CN101871424A - 风力发电机的偏摆驱动方法及偏摆驱动装置 - Google Patents
风力发电机的偏摆驱动方法及偏摆驱动装置 Download PDFInfo
- Publication number
- CN101871424A CN101871424A CN201010203017A CN201010203017A CN101871424A CN 101871424 A CN101871424 A CN 101871424A CN 201010203017 A CN201010203017 A CN 201010203017A CN 201010203017 A CN201010203017 A CN 201010203017A CN 101871424 A CN101871424 A CN 101871424A
- Authority
- CN
- China
- Prior art keywords
- wind
- drive motor
- gear
- mentioned
- beat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000012530 fluid Substances 0.000 claims description 189
- 230000005611 electricity Effects 0.000 claims description 161
- 230000000979 retarding effect Effects 0.000 claims description 75
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 162
- 230000004323 axial length Effects 0.000 abstract description 7
- 210000000515 tooth Anatomy 0.000 description 82
- 239000007788 liquid Substances 0.000 description 50
- 230000000694 effects Effects 0.000 description 33
- 230000007246 mechanism Effects 0.000 description 26
- 238000007599 discharging Methods 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005755 formation reaction Methods 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000001970 hydrokinetic effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 244000287680 Garcinia dulcis Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/90—Braking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/109—Purpose of the control system to prolong engine life
- F05B2270/1095—Purpose of the control system to prolong engine life by limiting mechanical stresses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/321—Wind directions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/329—Azimuth or yaw angle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Wind Motors (AREA)
Abstract
本发明的目的是要提供一种适用于风力发电装置的偏摆驱动装置、效率高并且轴向长度短的减速器;提供一种减速器,其由三级减速部构成,将一级减速部(10)和二级减速部(20)的合计减速比设定为1/6至1/60,并且由具备内齿齿轮体(32)、多个外齿轮(34)、多个曲柄轴(35)、和支座(37)的偏心摆动型减速机构构成三级减速部(30),将偏心摆动型减速机构的减速比设定为1/50至1/140,并且将减速器的总减速比设定为1/1000至1/3000的用于风力发电装置的偏摆驱动装置中的减速器;以及提供能够降低噪音并且能够使装置价格便宜并小型化的偏摆驱动方法及装置。
Description
本发明为下述申请的分案申请,原申请信息如下:
申请日:2004年08月11日
申请号:200480023038.5
国际申请号:PCT/JP2004/011786
发明名称:风力发电装置的偏摆驱动装置中使用的减速器、使用了该减速器的风力发电装置的偏摆驱动方法及装置
技术领域
本发明涉及使风力发电装置的风力发电单元在近似水平的面内旋转的偏摆驱动装置中使用的减速器、使用了该减速器的偏摆驱动方法及装置。
背景技术
风力发电装置的偏摆驱动装置为使风力发电单元根据风向相对于塔架旋转以使风力发电装置的叶片从正面受风的装置,为使塔架上设置的齿圈旋转的驱动装置。
偏摆驱动装置一般将通用的感应电动机(使用转速为1000至1800rpm)与多个减速机构(总减速比为1/1000至1/3000)进行组合。
为了获得高的减速比,以往的风车发电装置的偏摆驱动装置中使用的减速器大多使用连接了5级行星减速机构的减速器。该行星减速机构为具备输入中心齿轮、在该输入中心齿轮的周围与该输入中心齿轮啮合的多个行星齿轮、具有在这些行星齿轮的周围与这些行星齿轮啮合的内齿的内齿齿轮体、以及旋转自由地支持上述多个行星齿轮的支座的机构,总减速比约为77%(各级95%×95%×95%×95%×95%≈77%)。
并且,作为风车发电装置的偏摆驱动装置中使用的减速器,本申请人提出过由与驱动电动机相连结的一级减速部、与该一级减速部相连结的二级减速部、以及包括与该二级减速部相连结的偏心摆动型减
速机构的三级减速部构成的减速器的方案(参照日本特开2003-84300号公报)。
而且,作为现有技术的风力发电机的偏摆驱动方法和装置,我们还知道例如记载在以下的日本特开2001-289149号公报中的方法和装置。
该装置为具备以下单元的装置:安装在塔架上端部的第1齿轮;与上述第1齿轮相啮合的第2齿轮;安装在可偏摆旋转地支持在上述塔架上端部的风力发电单元上、通过驱动上述第2齿轮旋转而使风力发电单元偏摆旋转的电动机;使用了附设在该电动机上的摩擦板的电磁制动器;包括固定在塔架上端部的制动盘、和设置在风力发电单元上并通过油压驱动夹住上述制动盘的摩擦固定式制动片的油压制动器。
并且,在上述装置中,当通过电动机使风力发电单元偏摆旋转时,在给电动机通电的同时使电磁制动器和油压制动器处于非制动状态,将电动机和风力发电单元从制动中解放出来;而当使风力发电单元的偏摆旋转停止时,在停止给电动机通电的同时使电磁制动器和油压制动器处于制动状态,然后分别给电动机和风力发电单元施加制动转矩。
但是,前者连接了5级行星减速机构的减速器由于全长变长,并且重量增大,因此维护保养性差。并且,在-20℃以下的低温状态下运转时,由于是5级减速,因此润滑油的搅拌阻力大,为了弥补该搅拌阻力的损失需要大输出功率的电动机。
后者包括三级减速部的减速器用于偏摆驱动装置并非获得高效率、最佳减速比的方案。
发明内容
本发明就是鉴于上述问题,目的是要提供一种作为偏摆驱动装置的最佳速度分配的减速器,适用于风力发电装置的偏摆驱动装置、效率高且轴向长度短的减速器。并且,本发明的另一个目的是要提供一种使风力发电装置的效率高且结构紧凑的偏摆驱动装置。
而且,上述现有技术的风力发电机的偏摆驱动方法和装置,由于在开始对电动机通电时对该电动机的制动就消失,因此电动机的旋转驱动转矩直接传递给第2齿轮,使该第2齿轮急速旋转,但由于风力发电单元的质量惯性大,因此不能跟随第2齿轮旋转,结果,第2齿轮的齿给第1齿轮的齿带来很大的冲击。由于这种情况,存在风力发电单元开始偏摆旋转时损伤第1、第2齿轮的齿、或者产生大的噪音;或者在结构方面为了承受上述那样的冲击需要提高第1、第2齿轮等的强度,使装置成本高、体积大的问题。
而在停止对电动机通电时,由于电磁制动器开始给电动机施加制动转矩,因此第2齿轮的旋转紧急停止,但由于风力发电单元具有巨大的惯性质量,以旋转时的旋转速度继续旋转,因此第1齿轮的齿给第2齿轮的齿带来大的冲击。由于这种情况,风力发电单元的偏摆旋转停止时第1、第2齿轮的齿也产生损伤、或者产生大的噪音,或者与上述一样要提高强度,因此存在装置价格高且大型化的问题。
本发明的目的就是要提供一种通过在开始给驱动电动机提供驱动能量时抑制冲击,能够减小齿的损伤和噪音,并且能够使装置价格便宜且小型化的风力发电机的偏摆驱动方法和装置。
本发明的风力发电装置的偏摆驱动装置中使用的减速器的特征在于,包括一级减速部、与该一级减速部相连结的二级减速部、和与该二级减速部相连结的三级减速部;将上述一级减速部和二级减速部的合计减速比设定为1/6至1/60,并且由偏心摆动型减速机构构成上述三级减速部,该偏心摆动型减速机构具备:在内周形成有内齿的内齿齿轮体,收容到该内齿齿轮体内、外周具有与上述内齿相啮合且齿数比该内齿稍少的外齿、沿轴向并排配置的多个外齿轮,通过旋转自由地插入上述多个外齿轮内、与上述二级减速部相连结并旋转而使上述多个外齿轮偏心旋转的曲柄轴,以及可旋转地支持该曲柄轴两端部的支座;将该偏心摆动型减速机构的减速比设定为1/50至1/140,并且将上述减速器的总减速比设定为1/1000至1/3000。因此,能够提供适用于风力发电装置的偏摆驱动装置的、效率高且轴向长度短的减速器。
并且,减速器的一级减速部由行星减速机构构成,该行星减速机构具备输入中心齿轮、在该输入中心齿轮的周围与该输入中心齿轮相啮合的多个行星齿轮、具有在上述多个行星齿轮的周围与上述多个行星齿轮相啮合的内齿的内齿齿轮体、以及旋转自由地支持上述多个行星齿轮的支座,上述减速器的二级减速部由直齿轮式减速机构构成,该直齿轮式减速机构包括与上述行星减速机构的支座相连结的输入直齿轮、和与该输入直齿轮相啮合的直齿轮。因此,能够提供适用于风力发电装置的偏摆驱动装置的、效率高且轴向长度短的减速器。
或者,减速器的一级减速部由包括第1输入直齿轮、和与该第1输入直齿轮相啮合的第1直齿轮的直齿轮式减速机构构成,上述减速器的二级减速部由包括与该第1直齿轮相连结的第2输入直齿轮、和与该第2输入直齿轮相啮合的第2直齿轮的直齿轮式减速机构构成。因此,能够提供适用于风力发电装置的偏摆驱动装置的、效率高且轴向长度短的减速器。
并且,本发明的风力发电装置的偏摆驱动装置的特征在于,使用了上述高效率的减速器,在一级减速部的输出部连结有电动机的输出轴,在上述偏心摆动型减速机构的输出部形成有与塔架的齿圈相啮合的外齿。因此,能够提供风力发电装置的效率高且结构紧凑的减速器。
并且,本发明的风力发电机的偏摆驱动方法,与安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的第1齿轮相啮合的第2齿轮由安装在塔架或风力发电单元中剩余的另一个上的驱动电动机来驱动旋转,由此使风力发电单元偏摆旋转,其中,在从开始给上述驱动电动机提供驱动能量的时刻开始的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,本发明通过上述风力发电机的偏摆驱动方法能够达成。
并且,本发明通过包括以下单元的风力发电机的偏摆驱动装置达成:被安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中的任意一个上的第1齿轮;与上述第1齿轮相啮合的第2齿轮;被安装在塔架或风力发电单元中剩余的另一个上,当提供驱动能量时通过驱动上述第2齿轮旋转而使风力发电单元偏摆旋转的驱动电动机;在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内、将提供给驱动电动机的驱动能量减小到比通常偏摆旋转时提供给驱动电动机的驱动能量小的减少单元。
或者,本发明的风力发电机的偏摆驱动方法,与安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的环状内齿轮相啮合的小齿轮由安装在塔架或风力发电单元中剩余的另一个上的驱动电动机来驱动旋转,由此使风力发电单元偏摆旋转的偏摆驱动方法,其中,在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,本发明通过上述风力发电机的偏摆驱动方法能够达成。
或者,本发明通过包括以下单元的风力发电机的偏摆驱动装置达成:被安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中的任意一个上的环状内齿轮;与上述内齿轮相啮合的小齿轮;被安装在塔架或风力发电单元中剩余的另一个上、当提供驱动能量时通过驱动上述小齿轮旋转来使风力发电单元偏摆旋转的驱动电动机;在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内,将提供给驱动电动机的驱动能量减小到比通常偏摆旋转时提供给驱动电动机的驱动能量小的减少单元。
发明的效果
如果采用本发明,能够提供适用于风力发电装置的偏摆驱动装置的、效率高且轴向长度短的减速器。并且,能够提供风力发电装置的效率高且结构紧凑的偏摆驱动装置。
并且,在通过驱动电动机驱动风力发电单元偏摆旋转时,虽然给驱动电动机提供驱动能量,但由于从开始给驱动电动机提供驱动能量的时刻开始通过减少单元将该驱动能量的值降低到比通常偏摆旋转时提供给驱动电动机的驱动能量值小,因此开始旋转时从驱动电动机施加给第2齿轮的旋转驱动转矩为与上述小的供给驱动能量相对应的小的值。结果,降低了第2齿轮开始旋转时第2齿轮的齿与第1齿轮的齿之间的冲击,由此,不仅能够降低第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。当在这种状态下经过预定的时间时,驱动电动机的旋转速度上升到一定的程度的值,但这个时刻以后给驱动电动机提供通常偏摆旋转时的值的驱动能量,风力发电单元进行偏摆旋转。
而且,在风力发电单元停止偏摆旋转时,如果在从即将停止对驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,并且减小此期间从驱动电动机施加给风力发电单元的旋转力的话,则风力发电单元在上述期间在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度逐渐降低。并且,如果在这样旋转速度降低,停止给驱动电动机提供驱动能量的时刻以后通过制动单元给驱动电动机施加预定值的制动转矩的话,则降低第2齿轮的齿与第1齿轮的齿之间的冲击,由此,不仅能够降低第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。
并且,虽然在风力发电单元停止偏摆旋转时停止给驱动电动机提供驱动能量,但由于在从停止给该驱动电动机提供驱动能量的时刻开始经过预定的时间后,通过制动单元给驱动电动机施加预定值的制动转矩,因此在从停止上述驱动能量的提供的时刻开始经过预定的时间的期间内,风力发电单元在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度逐渐下降。并且,由于在这样旋转速度降低的时刻从制动单元给驱动电动机施加上述制动转矩,因此降低第2齿轮的齿与第1齿轮的齿之间的冲击,由此,不仅能够降低第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。
并且,由于能够消除第2齿轮的齿与第1齿轮的齿之间的齿隙,因此能够更加有效地降低风力发电单元开始偏摆旋转时第2齿轮的齿与第1齿轮的齿之间的冲击。
而且,在流体电动机停止运转中,虽然存在阵风等过大的风负荷作用于风力发电单元,使该风力发电单元旋转,由此使流体电动机起泵的作用的可能,但如果采用技术方案7的结构,则能够防止此时流体电动机、风力发电单元高速旋转。
并且,虽然由于上述原因存在流体电动机起泵的作用的可能,但由于此时由于背压作用给流体电动机施加流体制动力,能够抑制其旋转,由此可以省略以往为了固定风力发电单元所必需的固定在塔架上端部的由制动盘和夹持该制动盘的摩擦固定式制动片构成的油压制动器。
而且,虽然由于上述原因驱动电动机存在边受制动单元的制动边旋转,给设备造成坏影响的可能,但能够防止这种情况的发生。
并且,虽然风力发电单元在驱动电动机的作用下偏摆旋转时给驱动电动机提供驱动能量,但由于从开始给该驱动电动机提供驱动能量的时刻开始通过制动单元给驱动电动机施加转矩起始制动转矩,因此在开始旋转时给第2齿轮施加驱动电动机输出的驱动转矩减去转矩起始制动转矩的差值的旋转驱动转矩被付与减速状态转矩。这里,由于上述转矩起始制动转矩为比驱动电动机的最大驱动转矩小的预定值,因此第2齿轮能够旋转从而使风力发电单元旋转,但此时的旋转驱动转矩如上所述为差值的较小的值,而且第2齿轮的旋转速度被转矩起始制动转矩减速,因此减小了第2齿轮的齿与第1齿轮的齿之间的冲击,由此不仅能够减小第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。在这种状态下经过预定的时间后,驱动电动机的旋转速度上升到一定程度的值,但此时上述制动单元结束给驱动电动机施加转矩起始制动转矩,风力发电单元进行偏摆旋转。
并且,虽然在风力发电单元停止偏摆旋转时停止给驱动电动机提供驱动能量,但由于从停止给该驱动电动机提供驱动能量的时刻开始经过预定的时间后通过制动单元给驱动电动机施加预定值的终止制动转矩,因此在从停止上述驱动能量的提供的时刻开始经过预定的时间的期间内,风力发电单元在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度逐渐下降。并且,由于在这样旋转速度降低的时刻从制动单元给驱动电动机施加上述终止制动转矩,因此降低第2齿轮的齿与第1齿轮的齿之间的冲击,由此,不仅能够降低第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。
并且,在风力发电单元停止偏摆旋转时,如果在从即将停止给驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻为止的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,减小此期间内从驱动电动机施加给风力发电单元的旋转力的话,则风力发电单元在上述期间在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度逐渐降低。并且,如果这样旋转速度降低,停止给驱动电动机提供驱动能量的时刻以后通过制动单元给驱动电动机施加预定值的终止制动转矩的话,则降低第2齿轮的齿与第1齿轮的齿之间的冲击,由此,不仅能够降低第1、第2齿轮的齿的损伤或噪音,而且能够使装置便宜且小型化。
并且,能够使同一个制动单元具备降低冲击的功能和在驱动电动机停止时限制风力发电单元旋转的功能,由此,与分别设置不同功能的制动单元时相比,能够使结构简单,能够降低制作费用。
而且,能够使制动单元的结构简单,价格便宜。
并且,不仅结构简单,而且能够使固定侧与旋转侧的摩擦体能够确实地互相分离。
而且,虽然在驱动电动机停止运转时,存在阵风等过大的风负荷作用于风力发电单元使该风力发电单元旋转,当该旋转传递到制动单元使旋转侧摩擦体在与固定侧摩擦体摩擦接触的状态下旋转时,制动单元被摩擦热加热而损坏的可能,但如果采用技术方案9所述的结构的话,则能够防止这种情况的出现。
附图说明
图1是表示本发明的第1实施形态的图。
图2是图1的B-B向视剖视图。
图3是表示本发明的第2实施形态的图。
图4是偏心摆动型减速机构的减速比与偏心摆动型减速机构的效率、偏摆驱动装置用减速器的总效率、总减速比的关系图。
图5是表示本发明的第3实施形态的主视剖视图。
图6是第3实施形态的概略电路图。
图7是说明第3实施形态的动作定时的曲线图,(a)表示时间与输出轴旋转速度的关系,(b)表示时间与制动室压力的关系,(c)表示时间与A转换阀电压的关系,(d)表示时间与B转换阀电压的关系,(e)表示时间与开闭阀电压的关系。
图8是表示第4实施形态的与图6一样的概略电路图。
图9是说明第4实施形态的动作定时的曲线图,(a)表示时间与输出轴旋转速度的关系,(b)表示时间与制动室压力的关系,(c)表示时间与A转换阀电压的关系,(d)表示时间与B转换阀电压的关系,(e)表示时间与开闭阀电压的关系,(f)表示时间与控制阀电压的关系。
图10是表示第6实施形态的主视剖视图。
图11是第6实施形态的概略电路图。
图12是说明第6实施形态的动作定时的曲线图,(a)表示时间与输出轴旋转速度的关系,(b)表示时间与制动电压的关系,(c)表示时间与电动机电压的关系,(d)表示时间与传感器信号的关系。
图13是表示第7实施形态的与图11相同的概略电路图。
图14是说明第7实施形态的动作定时的曲线图,(a)表示时间与输出轴旋转速度的关系,(b)表示时间与控制室压力的关系,(c)表示时间与转换阀电压的关系,(d)表示时间与电动机电压的关系,(e)表示时间与传感器信号的关系。
具体实施方式
下面根据图1和图2说明本发明的第1实施形态。图1为纵剖视图,表示沿图2的A-A方向剖视的图,图2为图1的B-B线剖视图。
100为风力发电装置的偏摆驱动装置。200为该偏摆驱动装置100中使用的减速器。减速器200由一级减速部10、与该一级减速部10相连结的二级减速部20、以及与该二级减速部20相连结的三级减速部30构成。
一级减速部10由具备以下部件的行星减速机构构成:固定连结在电动机1的输出轴2上作为输入部的输入中心齿轮3;在该输入中心齿轮3的周围与该输入中心齿轮3啮合的多个(3个)行星齿轮4;具有在这些行星齿轮4的周围与这些行星齿轮4啮合的内齿5的内齿齿轮体6;以及旋转自由地支持上述多个行星齿轮4的支座7。电动机1被安装在电动机支持构件8上。内齿齿轮体6被固定在电动机支持构件8的内部。支座7上固定有多个通过多个针状物9旋转自由地支持行星齿轮4的销101。
由该行星减速机构构成的一级减速部10的减速比设定为1/9。一级减速部10的减速比从1/3到1/20中选择设定。
二级减速部20由直齿轮式减速机构构成,该直齿轮式减速机构包括连结在上述行星减速机构的支座7上的输入直齿轮21和多个(4个)与该输入直齿轮21啮合的直齿轮22。
由该直齿轮式减速机构构成的二级减速部20的减速比设定为1/3。二级减速部20的减速比从1/2到1/5中选择设定。
因此,一级减速部10和二级减速部20的合计减速比设定为1/27(1/9×1/3)。一级减速部10及二级减速部20的合计减速比可以设定为1/6到1/100(1/3×1/2至1/20×1/5)。但是,在偏摆驱动装置中使用的本发明的减速器中,只要从1/6到1/60中选择设定一级减速部和二级减速部的合计减速比就可以。
三级减速部30用具备以下部件的偏心摆动型减速机构构成:内周形成有内齿31的固定内齿齿轮体32;收容在该内齿齿轮体32内,外周具有齿数比该内齿的齿数少一些并与上述内齿31啮合的外齿33,沿轴向并排配置的多个(2个)外齿轮34;旋转自由地插入这些外齿轮34内,通过与上述二级减速部20的直齿轮22相连结并旋转而使这些外齿轮34偏心旋转的多个(4个)曲柄轴35;通过一对轴承36可旋转地支持该曲柄轴35两端部的作为输出部的支座37。在支座37的顶端部花键连结地设置有具有与塔架(图中没有表示)的齿圈(图中没有表示)啮合的外齿38的小齿轮39。小齿轮39也可以通过在支座37的顶端部进行机械加工形成。在这些曲柄轴35各自的端部分别安装有上述二级减速部20的多个直齿轮22。在这些外齿轮34的内部通过滚针轴承40分别插入有多个曲柄轴35的曲柄部。支座37通过一对轴承41旋转自由地支持在内齿齿轮体32上。油封42插入内齿齿轮体32的顶端内周与安装在支座37的周围的油封支持体43之间地设置。上述电动机支持构件8的一端被固定在内齿齿轮体32的端部。
由偏心摆动型减速机构构成的三级减速部30的减速比设定为1/60。三级减速部30的减速比从1/50至1/140中选择设定。
由三级减速构成的本减速器的总减速比设定为1/1620(1/9×1/3×1/60)。包括三级减速的减速器的总减速比可以设定为1/300至1/14000(1/3×1/2×1/50至1/20×1/5×1/140)。但是,在偏摆驱动装置中使用的本发明的减速器中,可以从1/1000至1/3000中选择设定总减速比。
下面根据图3的纵剖视图说明本发明的第2实施形态。
图3中,300为风力发电装置的偏摆驱动装置。400为该偏摆驱动装置300中使用的减速器。
一级减速部50由直齿轮式减速机构构成,该直齿轮式减速机构包括固定连结在电动机60的输出轴61上的作为输入部的第1输入直齿轮51及与该第1输入直齿轮51啮合的第1直齿轮52。
由该直齿轮式减速机构构成的一级减速部50的减速比设定为1/6。一级减速部50的减速比从1/2到1/12中选择设定。电动机60安装在电动机支持构件62上。
二级减速部70由直齿轮式减速机构构成,该直齿轮式减速机构包括连结在上述第1直齿轮52上的第2输入直齿轮53和多个(4个)与该第2输入直齿轮53啮合的第2直齿轮54。第2输入直齿轮53旋转自由地被支持在电动机支持构件62及后述的偏心摆动型减速机构80的支座87上。
由该直齿轮式减速机构构成的二级减速部70的减速比设定为1/3。二级减速部70的减速比从1/2到1/5中选择设定。
因此,一级减速部50和二级减速部70的合计减速比设定为1/18(1/6×1/3)。一级减速部50及二级减速部70的合计减速比可以设定为1/4到1/60(1/2×1/2至1/12×1/5)。但是,在偏摆驱动装置中使用的本发明的减速器中,只要从1/6到1/60中选择设定一级减速部和二级减速部的合计减速比就可以。
三级减速部80用具备以下部件的偏心摆动型减速机构构成:内周形成有内齿81的固定内齿齿轮体82;收容在该内齿齿轮体82内,外周具有齿数比该内齿的齿数少一些并与上述内齿81啮合的外齿83,沿轴向并排配置的多个(2个)外齿轮84;旋转自由地插入这些外齿轮84内,通过与上述二级减速部70的第2直齿轮54连结并旋转而使这些外齿轮84偏心旋转的多个(4个)曲柄轴85;通过一对轴承86可旋转地支持该曲柄轴85两端部的作为输出部的支座87。在支座87的顶端部花键连结地设置有具有与塔架(图中没有表示)的齿圈(图中没有表示)啮合的外齿88的小齿轮89。在这些曲柄轴85各自的端部分别安装有上述二级减速部70的多个第2直齿轮54。在多个外齿轮84的内部通过滚针轴承90分别插入有多个曲柄轴85的曲柄部。支座87通过一对轴承91旋转自由地支持在内齿齿轮体82上。
上述电动机支持构件62的一端被固定在内齿齿轮体82的端部。用偏心摆动型减速机构构成的三级减速部80的减速比设定为1/60。三级减速部80的减速比从1/50至1/140中选择设定。由三级减速构成的本减速器的总减速比设定为1/1080(1/6×1/3×1/60)。由三级减速构成的减速器的总减速比可以设定为1/200至1/8400(1/2×1/2×1/50至1/12×1/5×1/140)。但是,在偏摆驱动装置中使用的本发明的减速器中,可以从1/1000至1/3000中选择设定总减速比。
下面说明本发明的作用。
电动机1、60的输出轴2、61的旋转最初被一级减速部10、50减速,接着被二级减速部20、70减速,最后被三级减速部30、80减速,为了使包括支座37、87三级减速部分的本发明的减速器的总减速比与连结了5级行星减速机构的现有减速器的总减速比一样约为77%,有必要使第1实施形态的由偏心摆动型减速机构构成的三级减速部30的减速比为约85%(77%÷一级行星减速机构95%÷二级直齿轮式减速机构96%≈85%)。
图4为偏心摆动型减速机构的减速比与偏心摆动型减速机构的效率、偏摆驱动装置用减速器的总效率、和总减速比之间的关系的图。图4中,偏心摆动型减速机构的效率用线L1表示,减速比越大,效率越低。偏摆驱动装置的总效率用线L2表示,减速比越大,效率越低。
为了维持偏摆驱动装置的总效率为77%,有必要使偏心摆动型减速机构构成的三级减速部30的效率为约85%以上,减速比为1/140以下。三级减速部30的最小减速比为1/50是由一级减速部10和二级减速部20的合计减速比的最大值和最大总减速比(60/3000=1/50)决定的。
这样一来,即使用轴向长度短的三级减速部构成减速器,如果用偏心摆动型减速机构构成三级减速部,使其减速比为1/50至1/140的话,则能够将风力发电装置的偏摆驱动装置使用的减速器所需要的总效率维持在77%。
并且,如果将一级减速部和二级减速部的合计减速比设定在1/6至1/60,并且将偏心摆动型减速机构的减速比设定在1/50至1/140的话,则即使用三级减速部构成减速器,也能够容易地获得偏摆驱动装置所必需的减速器的总减速比为1/1000至1/3000。
另外,虽然在第1及第2实施形态中固定偏心摆动型减速机构30、80的内齿齿轮体32、82,从支座37、87获得旋转输出,但本发明的减速器也可以固定支座37、87,从内齿齿轮体32、82获得旋转输出。此时,小齿轮39、89安装在内齿齿轮体32、82上。并且,也可以在内齿齿轮体32、82的外周部形成与塔架的齿圈啮合的外齿38、88。
并且,虽然在本发明的第1实施形态中用行星减速机构构成一级减速部,用直齿轮式减速机构构成二级减速部,在第2实施形态中用直齿轮式减速机构构成一级减速部和二级减速部,但也可以都用行星减速机构构成一级减速部和二级减速部。
接着根据附图说明有关使用了上述减速器的偏摆驱动方法及装置的第3实施形态。
在图5、图6中,111为风力发电机112的塔架(支柱),在该塔架111的上端部通过轴承114可偏摆旋转地、即可在近似水平面内旋转地支持有风力发电单元113。该风力发电单元113为众所周知的结构,具备:悬吊外壳115;支持在该悬吊外壳115上、可围绕近似水平的轴线旋转的图中没有示出的旋翼头;半径方向内端部可旋转地连结在该旋翼头上的多片风车叶片(图中没有示出);收容固定在上述悬吊外壳115内、接受来自旋翼头的旋转进行发电的发电机(图中没有示出)。
这里,上述轴承114的内圈被固定在塔架111上,但在该内圈的内周形成多个内齿118,结果,该内圈构成作为安装在塔架111或风力发电单元113中任一个、在本第3实施形态为安装在塔架111上端部的第1齿轮的环状内齿轮119。如果这样在内齿轮119上共用用内圈的话,则整个装置的结构简单,能够小型化。
120为以将减速器121安装在中间的状态下安装到塔架111或风力发电单元113中剩余的另一个、在本第3实施形态为安装到风力发电单元113的悬吊外壳115上的多台作为驱动电动机的流体电动机,这些流体电动机120沿圆周方向等距离隔开地配置。并且,给这些流体电动机120提供驱动能量,这里由于驱动电动机为流体电动机120,因此当提供高压流体时,该流体电动机120的输出轴122旋转,该输出轴122的旋转驱动转矩被减速器121减速后施加给固定在该减速器121的旋转轴123上的作为第2齿轮的外齿轮、即小齿轮124,使该小齿轮124旋转。这里,这些小齿轮124与上述内齿轮119的内齿118啮合,结果如前所述,当小齿轮124旋转时,风力发电单元113通过轴承114支持在塔架111上并偏摆旋转。
125为被电动机126驱动旋转由此将从容器127中吸入的流体作为高压流体排出给供给通道128的流体泵,在该供给通道128的中间安装有校验阀129,并在其终端连结有受由CPU等构成的控制部130控制的多个、这里为与流体电动机120相同个数的电磁转换阀131。并且,该转换阀131和上述容器127由排出通道132连接。133、134为连接成对的流体电动机120和转换阀131的一对进排通道,这些进排通道133、134被上述转换阀131切换到流通位置(平行流通位置或交叉流通位置),由此使某一侧为高压侧,剩下的另一侧为低压侧,由此使流体电动机120正转或逆转。
由于上述控制部130中连结有风向计137和电位器138,因此向该控制部130中输入表示当时风向的来自风向计137的风向信号,但当此时的风向与风力发电单元113的旋转方向不同时,控制部130切换转换阀131使流体电动机120正转或逆转,使该风力发电单元113偏摆旋转追随风向,以便转换阀131从正面受风,能够以高效率发电。
141为连接上述供给通道128与容器127的溢流通道,在该溢流通道141的中间安装有当流体回路的压力比通常的管路压力高时溢流的溢流阀142,该溢流阀142保护流体回路的压力不会异常升高。143为连接到上述溢流阀142的液压控制通道中的电磁式开闭阀,该开闭阀143的开闭动作受上述控制部130的控制。144为连接上述开闭阀143与容器127的降低通道,在该降低通道144中安装有溢流压设定为比风力发电单元113通常偏摆旋转时提供给流体电动机120的高压流体的压力(通常管路压力)低的低压溢流阀145。
并且,当控制部130将开闭阀143切换到打开状态时,该低压溢流阀145将流体溢流到容器127中将提供给流体电动机120的高压流体的压力降低到比通常低(小)。上述开闭阀143、降低通道144和低压溢流阀145整体构成使提供给流体电动机120的流体压力比通常偏摆旋转时提供给流体电动机120的高压流体压力小的减少单元146。另外,也可以使用能够与从控制部130中输入的信号值成比例地调节通过流体的压力的比例压力控制阀来取代保护用溢流阀142作为该减少单元146。此时,不需要上述开闭阀143、降低通道144和低压溢流阀145,异常高压时的溢流和压力比管路压力低时的溢流都用该比例压力控制阀来进行。
151为附设在流体电动机120上、使用了能够给该流体电动机120的输出轴122施加预定值的制动转矩的作为制动单元的摩擦板的负制动器,该负制动器151具有固定壳体152,活塞153可移动地收容在该固定壳体152内。并且,在上述固定壳体152内收容有至少1枚配置在活塞153与固定壳体152的台阶面154之间、花键结合在流体电动机120的输出轴122外侧的旋转摩擦板156;以及至少1枚能够接近或离开上述旋转摩擦板156、花键结合在固定壳体152的内壁的固定摩擦板157。
158为能够通过活塞153向旋转、固定摩擦板156、157施加弹力的弹簧,该弹簧158通过将上述旋转、固定摩擦板156、157挤压在台阶面154上,使这些旋转、固定摩擦板156、157互相摩擦接触。上述固定壳体152、活塞153、旋转/固定摩擦板156/157和弹簧158整体构成上述负制动器151。
159为将上述进排通道133、134互相连结起来的选择通道,在该选择通道159的中间安装有从高压侧的进排通道133或134中选择高压流体的选择阀160。该选择阀160取出的高压流体通过连接该选择阀160和上述固定壳体152内的制动室的制动器通道161导入上述制动室,但此时活塞153通过上述高压流体克服弹簧158的弹力离开旋转、固定摩擦板156、157地移动,由此,旋转、固定摩擦板156、157互相分离。
这里,上述固定壳体152的制动室与容器127用图中没有示出的排出通道连结,并且在该排出通道的中间安装有上述转换阀131。因此,当上述转换阀131被切换到流通位置时,转换阀131在中途阻断排出通道,结果如上所述选择阀取出的高压流体被提供给固定壳体152的制动室;但当转换阀131被切换到中间位置时,排出通道连通,将流体从固定壳体152的控制室排出到容器127中,结束对活塞153施加流体力。
这样一来,从转换阀131被切换到中间位置停止给流体电动机120提供高压流体时开始,流体从固定壳体152的制动室排出,结果负制动器151在弹簧158的弹力的作用下使旋转、固定摩擦板156、157互相摩擦接触,给流体电动机120施加预定值的制动转矩;而从转换阀131被切换到流通位置开始给流体电动机120提供高压流体时开始,从高压侧的进排通道133或134取出的高压流体被提供给固定壳体152的制动室,使活塞153离开旋转、固定摩擦板156、157,结束对流体电动机120施加制动转矩。
这里,虽然上述减少单元146在控制部130的控制下在2个时间降低流体压力,但其中的一个时间从开始给流体电动机120提供高压流体时开始,并且在从开始给流体电动机120提供高压流体时开始经过预定的时间后结束;而另一个时间从停止给流体电动机120提供高压流体时倒推预定的时间的之前的时刻开始,在停止给流体电动机120提供高压流体时结束。另外,虽然该减少单元146对流体压力的降低必须在上述期间内进行,但在其前后降低流体的压力也无妨。例如,也可以在开始给流体电动机120提供高压流体以前的某个时刻开始降低流体压力,或者在停止给流体电动机120提供高压流体以后继续降低流体压力。
这样一来,由于从开始提供高压流体时开始通过减少单元146来降低提供给流体电动机120的高压流体的压力,使流体压力比通常偏摆旋转时的流体压力低(小),因此开始旋转时从流体电动机120施加给小齿轮124的旋转驱动转矩为与上述压力降低了的流体能量相对应的小的值。结果,降低了小齿轮124开始旋转时小齿轮124的齿与内齿轮119的内齿118之间的冲击,由此,不仅能够降低小齿轮124、内齿轮119的齿的损伤或噪音,而且能够使装置便宜并小型化。在这种状态下经过预定的比较短的时间,流体电动机120的输出轴122的旋转速度上升到一定程度的值,但由于此时上述减少单元146结束了对流体压力的降低,因此此刻以后给流体电动机120提供压力为通常偏摆旋转时提供的管路压力的高压流体,风力发电单元113进行偏摆旋转。
并且,如果像上述那样在即将停止给流体电动机120提供高压流体之前到停止提供该高压流体时的预定时间内使提供给流体电动机120的高压流体的压力比通常偏摆旋转时的压力低,降低此时流体电动机120施加给风力发电单元113的旋转力的话,则在上述期间由于旋翼头等的陀螺效应或摩擦阻力,风力发电单元113的旋转速度慢慢下降。并且,如果旋转速度这样下降,在停止给流体电动机120提供驱动能量时从负制动器151给流体电动机120施加预定值的制动转矩的话,则能够降低小齿轮124的齿与内齿轮119的内齿118之间的冲击,由此,不仅能够降低小齿轮124、内齿轮119的齿的损伤或噪音,而且还能够使装置便宜并小型化。
这里,当上述风力发电单元113处于停止旋转的状态,并且负制动器151给流体电动机120施加制动转矩时,虽然阵风等过大的风负荷作用于风力发电单元113有可能使该风力发电单元113挣脱负制动器151的制动而旋转,但此时风力发电单元113的旋转通过内齿轮119、小齿轮124和减速器121传递给流体电动机120和负制动器151,旋转驱动流体电动机120使流体电动机120起泵的作用,并且旋转、固定摩擦板156、157彼此在维持摩擦接触的状态下旋转。在这种情况下,进排通道133或134内的压力有可能上升到异常高压,并且负制动器151有被摩擦热加热而损伤的可能。
因此,在本第3实施形态中,用连接通道164连接上述一对进排通道133、134,并且在该连接通道中间安装有可变式节流阀165。由此,通过上述流体电动机120起泵的作用排出到进排通道133或134中的流体被上述节流阀165节流,同时流出到吸入侧的进排通道133或134,由此不仅防止排出侧的进排通道133或134内的压力上升到异常高压,并且将通过节流阀165的流体量限制在一定量,由此可以控制流体电动机120的旋转速度。
下面说明上述第3实施形态的作用。
现在,由于风力发电单元113从正面受风,因此转换阀131被切换到中间位置,停止给流体电动机120提供高压流体,风力发电单元113的偏摆旋转停止。此时,由于如图7(b)所示流体从固定壳体152的制动室排出,因此负制动器151在弹簧158的弹力的作用下使旋转、固定摩擦板156、157互相摩擦接触,给流体电动机120施加预定值的制动转矩。
接着,当风向变化时,风向计137检测该风向的变化给控制部130输出风向信号。结果,控制部130如图7(c)、(d)所示在T1时刻给转换阀131A、B中的一个的线圈施加转换阀电压,将这些转换阀131A、B切换到流通位置、例如平行流位置。由此,从流体泵125排出的高压流体通过供给通道128和进排通道133提供给流体电动机120,驱动该流体电动机120旋转,并且从流体电动机120排出的流体通过进排通道134和排出通道132排出到容器127。
当这样将高压流体提供给进排通道133时,选择阀160从进排通道133中选择高压流体、通过制动器通道161提供给固定壳体152内的制动室,如图7(b)所示使制动室内的压力上升。结果,活塞153接受流体压克服弹簧158的弹力离开旋转、固定摩擦板156、157地移动,结束从T1时刻开始对流体电动机120施加的制动转矩。
并且,由于在该T1时刻时控制部130如图7(e)所示给开闭阀143施加开闭阀电压,将该开闭阀143切换到打开状态,因此低压溢流阀145以低的压力溢流流体,将提供给流体电动机120的流体的压力降低到比通常的管路压力低。由于这样从开始提供高压液体的T1时刻开始通过减少单元146将提供给流体电动机120的高压流体的压力降到比通常偏摆旋转时的流体压力(管路压力)低,因此开始旋转时流体电动机120施加给小齿轮124的旋转驱动转矩为与上述压力降低的流体能量相对应的小的值。结果降低了小齿轮124开始旋转时小齿轮124的齿与内齿轮119的内齿118之间的冲击。
并且,如果像上述那样给流体电动机120提供低压的流体的话,则流体电动机120的输出轴122的旋转速度如图7(a)所示那样慢慢变高,但从上述转换阀131被切换到流通位置的T1时刻开始经过预定的短时间到达T2时刻时,上述输出轴122的旋转速度上升到一定的程度。此时,如图7(e)所示由于控制部130将开闭阀143切换到关闭状态,因此流体未被低压溢流阀145溢流,提供给流体电动机120的流体压力恢复到通常偏摆旋转时提供给流体电动机120的高压流体的压力(管路压力)。结果,流体电动机120的输出轴122被急剧加速,旋转速度上升到通常旋转速度,风力发电单元113以通常的偏摆旋转速度旋转以便从正面受风。
并且,当风力发电单元113即将偏摆旋转到正面受风的位置之前,到达T3时刻时,如图7(e)所示控制部130给开闭阀143施加开闭阀电压,该开闭阀143被切换到打开状态,低压溢流阀145溢流。由此,提供给流体电动机120的流体压力降低,驱动流体电动机120旋转的转矩变成小的值。然后,当从上述T3时刻经过预定时间到达停止提供高压流体的T4时刻时,如图7(b)、(c)所示,结束从控制部130施加给转换阀131A、B的转换阀电压,转换阀131A、B被切换到中间位置。由此,停止给流体电动机120提供高压流体。
如果这样在即将停止给流体电动机120提供高压流体的T4时刻之前到T4时刻的预定的短时间内使提供给流体电动机120的流体的压力降低到比通常偏摆旋转时提供给流体电动机120的流体的压力(管路压力)低,在此期间减小从流体电动机120施加给风力发电单元113的旋转力的话,则风力发电单元113在上述期间由于旋翼头等的陀螺效应或摩擦阻力的作用,其旋转速度慢慢降低。
并且,如果像上述那样在T4时刻将转换阀131切换到中间位置的话,则流体从固定壳体152的制动室排出到容器127中,但此时弹簧158的弹力使旋转、固定摩擦板156、157互相摩擦接触,负制动器151给流体电动机120施加预定值的制动转矩。如果这样风力发电单元113的旋转速度降低,或者在停止给流体电动机120提供流体的T4时刻通过负制动器151给流体电动机120施加预定值的制动转矩的话,则降低小齿轮124的齿与内齿118的内齿轮119之间的冲击,由此不仅能够减少小齿轮124、内齿轮119的齿的损伤或噪音,而且能够使装置便宜且小型化。
并且,如果像上述那样从负制动器151给流体电动机120施加制动转矩的话,则流体电动机120的输出轴122的旋转速度如图7(a)所示急速下降。这里,虽然上述开闭阀143在上述T4时刻与转换阀131被切换到中间位置的同时被切换到关闭状态,但在本第3实施形态中,在该T4时刻后的预定时间内继续打开状态。然后,到T5时刻时,如图7(a)所示,流体电动机120的输出轴122停止旋转,风力发电单元113也停止偏摆旋转。此时,风力发电单元113从正面受风,发电效率最高。
并且,处于该T5时刻时,如图7(d)所示,控制部130给一部分转换阀131、这里为转换阀131B的另一个线圈施加转换阀电压,转换阀131B被切换到例如交叉流通位置。结果,压力流体通过转换阀131B提供给进排通道134,但由于开闭阀143在T3时刻之后继续处于打开状态,因此此时的流体压力为由低压溢流阀145决定的低压力。
并且,当如上所述低压流体被提供到进排通道134时,由于负制动器151释放对流体电动机120的制动,因此流体电动机120使小齿轮124沿与上述相反的方向旋转,但由于此时的旋转驱动转矩为很小的值,因此小齿轮124在冲击被抑制的状态下与内齿轮119的内齿118相抵接,消除它们之间的齿隙。由此,能够有效地降低风力发电单元113开始下一次偏摆旋转时小齿轮124的齿与内齿轮119的内齿118之间的冲击。
这里,施加到部分转换阀131的转换阀电压也可以施加给与上述相反的一个线圈上。此时,小齿轮124沿与偏摆旋转时相同的方向旋转。另外,当这样给部分转换阀131的任意一侧的线圈施加转换阀电压时,大多数情况下不给剩余的转换阀131施加转换阀电压,但也可以给剩余的转换阀131的不同一侧的线圈施加转换阀电压。然后,当处于T6时刻时,如图7(d)、(e)所示,停止给上述转换阀131B施加转换阀电压,使该转换阀131B恢复到中间位置,并且结束给开闭阀143施加开闭阀电压,将开闭阀143切换到关闭状态。结果,流体电动机120的输出轴122停止旋转,风力发电单元113停止旋转,处于待机状态,直到下一次风向改变。
在这样的风力发电单元113停止旋转中,有可能吹过阵风等使风力发电单元113上作用过大的风负荷,使该风力发电单元113挣脱负制动器151的制动而旋转。此时流体电动机120起泵的作用从进排通道133或134的任一条通道中吸入流体,并且将流体排出给进排通道133或134的剩余的另一条通道中。此时,由于转换阀131被切换到中间位置,排出侧的进排通道133、134内的压力上升,由此,固定壳体152的制动室内的压力在时间T7内如图7(b)所示急剧上升,解除负制动器151对流体电动机120的制动。
并且,由于此时排出到排出侧的进排通道133、134中的流体被节流阀165节流同时流出到吸入侧的进排通道133或134,因此不仅能够防止排出侧的进排通道133或134内的压力上升到异常高的压力,而且通过将通过节流阀165的流体量限制在一定的量,能够抑制流体电动机120的旋转速度,能够防止流体电动机120的输出轴122和风力发电单元113高速旋转的情况的发生,而且由于排出侧的进排通道133或134内的压力作为背压而作用在流体电动机120上,因此能够给流体电动机120施加流体制动。然后,当时间处于T8,风力发电单元113停止旋转时,由于进排通道133或134的压力降低,因此固定壳体152的控制室内的压力也如图7(b)所示降低,负制动器151再次给流体电动机120施加制动力。
下面用图8说明有关使用了上述减速器的偏摆驱动方法及装置的第4实施形态。这里,由于第4实施形态的结构的大部分与上述第3实施形态的结构相同,因此对于相同的部分仅在图面上添加相同的附图标记,省略其重复说明,仅就不同的部分进行说明。在该图中,170为安装在进排通道133、134的中间、具有校验阀171的背压阀,当流体电动机120的旋转使风力发电单元113旋转时,如果受到与该风力发电单元113的旋转方向相同的大的风负荷作用的话,则流体电动机120承受该风的负荷起泵的作用,此时这些背压阀170承受排出侧的进排通道133或134的压力而切换到接近关闭的状态,防止流体电动机120失控。
并且,在该第4实施形态中,设置有通过由控制部130输出的控制阀电压根据测量风速的风速计172输出的风速信号进行切换的控制阀173、连接该控制阀173和供给通道128并在中间安装有校验阀174和储能器175的流体通道176、连接控制阀173和负制动器151的控制室的进排通道177、连接控制阀173和容器127的排出通道178,取代选择通道159、选择阀160和制动器通道161。
并且,还设置了这样的测量风速的风速计172,在风力发电单元113停止旋转时,当风速计172测量到的风速在预定值以上时,控制部130停止向控制阀173输出控制阀电压,将该控制阀173切换到供给位置,由此从供给通道128给负制动器151的控制室提供高压流体,使流体电动机120从负制动器151的制动中解放出来,如果这样的话,当阵风等过大的风负荷作用在风力发电单元113上使流体电动机120起泵的作用时,该流体电动机120受负制动器151的制动并旋转,由此能够容易并且确实地防止设备中产生坏影响。另外,当停电时,由于该控制阀173中没有施加控制阀电压,因此被切换到供给位置,将高压流体从储能器175中导入负制动器151,将流体电动机120从负制动器151的制动中解放出来。
而且,在该第4实施形态中,在连接通道164中安装当进排通道133、134的任意一个通道处于比管路压力高但比溢流阀142的溢流压低的预定压力以上时切换到打开状态的溢流阀180取代节流阀165。如果这样的话,在风力发电单元113停止旋转时,如果阵风等过大的风负荷作用于风力发电单元113使流体电动机120起泵的作用,进排通道133或134上升到预定压力以上的话,则溢流阀180承受该压力被切换到打开状态,使排出侧的高压流体流入吸入侧,能够将排出侧的压力限制在预定压力(溢流压力)。结果,溢流压作为背压作用在流体电动机120上并施加流体制动力,不仅流体电动机120的旋转受到抑制,而且被扭矩控制。由此,可以省略以往为了固定风力发电单元所必需的由固定在塔架上端部的制动盘和夹持该制动盘的摩擦固定式制动片构成的油压制动器。
并且,在该第4实施形态中,在风力发电单元113停止旋转时,控制部130继续给控制阀173施加控制阀电压。接着,到达时间T1时,如图9(f)所示,控制部130停止给控制阀173施加控制阀电压。结果,高压流体从供给通道128经过流体通道176、进排通道177提供给负制动器151的控制室,在该时间T1内,流体电动机120从负制动器151的制动中解放出来。然后,由于在时间T4内开始施加上述控制阀电压,因此从该时间T4开始负制动器151给流体电动机120施加制动力。
并且,在风力发电单元113停止旋转时,当阵风等吹过使风速达到预定值以上时,控制部130根据风速计172输出的风速信号如图9(f)所示那样停止给控制阀173施加控制阀电压,该控制阀173被切换到供给位置。由此,高压流体从供给通道128被提供给负制动器151的控制室,将流体电动机120从负制动器151的制动中解放出来,防止设备中产生坏的影响。并且,当处于风力发电单元113停止旋转的时间T8时,这样的控制阀电压再次开始施加。另外,其他的结构、作用与上述第3实施形态相同。
下面说明有关使用了上述减速器的偏摆驱动方法及装置的第5实施形态。在该第5实施形态中,省略了减少单元146,并且当风力发电单元113停止偏摆旋转时停止给流体电动机120提供高压流体,在与上述第3和第4实施形态不同的时间、即在时间T3通过停止给转换阀131施加转换阀电压进行。并且,在从该时间T3开始经过预定的短时间后的时间T4内,控制部130开始给控制阀173施加控制阀电压,将该控制阀173切换到排出位置,使负制动器151给流体电动机120施加预定值的制动转矩。
结果,在从停止给上述流体电动机120提供高压流体的时刻T3开始经过预定时间为止的时间内,风力发电单元113在旋翼头等的陀螺效应或摩擦阻力的作用下旋转速度慢慢下降。并且,在这样旋转速度降低时由于负制动器151给流体电动机120施加上述制动转矩,因此降低了小齿轮124的齿与内齿轮119的内齿118之间的冲击,由此不仅能够减小小齿轮124、内齿轮119的齿的损伤或噪音,而且能够使装置便宜且小型化。
另外,虽然在上述实施形态中将第1齿轮(内齿轮119)安装在塔架111上,将流体电动机120安装在风力发电单元113上,但在本发明中也可以将第1齿轮安装在风力发电单元上,将驱动电动机安装在塔架上。并且,虽然在上述实施形态中使用流体电动机120作为驱动电动机,但在本发明中也可以使用电动机。此时,驱动能量为电力,但为了控制提供的电力值,可以使用晶闸管、双向可控硅等。而且,虽然在上述实施形态中使用环状内齿轮119作为第1齿轮,使用外齿轮的小齿轮124作为第2齿轮,但在本发明中,第1、第2齿轮都可以使用外齿轮。并且,虽然在上述实施形态中沿圆周方向隔开等间距地配置流体电动机(驱动电动机)120,但也可以沿圆周方向隔开不同的间距配置这些驱动电动机。
下面根据附图说明有关使用了上述减速器的偏摆驱动方法及装置的第6实施形态。
图10、11中,211为风力发电机212的塔架(支柱),风力发电单元213通过轴承214可偏摆旋转、即可在大致水平面中旋转地支持在该塔架211的上端部。这里,该风力发电单元213为众所周知的结构,具备悬吊外壳215;支持在该悬吊外壳215上、可以围绕大致水平轴线旋转的图中没有示出的旋翼头;在该旋翼头上可旋转地连结有半径方向内端部的多个风车制动器(图中没有示出);收容固定在上述悬吊外壳215内、接受旋翼头的旋转而进行发电的发电机(图中没有示出)。
这里,上述轴承214的内圈固定在塔架211上,在该内圈的内周形成多个内齿218,结果,该内圈构成作为安装在塔架211或风力发电单元213中任一个上、在本第6实施形态中为塔架211上端部的第1齿轮的环状内齿轮219。这样,如果在内齿轮219上共用内圈,则能够使装置的整体结构简单、小型化。
220为在将减速器221安装在中间的状态下安装到塔架211或风力发电单元213的剩余一个、在本第6实施形态中为风力发电单元213的悬吊外壳215上的多个作为驱动电动机的电动机,这些电动机220沿圆周方向隔开等间距地配置。并且,如果给这些电动机220提供驱动能量、这里由于驱动电动机为电动机220,因此进行通电(提供电力)的话,则该电动机220的输出轴(图中没有示出)旋转,但该输出轴的旋转驱动转矩经减速器221减速后,施加给固定在该减速器221的旋转轴222上作为第2齿轮的外齿轮的小齿轮223,使该小齿轮223旋转。这里,这些小齿轮223与上述内齿轮219的内齿218啮合,结果,当如上所述小齿轮223旋转时,风力发电单元213通过轴承214被支持在塔架211上并偏摆旋转。
226为CPU等控制部,风向计227、电位器228输出的风向信号输入该控制部226中。并且,该控制部226根据表示当时风向的上述风向信号使电动机220动作,使该风力发电单元213追随风向偏摆旋转,使风力发电单元213能够从正面受风,以高效率发电。
231为附设在电动机220上、能够给该电动机220的输出轴施加比该电动机220的最大驱动转矩小的值的制动转矩的制动单元,作为该制动单元231,在本第6实施形态中使用众所周知的使用了摩擦板的电磁制动器。当在上述控制部226的控制下给制动单元231通电时,该制动单元231给电动机220的输出轴施加制动转矩,而在控制部226的控制下停止对制动单元231通电时,制动单元231使电动机220的输出轴从制动中解放出来。
这里,虽然上述制动单元231在控制部226的控制下至少在2个时刻给电动机220施加制动转矩,但其中的1个转矩起始制动转矩(减速用转矩)的施加从开始对电动机220通电时开始,另1个终止制动转矩(停止用转矩)的施加在停止对电动机220通电后经过预定的时间后开始。并且,虽然上述转矩起始制动转矩的施加可以在从上述通电开始后经过预定的短时间后结束,而上述终止制动转矩的施加可以在风力发电单元213的旋转停止后结束,但为了防止风负荷等使风力发电单元213旋转,优选至少在开始给电动机220通电前不要结束,在风力发电单元213偏摆旋转停止时继续施加制动转矩。
如果这样在开始给电动机220通电时刻开始的预定短时间后通过制动单元231给电动机220施加转矩起始制动转矩的话,则电动机220的输出驱动转矩减去上述转矩起始制动转矩的值的旋转驱动转矩在被减速的状态下在开始旋转时被施加给小齿轮223。这里,由于上述转矩起始制动转矩如前所述为比电动机220的最动驱动转矩小的预定值,因此小齿轮223能够旋转从而使风力发电单元213偏摆旋转,但此时的旋转驱动转矩如上所述为差值的较小的值,而且小齿轮223的旋转速度被转矩起始制动转矩减速,因此减小了小齿轮223的齿与内齿轮219的内齿218之间的冲击,由此不仅能够减小小齿轮223、内齿轮219的齿的损伤或噪音,而且能够使装置便宜且小型化。在这种状态下经过预定的短时间后,电动机220的旋转速度上升到一定程度,但此时上述制动单元231结束给电动机220施加转矩起始制动转矩,风力发电单元213进行偏摆旋转。
并且,如果像上述那样在从停止给电动机220通电时经过预定的时间后通过制动单元231给电动机220施加终止制动转矩的话,则从停止给电动机220通电时开始到经过预定的时间的期间内,风力发电单元213在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度下降。并且,由于这样在旋转速度降低时从制动单元231给电动机220施加上述终止制动转矩,因此降低小齿轮223的齿与内齿轮219的内齿218之间的冲击,由此,不仅能够降低小齿轮223、内齿轮219的齿的损伤或噪音,而且能够使装置便宜且小型化。
这里,上述起始、终止制动转矩既可以与时间的推移无关为一定值,也可以是随时间的推移逐渐减少或逐渐增加的形态。而且,这些起始、终止制动转矩的值既可以相同,也可以互相不同,尤其是终止制动转矩可以是电动机220的最大驱动转矩以上的值。
并且,在本第6实施形态中,在经过预定的时间后并不结束施加上述终止制动转矩,在制动单元231开始给电动机220通电之前继续(如上所述,从此时开始转矩起始制动转矩用的通电),限制电动机220停止时风力发电单元213偏摆旋转。如果这样使同一制动单元231具备降低冲击的功能和电动机220停止时限制风力发电单元213旋转的功能这双重功能的话,则与单独设置上述2种功能的制动单元时相比,能够使结构比较简单,还能够使制作费用低廉。
这里,在上述风力发电单元213处于停止旋转的状态,并且制动单元231给电动机220施加制动转矩(终止制动转矩)时,虽然有阵风等过大的风负荷作用于风力发电单元213,使该风力发电单元213挣脱制动单元231的制动而旋转的可能,但此时风力发电单元213的旋转通过内齿轮219、小齿轮223、减速器221和电动机220的输出轴传递给制动单元231,在摩擦板互相摩擦接触的状态下旋转。在这种情况下,有可能产生摩擦热使制动单元231被该摩擦热加热而损伤的可能。
因此,在本第6实施形态中,不仅在上述制动单元231内安装检测该制动单元231内的温度的检测传感器233一直检测制动单元231内的温度,并且将该检测信号输入控制部226。结果,当上述那样的摩擦热使制动单元231内上升到允许温度以上的温度时,控制部226根据检测传感器233输出的异常信号使制动单元231停止给电动机220施加制动转矩,由此防止发生上述那样的损伤情况。
235为被电动机236驱动旋转而将从容器237中吸入的流体作为高压流体排出到供给通道238内的流体泵,在该供给通道238中间安装有校验阀239和储能器240,并且在其终端连接有由控制部226控制的电磁式转换阀241。并且,该转换阀241与上述容器237用排出通道242连接。243为安装在风力发电单元213的悬吊外壳215上的多个制动机构,这些制动机构243沿圆周方向隔开相等间距配置。
各制动机构243由通过进排通道244连接在转换阀241上的流体缸245和由该流体缸245驱动的摩擦固定式制动片246构成。247为固定在塔架211上端部的环状制动盘,当给上述流体缸245提供高压流体时,通过用制动片246从两侧夹持该制动盘247,给风力发电单元213施加流体制动力,防止该风力发电单元213小幅度地无效偏摆旋转。上述流体泵235、电动机236、转换阀241、制动机构243和制动盘247整体构成流体制动器248。
下面说明上述第6实施形态的作用。
现在,由于风力发电单元213从正面受风,因此停止给电动机220通电,使风力发电单元213的偏摆旋转停止。此时,如图12(b)所示,控制单元226以预定的电压给制动单元231通电,给电动机220的输出轴施加制动转矩。而在流体制动器248中,由于控制单元226将转换阀241切换到供给位置,从流体泵235排出的高压流体提供给流体缸245中,所以制动片246夹持制动盘247给风力发电单元213施加流体制动力。
接着,如果风向改变,风向计227检测该风向的变化给控制部226输出风向信号。结果,控制部226如图12(c)所示在T1时刻以预定电压开始给电动机220通电,旋转该驱动电动机220的输出轴。并且,当到达T1时刻时,控制部226将转换阀241切换到排出位置,流体从流体缸245中排出到容器237中,由此,风力发电单元213从制动器248的制动中解放出来。另一方面,虽然制动单元231从开始给上述电动机220通电时刻T1开始给电动机220施加起始制动转矩,但如上所述,由于在电动机220停止旋转时制动单元231继续施加制动转矩,因此在该时刻的前后实际上继续给制动单元231通电,继续给电动机220施加制动转矩。如果这样在开始给电动机220通电后,制动单元231给该电动机220施加起始制动转矩,则电动机220的输出驱动转矩减去上述制动转矩之差的差值的旋转驱动转矩在被减速的状态下被施加给小齿轮223,由此减小了小齿轮223的齿与内齿轮219的内齿218之间的冲击。
这样开始给电动机220通电时,电动机220的输出轴的旋转速度如图12(a)所示逐渐升高,当从上述通电开始时刻T1开始经过短时间到达T2时刻时,上述输出轴的旋转速度提高到一定的程度,如图12(b)所示,停止给制动单元231通电,该制动单元231使电动机220的输出轴从制动中解放出来。结果,电动机220的输出轴被急剧加速,旋转速度上升到通常的旋转速度,风力发电单元213以通常的偏摆旋转速度旋转,从正面受风。并且,当风力发电单元213偏摆旋转到即将到达正面受风的位置时,如图12(c)所示,停止对电动机220通电,该停止通电时刻为T3时刻。
当从该停止通电时刻T3开始经过预定的短时间到达T4时刻时,如图12(b)所示,开始对制动单元231通电,制动单元231开始对电动机220的输出轴施加终止制动转矩。这里,由于从停止对电动机220通电到制动单元231施加终止制动转矩的期间内经过了预定的短时间,因此风力发电单元213在旋翼头等的陀螺效应或摩擦阻力的作用下其旋转速度降低。并且,由于这样在旋转速度降低的时刻制动单元231给电动机220施加上述终止制动转矩,因此小齿轮223的齿与内齿轮219的内齿218之间的冲击降低。
并且,当像上述那样制动单元231给电动机220施加终止制动转矩时,电动机220的输出轴的旋转速度如图12(a)所示急剧下降,当到达T5时刻时,其旋转停止,风力发电单元213的偏摆旋转也停止。此时,风力发电单元213从正面受风,发电效率最高。并且,此时转换阀241被控制部226切换到供给位置,从流体泵235排出的高压流体提供给流体缸245,制动机构243夹持制动盘247,上述制动单元231给风力发电单元213施加制动力,同时施加流体制动力。
在此状态下直到下一次风向变化前风力发电单元213停止旋转,但在该停止过程中有可能吹过阵风等,过大的风负荷作用于风力发电单元213,该风力发电单元213挣脱制动单元231、流体制动器248的制动开始旋转。此时风力发电单元213的旋转经过内齿轮219、小齿轮223和减速器221传递到电动机220的输出轴,如图12(a)所示,该电动机220的输出轴从T6时刻开始急剧加速并高速旋转,但由于此时制动单元231的摩擦板在互相摩擦接触的状态下旋转,因此产生摩擦热加热制动单元231。
并且,当上述制动单元231内的温度在T7时刻上升到允许温度以上时,一直检测该制动单元231内的温度的检测传感器233如图12(d)所示那样给控制部226输出异常信号。结果,控制部226停止对制动单元231通电,停止施加制动转矩,将电动机220从制动单元231的制动中解放出来,防止制动单元231损伤。
然后,到达T8时刻,如果风力发电单元213停止旋转,同时制动单元231内的温度低至允许温度以下,则如图12(d)所示检测传感器233不输出异常信号,此时控制部226如图12(a)所示再次给制动单元231通电,制动单元231给电动机220施加制动转矩。
图13为表示本发明的第7实施形态的图。这里,由于第7实施形态的结构大部分上述第6实施形态的结构相同,因此对于相同的部分仅添加相同的编号,省略其重复说明,仅就不同的部分进行说明。在该图中,251为附设在电动机220上,能够给该电动机220施加比该电动机220的最大驱动转矩小的值的制动转矩的制动单元,这里,使用众所周知的使用了摩擦板的流体式负制动器作为制动器251。
上述制动单元251具有固定壳体252,活塞253可以移动地收容在该固定壳体252内。并且,在上述固定壳体252内收容有至少1枚配置在活塞253与制动单元251的台阶面254之间,花键结合在电动机220的输出轴255外侧上的作为旋转侧摩擦体的旋转摩擦板256;以及至少1枚能够接近或离开上述旋转摩擦板256,花键结合在固定壳体252的内壁上的作为固定侧摩擦体的固定摩擦板257。258为能够通过活塞253给旋转摩擦板256、固定摩擦板257施加弹力的作为弹性体的弹簧,该弹簧258通过将上述旋转摩擦板256、固定摩擦板257挤压在台阶面254上,使这些旋转摩擦板256、固定摩擦板257接近到互相摩擦接触。
259为与上述固定壳体252连接,同时在中间安装有节流阀260的流体通道,当通过该流体通道259将高压流体导入上述固定壳体252内的控制室内时,活塞253克服弹簧258的弹力脱离旋转摩擦板256和固定摩擦板257地移动,由此,旋转摩擦板256与固定摩擦板257彼此分离。261为连接到流体通道259上的转换阀,该转换阀261上连接有一端与储能器240与转换阀241之间的供给通道238相连的供给通道262的另一端,以及一端与容器237连接的排出通道263的另一端。并且,当控制部226将该转换阀261切换到供给位置时,从流体泵235排出的高压流体提供给固定壳体252的制动室,而当切换到排出位置时,流体从固定壳体252的制动室排出。
上述流体通道259和节流阀260整体构成使旋转摩擦板256与固定摩擦板257克服弹簧258的弹力互相分离的分离机构264。于是,如果像上述那样用流体通道259、节流阀260构成分离机构264的话,则能够结构简单并且确实地使旋转摩擦板256与固定摩擦板257互相分离。并且,上述固定壳体252、活塞253、旋转摩擦板256、固定摩擦板257、弹簧258和分离机构264整体构成上述制动单元251。如果这样用固定壳体252、活塞253、旋转摩擦板256、固定摩擦板257、弹簧258和分离机构264构成制动单元251的话,则能够使该制动单元251结构简单并且价格便宜。
并且,在本第7实施形态中,在T1时刻如图14(d)所示以预定的电压开始对电动机220通电,同时如图14(c)所示开始给转换阀261施加转换阀电压,将该转换阀261切换到供给位置。结果,从流体泵235流出的高压流体经过供给通道238、262和流体通道259提供给固定壳体252的控制室,该控制室的压力如图14(b)所示上升,但此时由于在上述流体通道259的中间设置了节流阀260,因此将提供给固定壳体252的控制室的单位时间内的流体量被限制在少量。
因此,活塞253在克服弹簧258的弹力的同时低速移动,到旋转摩擦板256与固定摩擦板257互相分离时需要预定的时间。因此,制动单元251的旋转摩擦板256和固定摩擦板257在从T1时刻开始经过预定时间的时间内维持在弹簧258的弹力作用下互相摩擦接触的状态(与T1时刻以前的状态相同),与上述一样对电动机220施加起始制动转矩。由于这样在开始对电动机220通电以后也从制动单元251对该电动机220施加起始制动转矩,因此与上述第6实施形态一样降低冲击。
接着,当到达T3时刻时,如图14(d)所示停止对电动机220通电,同时如图14(c)所示结束对转换阀261施加转换阀电压,该转换阀261被切换到排出位置。结果,流体在弹簧258的弹力的作用下从固定壳体252的控制室经过供给通道238、262和流体通道259排出到容器237中,该控制室的压力如图14(b)所示降低,但此时由于在上述流体通道259的中途安装有节流阀260,因此将从固定壳体252的控制室排出的单位时间内的流体量控制在少量。
因此,活塞253低速移动,到旋转摩擦板256与固定摩擦板257互相摩擦接触时需要预定的时间。由于这样在停止对电动机220通电以后经过预定的短时间开始从制动单元251对该电动机220施加终止制动转矩,因此在此期间风力发电单元213的旋转速度降低,与上述第6实施形态一样降低冲击。
并且,在风力发电单元213停止旋转时阵风等吹过,过大的风力负荷作用于风力发电单元213,由此,风力发电单元213旋转,同时电动机220的输出轴255高速旋转,制动单元251的旋转摩擦板256、固定摩擦板257产生大量的摩擦热。此时,由于检测传感器233在T7时刻如图14(e)所示给控制部226输出异常信号,因此该控制部226如图14(c)所示给转换阀261施加转换阀电压,将该转换阀261切换到供给位置。结果,高压流体提供给固定壳体252的控制室,电动机220从制动单元251的制动中解放出来。然后,当制动单元231内的温度降低到允许温度以下时,制动单元251再次给电动机220施加制动转矩。另外,其他的结构和作用与上述第6实施形态相同。
下面说明第8实施形态。在该第8实施形态中,在使风力发电单元213停止偏摆旋转时,不像上述那样施加终止制动转矩,而是通过控制部226控制双向可控硅、可控硅整流器等,使即将停止对电动机220通电的时刻开始到停止该通电的时刻之间的预定时间内给电动机220通电的功率值比通常偏摆旋转时提供给电动机220的功率值小,由此减小此期间内电动机220施加给风力发电单元213的旋转力。如果这样的话,则风力发电单元213在上述期间内在旋翼头等陀螺效应或摩擦阻力的作用下其旋转速度逐渐降低。并且,如果旋转速度这样降低,在停止给电动机220通电的时刻以后控制单元给电动机220施加预定值的终止制动转矩的话,则降低了小齿轮223的齿与内齿轮219的内齿218之间的冲击,由此,不仅能够降低小齿轮223、内齿轮219的齿的损伤或噪音,而且还能够使装置价格便宜并小型化。
另外,虽然在上述实施形态中将第1齿轮(内齿轮)219安装在塔架211上,将电动机220安装在风力发电单元213上,但在本发明中也可以将第1齿轮安装在风力发电单元上,将驱动电动机安装在塔架上。并且,虽然在上述实施形态中使用电动机220作为驱动电动机,但在本发明中也可以使用流体电动机。此时,驱动能量为高压流体。而且,虽然在上述实施形态中使用相同的制动单元231施加始动、终止制动转矩,但在本发明中也可以分别使用不同的制动单元施加始动、终止制动转矩。而且,虽然在上述实施形态中使用环状内齿轮219作为第1齿轮,使用外齿轮的小齿轮223作为第2齿轮,但在本发明中,第1、第2齿轮都可以使用外齿轮。并且,虽然在上述实施形态中沿圆周方向隔开等间距地配置电动机(驱动电动机)220和制动机构243,但也可以沿圆周方向隔开不同的间距配置这些驱动电动机和制动机构。
这里,当在上述第8实施形态中用流体电动机取代电动机220时,也可以在连接与该流体电动机相连的高压侧进排通道与容器的连接通道的途中依次安装比例压力控制阀或者开闭阀和低压溢流阀,该比例压力控制阀能够依靠电流值来直线性地控制通过压力。如果这样的话,则在风力发电单元偏摆旋转时可以通过将比例压力控制阀设定为高压或将开闭阀切换到关闭状态,将高压侧进排通道内的压力维持在通常的高压;而在从即将停止给流体电动机提供高压流体的时刻到该停止供给时刻的预定的时间内,可以通过将比例压力控制阀设定为低压,或者将开闭阀切换为打开状态,从低压溢流阀中溢流掉流体,使高压侧进排通道内的压力降低到比上述通常的高压低。
产业上的可利用性
如上所述,如果采用本发明,能够提供适用于风力发电装置的偏摆驱动装置、效率高并且轴线方向的长度短的减速器。并且,能够用于利用风力使风车叶片旋转进行发电的风力发电装置的,效率高且结构紧凑的偏摆驱动装置。
Claims (18)
1.一种风力发电机的偏摆驱动方法,与安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的第1齿轮相啮合的第2齿轮由安装在塔架或风力发电单元中剩余的另一个上的驱动电动机来驱动旋转,由此使风力发电单元偏摆旋转,其特征在于,
在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小。
2.如权利要求1所述的风力发电机的偏摆驱动方法,其特征在于,
在从即将停止对上述驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻为止的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,并且在停止对驱动电动机提供驱动能量的时刻以后,由制动单元对驱动电动机施加预定值的制动转矩。
3.如权利要求1所述的风力发电机的偏摆驱动方法,其特征在于,
在从停止对上述驱动电动机提供驱动能量的时刻开始经过预定时间后,由制动单元对驱动电动机施加预定值的制动转矩。
4.一种风力发电机的偏摆驱动装置,其特征在于,包括:
被安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的第1齿轮;
与上述第1齿轮相啮合的第2齿轮;
被安装在塔架或风力发电单元中剩余的另一个上、当提供驱动能量时通过驱动上述第2齿轮旋转而使风力发电单元偏摆旋转的驱动电动机;以及
在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内、将提供给驱动电动机的驱动能量减小到比通常偏摆旋转时提供给驱动电动机的驱动能量小的减少单元。
5.如权利要求4所述的风力发电机的偏摆驱动装置,其特征在于,
在即将停止对驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻为止的预定时间内,通过上述减少单元将提供给驱动电动机的驱动能量降低到比通常偏摆旋转时提供给驱动电动机的驱动能量小,并且还设置了在停止对驱动电动机提供驱动能量的时刻以后对驱动电动机施加预定值的制动转矩的制动单元。
6.如权利要求5所述的风力发电机的偏摆驱动装置,其特征在于,
设置多个上述驱动电动机和第2齿轮,并且在风力发电单元停止偏摆旋转以后还将被上述减少单元减小后的驱动能量提供给一部分驱动电动机,由此使第2齿轮旋转,消除第2齿轮的齿与第1齿轮的齿之间的齿隙。
7.如权利要求4所述的风力发电机的偏摆驱动装置,其特征在于,
当上述驱动电动机为流体电动机时,对该流体电动机进排流体的一对进排通道之间由连接通道连接,并且在该连接通道的途中安装节流阀,通过该节流阀控制上述流体电动机起泵的作用时的旋转速度。
8.如权利要求4所述的风力发电机的偏摆驱动装置,其特征在于,
当上述驱动电动机为流体电动机时,对该流体电动机进排流体的一对进排通道之间由连接通道连接,并且在该连接通道的途中安装当任意一个进排通道的压力达到预定压力以上时切换为打开位置的溢流阀,当上述流体电动机起泵的作用时,通过该溢流阀控制流体电动机的转矩。
9.如权利要求5所述的风力发电机的偏摆驱动装置,其特征在于,
还设有测量风速的风速计,当该风速计测量到的风速在预定值以上时,将驱动电动机从制动单元的制动中解放出来。
10.一种风力发电机的偏摆驱动方法,与安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的环状内齿轮相啮合的小齿轮由安装在塔架或风力发电单元中剩余的另一个上的驱动电动机来驱动旋转,由此使风力发电单元偏摆旋转,其特征在于,
在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小。
11.如权利要求10所述的风力发电机的偏摆驱动方法,其特征在于,
在从即将停止对上述驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻为止的预定时间内,使提供给驱动电动机的驱动能量比通常偏摆旋转时提供给驱动电动机的驱动能量小,并且在停止对驱动电动机提供驱动能量的时刻以后,通过制动单元对驱动电动机施加预定值的制动转矩。
12.如权利要求10所述的风力发电机的偏摆驱动方法,其特征在于,
在从停止对上述驱动电动机提供驱动能量的时刻开始经过预定的时间后,通过制动单元对驱动电动机施加预定值的制动转矩。
13.一种风力发电机的偏摆驱动装置,其特征在于,包括:
被安装在塔架或可偏摆旋转地支持在该塔架上端部的风力发电单元中任意一个上的环状内齿轮;
与上述内齿轮相啮合的小齿轮;
被安装在塔架或风力发电单元中剩余的另一个上、当提供驱动能量时通过驱动上述小齿轮旋转来使风力发电单元偏摆旋转的驱动电动机;以及
在从开始对上述驱动电动机提供驱动能量的时刻开始的预定时间内,将提供给驱动电动机的驱动能量减小到比通常偏摆旋转时提供给驱动电动机的驱动能量小的减少单元。
14.如权利要求13所述的风力发电机的偏摆驱动装置,其特征在于,
在从即将停止对驱动电动机提供驱动能量的时刻之前到停止该驱动能量的提供的时刻为止的预定时间内,通过上述减少单元将提供给驱动电动机的驱动能量降低到比通常偏摆旋转时提供给驱动电动机的驱动能量小,并且设置在停止对驱动电动机提供驱动能量的时刻以后对驱动电动机施加预定值的制动转矩的制动单元。
15.如权利要求14所述的风力发电机的偏摆驱动装置,其特征在于,
设置多个上述驱动电动机和小齿轮,并且在风力发电单元停止偏摆旋转以后还将被上述减少单元减小后的驱动能量提供给一部分驱动电动机,由此使小齿轮旋转,消除小齿轮的齿与内齿轮的齿之间的齿隙。
16.如权利要求13所述的风力发电机的偏摆驱动装置,其特征在于,
当上述驱动电动机为流体电动机时,对该流体电动机进排流体的一对进排通道之间由连接通道连接,并且在该连接通道的途中安装节流阀,通过该节流阀控制上述流体电动机起泵的作用时的旋转速度。
17.如权利要求13所述的风力发电机的偏摆驱动装置,其特征在于,
当上述驱动电动机为流体电动机时,对该流体电动机进排流体的一对进排通道之间由连接通道连接,并且在该连接通道的途中安装当任意一个进排通道的压力达到预定压力以上时切换为打开位置的溢流阀,当上述流体电动机起泵的作用时,通过该溢流阀控制流体电动机的转矩。
18.如权利要求14所述的风力发电机的偏摆驱动装置,其特征在于,
还设有测量风速的风速计,当该风速计测量到的风速在预定值以上时,将驱动电动机从制动单元的制动中解放出来。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-292066 | 2003-08-12 | ||
JP2003292066A JP2005061519A (ja) | 2003-08-12 | 2003-08-12 | 風力発電装置のヨー駆動装置に用いる減速機 |
JP2003329073 | 2003-09-19 | ||
JP2003328965 | 2003-09-19 | ||
JP2003-329073 | 2003-09-19 | ||
JP2003-328965 | 2003-09-19 | ||
JP2003385529A JP4454291B2 (ja) | 2003-09-19 | 2003-11-14 | 風力発電機のヨー駆動方法および装置 |
JP2003-385529 | 2003-11-14 | ||
JP2003386086A JP4502627B2 (ja) | 2003-09-19 | 2003-11-17 | 風力発電機のヨー駆動装置 |
JP2003-386086 | 2003-11-17 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004800230385A Division CN1836104A (zh) | 2003-08-12 | 2004-08-11 | 风力发电装置的偏摆驱动装置中使用的减速器、使用了该减速器的风力发电装置的偏摆驱动方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101871424A true CN101871424A (zh) | 2010-10-27 |
CN101871424B CN101871424B (zh) | 2012-08-29 |
Family
ID=34139873
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210110275.1A Expired - Fee Related CN102705162B (zh) | 2003-08-12 | 2004-08-11 | 风力发电机的偏摆驱动装置 |
CN2010102030179A Expired - Fee Related CN101871424B (zh) | 2003-08-12 | 2004-08-11 | 风力发电机的偏摆驱动方法及偏摆驱动装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210110275.1A Expired - Fee Related CN102705162B (zh) | 2003-08-12 | 2004-08-11 | 风力发电机的偏摆驱动装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20060205554A1 (zh) |
EP (1) | EP1662138A4 (zh) |
CN (2) | CN102705162B (zh) |
WO (1) | WO2005015011A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102011698A (zh) * | 2010-12-15 | 2011-04-13 | 北京金风科创风电设备有限公司 | 风力发电机偏航控制方法及系统 |
CN106995004A (zh) * | 2016-01-22 | 2017-08-01 | 纳博特斯克有限公司 | 转向装置 |
CN107100801A (zh) * | 2016-02-19 | 2017-08-29 | 纳博特斯克有限公司 | 用于驱动发电装置的驱动装置 |
CN107299961A (zh) * | 2016-04-14 | 2017-10-27 | 纳博特斯克有限公司 | 风车驱动装置和减速器 |
CN110168219A (zh) * | 2016-11-21 | 2019-08-23 | 森维安有限责任公司 | 具有制动装置的风力发电设施及其运行方法 |
CN112160871A (zh) * | 2020-09-30 | 2021-01-01 | 中国船舶重工集团海装风电股份有限公司 | 降低齿轮载荷的偏航控制方法 |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9879760B2 (en) | 2002-11-25 | 2018-01-30 | Delbert Tesar | Rotary actuator with shortest force path configuration |
US7258642B2 (en) * | 2004-06-16 | 2007-08-21 | Epi-Energy, Ltd. | Simultaneous multiple rotation interface |
JP4901156B2 (ja) | 2005-08-11 | 2012-03-21 | ナブテスコ株式会社 | 減速装置 |
DE102006007536A1 (de) | 2006-02-16 | 2007-08-30 | Aloys Wobben | Windenergieanlage mit Flugbefeuerungseinrichtung |
DE102007015289B4 (de) * | 2006-03-29 | 2017-05-18 | Sumitomo Heavy Industries, Ltd. | Oszillierendes innen eingreifendes Planetenradreduktionsgetriebe |
ITAN20060035A1 (it) * | 2006-05-24 | 2007-11-25 | Rovinelli Bruno Srl | Rotismo,irreversibile,in partocilare per motoriduttori di azionamento di tapparelle e/o tende da sole |
KR101343669B1 (ko) * | 2006-06-13 | 2013-12-20 | 나부테스코 가부시키가이샤 | 감속 기어 변속기 |
WO2008074320A1 (en) * | 2006-12-18 | 2008-06-26 | Vestas Wind Systems A/S | A gear system for a yaw drive or a pitch drive for a wind turbine |
CN100464089C (zh) * | 2007-01-19 | 2009-02-25 | 大连交通大学 | 新型环板式rv传动装置 |
CN101680511B (zh) * | 2007-05-23 | 2012-06-27 | 纳博特斯克株式会社 | 减速齿轮系统 |
KR100920303B1 (ko) | 2007-12-11 | 2009-10-08 | 주식회사 효성 | 풍력발전기의 요 시스템 |
US20090212562A1 (en) * | 2008-02-27 | 2009-08-27 | The Boeing Company | Method and apparatus for tidal power generation |
EP2249061B1 (en) * | 2008-03-03 | 2012-02-01 | Nabtesco Corporation | Eccentric speed reducer |
US20100038191A1 (en) * | 2008-08-15 | 2010-02-18 | Culbertson Michael O | Modular actuator for wind turbine brake |
US20100038192A1 (en) * | 2008-08-15 | 2010-02-18 | Culbertson Michael O | Floating yaw brake for wind turbine |
FI20080510L (fi) * | 2008-09-10 | 2010-03-11 | Mervento Oy | Tuulivoimala |
JP5451334B2 (ja) * | 2008-11-29 | 2014-03-26 | ナブテスコ株式会社 | 風車用ピッチ駆動装置 |
WO2010064145A2 (en) * | 2008-12-04 | 2010-06-10 | Corts, Jochen | Compound steel bearings and methods of manufacturing |
US8021101B2 (en) * | 2008-12-15 | 2011-09-20 | General Electric Company | Wind turbine and method of assembling the same |
CN102265028B (zh) * | 2009-01-05 | 2015-05-27 | 威德来动力系统有限公司 | 用于发电的带有能量耗散的液压传动系 |
US7828686B2 (en) * | 2009-03-19 | 2010-11-09 | General Electric Company | Yaw assembly for a rotatable system and method of assembling the same |
EP2273104B1 (en) * | 2009-06-30 | 2013-06-19 | Vestas Wind Systems A/S | A wind turbine with improved yaw control |
WO2011004248A1 (en) * | 2009-07-09 | 2011-01-13 | Clipper Windpower, Inc. | Motor yaw drive system for a wind turbine |
DE102010003879B4 (de) * | 2010-04-12 | 2012-02-23 | Aloys Wobben | Windenergieanlagen-azimut- oder Pitchantrieb |
KR101168724B1 (ko) * | 2010-04-19 | 2012-07-30 | 주식회사 해성산전 | 풍력발전기 타워 회전용 싸이클로이드 감속기 |
JP5425700B2 (ja) * | 2010-04-30 | 2014-02-26 | 住友重機械工業株式会社 | 風力発電設備の減速装置及びその据え付け方法 |
JP5174171B2 (ja) | 2010-05-31 | 2013-04-03 | 三菱重工業株式会社 | 風力発電装置、歯車伝達機構、および歯車噛み合い制御方法 |
CN101886611B (zh) * | 2010-06-13 | 2011-12-07 | 曹峻岭 | 一种风力发电机自动定向控制器 |
EP2592302B1 (en) * | 2010-07-08 | 2016-02-24 | Nabtesco Corporation | Deceleration device |
US8310080B2 (en) * | 2010-08-04 | 2012-11-13 | General Electric Company | Yaw assembly for use in wind turbines |
TWI462437B (zh) * | 2011-02-17 | 2014-11-21 | Chung Ming Chou | High performance power generation |
JP2012251595A (ja) * | 2011-06-02 | 2012-12-20 | Sumitomo Heavy Ind Ltd | 風力発電設備の減速装置 |
JP5490752B2 (ja) * | 2011-06-24 | 2014-05-14 | 住友重機械工業株式会社 | 揺動内接噛合型の減速装置 |
WO2013004244A2 (en) * | 2011-07-04 | 2013-01-10 | Vestas Wind Systems A/S | A method of yawing a rotor of a wind turbine |
DE102011083090A1 (de) * | 2011-09-21 | 2013-01-03 | Schaeffler Technologies AG & Co. KG | Planetenlagerung und Windenergieanlagengetriebe |
EP2597303B1 (en) * | 2011-11-24 | 2015-11-11 | ALSTOM Renewable Technologies | Wind turbine rotor |
WO2013075721A2 (en) | 2011-11-24 | 2013-05-30 | Vestas Wind Systems A/S | A yawing system comprising a preload mechanism |
JP5868677B2 (ja) * | 2011-11-30 | 2016-02-24 | ナブテスコ株式会社 | 減速装置 |
CN103375540B (zh) * | 2012-04-25 | 2016-01-13 | 陈伟 | 架空索道自制动摆线减速器 |
CN103375546B (zh) * | 2012-04-25 | 2016-01-13 | 陈伟 | 架空索道摆线减速器 |
CN102678833B (zh) * | 2012-05-08 | 2015-11-25 | 陈伟 | 架空索道自制动少齿差减速器 |
CN102922354B (zh) * | 2012-10-26 | 2015-04-22 | 大连交通大学 | 一种摩擦轮牵引传动摆线加工装置 |
EP2917570B1 (en) * | 2012-11-09 | 2019-02-27 | Vestas Wind Systems A/S | Wind turbine yaw control systems |
CN104822909A (zh) * | 2012-12-10 | 2015-08-05 | 博格华纳公司 | 分离的环齿轮行星式凸轮相位器 |
US9862263B2 (en) | 2013-03-01 | 2018-01-09 | Delbert Tesar | Multi-speed hub drive wheels |
US10414271B2 (en) | 2013-03-01 | 2019-09-17 | Delbert Tesar | Multi-speed hub drive wheels |
CN103089932A (zh) * | 2013-03-05 | 2013-05-08 | 杭州博悦传动机械有限公司 | 双模数高精密行星减速机构 |
US9365105B2 (en) | 2013-10-11 | 2016-06-14 | Delbert Tesar | Gear train and clutch designs for multi-speed hub drives |
JP6313033B2 (ja) * | 2013-12-05 | 2018-04-18 | ナブテスコ株式会社 | 風車用駆動装置及び風車用駆動装置ユニット |
CN105020345A (zh) * | 2014-04-21 | 2015-11-04 | 天津职业技术师范大学 | 中空轴精密2k-v型传动装置 |
US10422387B2 (en) | 2014-05-16 | 2019-09-24 | Delbert Tesar | Quick change interface for low complexity rotary actuator |
US9657813B2 (en) | 2014-06-06 | 2017-05-23 | Delbert Tesar | Modified parallel eccentric rotary actuator |
US9915319B2 (en) | 2014-09-29 | 2018-03-13 | Delbert Tesar | Compact parallel eccentric rotary actuator |
DE102014013570A1 (de) * | 2014-09-18 | 2016-03-24 | Conveni Gmbh | Stellsystem, Windenergieanlage und Verfahren zum Ausrichten und/oder Nachführen eines Maschinenhauses und/oder eines Rotorblattes |
US11014658B1 (en) | 2015-01-02 | 2021-05-25 | Delbert Tesar | Driveline architecture for rotorcraft featuring active response actuators |
CN104696460B (zh) * | 2015-01-15 | 2016-10-12 | 江苏联合传动设备有限公司 | 轴承减速器 |
CN105257787B (zh) * | 2015-10-26 | 2017-10-13 | 重庆望江工业有限公司 | 用于风电机组的功率分流式齿轮箱结构 |
JP6789689B2 (ja) * | 2016-02-04 | 2020-11-25 | 日本電産シンポ株式会社 | 減速機 |
US10464413B2 (en) | 2016-06-24 | 2019-11-05 | Delbert Tesar | Electric multi-speed hub drive wheels |
EP3483473A1 (de) * | 2017-11-14 | 2019-05-15 | Kimex Group s.r.o. | Getriebe |
EP3539813A1 (en) * | 2018-03-14 | 2019-09-18 | Kanzaki Kokyukoki Manufacturing Co. Ltd. | Reducer |
CN110778456B (zh) * | 2019-12-11 | 2021-07-02 | 湘电风能有限公司 | 风力发电机组偏航制动系统及其控制方法 |
JP7508222B2 (ja) * | 2019-12-25 | 2024-07-01 | ナブテスコ株式会社 | 風力発電装置、制御方法、およびプログラム |
JP7413007B2 (ja) * | 2019-12-25 | 2024-01-15 | ナブテスコ株式会社 | 風車用駆動制御装置、風車用駆動装置の制御方法、およびプログラム |
USD969647S1 (en) * | 2020-05-20 | 2022-11-15 | Viu Insight Inc. | Airspeed device |
CN112253389B (zh) * | 2020-10-22 | 2024-03-15 | 重庆华昭电气设备有限公司 | 一种风力发电机组偏航控制系统启停控制方法 |
JP2022138887A (ja) * | 2021-03-11 | 2022-09-26 | ナブテスコ株式会社 | 減速機 |
JP2022186256A (ja) * | 2021-06-04 | 2022-12-15 | ナブテスコ株式会社 | 減速機 |
CN114151279B (zh) * | 2021-11-08 | 2024-01-05 | 明阳智慧能源集团股份公司 | 一种风力发电机组偏航启动控制方法及系统 |
CN118008690B (zh) * | 2024-01-29 | 2024-07-30 | 上海东芯建筑工程技术有限公司 | 一种风力发电系统及其风力发电系统的保护装置 |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3994187A (en) * | 1975-02-14 | 1976-11-30 | The United States Of America As Represented By The Secretary Of The Navy | Epicyclic transmission |
JPS5629074A (en) * | 1979-08-16 | 1981-03-23 | Toshiba Corp | Wind power generator |
DE3043611C2 (de) * | 1980-11-19 | 1984-07-05 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Drehpositionierbare Anlage |
JPS59168281A (ja) * | 1983-03-12 | 1984-09-21 | Yukimaru Shimizu | 風力発電装置の制御方法 |
JPS6155369A (ja) * | 1984-08-28 | 1986-03-19 | Matsushita Seiko Co Ltd | 風車の方位可変装置 |
US4655312A (en) * | 1985-10-15 | 1987-04-07 | Allied Corporation | Electrically adjusted safety restraint system |
JPS6371440A (ja) | 1986-09-13 | 1988-03-31 | Yanmar Diesel Engine Co Ltd | 無線制御式自走草刈機 |
US4809803A (en) * | 1987-04-06 | 1989-03-07 | General Dynamics-Land Systems | Drive system and vehicle for use therewith |
JPH0762471B2 (ja) * | 1987-09-18 | 1995-07-05 | 株式会社ユアサコーポレーション | 風力発電塔マスト・トップの方位制御装置 |
US5035575A (en) * | 1988-02-01 | 1991-07-30 | I.K. Trading Aps. | Yawing system for a wind mill |
US5136320A (en) * | 1988-06-30 | 1992-08-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera having macro and normal operational modes |
US5241334A (en) * | 1988-06-30 | 1993-08-31 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera having mode changing capability |
US5291232A (en) * | 1988-06-30 | 1994-03-01 | Asahi Kogaku Kogyo Kabushiki Kaisha | Device for controlling an operation of a movable member |
US5146259A (en) * | 1988-06-30 | 1992-09-08 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera including automatic shutter speed changing apparatus |
US5280320A (en) * | 1988-06-30 | 1994-01-18 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera having internal photographing mode and display |
US5119121A (en) * | 1988-06-30 | 1992-06-02 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera having macro and normal operational modes |
US5384617A (en) * | 1988-06-30 | 1995-01-24 | Asahi Kogaku Kogyo Kabushiki Kaisha | Exposure control system of a camera having an interval mode |
US5235374A (en) * | 1988-06-30 | 1993-08-10 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronically controlled camera having macro and normal operational modes |
US5449990A (en) * | 1993-04-26 | 1995-09-12 | The Whitaker Corporation | Single cycle positioning system |
US5651747A (en) * | 1994-06-16 | 1997-07-29 | Sumitomo Heavy Industries, Ltd. | Series of geared motors |
JP3481335B2 (ja) * | 1995-01-06 | 2003-12-22 | ティーエスコーポレーション株式会社 | 内接噛合型遊星歯車装置 |
JPH11215880A (ja) | 1998-01-21 | 1999-08-06 | Matsushita Electric Ind Co Ltd | 電気洗濯機 |
GB9814373D0 (en) | 1998-07-02 | 1998-09-02 | Switched Reluctance Drives Ltd | Cleaning apparatus and method with soft-starting |
BR9915707A (pt) * | 1998-11-26 | 2001-08-14 | Aloys Wobben | Instalação de energia eólica |
DE10023440C1 (de) * | 1999-05-05 | 2001-12-20 | Aloys Wobben | Azimutantrieb für Windenergieanlagen |
JP4487094B2 (ja) | 1999-06-11 | 2010-06-23 | 政隆 安居 | 空調施設における電力削減システム |
JP2001289149A (ja) | 2000-04-10 | 2001-10-19 | Mitsubishi Heavy Ind Ltd | 風力発電装置のヨー旋回駆動装置および風力発電装置のヨー旋回駆動制御方法 |
DE10023400A1 (de) | 2000-05-12 | 2001-11-15 | Degussa | Neue für das acp-Gen kodierende Nukleotidsequenzen |
JP3703685B2 (ja) * | 2000-05-15 | 2005-10-05 | ナブテスコ株式会社 | 偏心揺動型減速機及びこれを備えた産業用機械の関節 |
JP3850203B2 (ja) * | 2000-07-04 | 2006-11-29 | ナブテスコ株式会社 | 偏心揺動型減速機 |
JP4236023B2 (ja) | 2000-09-29 | 2009-03-11 | ナブテスコ株式会社 | モータ付き減速機 |
DE10058076C2 (de) | 2000-11-23 | 2003-06-12 | Aloys Wobben | Verfahren zur Steuerung einer Windenergieanlage |
US20020158593A1 (en) * | 2001-04-27 | 2002-10-31 | Henderson Jeffery L. | Circuit for controlling dynamic braking of a motor shaft in a power tool |
JP4004256B2 (ja) * | 2001-09-13 | 2007-11-07 | ナブテスコ株式会社 | 偏心揺動型減速機 |
AU2003263769A1 (en) * | 2002-07-01 | 2004-01-19 | Xidem, Inc. | Electronically controlled electric motor |
US7004724B2 (en) * | 2003-02-03 | 2006-02-28 | General Electric Company | Method and apparatus for wind turbine rotor load control based on shaft radial displacement |
US6888262B2 (en) * | 2003-02-03 | 2005-05-03 | General Electric Company | Method and apparatus for wind turbine rotor load control |
AU2003267035A1 (en) * | 2003-09-03 | 2005-03-16 | General Electric Company | Redundant blade pitch control system for a wind turbine and method for controlling a wind turbine |
US7075192B2 (en) * | 2004-04-19 | 2006-07-11 | Northern Power Systems, Inc. | Direct drive wind turbine |
US7121795B2 (en) * | 2004-06-30 | 2006-10-17 | General Electric Company | Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed |
US7118339B2 (en) * | 2004-06-30 | 2006-10-10 | General Electric Company | Methods and apparatus for reduction of asymmetric rotor loads in wind turbines |
US7118338B2 (en) * | 2004-06-30 | 2006-10-10 | General Electric Company | Methods and apparatus for twist bend coupled (TCB) wind turbine blades |
US7175389B2 (en) * | 2004-06-30 | 2007-02-13 | General Electric Company | Methods and apparatus for reducing peak wind turbine loads |
US7095129B2 (en) * | 2004-06-30 | 2006-08-22 | General Electric Company | Methods and apparatus for rotor load control in wind turbines |
US7126236B2 (en) * | 2005-03-15 | 2006-10-24 | General Electric Company | Methods and apparatus for pitch control power conversion |
US7239036B2 (en) * | 2005-07-29 | 2007-07-03 | General Electric Company | System and method for power control in wind turbines |
US7740448B2 (en) * | 2005-09-09 | 2010-06-22 | General Electric Company | Pitch control battery backup methods and system |
US7360310B2 (en) * | 2005-10-05 | 2008-04-22 | General Electric Company | Method for changing removable bearing for a wind turbine generator |
US7235895B2 (en) * | 2005-10-13 | 2007-06-26 | General Electric Company | Method and apparatus for gravity induced thermal energy dissipation |
US7230347B2 (en) * | 2005-10-14 | 2007-06-12 | General Electric Company | Corrosion protection for wind turbine units in a marine environment |
US7642748B2 (en) * | 2005-10-19 | 2010-01-05 | General Electric Company | Battery charging system and method of operating same |
CA2667448C (en) * | 2006-11-03 | 2014-09-02 | Vestas Wind Systems A/S | A yawing system for a wind turbine |
US8257019B2 (en) * | 2006-12-21 | 2012-09-04 | Green Energy Technologies, Llc | Shrouded wind turbine system with yaw control |
US7857599B2 (en) * | 2007-01-10 | 2010-12-28 | General Electric Company | Method and apparatus for forming wind turbine machines |
EP1985846A1 (en) * | 2007-04-27 | 2008-10-29 | Greenergy India Private Limited | Wind turbine |
JP5022102B2 (ja) * | 2007-05-25 | 2012-09-12 | 三菱重工業株式会社 | 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法 |
US8240990B2 (en) * | 2007-12-06 | 2012-08-14 | General Electric Company | Apparatus and method for reducing asymmetric rotor loads in wind turbines during shutdown |
US20090153656A1 (en) * | 2007-12-12 | 2009-06-18 | General Electric Corporation | Wind turbine maintenance system |
US8287238B2 (en) * | 2008-02-29 | 2012-10-16 | General Electric Company | Hub pitch gear repair method |
US7944067B2 (en) * | 2008-04-01 | 2011-05-17 | General Electric Company | System and method for reducing rotor loads in a wind turbine upon detection of blade-pitch failure and loss of counter-torque |
US8230266B2 (en) * | 2008-06-03 | 2012-07-24 | General Electric Company | System and method for trip event data acquisition and wind turbine incorporating same |
CA2668870A1 (en) * | 2008-06-10 | 2009-12-10 | Tomohiro Numajiri | Wind turbine generator and method for constructing the same |
US7898140B2 (en) * | 2008-07-11 | 2011-03-01 | General Electric Company | Brushless slip ring for a wind turbine and method of assembly |
US7719128B2 (en) * | 2008-09-30 | 2010-05-18 | General Electric Company | System and method for controlling a wind turbine during loss of grid power and changing wind conditions |
US8250758B2 (en) * | 2008-10-31 | 2012-08-28 | General Electric Company | Internal yaw drive exchange for a wind turbine tower |
US8021101B2 (en) * | 2008-12-15 | 2011-09-20 | General Electric Company | Wind turbine and method of assembling the same |
US7828686B2 (en) * | 2009-03-19 | 2010-11-09 | General Electric Company | Yaw assembly for a rotatable system and method of assembling the same |
JP5284872B2 (ja) * | 2009-05-22 | 2013-09-11 | 株式会社日立製作所 | 水平軸風車 |
US7922449B2 (en) * | 2009-07-14 | 2011-04-12 | General Electric Company | Passive deicing for wind turbine blades |
US20100119370A1 (en) * | 2009-11-17 | 2010-05-13 | Modi Vivendi As | Intelligent and optimized wind turbine system for harsh environmental conditions |
-
2004
- 2004-08-11 EP EP04771747A patent/EP1662138A4/en not_active Withdrawn
- 2004-08-11 CN CN201210110275.1A patent/CN102705162B/zh not_active Expired - Fee Related
- 2004-08-11 US US10/567,613 patent/US20060205554A1/en not_active Abandoned
- 2004-08-11 WO PCT/JP2004/011786 patent/WO2005015011A1/ja active Application Filing
- 2004-08-11 CN CN2010102030179A patent/CN101871424B/zh not_active Expired - Fee Related
-
2009
- 2009-06-15 US US12/484,340 patent/US8022564B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102011698A (zh) * | 2010-12-15 | 2011-04-13 | 北京金风科创风电设备有限公司 | 风力发电机偏航控制方法及系统 |
CN106995004A (zh) * | 2016-01-22 | 2017-08-01 | 纳博特斯克有限公司 | 转向装置 |
CN107100801A (zh) * | 2016-02-19 | 2017-08-29 | 纳博特斯克有限公司 | 用于驱动发电装置的驱动装置 |
CN107299961A (zh) * | 2016-04-14 | 2017-10-27 | 纳博特斯克有限公司 | 风车驱动装置和减速器 |
CN110168219A (zh) * | 2016-11-21 | 2019-08-23 | 森维安有限责任公司 | 具有制动装置的风力发电设施及其运行方法 |
CN112160871A (zh) * | 2020-09-30 | 2021-01-01 | 中国船舶重工集团海装风电股份有限公司 | 降低齿轮载荷的偏航控制方法 |
CN112160871B (zh) * | 2020-09-30 | 2023-03-21 | 中国船舶重工集团海装风电股份有限公司 | 降低齿轮载荷的偏航控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090243297A1 (en) | 2009-10-01 |
CN102705162A (zh) | 2012-10-03 |
CN102705162B (zh) | 2014-10-22 |
US8022564B2 (en) | 2011-09-20 |
WO2005015011A1 (ja) | 2005-02-17 |
EP1662138A1 (en) | 2006-05-31 |
CN101871424B (zh) | 2012-08-29 |
EP1662138A4 (en) | 2012-09-26 |
US20060205554A1 (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101871424B (zh) | 风力发电机的偏摆驱动方法及偏摆驱动装置 | |
CN1836104A (zh) | 风力发电装置的偏摆驱动装置中使用的减速器、使用了该减速器的风力发电装置的偏摆驱动方法及装置 | |
CN103711847B (zh) | 行星齿轮多路传动无级变速器 | |
CN104066977A (zh) | 发电系统和液压控制系统 | |
JP5334963B2 (ja) | 可変比トランスミッション | |
CN102536660A (zh) | 具有液压叶片变桨系统的风轮机 | |
CN101166905A (zh) | 液压弹射驱动器 | |
CN107191436B (zh) | 一种tbm液粘驱动单元测试动态性能装置及其测试方法 | |
JP2013527895A (ja) | 可変速度ポンプを有する動力プラントライン | |
CN101487447B (zh) | 一种风力发电机的偏航驱动装置 | |
CN103644279B (zh) | 一种用于风力发电机组的恒速输出齿轮箱 | |
CN106321363B (zh) | 一种机液混合传动风力发电机组 | |
CN203515974U (zh) | 风力发电机组及其主传动链 | |
CN104696152A (zh) | 模块化海浪发电装置及其运行控制方法 | |
CA2505625A1 (en) | Revolutionary engine | |
CN201787006U (zh) | 一种软启动传动装置 | |
US6858950B1 (en) | Liquid power machine | |
JP7349577B2 (ja) | ギアボックス | |
CN108757608B (zh) | 一种顶驱液压控制系统 | |
CN108626184A (zh) | 电动液压的驱动装置、驱动组件、流体机和方法 | |
CN102537216B (zh) | 一种链牵引机械专用机械软起动传动装置 | |
CN106609820A (zh) | 一种能量调整系统 | |
CN2654950Y (zh) | 差动无级调速器 | |
CN204476654U (zh) | 一种模块化海浪发电装置 | |
RU2075641C1 (ru) | Ветроэнергетическая установка |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120829 Termination date: 20140811 |
|
EXPY | Termination of patent right or utility model |