CN101840928A - 带有自对准存储元件的多晶硅柱双极晶体管 - Google Patents
带有自对准存储元件的多晶硅柱双极晶体管 Download PDFInfo
- Publication number
- CN101840928A CN101840928A CN201010108856.2A CN201010108856A CN101840928A CN 101840928 A CN101840928 A CN 101840928A CN 201010108856 A CN201010108856 A CN 201010108856A CN 101840928 A CN101840928 A CN 101840928A
- Authority
- CN
- China
- Prior art keywords
- memory cell
- emitter
- base bandgap
- bandgap grading
- storage device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 72
- 229920005591 polysilicon Polymers 0.000 title abstract description 14
- 238000003860 storage Methods 0.000 claims abstract description 44
- 238000009413 insulation Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 230000004888 barrier function Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 82
- 239000000758 substrate Substances 0.000 claims description 51
- 239000004020 conductor Substances 0.000 claims description 38
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 30
- 239000013078 crystal Substances 0.000 claims description 29
- 229910021332 silicide Inorganic materials 0.000 claims description 29
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000005516 engineering process Methods 0.000 claims description 18
- 239000011229 interlayer Substances 0.000 claims description 18
- 239000003989 dielectric material Substances 0.000 claims description 17
- 230000002262 irrigation Effects 0.000 claims description 16
- 238000003973 irrigation Methods 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 15
- 239000002210 silicon-based material Substances 0.000 claims description 14
- 239000007943 implant Substances 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000003475 lamination Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- 210000004027 cell Anatomy 0.000 description 56
- 239000010410 layer Substances 0.000 description 50
- 239000012071 phase Substances 0.000 description 29
- 230000008859 change Effects 0.000 description 22
- 150000004770 chalcogenides Chemical class 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000012782 phase change material Substances 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 10
- 239000010941 cobalt Substances 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 230000008021 deposition Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000011133 lead Substances 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- 229910052714 tellurium Inorganic materials 0.000 description 7
- 239000011135 tin Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 239000011232 storage material Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052798 chalcogen Inorganic materials 0.000 description 3
- 150000001787 chalcogens Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 101100373011 Drosophila melanogaster wapl gene Proteins 0.000 description 2
- 229910005872 GeSb Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 210000004483 pasc Anatomy 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- VDNSGQQAZRMTCI-UHFFFAOYSA-N sulfanylidenegermanium Chemical compound [Ge]=S VDNSGQQAZRMTCI-UHFFFAOYSA-N 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910015802 BaSr Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910019236 CoFeB Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000618 GeSbTe Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- -1 MnAs Inorganic materials 0.000 description 1
- 229910016629 MnBi Inorganic materials 0.000 description 1
- 229910016964 MnSb Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910004491 TaAlN Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000424 chromium(II) oxide Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
- H10B63/32—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the bipolar type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/023—Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/026—Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/066—Shaping switching materials by filling of openings, e.g. damascene method
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/828—Current flow limiting means within the switching material region, e.g. constrictions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8822—Sulfides, e.g. CuS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提出一种具有自对准于双极接面晶体管存取装置的射极的存储元件的存储单元及此种装置的制造方法。在此所述的储存装置包括多个存储单元。在这些存储单元中的存储单元包含一包括射极的双极接面晶体管(BJT),该射极包括掺杂的多晶硅柱。这样的存储单元包含一个在射极上的绝缘元件,且绝缘元件具有一个延伸穿过绝缘层的开口,这个开口在射极上的中心。而这些存储单元还包含在开口中的一存储元件,且此一存储元件与上述射极电性相连。
Description
技术领域
本发明是有关于一种以相变存储材料(phase change based memorymaterials)为基础的高密度储存装置(memory devices),且相变存储材料包括硫属材料(chalcogenide based materials)及其它可编程电阻材料(programmable resistive material),以及制造这种装置的方法。
背景技术
相变存储材料如硫属材料及类似的材料,可由供应适于施行在集成电路中的程度的电流,而导致非晶态与结晶态之间的相变化。一般的非晶态的特点是具有比一般的结晶态更高的电阻值(electrical resistivity),这能被立即感测出用以表示数据(data)。这样的特性已经引发使用可编程电阻材料来形成非挥发性存储器电路的关注,这能随机存取的进行读与写。
从非晶态到结晶态的变化通常是一种较低电流操作。而在此被称为重置(reset)的从结晶态到非晶态的变化通常是一种较高电流操作,其包含一个短的高电流密度脉冲(pulse),以便熔化或打断结晶结构,之后迅速冷却相变材料,将被熔化的相变材料淬火并使至少部分的相变材料于非晶态中稳定。
因为相变化的发生是由于加热使然,所以为了加热相变材料及诱使所需的相变化,需要相当大的电流。由于场效晶体管的相对低的电流驱动,因而在获得具有场效晶体管存取装置的相变化存储单元(cell)所需的电流上产生问题。
虽然双极接面晶体管可提供比场效晶体管还要大的电流驱动,但是双极接面晶体管与CMOS周边电路的整合(integration)困难且可能导致高度复杂的设计与工艺。
由降低单元中的相变存储元件尺寸可降低电流的量,以便以通过相变存储元件的小绝对电流值(absolute current values)达到较高的电流密度。然而,在制造具有极小尺寸的装置及在制造符合大尺寸高密度储存装置(largescale high-density memory device)所需的严格的允差条件(tolerancerequirement)所需的工艺上的变化的装置产生问题。
因此需要提供带双极接面晶体管存取装置的相变存储单元,来满足与CMOS周边电路在设计整合上的复杂性并在相同集成电路上可兼容于周边电路的制造。而且,需要提供制造满足大尺寸高密度储存装置所需的严格的允差条件的相变存储单元的方法。
发明内容
在此描述具有自对准于双极接面晶体管(bipolar junction transistor,BJT)存取装置的射极的存储元件(element)的存储单元。在此描述的一种储存装置(device)包括多个存储单元。这些存储单元中的存储单元包括一双极接面晶体管,双极接面晶体管包括一射极,射极包括一掺杂多晶硅柱(pillar ofdoped polysilicon)。在射极上有一绝缘元件,并具有延伸穿过绝缘元件的一开口,这个开口位在射极上的中心。在开口内还有一存储元件与射极电性相连。
具体而言,在形成牺牲元件期间可形成上述射极,这个牺牲元件是用来定义后续形成的存储元件的位置。之后去除牺牲元件,以于射极上定义一个介层窗(via),而在上述介层窗中形成绝缘元件。上述存储元件是形成在一个由绝缘元件所定义的一开口中。可由造成在存储元件的次光刻宽度(sublithographic width)的很小变化的工艺形成横过存储单元的一阵列的这个由绝缘元件所定义的开口。
在此描述的一个存储单元造成在能被做得极小的存储元件内的主动区(active region),由此降低诱使相变化所需的电流的量(magnitude)。由绝缘元件所定义的开口中的存储元件的宽度小于掺杂多晶硅柱的宽度与作为射极的导体盖(conductive cap),较佳是比一个如光刻工艺的最小特征长度(feature size)还小,上述的工艺是指用于形成掺杂多晶硅柱、导体盖与位线的工艺。而小的宽度会集中存储元件内的电流密度,由此降低主动区中诱使相变化所需的电流的量。此外,绝缘元件可提供主动区一些热绝缘(thermal isolation),以促进降低诱使相变化必需的电流量(amount ofcurrent)。而且,存储元件的剩余部分可为主动区提供与位线的热绝缘。
在此描述的一种制造一储存装置的方法包括形成具有一第一导电态的一单晶基底(single-crystalline substrate)。然后在单晶基底中形成多个介电沟渠(dielectric trenches),并在单晶基底中形成多个字符线。介电沟渠其中之一的介电沟渠隔开相邻的字符线。然后,在单晶基底中上形成一种结构,这种结构包括掺杂多晶硅材料、在掺杂多晶硅材料上的导电盖材料以及在导电盖材料上的牺牲材料(sacrificial material)。接着,图案化上述结构,以在字符线上形成多个叠层(stacks)。之后,在叠层的侧壁上形成多个侧壁间隔物(sidewall spacers)。然后,去除牺牲材料,以定义出多个介层窗(via),并在介层窗内形成一绝缘层,这个绝缘层定义出多个开口。然后,在开口中形成多个存储元件,且在存储元件上形成多个位线。
在此描述的实施例中,可同时制造在周边区(peripheral region)的逻辑装置以及在存储区具有双极接面晶体管的存储单元。在存储区与周边区内先形成栅极介电材料。然后去除存储区内的栅极介电材料,以及在存储区与周边区内形成一层掺杂多晶硅材料以及一层导电盖材料。之后,使用掺杂多晶硅材料及导电盖材料来一起形成逻辑装置的栅极与双极接面晶体管存取装置(access devices)的射极。结果,在此描述的储存装置将包括带有双极接面晶体管存取装置相变存储单元(phase change memory cells)与CMOS周边电路,且满足设计整合与工艺的复杂性(complexity)。
附图说明
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下,其中:
图1是在此描述的一种借着使用具有带多晶硅射极与自对准存储元件(self-aligned memory elements)的双极接面晶体管(BJT)的存储单元实现的一部分的存储单元阵列的示意图。
图2A与图2B显示排列于阵列中的一部分的存储单元的剖面图,图2A是沿着位线以及图2B是沿着字符线。
图3A显示类似图2A~图2B的实施例的一第二实施例的剖面图,并在位线的较高掺杂区的顶面上有包括硅化物的一顶导体。
图4~图17B显示一种制造在此描述的具有带多晶硅射极与自对准存储元件的双极接面晶体管的存储单元的阵列的制作顺序的步骤。
图18~图21显示一种针对在图5A~图5B中显示的形成字符线的替代实施例。
图22是一种集成电路的简化的方块图,前述集成电路包括在此描述的一种借着使用具有带多晶硅射极与自对准存储元件的双极接面晶体管的存储单元实现的存储单元阵列。
具体实施方式
本文揭露的下列描述是作为代表地关于具体的结构实施例与方法。应知这些描述并没有要将揭露的内容限制在这些具体披露的实施例与方法中,而是可使用其它特征、元件、方法与实施例来实践揭露的内容。所述的较佳实施例是用以解说本发明而非用以限制其范围,应以权利要求范围定义为准。所属技术领域中具有通常知识者应理解在下文描述上多种相等的变更(variation)。在各个实施例中相似的元件通常参照相似的元件符号。
图1显示在此描述的一种借着使用具有带多晶硅射极与自对准存储元件(self-aligned memory elements)的双极接面晶体管(BJT)的存储单元实现的一部分的存储单元阵列100的示意图。
如图1的示意图所示,阵列100的每个存储单元包括排列成电性串联(electrical series)的一双极接面晶体管存取装置与一存储元件,所述的存储元件能被设定成多个阻态(resistive states)中之一并因此能储存一或多个位的数据(data)。
阵列100包括多个字符线130,其包含并联延伸于第一方向且与字符线译码器/驱动器(decoder/driver)150电性相连的字符线130a、130b、130c、130d。字符线130连至阵列100的双极存取晶体管的基极端(baseterminals)。
包含位线120a、120b、120c、120d的多个位线120并联延伸于第二方向且与位线译码器160电性相连。而各别的双极接面晶体管的射极端经由存储元件连至一对应位线120。
阵列100的存储单元连接成一共集极组态(common collectorconfiguration)。在一共集极组态中,存储单元的集极端是连至一固定的参考电压(reference voltage),且输入与输出分别为基极端与射极端。因此,在操作时于位线120与字符线130上的电压会感应一电流经由射极端与存储元件自位线120到集极端,或者反之亦然。
在图1中,集极端连到地线(ground)。集极端还可选择连至一电压源,以供应有别于地线的一参考电压。比如请参见图22的偏压配置供应电压、电流电源(Biasing Arrangement Supply Voltages,Current Sources)2236。
存储单元110是代表阵列100的存储单元并包括排列为电性串联的双极接面晶体管115与相变存储元件125。双极接面晶体管115的基极端连至字符线130b,而晶体管115的射极端经由相变存储元件125连至位120b。
可由供应适当的电压以及/或是电流至对应字符线130b与对应位线120b,以感应一电流通过所选的存储单元110,来达成读取或写入阵列100的存储单元110。所供应的电压/电流的位准(level)与持续期间(duration)是依据所施行的操作如读取操作或写入操作而定。
在存储单元110的一重置(擦除)操作中,供应一重置脉冲(reset pulse)至字符线130b并使位线120b经由存储元件125感应一电流,以引起存储元件125的主动区的转变(transition)成为一非晶相,从而使这个相变材料成为一个电阻值在重置状态的范围内的电阻。所述的重置脉冲是一个相当高的能量脉冲,足以提高存储元件125的至少主动区的温度到相变材料的转变(结晶)温度以上并且也在熔化温度以上,以便让至少主动区处在液态。之后迅速终止所述的重置脉冲,导致一个相当快的淬火时间而主动区迅速冷却至转变温度以下,以使主动区稳定至一般的非晶相。
在存储单元110的一设置(或编程)操作中,供应一编程脉冲到适合的振幅与持续期间的字符线130b与位线120b,以经由存储单元110感应一个电流,此电流足以提高至少一部分的主动区的温度到转变温度以上以及导致至少一部分的主动区从非晶相转变成结晶相,这样的转变将减少存储元件125的电阻并使存储单元110处于所要的状态。
在储存于存储单元110中的数据值的一读取(或感测)操作中,供应一读取脉冲到适合的振幅与持续期间的对应字符线130b和对应位线120b,以感应电流流动而不会使存储元件125经历电阻状态(resistive state)的变化。流经存储单元110的电流是依据存储元件125的电阻而定,并因而使数据值储存于存储单元110中。因此,存储单元的数据状态,例如可由比较位线120b上的电流与方块165的感测放大器(sense amplifiers)的适当的参考电流来确定。
图2A与图2B显示排列于阵列100中的一部分的存储单元(包括代表的存储单元110)的剖面图,图2A是沿着位线120以及图2B是沿着字符线130。
阵列100包括在一单晶半导体基底200上的一存储区280与一周边区(periphery region)285。周边区285包括逻辑装置286,其具有在一栅极介电层293上与基底200上的一栅极结构287,以及作为源极区和漏极区的掺杂区288、289。栅极结构287包括在一掺杂多晶硅部分290上的一导电盖291,以及位于导电盖291与掺杂多晶硅部分290的侧壁上的介电间隔物(dielectric spacer)292。导电盖291包括一种包含例如Ti、W、Co、Ni或Ta的硅化物。一种导电插塞295连至掺杂区288并延伸到介电质294的顶面,以接触位线120b,所述介电质294包括一层或多层的介电材料。一种导电插塞296则连至掺杂区289并延伸到介电质294的顶面,以接触导线297。
存储区280包括位于基底200中具有一第一导电态(conductivity type)的阱202,而这个阱202包括一个第一掺杂区205与一个比第一掺杂区205更高掺杂的第二掺杂区210。基底200还包括位在阱202内并延伸于第一方向的字符线130,此处的第一方向是进入并穿出图2A所示的剖面,且字符线130在阱中被介电沟渠(沟渠隔离结构)230隔间,其中介电沟渠230包括介电材料。字符线130具有相对于第一导电态的一第二导电态。
存储单元110包括一掺杂多晶硅柱(doped polysilicon pillar)220,掺杂多晶硅柱220接触对应的字符线130b。掺杂多晶硅柱220比掺杂多晶硅柱220下面的字符线130b部分的掺杂要更高。因此,柱220与字符线130b在接近界面222处定义出一个pn接面,所述界面222大半是在字符线130b内部。
存储单元110包括在掺杂多晶硅柱220的一导电盖240。在说明的实施例中,导电盖240包括一种包含例如Ti、W、Co、Ni或Ta的硅化物。导电盖240在掺杂多晶硅柱220与存储元件125之间提供一低电阻接触(resistance contact),以由提供一个比柱220的多晶硅材料更高导电性的接触面来帮助维持操作期间的掺杂多晶硅柱220中的电流一致(uniformity),且导电盖240可以在柱220上面的材料的选择性蚀刻期间作为掺杂多晶硅柱220的保护蚀刻中止层(protective etch stop layer)使用。在一些实施例中,可省略导电盖240。
掺杂多晶硅柱220与导电盖240延伸穿过介电质270。在说明的实施例中,介电质270包括硼磷硅玻璃(boro-phospho-silicate glass,BPSG)或磷硅玻璃(PSG)。
如图2B中所示,字符线130包括掺杂多晶硅柱220之间的区域,其比间隔物260和掺杂多晶硅柱220底下的区域的掺杂要高,这个较高掺杂区帮助改善字符线130的导电率(electrical conductivity)并因此降低字符线130的负载(loading)和改善阵列的一致性(uniformity)。此外,掺杂多晶硅柱220底下的字符线130的较淡掺杂区能增加其间的pn接面的崩溃电压(breakdown voltage)。
掺杂多晶硅柱220与导电盖240作为存储单元110的双极接面晶体管115的射极。在柱220底下的一部分的字符线130b作为存储单元110的双极接面晶体管115的基极。在字符线130b底下的一部分的阱作为存储单元110的双极接面晶体管115的集极。
导电接触窗215连接阱202的第二掺杂区210与导电材料140,所述导电材料140连到一参考电压。
在说明的实施例中,掺杂多晶硅柱220包括高掺杂N型(N++)多晶硅、字符线130包括基底200中掺杂P型材料的区域、第一掺杂区205包括基底200中掺杂N型材料的区域、第二掺杂区210包括基底200中高掺杂N型(N+)材料的区域,从而形成npn双极晶体管115。
在一可替代的实施例中,掺杂多晶硅柱220包括高掺杂P型(P++)多晶硅、字符线130包括基底200中掺杂N型材料的区域、第一掺杂区205包括基底200中掺杂P型材料的区域、第二掺杂区210包括基底200中高掺杂P型(P+)材料的区域,从而形成pnp双极晶体管115。
存储元件125是位于一个由一绝缘元件245定义的开口中,并电性连接导电盖240与位线120b。结果是存储元件125具有带有一表面积的底面,该表面积小于射极的顶面的表面积。存储元件125例如可包括选自Ge、Sb、Te、Se、In、Ti、Ga、Bi、Sn、Cu、Pd、Pb、Ag、S、Si、O、P、As、N与Au的族群中的一种或多种材料。
绝缘元件245较佳是包括可阻止存储元件125的存储材料的扩散(diffusion)的材料。在一些实施例中,为了下文更详细讨论的理由,绝缘元件245的材料可选择低导热系数(thermal conductivity)的材料。
位线120(包含作为存储单元110的顶电极的位线120b)延伸进入并穿出图2B所示的剖面。在说明的实施例中,位线120包括接触存储单元的一第一导电层以及位于第一导电层上的一第二导电层。位线120也可选择包括一单一导电层。
位线120具有双层的优势包括为了与存储元件125的材料兼容而选择第一导电层的材料,同时为了其它优点如比第一导电层的材料高的导电率,而选择第二导电层的材料。在说明的实施例中,第一导电层包括TiN及第二导电层包括Al。在存储元件125包括GST(将于下文讨论)的实施例中TiN适于作为第一导电层,因为其可与GST有良好的接触,TiN是一种用于半导体制造的一般材料,且其提供了一个良好的扩散阻挡(diffusionbarrier)。第一导电层还可选择是TaN、TiAlN或TaAlN。
作为另外的例子,位线120的第一与第二导电层各自可包括选自包含Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、N、O与Ru的族群与其组合中的一种或多种元素。
在说明的实施例中,导电材料140和导线297也包括第一与第二导电层如同位线120的第一与第二导电层。此外,导电材料140和导线297各自可包括一层或多层的材料,其例如各自包括上述所讨论有关位线120的一种或多种元素。
绝缘元件245具有侧面(sides)246,其垂直对准于射极(掺杂多晶硅柱220与导电盖240)的侧面221,以便定义出侧壁262。还有一个包括介电材料的侧壁间隔物260位在侧壁262上以及围绕射极和绝缘元件245。
当投影于射极上时,射极的侧面221在射极上方定义出一个柱面(cylinder)。在图2A~图2B的说明的实施例中,由侧面221定义的柱面如同绝缘元件245的侧面246。在说明的实施例中,因为射极圆形的剖面,所以具有由射极的侧面221定义的柱面具有一圆形的剖面。由射极的侧面221定义的柱面根据射极的剖面形状,也可选择具有方形(square)、椭圆形、矩形或稍微不规则形状的剖面。
在图2A~图2B中所示的剖面图中,绝缘元件245具有一个开口,放在由射极的侧面221定义的柱面内的中心,而存储元件125是置于开口中并自对准于射极(掺杂多晶硅柱220与导电盖240)。在下面有关图4~图17所更加详细描述的制造实施例中,掺杂多晶硅柱220与导电盖240是在材料的图案化期间形成,而所述图案化是用以定义出后续形成的绝缘元件245与存储元件125的位置。然后,形成间隔物260再选择性去除被图案化的材料,以形成一个由间隔物260定义并位在导电盖240上的介层窗。接着,在介层窗内形成绝缘元件245并具有一个放在导电盖240的中心的开口,再于由绝缘元件245所定义的开口内形成存储元件125。
再者在下面有关图4~图17所更加详细描述中,在存储区与周边区内形成栅极介电材料。自存储区去除所述栅极介电材料,然后在存储区与周边区内形成一层掺杂多晶硅材料和一层导电盖材料。之后利用该层掺杂多晶硅材料的材料和该层导电盖材料形成逻辑装置的栅极与双极接面晶体管存取装置的射极。结果,于此描述的储存装置包括带有与CMOS周边电路兼容的双极接面晶体管存取装置并满足设计整合与工艺的相变存储单元。
在操作中,在位线120b上的电压以及字符线130b可感应一电流经由存储单元110从射极流到集极。
主动区128是存储元件125的区域,在其中存储材料被诱使而在至少两种固相之间改变。应知道在说明的结构中,所述主动区128可做得极小,由此降低诱使相变化所需的电流的量。在由绝缘元件245所定义的开口内的存储元件125的宽度129小于掺杂多晶硅柱220与导电盖240的宽度,且较佳是小于用来形成掺杂多晶硅柱220、导电盖240与位线120的工艺(如光刻工艺)的最小特征尺寸(feature size)。小的宽度129集中了存储元件125内的电流密度,由此降低诱使主动区128中的相变化所需的电流的量。此外,绝缘元件245可提供主动区128的一些热隔绝,这也能帮助降低诱使相变化所需的电流量。再者,存储元件125的剩余部分可提供主动区128一些来自位线120b的热隔绝。
如上所述,双极接面晶体管可提供比场效晶体管大的电流驱动。此外,因为晶体管的射极包括掺杂多晶硅材料,所以能得到一相当大的电流增益(gain),从而降低在位线120b上诱使存储元件中的相变化所需的电流量。在字符线130上的降低的电流量降低了共享同一字符线的装置间的串音(cross-talk),进而改善阵列的功效。在字符线130上的降低的电流也能避免寄生BJT行为(parasitic BJT behavior),亦即一个邻近的存储单元中的射极变成一个集极。
图3A显示类似图2A~图2B的实施例的的第二实施例的剖面图,其中有一个顶导体(top conductor)300,其包括字符线130的该较高掺杂区的顶面上的硅化物。顶导体300包括一种包含例如Ti、W、Co、Ni或Ta的硅化物。顶导体300增加了字符线130的导电率(electrical conductivity)并且因此降低字符线130的开启电流(turn on current)与负载,从而导致阵列的一致性(uniformity)。包括硅化物的顶导体300也可除去来自字符线130的少数载子以避免寄生BJT行为。同时,如图21所示,在一些实施例中,在字符线130的侧壁上形成包括硅化物的侧壁导体1900。侧壁导体1900可除去来自字符线的少数载子并增进字符线130的导电率。
于此描述的存储单元的实施例包括用于存储元件的相变存储材料,包括硫属材料或其它材料。硫属(chalcogens)包括这四个元素氧(O)、硫(S)、硒(Se)与碲(Te)中的任一种,其形成周期表的部分VIA族。硫族化合物包括一种硫属与一种较正电性的元素或根(radical)的化合物。硫族化合物合金包括硫族化合物与其它如过渡金属的其它材料的组成物。一种硫族化合物合金通常包含一或多种元素,其来自元素周期表的IVA族,如锗(Ge)和锡(Sn)。硫族化合物合金总是包括锑(Sb)、镓(Ga)、铟(In)、银(Ag)其中之一或多种的组成物。很多相变存储材料已经描述于技术文献中,包括:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te和Te/Ge/Sb/S的合金。在Ge/Sb/Te合金的家族中,广范围的合金混合物(compositions)也许是可行的。所述混合物可以TeaGebSb100-(a+b)作为特征。已有研究者描述最有用的合金,其在沉积材料中具有Te的平均浓度在70%以下,典型是在60%以下并且一般是在低到约23%及高到约58%Te的范围,最适宜地是约48%~58%。Ge的浓度在约5%以上且在材料中平均从约8%的低点到约30%的范围,剩下的通常低于50%。最适当的是Ge的浓度在约8%到约40%的范围。而此一混合物中的主要组成元素的余料是Sb。这些百分比是组成元素的原子的全部100%的原子百分比(atomic percentages)。(Ovshinsky的美国专利5687112的第10~11栏)。由其它研究者提出的特定合金包括Ge2Sb2Te5、GeSb2Te4与GeSb4Te7(Noboru Yamada所着的“Potential of Ge-Sb-Te Phase-Change Optical Disks for High-Data-RateRecording”,SPIE v.3109,pp.28-37(1997))。更一般的可将一种如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)的过渡金属与其混合物或合金与Ge/Sb/Te结合,以形成具有编程电阻特性的一种相变合金。在Ovshinsky‘112的第11~13栏中所提出的有用的存储材料的具体例子将合并作为参照用。
在一些实施例中,可掺杂杂质(impurities)到硫族化合物与其它相变材料中,以便使用掺杂的硫族化合物来改变导电率、转变温度、熔化温度及存储元件的其它特性。用来掺杂硫族化合物的代表的杂质包括氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛与氧化钛。请见例如美国专利专利号6800504与美国专利公开号2005/0029502。
在一第一结构态与一第二结构态之间能够开关相变合金,在单元的主动信道区中在其局部秩序(local order)中第一结构态是材料通常在其中是非晶固相、第二结构态是材料通常在其中是结晶固相。这些合金至少是双稳态。所谓的非晶表示一种比单晶更为无序、相对较少的有序结构(orderedstructure),其具有可检测特性如比结晶相高的电阻率(resistivity)。所谓的结晶是表示一种比非晶结构有序、相对较为有序的结构,其具有可检测特性如比非晶相低的电阻率。一般相变材料可由电力在穿过完全非晶态与完全结晶态之间的范围(spectrum)的局部秩序中的不同双稳态之间开关。其余受非晶相与结晶相之间的相影响的材料特征包括原子序度(atomic order)、自由电子密度与活化能。这样的材料不转换成不同固相就是转换成两个或多个固相的混合物(mixture),以提供在完全非晶态与完全结晶态之间的灰阶(gray scale)。因此在此种材料中的电特性是多变的。
相变合金可由电脉冲的运用而从一个相态转变到另一个。已知一种较短、较高的幅脉冲(amplitude pulse)有助于使相变材料转变成一般的非晶态。而一种较长、较低的幅脉冲有助于使相变材料转变成一般的结晶态。在较短、较高的幅脉冲中的能量是高到能打断结晶结构的键并且短得能避免原子再结合成结晶态。适合特定的相变合金的脉冲的适当数据曲线,不需过度实验就可具体决定。在下面的章节中,相变材料是以GST为例,且应知也可以使用其它种类的相变材料。在此描述对于完成一种PCRAM有用的材料是Ge2Sb2Te5。
在本发明的其它实施例中可使用其它可编程电阻存储材料,包括使用不同晶相来决定电阻的其它材料,或使用电脉冲来改变电阻值状态(resistance state)的其它存储材料。这些例子包括用于电阻式随机存取存储器(resistance random access memory,RRAM)的材料,如金属氧化物(metal-oxides)包含氧化钨(WOX)、NiO、Nb2O5、CuO2、Ta2O5、Al2O3、CoO、Fe2O3、HfO2、TiO2、SrTiO3、SrZrO3或(BaSr)TiO3。附加的例子包括用于像是旋转力矩转移(spin-torque-transfer,STT)磁电阻式随机存取存储器(magnetoresistance random access memory,MRAM)的MRAM的材料,例如CoFeB、Fe、Co、Ni、Gd、Dy、CoFe、NiFe、MnAs、MnBi、MnSb、CrO2、MnOFe2O3、FeOFe2O5、NiOFe2O3、MgOFe2、EuO和Y3Fe5O12至少其中的一种。请见例如题目为“Magnetic Memory device and Methodof Fabricating the Same”的美国专利公开号2007/0176251,其在此合并作为参照用。附加的例子还包括用于可编程金属单元(programmable-metallization-cell,PMC)存储器或者奈米离子存储器(nano-ionic memory)的固态电解质(solid electrolyte)材料,比如掺杂银的硫化锗电解质与掺杂铜的硫化锗电解质。请见例如N.E.Gilbert et al.所著的“A macro model of programmable metallization cell devices,”Solid-StateElectronics 49(2005)1813~1819,其在此合并作为参照用。
一种形成硫族化合物的示范的方法是在1mTorr~100mTorr的压力下利用PVD溅镀或者磁控溅镀法和Ar、N2、以及/或是He等的来源气体。这样的沉积通常是在室温进行。使用一种高宽比在1~5的准直管(collimator)来改善充填能力(fill-in performance)。也可以用数十伏特到数百伏特的DC偏压来改善充填能力。另一方面,可同时使用DC偏压与准直管的结合。于题目为“Chemical Vapor Deposition of Chalcogenide Materials”的美国专利公开号2006/0172067中揭露一种利用化学气相沉积(CVD)形成硫族化合物的示范的方法,其在此被合并作为参照用。于Lee,et al.所着的“HighlyScalable Phase Change Memory with CVD GeSbTe for Sub 50nmGeneration”,2007年在VLSI Technology Digest of Technical Papers的专题论文集(Symposium)上的pp.102-103揭露了利用CVD形成硫族化合物的其它示范的方法。
可选择性地施行一种在真空下或N2环境下的沉积后退火处理(post-deposition annealing treatment),以改善硫族化合物材料的结晶态。而上述退火温度通常在100℃到400℃的范围且退火时间低于30分钟。
图4~图17B显示一种制造在此描述的具有带多晶硅射极与自对准存储元件的双极接面晶体管的存储单元的阵列的制作顺序的步骤。
图4显示形成一基底的第一步骤,这个基底包括位在含第一与第二掺杂区205、210的存储区280内的一个阱202以及位在阱202内并延伸进入并穿出图4所示的剖面的介电沟渠230。第一与第二掺杂区205、210可使用已知的植入与活化退火工艺来形成。在说明的实施例中,第一掺杂区205包括掺杂N型材料的基底200、第二掺杂区210包括高掺杂N型(N+)材料的基底200。在一替代的实施例中,第一掺杂区205包括掺杂P型材料的基底200、第二掺杂区210包括高掺杂P型(P+)材料的基底200。
然后,由植入步骤在阱的第一掺杂区205内形成字符线130,结果得到图5A与图5B的剖面图所示的结构。同时在说明的实施例中,由一第二离子植入步骤在阱内形成一高掺杂区,从基底200顶面延伸至第二掺杂区210。字符线130具有第二导电态,并且在说明的实施例中,字符线130包括掺杂P型材料的基底200。在一替代的实施例中,字符线130包括掺杂N型材料的基底200。
接着,在存储区280与周边区285内的图5A与图5B所示的结构上形成栅极介电层293,结果得到图6所示的结构。在说明的实施例中,栅极介电层293包括二氧化硅。
之后,去除图6所示的结构的存储区280中的栅极介电层293,再形成一层700具有第一导电态的掺杂多晶硅材料,然后在掺杂多晶硅层700上形成一层710导电盖材料,结果得到图7A与图7B的剖面图所示的结构。导电盖材料层710包括一种例如含Ti、W、Co、Ni或Ta的硅化物。在一实施例中,该层710包括硅化钴(cobalt silicide,CoSi)并由沉积一层钴并进行一快速热工艺(RTP)形成,以使钴与层700中的硅反应而形成所述层710。应知其它硅化物也可用类似于此处描述的使用钴的例子的方式,由钛、砷、掺杂的镍或其合金的沉积的方式来形成。
然后,在图7A与图7B所示的结构的周边区285内形成逻辑装置286,结果得到图8A与图8B所示的结构。在说明的实施例中,逻辑装置286的形成包括,由图案化周边区285内的所述层700与710形成栅极结构287的掺杂多晶硅部分290与导电盖291,再施行一浅掺杂漏极(LDD)植入工艺,以于邻近栅极结构287的基底200中形成浅掺杂区之后在导电盖291与掺杂多晶硅部分290的侧壁上形成一绝缘层292,再施行一第二植入工艺,以形成作为逻辑装置286的源极与漏极的掺杂区288和289。当然也可使用其它技术来形成逻辑装置286。
接着,于图8A与图8B所示的结构上形成一层900介电材料,结果得到图9A与图9B所示的结构。在说明的实施例中,所述层900包括氮化硅。
然后,图案化图9A与图9B的存储区280内的所述层900、700和710,以于字符线130上形成多个多层叠层(multi-layer stacks)1000,结果得到图10A与图10B所示的结构。例如是由在多层叠层1000的位置上的所述层900上形成一掩膜(例如一层图案化光刻胶),再使用所述掩膜作为蚀刻掩膜来蚀穿所述层900、700和710,来形成多层叠层1000。
从图10A与图10B可知,多层叠层1000包括掺杂多晶硅柱220,其包括在对应字符线130上接近界面222之间定义出一pn接面的所述层700(请见图9A与图9B)的材料、在柱220上包括所述层700(请见图9A与图9B)的材料的一导电盖240、及在导电盖240上包括所述层900的材料的一牺牲元件(sacrificial element)1010。
在说明的实施例中,多层叠层1000具有一圆形剖面。在其它实施例中,可根据用于形成多层叠层1000的制造技术,使多层叠层1000具有方形、椭圆形、矩形或稍微不规则形的剖面。
接着,在多层叠层1000的侧壁上形成包括介电材料的侧壁间隔物260,再进行一植入工艺来形成位于相邻侧壁间隔物260之间的字符线130的较高掺杂区(more highly doped regions),然后在字符线130的较高掺杂区上形成包括自对准硅化物(salicide)的顶导体(top conductors)300,结果得到图11A与图11B所示的结构。在某些实施例中,可省略上述顶导体300。
侧壁间隔物260的形成可由于图10A与图10B所示的结构上沉积一层侧壁间隔物材料的共形层(conformal layer),再非等向地蚀刻所述共形层,以形成上述侧壁间隔物260。在形成顶导体300的硅化物工艺期间,侧壁间隔物260会保护叠层1000及叠层1000与字符线130间的界面。
在一实施例中,顶导体300包括硅化钴(CoSi)且顶导体300的形成是由沉积一层钴并进行一快速热工艺(RTP)以使钴与字符线130中的硅反应而形成所述顶导体。应知其它硅化物也可用类似于此处描述的使用钴的例子的方式,由钛、砷、掺杂的镍或其合金的沉积的方式来形成。
随后,于图11A~图11B所示的结构上形成一层介电层270,再进行如CMP的一平坦化工艺(planarization process)以暴露出多层叠层1000的牺牲元件1010的顶面,结果得到图12A与图12B所示的结构。
然后,形成穿过介电层270的导电接触窗215阵列,以接触所述阱的第二掺杂区210以及形成分别接触掺杂区288与289的导电插塞295、296,结果得到图13A与图13B所示的结构。
接着,去除图13A与图13B的牺牲元件1010,以形成由间隔物260定义出的介层窗1400,其往下延伸至导电盖240,结果得到图14A与图14B所示的结构。
之后,在图14A与图14B的介层窗1400内形成绝缘元件245,结果得到图15A与图15B所示的结构。绝缘元件245在介层窗1400内定义出自对准中心的开口(self-centered opening)1510,且在说明的实施例中,绝缘元件245包括氮化硅。
绝缘元件245的形成可藉由于图14A与图14B所示的结构上形成一层绝缘介电材料层,再非等向地蚀刻所述介电材料层,以露出一部分的导电盖240。
所述绝缘元件245的形成还可选择先在介电层270的顶面上形成一层在介层窗1400上具有开口的材料层。然后,在介层窗1400上进行一道选择性过切(undercutting)蚀刻,以便在蚀刻绝缘元件245的同时使介电层270的顶面上的材料层能完整地留下。然后,在介层窗1400中形成绝缘层材料,而由于选择性过切蚀刻工艺导致形成在介层窗1400中的绝缘层材料中有一自对准孔洞(void)。然后,在绝缘层材料上进行一非等向性蚀刻工艺,以打开所述孔洞,再继续蚀刻直到孔洞下的区域中的导电盖240的一部分顶面暴露出来,由此在介层窗1400中形成包括绝缘层材料的绝缘元件245。
接着,在由图15A~图15B所示的结构的绝缘元件245所定义的开口1510内形成存储元件125,结果得到图16A~图16B所示的结构。存储元件125的形成可由在图15A~图15B所示的结构上先沉积存储材料再接着一道如CMP的平坦化工艺。
然后,在图16A~图16B所示的结构上形成位线120、连到一参考电压(reference voltage)的导电材料140以及导线297,结果得到图17A~图17B所示的结构。在说明的实施例中,位线120导电材料140以及导线297包括第一与第二导电层,且藉由沉积所述第一与第二导电层再图案化的而形成的。
如上所述,掺杂多晶硅柱220与导电盖240是在定义后续形成的绝缘元件245与存储元件125的位置的牺牲元件1010形成期间形成的。然后,形成间隔物260,再选择性去除牺牲元件1010,以形成位于导电盖240上并由间隔物260所定义的介层窗1400。接着在介层窗1400内形成绝缘元件245,其具有置于由射极的侧面所定义的柱面内的中心的开口,之后于由绝缘元件245所定义的一开口1510内形成存储元件125。因此,存储元件位在掺杂多晶硅柱220与导电盖240的中心上并自对准于掺杂多晶硅柱220与导电盖240,而掺杂多晶硅柱220和导电盖240作为存储单元的双极接面晶体管的射极。
因为同时制作周边区内的逻辑装置和存储区内具有双极接面晶体管的存储单元在上述制造步骤中,所以储存装置具有降低的复杂性(complexity)以及满足上述讨论的设计整合的兼容性(compatibility)问题,以降低成本。如上所述,双极接面晶体管可提供比场效晶体管要大的电流驱动。此外,因为晶体管的射极包括掺杂多晶硅材料,所以能获得相当大的电流增益,从而降低引起存储元件中的相变化而在字符线130上所需的电流量。在字符线130上降低的电流量将会降低共享相同字符线的装置间的串音(cross-talk),进而改善阵列的功效。
图18~图21显示一种针对在图5A~图5B中显示的形成字符线130的替代实施例。
如图18的剖面图所示,进行蚀刻来去除图4的介电沟渠230的一部分的介电材料,以露出介电沟渠230间的阱的第一掺杂区205的侧壁面1800。
然后,在图18的阱的第一掺杂区205的露出的侧壁面1800上形成侧壁导体1900,结果得到图19的剖面图所示的结构。所述侧壁导体1900包括一种例如含Ti、W、Co、Ni或Ta的硅化物。侧壁导体1900的形成可由在露出的侧壁面1800上先沉积一硅化物前驱物(precursor)再进行退火,以使硅化物形成。然后去除基底上剩余的硅化物前驱物,留下侧壁面1800的侧面上的自对准硅化物侧壁导体。典型的硅化物前驱物包含金属或金属的化合物如钴、钛、镍、钼、钨、钽与铂。同时,所述硅化物前驱物还可包括金属氮化物或其它金属混合物。最终的硅化物侧壁导体1900会从字符线去除少数载子并增进字符线130的导电率。
接着,在图19所示的结构上形成介电材料以填入介电沟渠230,结果得到图20的剖面图所示的结构。
随后,进行离子植入以植入掺质(dopants)来形成字符线130,这种字符线130具有与阱的第一和第二掺杂区205和210的导电态相反的一导电态,且结果得到图21的剖面图所示的结构。
图22是一种集成电路2210的简化的方块图,前述集成电路2210包括在此描述的一种借着使用具有带多晶硅射极与自对准存储元件的双极接面晶体管的存储单元实现的一存储单元阵列100。具有读取、设定与重置模式(read,set,and reset modes)的一字符线译码器2214连至并在电性上相连于多个在存储阵列100中沿着列(rows)排列的多个字符线2216。一位(行)译码器2218在电性上相连于在存储阵列100中沿着行(columns)排列的多个位22220,用以读取、设定与重置阵列100中的相变存储单元(未绘示)。在总线(bus)2222上供应地址(addresses)到字符线译码器与驱动器2214和位线译码器2218。在方块2224中包含用于读取、设定与重置模式的电压源及/或电流源(current source)的感测放大器(sense amplifiers)与Data-In结构经由数据总线2226连到位线译码器2218。从集成电路2210上的输出/输入(input/output)接口(ports)经由一data-in导线2228提供数据到方块2224中的Data-In结构,或是从其它集成电路2210的内部或外部的数据来源将数据供应到方块2224中的Data-In结构。其它电路(Other circuitry)2230则可包括在集成电路2210中,如通用处理器(general purpose processor)或特殊目的应用电路,或是一种提供由阵列100支持的系统单芯片(system-on-a-chip)功能的模块组合(combination)。从方块2224中的感测放大器经由一data-out导线2232将数据提供到集成电路2210上的输出/输入接口,或是将数据提供到集成电路2210的内部或外部的其它数据终点(datadestinations)。
在这里的例子中提供的控制器(controller)2234使用一偏压配置状态机器(bias arrangement state machine)来控制偏压配置供应电压与电流电源2236的运用,如读取、编程、擦除、擦除验证(erase verify)与编程验证电压以及/或是电流。可使用已知技术中的特殊用途(special-purpose)逻辑电路来完成控制器2234。在替代的实施例中,控制器2234包括一通用处理器,其可在相同的集成电路上实现,以执行一计算机程序来控制所述装置的操作。在另一实施例中,也可利用特殊用途(special-purpose)逻辑电路与通用处理器的组合来完成控制器2234。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视权利要求范围所界定的为准。
Claims (27)
1.一种包括多个存储单元的储存装置,在该多个存储单元中的存储单元包括:
一双极接面晶体管,包括一射极,该射极包括一掺杂多晶硅柱;
一绝缘元件,位在该射极上并具有延伸穿过该绝缘元件的一开口,该开口位在该射极上的中心;以及
一存储元件,位在该开口内并与该射极电性相连。
2.如权利要求1所述的包括多个存储单元的储存装置,其中:
当该多个存储单元的该掺杂多晶硅柱投影于该射极上,在该射极上定义出一柱面的侧边;以及
该开口位在该柱面内的中心。
3.如权利要求1所述的包括多个存储单元的储存装置,其中该多个存储单元的该多个存储元件个别具有一表面积的底面,该表面积小于对应的该射极的顶面的表面积。
4.如权利要求1所述的包括多个存储单元的储存装置,其中该多个存储单元的该射极还包括一导电盖,位在该掺杂多晶硅柱上,该导电盖包括一硅化物。
5.如权利要求1所述的包括多个存储单元的储存装置,其中该多个存储单元的该绝缘元件具有一外表面垂直对准于对应的该射极的一外表面。
6.如权利要求5所述的包括多个存储单元的储存装置,其中在该多个存储单元中的存储单元还包括一侧壁间隔物环绕该绝缘元件与该射极。
7.如权利要求1所述的包括多个存储单元的储存装置,还包括一单晶基底以及位在该单晶基底中的多个字符线,该多个存储单元的该射极接触该多个字符线中的一对应字符线,其中该多个存储单元的该双极接面晶体管还包括:
位于该射极下的一部分的该对应字符线,以作为一基极;以及
一集极,包括位于该基极下的一部分的该单晶基底。
8.如权利要求7所述的包括多个存储单元的储存装置,其中该多个字符线还包括位在相连的该多个存储单元的该射极之间的区域的顶表面上的多个顶导体,该多个顶导体包括硅化物。
9.如权利要求7所述的包括多个存储单元的储存装置,还包括位在该多个字符线的侧壁表面上的多个侧壁导体,该多个侧壁导体包括硅化物。
10.如权利要求7所述的包括多个存储单元的储存装置,其中:
该单晶基底包括n型掺杂半导体材料;
该多个字符线包括p型掺杂半导体材料;以及
该多个存储单元的该射极包括n型掺杂多晶硅。
11.如权利要求7所述的包括多个存储单元的储存装置,其中:
该单晶基底包括p型掺杂半导体材料;
该多个字符线包括n型掺杂半导体材料;以及
该多个存储单元的该射极包括p型掺杂多晶硅。
12.如权利要求7所述的包括多个存储单元的储存装置,还包括多个位线,其中该多个存储单元的该多个存储元件电性相连至该射极与该多个位线中的一对应位线之间。
13.如权利要求12所述的包括多个存储单元的储存装置,还包括多个导电接触窗,接触该单晶基底并连到一参考电压。
14.一种制造储存装置的方法,包括形成多个存储单元,在形成该多个存储单元的方法中,至少有一个方法包括:
形成一双极接面晶体管,该双极接面晶体管包括一射极,该射极包括一掺杂多晶硅柱;
在该射极上形成一绝缘元件,该绝缘元件具有延伸穿过该绝缘元件的一开口,该开口位在该射极上的中心;以及
在该开口内形成一存储元件,且该存储元件与该射极电性相连。
15.如权利要求14所述的制造储存装置的方法,其中:
当该多个存储单元的该掺杂多晶硅柱投影于该射极上,在该射极上定义出一柱面的侧边;以及
该开口位在该柱面内的中心。
16.如权利要求14所述的制造储存装置的方法,其中该多个存储单元的所述射极还包括一导电盖,位在该掺杂多晶硅柱上,该导电盖包括一硅化物。
17.如权利要求14所述的制造储存装置的方法,其中该多个存储单元的该绝缘元件具有一外表面垂直对准于对应的该射极的一外表面。
18.如权利要求17所述的制造储存装置的方法,其中形成该多个存储单元还包括形成一侧壁间隔物环绕该绝缘元件与该射极。
19.如权利要求14所述的制造储存装置的方法,还包括:
形成一单晶基底;
在该单晶基底中形成多个字符线,该多个存储单元的该射极接触该多个字符线中的一对应字符线,其中该多个存储单元的该双极接面晶体管还包括位于该射极下的部分该对应字符线作为一基极,以及包括位于该基极下的一部分的该单晶基底的一集极;以及
形成多个位线,其中该多个存储单元的该多个存储元件电性相连于该射极与所述位线中的一对应位线之间。
20.如权利要求19所述的制造储存装置的方法,其中形成该多个字符线,还包括在相连的该多个存储单元的该射极之间的区域的顶表面上形成多个顶导体,该多个顶导体包括硅化物。
21.如权利要求14所述的制造储存装置的方法,还包括形成多个导电接触窗,接触该单晶基底并连到一参考电压。
22.一种制造储存装置的方法,该方法包括:
形成具有一第一导电态的一单晶基底;
在该单晶基底中形成多个介电沟渠;
在该单晶基底中形成多个字符线,在该多个字符线中相邻的字符线由该多个介电沟渠中的一介电沟渠隔开;
在该单晶基底上形成一结构,该结构包括掺杂多晶硅材料、在该掺杂多晶硅材料上的导电盖材料以及在该导电盖材料上的牺牲材料;
图案化该结构,以在所述字符线上形成多个叠层;
在该多个叠层的侧壁上形成多个侧壁间隔物;
去除该牺牲材料,以定义出多个介层窗;
在该多个介层窗内形成一绝缘层,该绝缘层定义出多个开口;
在该多个开口中形成多个存储元件;以及
在该多个存储元件上形成多个位线。
23.如权利要求22所述的制造储存装置的方法,在形成该多个侧壁间隔物的步骤后,还包括施行一植入工艺,以于相邻的该多个叠层之间的该多个字符线内形成多个更高掺杂区域。
24.如权利要求22所述的制造储存装置的方法,还包括在该多个字符线的该多个更高掺杂区域的顶表面上形成多个顶导体,该多个顶导体包括硅化物。
25.如权利要求22所述的制造储存装置的方法,其中该储存装置包括一存储区与一周边区、在该存储区内的该多个字符线以及还包括:
在形成该多个字符线的步骤后与在该单晶基底上形成该结构的步骤前,在该存储区与该周边区内沉积栅极介电材料;
去除该存储区内的该栅极介电材料;以及
在该周边区内形成一逻辑装置,并电性连接到该多个位线中的位线及该多个字符线中的字符线,该逻辑装置包括在该单晶基底上的一栅极结构与在该单晶基底中的第一和第二掺杂区,该栅极结构包括在该栅极介电材料上的一掺杂多晶硅部分以及在该掺杂多晶硅部分上的一导电盖部分,该掺杂多晶硅部分包括该掺杂多晶硅材料,而该导电盖部分包括该导电盖材料。
26.如权利要求25所述的制造储存装置的方法,其中形成该逻辑装置包括:
图案化在该周边区内的该掺杂多晶硅材料与该导电盖材料;
施行一浅掺杂漏极植入工艺,以于该单晶基底中形成多个浅掺杂区;
在该掺杂多晶硅部分与该导电盖部分的一侧壁上形成一侧壁间隔物;以及
施行一第二植入工艺,以于该单晶基底中形成该第一和第二掺杂区。
27.如权利要求22项所述的方法,其中形成该单晶基底与形成该多个字符线包括:
形成该单晶基底;
在该单晶基底中形成该多个介电沟渠;
从该多个介电沟渠中去除一部分的材料,以暴露出该单晶基底的侧面;
在该单晶基底的暴露出的侧面上形成多个侧壁导体,该多个侧壁导体包括硅化物;
在该多个介电沟渠中填入介电材料;以及
在该多个介电沟渠之间的该单晶基底中植入掺质,以形成该多个字符线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/357,912 | 2009-01-22 | ||
US12/357,912 US8933536B2 (en) | 2009-01-22 | 2009-01-22 | Polysilicon pillar bipolar transistor with self-aligned memory element |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101840928A true CN101840928A (zh) | 2010-09-22 |
CN101840928B CN101840928B (zh) | 2012-07-11 |
Family
ID=42336255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010108856.2A Active CN101840928B (zh) | 2009-01-22 | 2010-01-22 | 带有自对准存储元件的多晶硅柱双极晶体管 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8933536B2 (zh) |
CN (1) | CN101840928B (zh) |
TW (1) | TWI404244B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103579279A (zh) * | 2012-08-02 | 2014-02-12 | 旺宏电子股份有限公司 | 具有三维阵列结构的存储装置 |
CN104733607A (zh) * | 2013-12-20 | 2015-06-24 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
CN107104183A (zh) * | 2016-02-22 | 2017-08-29 | 三星电子株式会社 | 存储器件 |
CN109585539A (zh) * | 2017-09-29 | 2019-04-05 | 台湾积体电路制造股份有限公司 | 双极性接面型晶体管、其形成方法以及相关的集成电路 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011228443A (ja) * | 2010-04-19 | 2011-11-10 | Toshiba Corp | 半導体記憶装置およびその製造方法 |
JP2011233835A (ja) * | 2010-04-30 | 2011-11-17 | Toshiba Corp | 半導体記憶装置およびその製造方法 |
US8310864B2 (en) * | 2010-06-15 | 2012-11-13 | Macronix International Co., Ltd. | Self-aligned bit line under word line memory array |
US8993407B2 (en) * | 2012-11-21 | 2015-03-31 | Globalfoundries Singapore Pte. Ltd. | Compact localized RRAM cell structure realized by spacer technology |
US9478736B2 (en) | 2013-03-15 | 2016-10-25 | International Business Machines Corporation | Structure and fabrication of memory array with epitaxially grown memory elements and line-space patterns |
US9202846B2 (en) * | 2013-03-22 | 2015-12-01 | Kabushiki Kaisha Toshiba | Resistance random access memory device |
KR20140127576A (ko) * | 2013-04-25 | 2014-11-04 | 에스케이하이닉스 주식회사 | 저항성 메모리 소자 및 제조 방법 |
US9336860B1 (en) | 2015-05-20 | 2016-05-10 | International Business Machines Corporation | Complementary bipolar SRAM |
US9646880B1 (en) * | 2016-01-14 | 2017-05-09 | Sandisk Technologies Llc | Monolithic three dimensional memory arrays formed using sacrificial polysilicon pillars |
US10297452B2 (en) * | 2017-09-22 | 2019-05-21 | Globalfoundries Inc. | Methods of forming a gate contact structure for a transistor |
US20190115392A1 (en) * | 2017-10-16 | 2019-04-18 | International Business Machines Corporation | Access device and phase change memory combination structure in backend of line (beol) |
CN110120344B (zh) * | 2019-04-09 | 2022-08-16 | 上海华虹宏力半导体制造有限公司 | 一种在锗硅hbt中用氮化硅侧墙实现自对准结构的方法 |
US11348640B1 (en) * | 2021-04-05 | 2022-05-31 | Micron Technology, Inc. | Charge screening structure for spike current suppression in a memory array |
US11715520B2 (en) | 2021-04-05 | 2023-08-01 | Micron Technology, Inc. | Socket structure for spike current suppression in a memory array |
US11862215B2 (en) | 2021-08-27 | 2024-01-02 | Micron Technology, Inc. | Access line having a resistive layer for memory cell access |
US11751492B2 (en) * | 2021-09-24 | 2023-09-05 | International Business Machines Corporation | Embedded memory pillar |
EP4362627A1 (fr) * | 2022-10-27 | 2024-05-01 | STMicroelectronics Crolles 2 SAS | Procédé de fabrication d'une puce électronique comprenant un circuit mémoire |
Family Cites Families (306)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271591A (en) | 1963-09-20 | 1966-09-06 | Energy Conversion Devices Inc | Symmetrical current controlling device |
US3530441A (en) | 1969-01-15 | 1970-09-22 | Energy Conversion Devices Inc | Method and apparatus for storing and retrieving information |
IL61678A (en) | 1979-12-13 | 1984-04-30 | Energy Conversion Devices Inc | Programmable cell and programmable electronic arrays comprising such cells |
US4452592A (en) | 1982-06-01 | 1984-06-05 | General Motors Corporation | Cyclic phase change coupling |
JPS60137070A (ja) | 1983-12-26 | 1985-07-20 | Toshiba Corp | 半導体装置の製造方法 |
US4719594A (en) | 1984-11-01 | 1988-01-12 | Energy Conversion Devices, Inc. | Grooved optical data storage device including a chalcogenide memory layer |
US4876220A (en) | 1986-05-16 | 1989-10-24 | Actel Corporation | Method of making programmable low impedance interconnect diode element |
JP2685770B2 (ja) | 1987-12-28 | 1997-12-03 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP2606857B2 (ja) | 1987-12-10 | 1997-05-07 | 株式会社日立製作所 | 半導体記憶装置の製造方法 |
US5534712A (en) | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5166758A (en) | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5177567A (en) | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
JP2825031B2 (ja) | 1991-08-06 | 1998-11-18 | 日本電気株式会社 | 半導体メモリ装置 |
US5166096A (en) | 1991-10-29 | 1992-11-24 | International Business Machines Corporation | Process for fabricating self-aligned contact studs for semiconductor structures |
JPH05206394A (ja) | 1992-01-24 | 1993-08-13 | Mitsubishi Electric Corp | 電界効果トランジスタおよびその製造方法 |
US5958358A (en) | 1992-07-08 | 1999-09-28 | Yeda Research And Development Co., Ltd. | Oriented polycrystalline thin films of transition metal chalcogenides |
JP2884962B2 (ja) | 1992-10-30 | 1999-04-19 | 日本電気株式会社 | 半導体メモリ |
US5515488A (en) | 1994-08-30 | 1996-05-07 | Xerox Corporation | Method and apparatus for concurrent graphical visualization of a database search and its search history |
US5785828A (en) | 1994-12-13 | 1998-07-28 | Ricoh Company, Ltd. | Sputtering target for producing optical recording medium |
US5831276A (en) | 1995-06-07 | 1998-11-03 | Micron Technology, Inc. | Three-dimensional container diode for use with multi-state material in a non-volatile memory cell |
US6420725B1 (en) | 1995-06-07 | 2002-07-16 | Micron Technology, Inc. | Method and apparatus for forming an integrated circuit electrode having a reduced contact area |
US5869843A (en) | 1995-06-07 | 1999-02-09 | Micron Technology, Inc. | Memory array having a multi-state element and method for forming such array or cells thereof |
US5879955A (en) | 1995-06-07 | 1999-03-09 | Micron Technology, Inc. | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
US5789758A (en) | 1995-06-07 | 1998-08-04 | Micron Technology, Inc. | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
US5751012A (en) | 1995-06-07 | 1998-05-12 | Micron Technology, Inc. | Polysilicon pillar diode for use in a non-volatile memory cell |
US5837564A (en) | 1995-11-01 | 1998-11-17 | Micron Technology, Inc. | Method for optimal crystallization to obtain high electrical performance from chalcogenides |
KR0182866B1 (ko) | 1995-12-27 | 1999-04-15 | 김주용 | 플래쉬 메모리 장치 |
US5687112A (en) | 1996-04-19 | 1997-11-11 | Energy Conversion Devices, Inc. | Multibit single cell memory element having tapered contact |
US6025220A (en) | 1996-06-18 | 2000-02-15 | Micron Technology, Inc. | Method of forming a polysilicon diode and devices incorporating such diode |
US5866928A (en) | 1996-07-16 | 1999-02-02 | Micron Technology, Inc. | Single digit line with cell contact interconnect |
US5814527A (en) | 1996-07-22 | 1998-09-29 | Micron Technology, Inc. | Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories |
US6337266B1 (en) * | 1996-07-22 | 2002-01-08 | Micron Technology, Inc. | Small electrode for chalcogenide memories |
US5789277A (en) | 1996-07-22 | 1998-08-04 | Micron Technology, Inc. | Method of making chalogenide memory device |
US5985698A (en) | 1996-07-22 | 1999-11-16 | Micron Technology, Inc. | Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell |
US5998244A (en) | 1996-08-22 | 1999-12-07 | Micron Technology, Inc. | Memory cell incorporating a chalcogenide element and method of making same |
US5688713A (en) | 1996-08-26 | 1997-11-18 | Vanguard International Semiconductor Corporation | Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers |
US6147395A (en) | 1996-10-02 | 2000-11-14 | Micron Technology, Inc. | Method for fabricating a small area of contact between electrodes |
US6087674A (en) | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US5716883A (en) | 1996-11-06 | 1998-02-10 | Vanguard International Semiconductor Corporation | Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns |
US6015977A (en) | 1997-01-28 | 2000-01-18 | Micron Technology, Inc. | Integrated circuit memory cell having a small active area and method of forming same |
US5952671A (en) | 1997-05-09 | 1999-09-14 | Micron Technology, Inc. | Small electrode for a chalcogenide switching device and method for fabricating same |
US6031287A (en) | 1997-06-18 | 2000-02-29 | Micron Technology, Inc. | Contact structure and memory element incorporating the same |
US5933365A (en) | 1997-06-19 | 1999-08-03 | Energy Conversion Devices, Inc. | Memory element with energy control mechanism |
US5902704A (en) | 1997-07-02 | 1999-05-11 | Lsi Logic Corporation | Process for forming photoresist mask over integrated circuit structures with critical dimension control |
US6768165B1 (en) | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US7023009B2 (en) | 1997-10-01 | 2006-04-04 | Ovonyx, Inc. | Electrically programmable memory element with improved contacts |
US6969866B1 (en) | 1997-10-01 | 2005-11-29 | Ovonyx, Inc. | Electrically programmable memory element with improved contacts |
US6617192B1 (en) | 1997-10-01 | 2003-09-09 | Ovonyx, Inc. | Electrically programmable memory element with multi-regioned contact |
US6121164A (en) * | 1997-10-24 | 2000-09-19 | Applied Materials, Inc. | Method for forming low compressive stress fluorinated ozone/TEOS oxide film |
FR2774209B1 (fr) | 1998-01-23 | 2001-09-14 | St Microelectronics Sa | Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant |
US6043527A (en) * | 1998-04-14 | 2000-03-28 | Micron Technology, Inc. | Circuits and methods for a memory cell with a trench plate trench capacitor and a vertical bipolar read device |
US6087269A (en) | 1998-04-20 | 2000-07-11 | Advanced Micro Devices, Inc. | Method of making an interconnect using a tungsten hard mask |
US6372651B1 (en) | 1998-07-17 | 2002-04-16 | Advanced Micro Devices, Inc. | Method for trimming a photoresist pattern line for memory gate etching |
US6141260A (en) | 1998-08-27 | 2000-10-31 | Micron Technology, Inc. | Single electron resistor memory device and method for use thereof |
US6351406B1 (en) | 1998-11-16 | 2002-02-26 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6034882A (en) | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US7157314B2 (en) | 1998-11-16 | 2007-01-02 | Sandisk Corporation | Vertically stacked field programmable nonvolatile memory and method of fabrication |
JP2000164830A (ja) | 1998-11-27 | 2000-06-16 | Mitsubishi Electric Corp | 半導体記憶装置の製造方法 |
US6487106B1 (en) | 1999-01-12 | 2002-11-26 | Arizona Board Of Regents | Programmable microelectronic devices and method of forming and programming same |
US6291137B1 (en) | 1999-01-20 | 2001-09-18 | Advanced Micro Devices, Inc. | Sidewall formation for sidewall patterning of sub 100 nm structures |
US6245669B1 (en) | 1999-02-05 | 2001-06-12 | Taiwan Semiconductor Manufacturing Company | High selectivity Si-rich SiON etch-stop layer |
US6750079B2 (en) | 1999-03-25 | 2004-06-15 | Ovonyx, Inc. | Method for making programmable resistance memory element |
AU3769900A (en) | 1999-03-25 | 2000-10-09 | Energy Conversion Devices Inc. | Electrically programmable memory element with improved contacts |
US6943365B2 (en) | 1999-03-25 | 2005-09-13 | Ovonyx, Inc. | Electrically programmable memory element with reduced area of contact and method for making same |
US6177317B1 (en) | 1999-04-14 | 2001-01-23 | Macronix International Co., Ltd. | Method of making nonvolatile memory devices having reduced resistance diffusion regions |
US6075719A (en) | 1999-06-22 | 2000-06-13 | Energy Conversion Devices, Inc. | Method of programming phase-change memory element |
US6077674A (en) | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
US6326307B1 (en) | 1999-11-15 | 2001-12-04 | Appllied Materials, Inc. | Plasma pretreatment of photoresist in an oxide etch process |
US6314014B1 (en) | 1999-12-16 | 2001-11-06 | Ovonyx, Inc. | Programmable resistance memory arrays with reference cells |
US6576546B2 (en) | 1999-12-22 | 2003-06-10 | Texas Instruments Incorporated | Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications |
TW586154B (en) | 2001-01-05 | 2004-05-01 | Macronix Int Co Ltd | Planarization method for semiconductor device |
US6420216B1 (en) | 2000-03-14 | 2002-07-16 | International Business Machines Corporation | Fuse processing using dielectric planarization pillars |
US6444557B1 (en) | 2000-03-14 | 2002-09-03 | International Business Machines Corporation | Method of forming a damascene structure using a sacrificial conductive layer |
US6888750B2 (en) | 2000-04-28 | 2005-05-03 | Matrix Semiconductor, Inc. | Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication |
US6420215B1 (en) | 2000-04-28 | 2002-07-16 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6501111B1 (en) | 2000-06-30 | 2002-12-31 | Intel Corporation | Three-dimensional (3D) programmable device |
US6440837B1 (en) | 2000-07-14 | 2002-08-27 | Micron Technology, Inc. | Method of forming a contact structure in a semiconductor device |
US6563156B2 (en) | 2001-03-15 | 2003-05-13 | Micron Technology, Inc. | Memory elements and methods for making same |
US6512263B1 (en) | 2000-09-22 | 2003-01-28 | Sandisk Corporation | Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming |
US6429064B1 (en) | 2000-09-29 | 2002-08-06 | Intel Corporation | Reduced contact area of sidewall conductor |
US6555860B2 (en) | 2000-09-29 | 2003-04-29 | Intel Corporation | Compositionally modified resistive electrode |
US6567293B1 (en) | 2000-09-29 | 2003-05-20 | Ovonyx, Inc. | Single level metal memory cell using chalcogenide cladding |
US6339544B1 (en) | 2000-09-29 | 2002-01-15 | Intel Corporation | Method to enhance performance of thermal resistor device |
KR100382729B1 (ko) * | 2000-12-09 | 2003-05-09 | 삼성전자주식회사 | 반도체 소자의 금속 컨택 구조체 및 그 형성방법 |
US6569705B2 (en) | 2000-12-21 | 2003-05-27 | Intel Corporation | Metal structure for a phase-change memory device |
US6627530B2 (en) | 2000-12-22 | 2003-09-30 | Matrix Semiconductor, Inc. | Patterning three dimensional structures |
US6271090B1 (en) | 2000-12-22 | 2001-08-07 | Macronix International Co., Ltd. | Method for manufacturing flash memory device with dual floating gates and two bits per cell |
TW490675B (en) | 2000-12-22 | 2002-06-11 | Macronix Int Co Ltd | Control method of multi-stated NROM |
US6534781B2 (en) | 2000-12-26 | 2003-03-18 | Ovonyx, Inc. | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
JP4056392B2 (ja) | 2001-01-30 | 2008-03-05 | 株式会社ルネサステクノロジ | 半導体集積回路装置 |
KR100400037B1 (ko) * | 2001-02-22 | 2003-09-29 | 삼성전자주식회사 | 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법 |
US6487114B2 (en) | 2001-02-28 | 2002-11-26 | Macronix International Co., Ltd. | Method of reading two-bit memories of NROM cell |
US6596589B2 (en) | 2001-04-30 | 2003-07-22 | Vanguard International Semiconductor Corporation | Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer |
US6730928B2 (en) | 2001-05-09 | 2004-05-04 | Science Applications International Corporation | Phase change switches and circuits coupling to electromagnetic waves containing phase change switches |
US6514788B2 (en) | 2001-05-29 | 2003-02-04 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing contacts for a Chalcogenide memory device |
DE10128482A1 (de) * | 2001-06-12 | 2003-01-02 | Infineon Technologies Ag | Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung |
US6613604B2 (en) | 2001-08-02 | 2003-09-02 | Ovonyx, Inc. | Method for making small pore for use in programmable resistance memory element |
US6774387B2 (en) | 2001-06-26 | 2004-08-10 | Ovonyx, Inc. | Programmable resistance memory element |
US6589714B2 (en) | 2001-06-26 | 2003-07-08 | Ovonyx, Inc. | Method for making programmable resistance memory element using silylated photoresist |
US6511867B2 (en) | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Utilizing atomic layer deposition for programmable device |
US6673700B2 (en) | 2001-06-30 | 2004-01-06 | Ovonyx, Inc. | Reduced area intersection between electrode and programming element |
US6605527B2 (en) | 2001-06-30 | 2003-08-12 | Intel Corporation | Reduced area intersection between electrode and programming element |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US6737312B2 (en) | 2001-08-27 | 2004-05-18 | Micron Technology, Inc. | Method of fabricating dual PCRAM cells sharing a common electrode |
US6709958B2 (en) | 2001-08-30 | 2004-03-23 | Micron Technology, Inc. | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
US6507061B1 (en) | 2001-08-31 | 2003-01-14 | Intel Corporation | Multiple layer phase-change memory |
US6586761B2 (en) | 2001-09-07 | 2003-07-01 | Intel Corporation | Phase change material memory device |
US6861267B2 (en) | 2001-09-17 | 2005-03-01 | Intel Corporation | Reducing shunts in memories with phase-change material |
US7045383B2 (en) | 2001-09-19 | 2006-05-16 | BAE Systems Information and Ovonyx, Inc | Method for making tapered opening for programmable resistance memory element |
US6800563B2 (en) | 2001-10-11 | 2004-10-05 | Ovonyx, Inc. | Forming tapered lower electrode phase-change memories |
US6566700B2 (en) | 2001-10-11 | 2003-05-20 | Ovonyx, Inc. | Carbon-containing interfacial layer for phase-change memory |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6545903B1 (en) | 2001-12-17 | 2003-04-08 | Texas Instruments Incorporated | Self-aligned resistive plugs for forming memory cell with phase change material |
US6512241B1 (en) | 2001-12-31 | 2003-01-28 | Intel Corporation | Phase change material memory device |
US6867638B2 (en) | 2002-01-10 | 2005-03-15 | Silicon Storage Technology, Inc. | High voltage generation and regulation system for digital multilevel nonvolatile memory |
JP3948292B2 (ja) | 2002-02-01 | 2007-07-25 | 株式会社日立製作所 | 半導体記憶装置及びその製造方法 |
US6972430B2 (en) | 2002-02-20 | 2005-12-06 | Stmicroelectronics S.R.L. | Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof |
US7151273B2 (en) | 2002-02-20 | 2006-12-19 | Micron Technology, Inc. | Silver-selenide/chalcogenide glass stack for resistance variable memory |
US7122281B2 (en) | 2002-02-26 | 2006-10-17 | Synopsys, Inc. | Critical dimension control using full phase and trim masks |
JP3796457B2 (ja) | 2002-02-28 | 2006-07-12 | 富士通株式会社 | 不揮発性半導体記憶装置 |
CN100514695C (zh) | 2002-03-15 | 2009-07-15 | 阿克松技术公司 | 微电子可编程构件 |
US6579760B1 (en) * | 2002-03-28 | 2003-06-17 | Macronix International Co., Ltd. | Self-aligned, programmable phase change memory |
CN1639868A (zh) | 2002-04-09 | 2005-07-13 | 松下电器产业株式会社 | 非易失性存储器及其制造方法 |
US6864500B2 (en) | 2002-04-10 | 2005-03-08 | Micron Technology, Inc. | Programmable conductor memory cell structure |
US6605821B1 (en) | 2002-05-10 | 2003-08-12 | Hewlett-Packard Development Company, L.P. | Phase change material electronic memory structure and method for forming |
US6864503B2 (en) | 2002-08-09 | 2005-03-08 | Macronix International Co., Ltd. | Spacer chalcogenide memory method and device |
US6850432B2 (en) | 2002-08-20 | 2005-02-01 | Macronix International Co., Ltd. | Laser programmable electrically readable phase-change memory method and device |
JP4190238B2 (ja) * | 2002-09-13 | 2008-12-03 | 株式会社ルネサステクノロジ | 不揮発性半導体記憶装置 |
EP1554763B1 (en) | 2002-10-11 | 2006-08-02 | Koninklijke Philips Electronics N.V. | Electric device comprising phase change material |
US6992932B2 (en) | 2002-10-29 | 2006-01-31 | Saifun Semiconductors Ltd | Method circuit and system for read error detection in a non-volatile memory array |
US6940744B2 (en) | 2002-10-31 | 2005-09-06 | Unity Semiconductor Corporation | Adaptive programming technique for a re-writable conductive memory device |
JP4928045B2 (ja) | 2002-10-31 | 2012-05-09 | 大日本印刷株式会社 | 相変化型メモリ素子およびその製造方法 |
US6791102B2 (en) | 2002-12-13 | 2004-09-14 | Intel Corporation | Phase change memory |
US7589343B2 (en) * | 2002-12-13 | 2009-09-15 | Intel Corporation | Memory and access device and method therefor |
US6744088B1 (en) | 2002-12-13 | 2004-06-01 | Intel Corporation | Phase change memory device on a planar composite layer |
US6815266B2 (en) | 2002-12-30 | 2004-11-09 | Bae Systems Information And Electronic Systems Integration, Inc. | Method for manufacturing sidewall contacts for a chalcogenide memory device |
EP1439583B1 (en) | 2003-01-15 | 2013-04-10 | STMicroelectronics Srl | Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof |
KR100476690B1 (ko) | 2003-01-17 | 2005-03-18 | 삼성전자주식회사 | 반도체 장치 및 그 제조방법 |
DE602004020186D1 (de) | 2003-01-31 | 2009-05-07 | Nxp Bv | Mram-architektur für niedrige stromaufnahme und hohe selektivität |
US7115927B2 (en) * | 2003-02-24 | 2006-10-03 | Samsung Electronics Co., Ltd. | Phase changeable memory devices |
KR100486306B1 (ko) | 2003-02-24 | 2005-04-29 | 삼성전자주식회사 | 셀프 히터 구조를 가지는 상변화 메모리 소자 |
US7323734B2 (en) | 2003-02-25 | 2008-01-29 | Samsung Electronics Co., Ltd. | Phase changeable memory cells |
US6936544B2 (en) | 2003-03-11 | 2005-08-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of removing metal etching residues following a metal etchback process to improve a CMP process |
US7400522B2 (en) | 2003-03-18 | 2008-07-15 | Kabushiki Kaisha Toshiba | Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation |
KR100504698B1 (ko) | 2003-04-02 | 2005-08-02 | 삼성전자주식회사 | 상변화 기억 소자 및 그 형성 방법 |
KR100979710B1 (ko) | 2003-05-23 | 2010-09-02 | 삼성전자주식회사 | 반도체 메모리 소자 및 제조방법 |
US20060006472A1 (en) | 2003-06-03 | 2006-01-12 | Hai Jiang | Phase change memory with extra-small resistors |
US7067865B2 (en) * | 2003-06-06 | 2006-06-27 | Macronix International Co., Ltd. | High density chalcogenide memory cells |
US6838692B1 (en) * | 2003-06-23 | 2005-01-04 | Macronix International Co., Ltd. | Chalcogenide memory device with multiple bits per cell |
US7132350B2 (en) | 2003-07-21 | 2006-11-07 | Macronix International Co., Ltd. | Method for manufacturing a programmable eraseless memory |
US20050018526A1 (en) * | 2003-07-21 | 2005-01-27 | Heon Lee | Phase-change memory device and manufacturing method thereof |
KR100615586B1 (ko) | 2003-07-23 | 2006-08-25 | 삼성전자주식회사 | 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법 |
US7893419B2 (en) * | 2003-08-04 | 2011-02-22 | Intel Corporation | Processing phase change material to improve programming speed |
DE102004039977B4 (de) | 2003-08-13 | 2008-09-11 | Samsung Electronics Co., Ltd., Suwon | Programmierverfahren und Treiberschaltung für eine Phasenwechselspeicherzelle |
US6927410B2 (en) | 2003-09-04 | 2005-08-09 | Silicon Storage Technology, Inc. | Memory device with discrete layers of phase change memory material |
US6815704B1 (en) | 2003-09-04 | 2004-11-09 | Silicon Storage Technology, Inc. | Phase change memory device employing thermally insulating voids |
KR100505709B1 (ko) * | 2003-09-08 | 2005-08-03 | 삼성전자주식회사 | 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치 |
US20050062087A1 (en) * | 2003-09-19 | 2005-03-24 | Yi-Chou Chen | Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same |
DE10345455A1 (de) | 2003-09-30 | 2005-05-04 | Infineon Technologies Ag | Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung |
US6910907B2 (en) | 2003-11-18 | 2005-06-28 | Agere Systems Inc. | Contact for use in an integrated circuit and a method of manufacture therefor |
US7485891B2 (en) | 2003-11-20 | 2009-02-03 | International Business Machines Corporation | Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory |
KR100558548B1 (ko) | 2003-11-27 | 2006-03-10 | 삼성전자주식회사 | 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법 |
US6937507B2 (en) | 2003-12-05 | 2005-08-30 | Silicon Storage Technology, Inc. | Memory device and method of operating same |
US7928420B2 (en) * | 2003-12-10 | 2011-04-19 | International Business Machines Corporation | Phase change tip storage cell |
US7291556B2 (en) | 2003-12-12 | 2007-11-06 | Samsung Electronics Co., Ltd. | Method for forming small features in microelectronic devices using sacrificial layers |
KR100569549B1 (ko) | 2003-12-13 | 2006-04-10 | 주식회사 하이닉스반도체 | 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치 |
KR100564602B1 (ko) * | 2003-12-30 | 2006-03-29 | 삼성전자주식회사 | 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로 |
US7038230B2 (en) * | 2004-01-06 | 2006-05-02 | Macronix Internation Co., Ltd. | Horizontal chalcogenide element defined by a pad for use in solid-state memories |
JP4124743B2 (ja) | 2004-01-21 | 2008-07-23 | 株式会社ルネサステクノロジ | 相変化メモリ |
KR100564608B1 (ko) | 2004-01-29 | 2006-03-28 | 삼성전자주식회사 | 상변화 메모리 소자 |
US6936840B2 (en) | 2004-01-30 | 2005-08-30 | International Business Machines Corporation | Phase-change memory cell and method of fabricating the phase-change memory cell |
US7858980B2 (en) | 2004-03-01 | 2010-12-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Reduced active area in a phase change memory structure |
KR100574975B1 (ko) | 2004-03-05 | 2006-05-02 | 삼성전자주식회사 | 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로 |
JP4529493B2 (ja) | 2004-03-12 | 2010-08-25 | 株式会社日立製作所 | 半導体装置 |
KR100598100B1 (ko) | 2004-03-19 | 2006-07-07 | 삼성전자주식회사 | 상변환 기억 소자의 제조방법 |
DE102004014487A1 (de) | 2004-03-24 | 2005-11-17 | Infineon Technologies Ag | Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material |
KR100532509B1 (ko) | 2004-03-26 | 2005-11-30 | 삼성전자주식회사 | SiGe를 이용한 트렌치 커패시터 및 그 형성방법 |
US7158411B2 (en) | 2004-04-01 | 2007-01-02 | Macronix International Co., Ltd. | Integrated code and data flash memory |
US7482616B2 (en) | 2004-05-27 | 2009-01-27 | Samsung Electronics Co., Ltd. | Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same |
KR100647218B1 (ko) * | 2004-06-04 | 2006-11-23 | 비욘드마이크로 주식회사 | 고집적 상변화 메모리 셀 어레이 및 이를 포함하는 상변화메모리 소자 |
US6977181B1 (en) | 2004-06-17 | 2005-12-20 | Infincon Technologies Ag | MTJ stack with crystallization inhibiting layer |
US7359231B2 (en) | 2004-06-30 | 2008-04-15 | Intel Corporation | Providing current for phase change memories |
KR100657897B1 (ko) | 2004-08-21 | 2006-12-14 | 삼성전자주식회사 | 전압 제어층을 포함하는 메모리 소자 |
US7365385B2 (en) | 2004-08-30 | 2008-04-29 | Micron Technology, Inc. | DRAM layout with vertical FETs and method of formation |
KR100610014B1 (ko) | 2004-09-06 | 2006-08-09 | 삼성전자주식회사 | 리키지 전류 보상 가능한 반도체 메모리 장치 |
US7443062B2 (en) | 2004-09-30 | 2008-10-28 | Reliance Electric Technologies Llc | Motor rotor cooling with rotation heat pipes |
TWI277207B (en) | 2004-10-08 | 2007-03-21 | Ind Tech Res Inst | Multilevel phase-change memory, operating method and manufacture method thereof |
KR100626388B1 (ko) | 2004-10-19 | 2006-09-20 | 삼성전자주식회사 | 상변환 메모리 소자 및 그 형성 방법 |
JP2006127583A (ja) | 2004-10-26 | 2006-05-18 | Elpida Memory Inc | 不揮発性半導体記憶装置及び相変化メモリ |
DE102004052611A1 (de) | 2004-10-29 | 2006-05-04 | Infineon Technologies Ag | Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle |
US7364935B2 (en) | 2004-10-29 | 2008-04-29 | Macronix International Co., Ltd. | Common word line edge contact phase-change memory |
US7238959B2 (en) | 2004-11-01 | 2007-07-03 | Silicon Storage Technology, Inc. | Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same |
US20060108667A1 (en) | 2004-11-22 | 2006-05-25 | Macronix International Co., Ltd. | Method for manufacturing a small pin on integrated circuits or other devices |
US7202493B2 (en) | 2004-11-30 | 2007-04-10 | Macronix International Co., Inc. | Chalcogenide memory having a small active region |
JP2006156886A (ja) | 2004-12-01 | 2006-06-15 | Renesas Technology Corp | 半導体集積回路装置およびその製造方法 |
KR100827653B1 (ko) | 2004-12-06 | 2008-05-07 | 삼성전자주식회사 | 상변화 기억 셀들 및 그 제조방법들 |
US7220983B2 (en) | 2004-12-09 | 2007-05-22 | Macronix International Co., Ltd. | Self-aligned small contact phase-change memory method and device |
TWI260764B (en) | 2004-12-10 | 2006-08-21 | Macronix Int Co Ltd | Non-volatile memory cell and operating method thereof |
US20060131555A1 (en) | 2004-12-22 | 2006-06-22 | Micron Technology, Inc. | Resistance variable devices with controllable channels |
US20060138467A1 (en) | 2004-12-29 | 2006-06-29 | Hsiang-Lan Lung | Method of forming a small contact in phase-change memory and a memory cell produced by the method |
JP4646634B2 (ja) | 2005-01-05 | 2011-03-09 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US7419771B2 (en) | 2005-01-11 | 2008-09-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming a finely patterned resist |
US20060172067A1 (en) | 2005-01-28 | 2006-08-03 | Energy Conversion Devices, Inc | Chemical vapor deposition of chalcogenide materials |
US7214958B2 (en) | 2005-02-10 | 2007-05-08 | Infineon Technologies Ag | Phase change memory cell with high read margin at low power operation |
US7099180B1 (en) | 2005-02-15 | 2006-08-29 | Intel Corporation | Phase change memory bits reset through a series of pulses of increasing amplitude |
US7229883B2 (en) | 2005-02-23 | 2007-06-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Phase change memory device and method of manufacture thereof |
KR100663358B1 (ko) | 2005-02-24 | 2007-01-02 | 삼성전자주식회사 | 셀 다이오드들을 채택하는 상변이 기억소자들 및 그 제조방법들 |
JP2006244561A (ja) | 2005-03-01 | 2006-09-14 | Renesas Technology Corp | 半導体装置 |
US7154774B2 (en) | 2005-03-30 | 2006-12-26 | Ovonyx, Inc. | Detecting switching of access elements of phase change memory cells |
US7488967B2 (en) | 2005-04-06 | 2009-02-10 | International Business Machines Corporation | Structure for confining the switching current in phase memory (PCM) cells |
US7166533B2 (en) | 2005-04-08 | 2007-01-23 | Infineon Technologies, Ag | Phase change memory cell defined by a pattern shrink material process |
KR100675279B1 (ko) | 2005-04-20 | 2007-01-26 | 삼성전자주식회사 | 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들 |
US7408240B2 (en) | 2005-05-02 | 2008-08-05 | Infineon Technologies Ag | Memory device |
KR100682946B1 (ko) | 2005-05-31 | 2007-02-15 | 삼성전자주식회사 | 상전이 램 및 그 동작 방법 |
KR100668846B1 (ko) | 2005-06-10 | 2007-01-16 | 주식회사 하이닉스반도체 | 상변환 기억 소자의 제조방법 |
US7388273B2 (en) | 2005-06-14 | 2008-06-17 | International Business Machines Corporation | Reprogrammable fuse structure and method |
US7514367B2 (en) | 2005-06-17 | 2009-04-07 | Macronix International Co., Ltd. | Method for manufacturing a narrow structure on an integrated circuit |
US7321130B2 (en) | 2005-06-17 | 2008-01-22 | Macronix International Co., Ltd. | Thin film fuse phase change RAM and manufacturing method |
US8237140B2 (en) | 2005-06-17 | 2012-08-07 | Macronix International Co., Ltd. | Self-aligned, embedded phase change RAM |
US7238994B2 (en) | 2005-06-17 | 2007-07-03 | Macronix International Co., Ltd. | Thin film plate phase change ram circuit and manufacturing method |
US7598512B2 (en) | 2005-06-17 | 2009-10-06 | Macronix International Co., Ltd. | Thin film fuse phase change cell with thermal isolation layer and manufacturing method |
US7534647B2 (en) | 2005-06-17 | 2009-05-19 | Macronix International Co., Ltd. | Damascene phase change RAM and manufacturing method |
US7514288B2 (en) | 2005-06-17 | 2009-04-07 | Macronix International Co., Ltd. | Manufacturing methods for thin film fuse phase change ram |
US7696503B2 (en) | 2005-06-17 | 2010-04-13 | Macronix International Co., Ltd. | Multi-level memory cell having phase change element and asymmetrical thermal boundary |
US7651906B2 (en) * | 2005-06-20 | 2010-01-26 | Samsung Electronics Co., Ltd. | Integrated circuit devices having a stress buffer spacer and methods of fabricating the same |
KR100689831B1 (ko) * | 2005-06-20 | 2007-03-08 | 삼성전자주식회사 | 서로 자기정렬된 셀 다이오드 및 하부전극을 갖는 상변이기억 셀들 및 그 제조방법들 |
US20060289848A1 (en) | 2005-06-28 | 2006-12-28 | Dennison Charles H | Reducing oxidation of phase change memory electrodes |
US20060289847A1 (en) | 2005-06-28 | 2006-12-28 | Richard Dodge | Reducing the time to program a phase change memory to the set state |
TWI290369B (en) | 2005-07-08 | 2007-11-21 | Ind Tech Res Inst | Phase change memory with adjustable resistance ratio and fabricating method thereof |
US7309630B2 (en) | 2005-07-08 | 2007-12-18 | Nanochip, Inc. | Method for forming patterned media for a high density data storage device |
US7345907B2 (en) | 2005-07-11 | 2008-03-18 | Sandisk 3D Llc | Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements |
US20070037101A1 (en) | 2005-08-15 | 2007-02-15 | Fujitsu Limited | Manufacture method for micro structure |
TWI273703B (en) | 2005-08-19 | 2007-02-11 | Ind Tech Res Inst | A manufacture method and structure for improving the characteristics of phase change memory |
KR100655443B1 (ko) | 2005-09-05 | 2006-12-08 | 삼성전자주식회사 | 상변화 메모리 장치 및 그 동작 방법 |
US7615770B2 (en) | 2005-10-27 | 2009-11-10 | Infineon Technologies Ag | Integrated circuit having an insulated memory |
US7417245B2 (en) | 2005-11-02 | 2008-08-26 | Infineon Technologies Ag | Phase change memory having multilayer thermal insulation |
KR100695164B1 (ko) | 2005-11-09 | 2007-03-14 | 삼성전자주식회사 | 스위칭 소자로서 트랜지스터 및 다이오드를 포함하는하이브리드 타입의 비휘발성 메모리 소자 |
US7397060B2 (en) | 2005-11-14 | 2008-07-08 | Macronix International Co., Ltd. | Pipe shaped phase change memory |
US20070111429A1 (en) | 2005-11-14 | 2007-05-17 | Macronix International Co., Ltd. | Method of manufacturing a pipe shaped phase change memory |
US7635855B2 (en) | 2005-11-15 | 2009-12-22 | Macronix International Co., Ltd. | I-shaped phase change memory cell |
US7450411B2 (en) | 2005-11-15 | 2008-11-11 | Macronix International Co., Ltd. | Phase change memory device and manufacturing method |
US7394088B2 (en) | 2005-11-15 | 2008-07-01 | Macronix International Co., Ltd. | Thermally contained/insulated phase change memory device and method (combined) |
US7786460B2 (en) | 2005-11-15 | 2010-08-31 | Macronix International Co., Ltd. | Phase change memory device and manufacturing method |
US7414258B2 (en) | 2005-11-16 | 2008-08-19 | Macronix International Co., Ltd. | Spacer electrode small pin phase change memory RAM and manufacturing method |
US7479649B2 (en) | 2005-11-21 | 2009-01-20 | Macronix International Co., Ltd. | Vacuum jacketed electrode for phase change memory element |
US7449710B2 (en) | 2005-11-21 | 2008-11-11 | Macronix International Co., Ltd. | Vacuum jacket for phase change memory element |
US7829876B2 (en) | 2005-11-21 | 2010-11-09 | Macronix International Co., Ltd. | Vacuum cell thermal isolation for a phase change memory device |
US7507986B2 (en) | 2005-11-21 | 2009-03-24 | Macronix International Co., Ltd. | Thermal isolation for an active-sidewall phase change memory cell |
US7599217B2 (en) | 2005-11-22 | 2009-10-06 | Macronix International Co., Ltd. | Memory cell device and manufacturing method |
US7688619B2 (en) | 2005-11-28 | 2010-03-30 | Macronix International Co., Ltd. | Phase change memory cell and manufacturing method |
US7459717B2 (en) | 2005-11-28 | 2008-12-02 | Macronix International Co., Ltd. | Phase change memory cell and manufacturing method |
US7233054B1 (en) | 2005-11-29 | 2007-06-19 | Korea Institute Of Science And Technology | Phase change material and non-volatile memory device using the same |
US7605079B2 (en) | 2005-12-05 | 2009-10-20 | Macronix International Co., Ltd. | Manufacturing method for phase change RAM with electrode layer process |
US7642539B2 (en) | 2005-12-13 | 2010-01-05 | Macronix International Co., Ltd. | Thin film fuse phase change cell with thermal isolation pad and manufacturing method |
US7531825B2 (en) | 2005-12-27 | 2009-05-12 | Macronix International Co., Ltd. | Method for forming self-aligned thermal isolation cell for a variable resistance memory array |
US8062833B2 (en) | 2005-12-30 | 2011-11-22 | Macronix International Co., Ltd. | Chalcogenide layer etching method |
US20070156949A1 (en) | 2005-12-30 | 2007-07-05 | Rudelic John C | Method and apparatus for single chip system boot |
US7292466B2 (en) | 2006-01-03 | 2007-11-06 | Infineon Technologies Ag | Integrated circuit having a resistive memory |
KR100763908B1 (ko) | 2006-01-05 | 2007-10-05 | 삼성전자주식회사 | 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법 |
US7595218B2 (en) | 2006-01-09 | 2009-09-29 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US20070158632A1 (en) | 2006-01-09 | 2007-07-12 | Macronix International Co., Ltd. | Method for Fabricating a Pillar-Shaped Phase Change Memory Element |
US7741636B2 (en) | 2006-01-09 | 2010-06-22 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US7560337B2 (en) | 2006-01-09 | 2009-07-14 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US7825396B2 (en) | 2006-01-11 | 2010-11-02 | Macronix International Co., Ltd. | Self-align planerized bottom electrode phase change memory and manufacturing method |
US7351648B2 (en) | 2006-01-19 | 2008-04-01 | International Business Machines Corporation | Methods for forming uniform lithographic features |
US7432206B2 (en) | 2006-01-24 | 2008-10-07 | Macronix International Co., Ltd. | Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram |
KR100706806B1 (ko) | 2006-01-27 | 2007-04-12 | 삼성전자주식회사 | 자기 메모리 소자 및 그 제조 방법 |
US7456421B2 (en) | 2006-01-30 | 2008-11-25 | Macronix International Co., Ltd. | Vertical side wall active pin structures in a phase change memory and manufacturing methods |
US7956358B2 (en) | 2006-02-07 | 2011-06-07 | Macronix International Co., Ltd. | I-shaped phase change memory cell with thermal isolation |
US7426134B2 (en) | 2006-02-24 | 2008-09-16 | Infineon Technologies North America | Sense circuit for resistive memory |
US7910907B2 (en) | 2006-03-15 | 2011-03-22 | Macronix International Co., Ltd. | Manufacturing method for pipe-shaped electrode phase change memory |
US20070235811A1 (en) | 2006-04-07 | 2007-10-11 | International Business Machines Corporation | Simultaneous conditioning of a plurality of memory cells through series resistors |
US7928421B2 (en) | 2006-04-21 | 2011-04-19 | Macronix International Co., Ltd. | Phase change memory cell with vacuum spacer |
US20070249090A1 (en) | 2006-04-24 | 2007-10-25 | Philipp Jan B | Phase-change memory cell adapted to prevent over-etching or under-etching |
US7514705B2 (en) | 2006-04-25 | 2009-04-07 | International Business Machines Corporation | Phase change memory cell with limited switchable volume |
US8129706B2 (en) | 2006-05-05 | 2012-03-06 | Macronix International Co., Ltd. | Structures and methods of a bistable resistive random access memory |
US7608848B2 (en) | 2006-05-09 | 2009-10-27 | Macronix International Co., Ltd. | Bridge resistance random access memory device with a singular contact structure |
US20070267618A1 (en) | 2006-05-17 | 2007-11-22 | Shoaib Zaidi | Memory device |
US7423300B2 (en) | 2006-05-24 | 2008-09-09 | Macronix International Co., Ltd. | Single-mask phase change memory element |
US7696506B2 (en) | 2006-06-27 | 2010-04-13 | Macronix International Co., Ltd. | Memory cell with memory material insulation and manufacturing method |
US7663909B2 (en) | 2006-07-10 | 2010-02-16 | Qimonda North America Corp. | Integrated circuit having a phase change memory cell including a narrow active region width |
US7785920B2 (en) | 2006-07-12 | 2010-08-31 | Macronix International Co., Ltd. | Method for making a pillar-type phase change memory element |
US7542338B2 (en) | 2006-07-31 | 2009-06-02 | Sandisk 3D Llc | Method for reading a multi-level passive element memory cell array |
US7684225B2 (en) | 2006-10-13 | 2010-03-23 | Ovonyx, Inc. | Sequential and video access for non-volatile memory arrays |
US20080225489A1 (en) | 2006-10-23 | 2008-09-18 | Teledyne Licensing, Llc | Heat spreader with high heat flux and high thermal conductivity |
US20080101110A1 (en) | 2006-10-25 | 2008-05-01 | Thomas Happ | Combined read/write circuit for memory |
US7476587B2 (en) | 2006-12-06 | 2009-01-13 | Macronix International Co., Ltd. | Method for making a self-converged memory material element for memory cell |
US20080137400A1 (en) | 2006-12-06 | 2008-06-12 | Macronix International Co., Ltd. | Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same |
US7473576B2 (en) | 2006-12-06 | 2009-01-06 | Macronix International Co., Ltd. | Method for making a self-converged void and bottom electrode for memory cell |
US7682868B2 (en) | 2006-12-06 | 2010-03-23 | Macronix International Co., Ltd. | Method for making a keyhole opening during the manufacture of a memory cell |
US20080165569A1 (en) | 2007-01-04 | 2008-07-10 | Chieh-Fang Chen | Resistance Limited Phase Change Memory Material |
US7515461B2 (en) | 2007-01-05 | 2009-04-07 | Macronix International Co., Ltd. | Current compliant sensing architecture for multilevel phase change memory |
US20080164453A1 (en) | 2007-01-07 | 2008-07-10 | Breitwisch Matthew J | Uniform critical dimension size pore for pcram application |
US7440315B2 (en) | 2007-01-09 | 2008-10-21 | Macronix International Co., Ltd. | Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell |
US7456460B2 (en) | 2007-01-29 | 2008-11-25 | International Business Machines Corporation | Phase change memory element and method of making the same |
US7535756B2 (en) | 2007-01-31 | 2009-05-19 | Macronix International Co., Ltd. | Method to tighten set distribution for PCRAM |
US7701759B2 (en) | 2007-02-05 | 2010-04-20 | Macronix International Co., Ltd. | Memory cell device and programming methods |
US7463512B2 (en) | 2007-02-08 | 2008-12-09 | Macronix International Co., Ltd. | Memory element with reduced-current phase change element |
US8138028B2 (en) | 2007-02-12 | 2012-03-20 | Macronix International Co., Ltd | Method for manufacturing a phase change memory device with pillar bottom electrode |
US8008643B2 (en) | 2007-02-21 | 2011-08-30 | Macronix International Co., Ltd. | Phase change memory cell with heater and method for fabricating the same |
US20080265234A1 (en) | 2007-04-30 | 2008-10-30 | Breitwisch Matthew J | Method of Forming Phase Change Memory Cell With Reduced Switchable Volume |
US7906368B2 (en) | 2007-06-29 | 2011-03-15 | International Business Machines Corporation | Phase change memory with tapered heater |
US7745807B2 (en) | 2007-07-11 | 2010-06-29 | International Business Machines Corporation | Current constricting phase change memory element structure |
US7755935B2 (en) | 2007-07-26 | 2010-07-13 | International Business Machines Corporation | Block erase for phase change memory |
US7961507B2 (en) * | 2008-03-11 | 2011-06-14 | Micron Technology, Inc. | Non-volatile memory with resistive access component |
KR101019986B1 (ko) * | 2008-10-10 | 2011-03-09 | 주식회사 하이닉스반도체 | 성장 방식에 의해 형성되는 콘택 구조를 절연시키는 절연막을 포함하는 상변화 메모리 소자, 이를 포함하는 반도체 소자, 및 그들의 제조방법 |
-
2009
- 2009-01-22 US US12/357,912 patent/US8933536B2/en active Active
- 2009-05-15 TW TW098116160A patent/TWI404244B/zh active
-
2010
- 2010-01-22 CN CN201010108856.2A patent/CN101840928B/zh active Active
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103579279A (zh) * | 2012-08-02 | 2014-02-12 | 旺宏电子股份有限公司 | 具有三维阵列结构的存储装置 |
CN103579279B (zh) * | 2012-08-02 | 2016-02-24 | 旺宏电子股份有限公司 | 具有三维阵列结构的存储装置 |
CN104733607A (zh) * | 2013-12-20 | 2015-06-24 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
CN104733607B (zh) * | 2013-12-20 | 2017-08-01 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
CN107104183A (zh) * | 2016-02-22 | 2017-08-29 | 三星电子株式会社 | 存储器件 |
US10263040B2 (en) | 2016-02-22 | 2019-04-16 | Samsung Electronics Co., Ltd. | Memory device and method of manufacturing the same |
CN107104183B (zh) * | 2016-02-22 | 2019-09-27 | 三星电子株式会社 | 存储器件 |
US10636843B2 (en) | 2016-02-22 | 2020-04-28 | Samsung Electronics Co., Ltd. | Memory device and method of manufacturing the same |
US11183538B2 (en) | 2016-02-22 | 2021-11-23 | Samsung Electronics Co., Ltd. | Memory device and method of manufacturing the same |
US11201192B2 (en) | 2016-02-22 | 2021-12-14 | Samsung Electronics Co., Ltd. | Memory device and method of manufacturing the same |
CN109585539A (zh) * | 2017-09-29 | 2019-04-05 | 台湾积体电路制造股份有限公司 | 双极性接面型晶体管、其形成方法以及相关的集成电路 |
CN109585539B (zh) * | 2017-09-29 | 2023-08-11 | 台湾积体电路制造股份有限公司 | 双极性接面型晶体管、其形成方法以及相关的集成电路 |
Also Published As
Publication number | Publication date |
---|---|
US8933536B2 (en) | 2015-01-13 |
CN101840928B (zh) | 2012-07-11 |
TW201029239A (en) | 2010-08-01 |
TWI404244B (zh) | 2013-08-01 |
US20100181649A1 (en) | 2010-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101840928B (zh) | 带有自对准存储元件的多晶硅柱双极晶体管 | |
CN101908553B (zh) | 一种存储器装置及其制造方法 | |
CN101894854B (zh) | 具有垂直信道存取晶体管及存储器平面的相变化存储单元 | |
CN101924062B (zh) | 一种存储器装置及用于制造一集成电路装置的方法 | |
CN102522374B (zh) | 一种具有柱状底电极相变化存储装置及其制造方法 | |
CN1967897B (zh) | 管型相变化存储器形成方法 | |
CN100440486C (zh) | 具有电极层处理的相变随机存取存储器的制造方法 | |
CN101814521B (zh) | 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法 | |
TWI497706B (zh) | 具有自動對準底電極和二極體存取裝置之蕈狀記憶胞 | |
US7534647B2 (en) | Damascene phase change RAM and manufacturing method | |
TWI387103B (zh) | 具有二極體存取裝置之完全自我對準微孔型記憶胞 | |
US8237140B2 (en) | Self-aligned, embedded phase change RAM | |
CN1819297B (zh) | 侧壁有源接脚存储器及其制造方法 | |
CN101345251B (zh) | 位于半导体衬底之上的存储单元阵列及其制造方法 | |
CN101958398B (zh) | 热保护相变随机存取存储器及其制造方法 | |
CN101958399B (zh) | 相变存储装置及其制造方法 | |
CN102290428A (zh) | 一种存储装置及其制作方法 | |
CN101877384A (zh) | 低操作电流相变存储器元件结构 | |
CN100573899C (zh) | 自我对准的嵌入式相变存储器及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |