P+型离子注入区,(d)形成N+型欧姆接触区及N-型肖特基接触区;
1.N-型肖特基接触区、2.P+型离子注入区、3.N-型外延层、4.N+型衬底、5.N+型欧姆接触区。
具体实施方式
下面对照附图,通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
图1为本发明实施例提供的具有矩形深沟槽的碳化硅JBS器件元胞结构示意图,为了便于说明,仅示出与本发明实施例相关的部分。该碳化硅JBS器件元胞结构包括:
N+型衬底,形成于N+型衬底上表面的N-型外延层,形成于N-型外延层上方的矩形沟槽,位于矩形沟槽底部及矩形沟槽顶部拐角处的P+型离子注入区,位于N-型外延层上方的N-型肖特基接触区,以及位于衬底下方的N+型欧姆接触区。
在本发明的实施例中,N+型衬底为SiC、GaN或Si,且N+型衬底的掺杂元素为氮元素或磷元素;N-型外延层为SiC、GaN或Si,其掺杂元素为氮元素或磷元素,N-型外延厚度为5μm~20μm,其掺杂浓度为1x1015cm-3~2x1016cm-3;P+型离子注入区的注入离子为铝离子或硼离子,注入离子的浓度为1x1018cm-3~1x1020cm-3,注入离子注入在矩形沟槽的整个底部及矩形沟槽顶部拐角,在P+型离子注入区处的注入深度为0.4μm~0.6μm。
在本发明实施例中,矩形沟槽的垂直深度为0.5μm~5μm,垂直深度是指矩形沟槽顶部距底部的高度。
在本发明实施例中,P+型离子注入区的在矩形沟槽底部及矩形沟槽顶部拐角处的截面与碳化硅JBS器件元胞截面的相应形状,碳化硅JBS元胞为条形元胞、圆柱形元胞、正六边形元胞或正三角形元胞,若碳化硅JBS元胞为圆柱形元胞,则P+型离子注入区的在矩形沟槽底部及矩形沟槽顶部拐角处的截面形状为圆环形。
图2为本发明实施例提供的具有梯形深沟槽的碳化硅JBS器件元胞结构示意图,为了便于说明,仅示出与本发明实施例相关的部分。该碳化硅JBS器件元胞结构包括:
N+型衬底,形成于N+型衬底上表面的N-型外延层,形成于N-型外延层上方的梯形沟槽,位于梯形沟槽底部及梯形沟槽顶部拐角处的P+型离子注入区,位于N-型外延层上方的N-型肖特基接触区,以及位于衬底下方的N+型欧姆接触区。
在本发明实施例中,N+型衬底为SiC、GaN或Si,且N+型衬底的掺杂元素为氮元素或磷元素;N-型外延层为SiC、GaN或Si,其掺杂元素为氮元素或磷元素,N-型外延厚度为5μm~20μm,其掺杂浓度为1x1015cm-3~5x1016cm-3;P+型离子注入区的注入离子为铝离子或硼离子,注入离子的浓度为1x1018cm-3~1x1020cm-3,注入离子注入在梯形沟槽的整个底部及梯形沟槽顶部拐角,在P+型离子注入区处的注入深度为0.4μm~0.6μm。注入离子选择铝离子或硼离子是为了形成P型碳化硅材料,目的是为了形成JBS结构,有效抑制反向漏电。注入离子浓度的定义成浓度比较高,是为了反向时增加耗尽能力,另外在表面注入高浓度的P型区域有利于抗浪涌能力的提升。
在本发明实施例中,梯形沟槽的垂直深度为0.5μm~5μm,即垂直深度是指的梯形沟槽的顶部至底部的高度,碳化硅刻蚀深度受限,刻蚀太深,外延太薄影响整个击穿电压。刻蚀后从P型区域底部以上均可以形成肖特基接触,无形中增加了肖特基接触区域,降低了导通电阻。在本发明实施例中,P+型离子注入区的在梯形沟槽底部及梯形沟槽顶部拐角处的截面与碳化硅JBS器件元胞截面的相应形状,碳化硅JBS元胞为条形元胞、圆柱形元胞、正六边形元胞或正三角形元胞,若碳化硅JBS元胞为圆柱形元胞,则P+型离子注入区的在梯形沟槽底部及梯形沟槽顶部拐角处的截面形状为圆环形。
本发明提供的具有新型深沟槽的碳化硅JBS器件元胞结构具有如下有益技术效果:
1)能够避免器件设计时沟槽结构导致的器件正向导通阻抗与肖特基区耐压及表面电场可靠性之间的矛盾,在正向导通时增加了横向肖特基接触通道,大大降低了正向导通电阻;2)在浪涌情况下,增加了P型接触面积,增加抵抗浪涌能力;3)通过多层的P型注入协同保护,能够有效的提高肖特基区耐压及表面电场可靠性,综上所述,本发明可以获得正向特性、器件耐压的双重提高。
图3为本发明实施例提供的具有矩形深沟槽的碳化硅JBS器件元胞结构制备方法流程图,该方法具体包括如下步骤:
S1、在N+型衬底上外延N-外延层,在N-型外延层上方形成矩形沟槽;
在本发明实施例中,步骤S1具体包括如下步骤:
S11、N+型衬底为SiC、GaN或Si,对N+型衬底进行掺杂,掺杂元素为氮元素或磷元素;S12、在N+型衬底上形成N-型外延层,N-型外延厚度为5μm~20μm,材料为SiC、GaN或Si,对N-型外延层进行掺杂,掺杂元素为氮元素或磷元素,其掺杂浓度为1x1015cm-3~5x1016cm-3;S13、对N-型外延层进行ICP,RIE或激光烧孔工艺制矩形沟槽,矩形沟槽的垂直深度为0.5μm~5μm。
S2、在矩形沟槽底部及矩形沟槽顶部拐角处注入离子,形成P+型离子注入区;
在本发明实施例,P+型离子注入区的形成方法具体如下:在矩形沟槽底部及矩形沟槽顶部拐角处注入离子,形成P+型离子注入区,P+型离子注入区的注入离子为铝离子或硼离子,注入离子的浓度为1x1018cm-3~1x1020cm-3,注入离子的注入深度为0.4μm~0.6μm,优选的,对矩形沟槽的整个底部进行离子注入。
S3、在N+型衬底下方沉积接触金属,形成N+型欧姆接触区;
在本发明实施例中,步骤S3具体包括如下步骤:S31、将步骤S2之后形成的器件在高温退火炉中进行高温退火,退火温度1700℃-1800℃;S32、在N+型衬底上淀积50nm~200nm接触金属Ti或Ni,在800℃~1200℃氮气或氩气氛围中退火2min~10min形成欧姆接触,即N+型欧姆接触区;S33、在N+型欧姆接触区淀积Ti/Ni/Ag,形成电极。
S4、在N-型外延层上方沉积接触金属,形成N-型肖特基接触区。
在本发明实施例中,步骤S4具体如下:在N-型外延层上方淀积50nm~200nm接触金属Ti或Ni,在400℃~800℃氮气或氩气氛围中退火2min~10min形成肖特基接触,即N-型肖特基接触区,再在N-型肖特基接触区上淀积2um-4um的铝,形成电极。
图4为本发明实施例提供的具有梯形深沟槽的碳化硅JBS器件元胞结构制备方法流程图,该方法具体包括如下步骤:
S1、在N+型衬底上外延N-外延层,在N-型外延层上方形成梯形沟槽;
在本发明实施例中,步骤S1具体包括如下步骤:S11、N+型衬底为SiC、GaN或Si,对N+型衬底进行掺杂,掺杂元素为氮元素或磷元素;S12、在N+型衬底上形成N-型外延层,N-型外延厚度为5μm~20μm,材料为SiC、GaN或Si,对N-型外延层进行掺杂,掺杂元素为氮元素或磷元素,其掺杂浓度为1x1015cm-3~5x1016cm-3;S13、对N-型外延层进行ICP,RIE或激光烧孔工艺制梯形沟槽,梯形沟槽的垂直深度为0.5μm~5μm。
S2、在梯形沟槽底部及梯形沟槽顶部拐角处注入离子,形成P+型离子注入区;
在本发明实施例,P+型离子注入区的形成方法具体如下:在梯形沟槽底部及梯形沟槽顶部拐角处注入离子,形成P+型离子注入区,P+型离子注入区的注入离子为铝离子或硼离子,注入离子的浓度为1x1018cm-3~1x1020cm-3,注入离子的注入深度为0.4μm~0.6μm,优选的,对梯形沟槽的整个底部进行离子注入,梯形深沟槽相对于矩形深沟槽而言,梯形深沟槽的侧壁角度更缓利于屏蔽电场集中效应,斜坡增加的肖特基接触得面积,增加了正向的导电通道。
S3、在N+型衬底下方沉积接触金属,形成N+型欧姆接触区;
在本发明实施例中,步骤S3具体包括如下步骤:S31、将步骤S2之后形成的器件在高温退火炉中进行高温退火,退火温度1700℃-1800℃;S32、在N+型衬底上淀积50nm~200nm接触金属Ti或Ni,在800℃~1200℃氮气或氩气氛围中退火2min~10min形成欧姆接触,即N+型欧姆接触区;S33、在N+型欧姆接触区淀积Ti/Ni/Ag,形成电极。
S4、在N-型外延层上方沉积接触金属,形成N-型肖特基接触区。
在本发明实施例中,步骤S4具体如下:在N-型外延层上方淀积50nm~200nm接触金属Ti或Ni,在400℃~800℃氮气或氩气氛围中退火2min~10min形成肖特基接触,即N-型肖特基接触区,再在N-型肖特基接触区上淀积2um-4um的铝,形成电极。
本发明提供的具有新型深沟槽的碳化硅JBS器件元胞结构具有如下有益技术效果:
1)能够避免器件设计时沟槽结构导致的器件正向导通阻抗与肖特基区耐压及表面电场可靠性之间的矛盾,在正向导通时增加了横向肖特基接触通道,大大降低了正向导通电阻;2)在浪涌情况下,增加了P型接触面积,增加抵抗浪涌能力;3)通过多层的P型注入协同保护,能够有效的提高肖特基区耐压及表面电场可靠性,综上所述,本发明可以获得正向特性、器件耐压的双重提高;4)槽刻蚀与标记刻蚀采用同一块版图,在不提高工艺成本的情况下,大大的提高了器件的性能。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。
Claims (10)
1.一种具有新型深沟槽的碳化硅JBS器件元胞结构,其特征在于,所述元胞结构包括:
N+型衬底,形成于N+型衬底上表面的N-型外延层,形成于N-型外延层上方的沟槽,位于沟槽底部及沟槽顶部拐角处的P+型离子注入区,位于N-型外延层上方的N-型肖特基接触区,以及位于衬底下方的N+型欧姆接触区。
2.如权利要求1所述新型深沟槽的碳化硅JBS器件元胞结构,其特征在于,P+型离子注入区覆盖整个沟槽底部及沟槽顶部的拐角区域,其厚度为0.2μm~1μm。
3.如权利要求1或2所述新型深沟槽的碳化硅JBS器件元胞结构,其特征在于,P+型离子注入区的注入离子为铝离子或硼离子,掺杂浓度为1x1018cm-3~1x1020cm-3。
4.如权利要求1所述新型深沟槽的碳化硅JBS器件元胞结构,其特征在于,所述沟槽为矩形或倒梯形,所述沟槽的垂直深度为0.5μm~5μm。
5.一种具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在于,所述方法具体如下:
S1、在N+型衬底上外延N-外延层,在N-型外延层上方形成沟槽;
S2、在沟槽底部及沟槽顶部拐角处注入离子,形成P+型离子注入区;
S3、在N+型衬底下方沉积接触金属,形成N+型欧姆接触区;
S4、在N-型外延层上方沉积接触金属,形成N-型肖特基接触区。
6.如权利要求5所述具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在于,P+型离子注入区覆盖整个沟槽底部及沟槽顶部的拐角区域,厚度为0.2μm~1μm。
7.如权利要求5或6所述具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在,P+型离子注入区的注入离子为铝离子或硼离子,掺杂浓度为1x1018cm-3~1x1020cm-3。
8.如权利要求5所述具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在,所述沟槽为矩形或倒梯形,所述沟槽的垂直深度为0.5μm~5μm。
9.如权利要求5所述具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在于,N-型外延层厚度为5um~50um,氮原子掺杂浓度为1x1015cm-3~5x1016cm-3。
10.如权利要求5所述具有新型深沟槽的碳化硅JBS器件元胞结构的制备方法,其特征在于,在向P+型离子注入区注入离子后,对器件进行高温退火,退火温度1700℃-1800℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110920166.5A CN113644117A (zh) | 2021-08-11 | 2021-08-11 | 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110920166.5A CN113644117A (zh) | 2021-08-11 | 2021-08-11 | 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113644117A true CN113644117A (zh) | 2021-11-12 |
Family
ID=78420854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110920166.5A Pending CN113644117A (zh) | 2021-08-11 | 2021-08-11 | 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113644117A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116779648A (zh) * | 2023-08-18 | 2023-09-19 | 深圳平创半导体有限公司 | 一种肖特基二极管版图结构及其制作方法 |
WO2023173425A1 (zh) * | 2022-03-18 | 2023-09-21 | 华为技术有限公司 | 碳化硅晶体管的结构和制备方法 |
CN117317032A (zh) * | 2023-09-05 | 2023-12-29 | 合肥安芯睿创半导体有限公司 | 一种沟槽型SiC肖特基二极管及其制造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523583A (zh) * | 2006-09-30 | 2009-09-02 | 万国半导体股份有限公司 | 沟槽结势垒可控肖特基二极管 |
US20200321478A1 (en) * | 2019-04-05 | 2020-10-08 | AZ Power, Inc | Trench junction barrier schottky diode with voltage reducing layer and manufacturing method thereof |
-
2021
- 2021-08-11 CN CN202110920166.5A patent/CN113644117A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523583A (zh) * | 2006-09-30 | 2009-09-02 | 万国半导体股份有限公司 | 沟槽结势垒可控肖特基二极管 |
US20200321478A1 (en) * | 2019-04-05 | 2020-10-08 | AZ Power, Inc | Trench junction barrier schottky diode with voltage reducing layer and manufacturing method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023173425A1 (zh) * | 2022-03-18 | 2023-09-21 | 华为技术有限公司 | 碳化硅晶体管的结构和制备方法 |
CN116779648A (zh) * | 2023-08-18 | 2023-09-19 | 深圳平创半导体有限公司 | 一种肖特基二极管版图结构及其制作方法 |
CN117317032A (zh) * | 2023-09-05 | 2023-12-29 | 合肥安芯睿创半导体有限公司 | 一种沟槽型SiC肖特基二极管及其制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8154026B2 (en) | Silicon carbide bipolar semiconductor device | |
CN113644117A (zh) | 具有新型深沟槽的碳化硅jbs器件元胞结构及其制备方法 | |
WO2018106326A1 (en) | Power semiconductor devices having gate trenches and buried termination structures and related methods | |
JP2005518672A (ja) | 高くなったガードリングを有するパワーSiCデバイス | |
US9349797B2 (en) | SiC devices with high blocking voltage terminated by a negative bevel | |
EP2710635A1 (en) | Sic devices with high blocking voltage terminated by a negative bevel | |
CN105810754B (zh) | 一种具有积累层的金属氧化物半导体二极管 | |
US11869940B2 (en) | Feeder design with high current capability | |
CN106711190A (zh) | 一种具有高性能的半导体器件及制造方法 | |
US20240178280A1 (en) | Scalable mps device based on sic | |
CN115799344A (zh) | 一种碳化硅jfet元胞结构及其制作方法 | |
CN113066870B (zh) | 一种具有终端结构的氧化镓基结势垒肖特基二极管 | |
CN114220870A (zh) | 全方位肖特基接触的沟槽型半导体器件及其制造方法 | |
CN113972261A (zh) | 碳化硅半导体器件及制备方法 | |
CN103681811A (zh) | 一种非完全发射区的绝缘栅双极晶体管及其制备方法 | |
WO2015064999A1 (ko) | 접합 장벽 쇼트키 다이오드 및 이에 의해 제조된 접합 장벽 쇼트키 다이오드 | |
CN210349845U (zh) | 一种碳化硅结势垒肖特基二极管 | |
WO2013119548A1 (en) | Sic devices with high blocking voltage terminated by a negative bevel | |
KR101415878B1 (ko) | 고전압 초고속 회복 에피다이오드 및 그 제조 방법 | |
US11869944B2 (en) | Scalable MPS device based on SiC | |
CN115602734A (zh) | 高正向电流密度的新型碳化硅功率二极管 | |
CN113675279A (zh) | 一种具有异质结的结势垒肖特基器件 | |
CN210325811U (zh) | 一种碳化硅异质结二极管功率器件 | |
CN206584933U (zh) | 一种具有高性能的半导体器件 | |
CN217405436U (zh) | 结势垒肖特基器件和结势垒肖特基装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 241000 1803, building 3, service outsourcing park, Wuhu high tech Industrial Development Zone, Anhui Province Applicant after: Anhui Changfei Advanced Semiconductor Co.,Ltd. Address before: 241000 1803, building 3, service outsourcing park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province Applicant before: WUHU QIDI SEMICONDUCTOR Co.,Ltd. |