CN101840914B - 具有功率覆盖层的双侧冷却的功率模块 - Google Patents
具有功率覆盖层的双侧冷却的功率模块 Download PDFInfo
- Publication number
- CN101840914B CN101840914B CN201010146956.4A CN201010146956A CN101840914B CN 101840914 B CN101840914 B CN 101840914B CN 201010146956 A CN201010146956 A CN 201010146956A CN 101840914 B CN101840914 B CN 101840914B
- Authority
- CN
- China
- Prior art keywords
- attached
- power
- flat surfaces
- layer
- overlay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92142—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92144—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/043—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
- H01L23/051—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L24/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
- H01L25/072—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明涉及具有功率覆盖层的双侧冷却的功率模块。一种功率模块(20)包括一个或多个半导体功率器件(22),该一个或多个半导体功率器件(22)具有结合到该器件上的功率覆盖层(POL)(24)。第一散热器组件(30)在与POL(24)相对的一侧上结合到半导体功率器件(22)上。第二散热器组件(28)与POL(24)的结合到半导体功率器件(22)上的一侧相对而结合到该POL(24)上。半导体功率器件(22)、POL(24)、第一通道散热器组件(30)和第二通道散热器组件(28)一起形成双侧冷却的功率覆盖模块。第二通道散热器组件(28)单独地经由柔顺热界面材料(26)结合到POL(24)上而无需平面化、铜焊或冶金结合。
Description
关于联邦发起的研究&开发的声明:
本发明是根据编号W911NF-04-2-0045的合同在美国政府的支持下做出的。美国政府对本发明享有某些权利。
技术领域
本发明大体而言涉及用于冷却热表面的设备,且更特定而言,涉及使用功率覆盖(power overlay)技术来以平面方式互连半导体功率器件的双侧冷却的功率模块。
背景技术
较高密度的电力电子器件的发展使得冷却功率半导体器件日益更加困难。对于能够耗散高达500W/cm2的现代硅基功率器件,存在对于改进的热管理方案的需求。当器件温度限于50K的升高时,自然和强制空气冷却机制仅可处理直至大约一(1)W/cm2的热通量。常规液体冷却板可实现大约二十(20)W/cm2的热通量。热管、冲击喷雾和液体沸腾能够有更大的热通量,但这些技术可导致制造困难和高成本。
高热通量功率器件的常规冷却中所遇到的一个额外问题是在热表面上的不均匀的温度分布。这是由于不均匀的冷却通道结构,以及在冷却流体流动通过平行于热表面的长通道时该冷却流体的温度上升而引起的。
一种用于高性能热管理的有前景的技术是微通道冷却。在20世纪80年代,其被证明为冷却硅集成电路的有效方式,且设计证明了高达1000W/cm2的热通量和低于100℃的表面温度上升。已知的微通道设计需要将衬底(微通道制造于底部铜层中)焊接到金属复合物散热器上,该金属复合物散热器包含歧管以将冷却流体分配到微通道。另外,这些已知的微通道设计采用很复杂的背侧微通道结构以及构建起来极为复杂且因此制造起来成本很高的散热器。
尽管已采用功率覆盖技术(POL)来提供双侧冷却,但这些已知的结构并未利用微通道特征来提高POL模块的热性能。另外,已知的POL技术通常需要平滑化、铜焊和/或焊接操作,以便将散热器满意地结合到POL上。
鉴于前文所述,期望的是提供一种使用功率覆盖技术的双侧冷却的功率模块,该模块采用冷却通道特征来提高POL模块的热性能,且其组装起来相对简单,并且其在构造衬底冷却通道之后的后续加工操作中不会损害冷却通道特征。如果使用POL技术的双侧冷却的功率模块可在不使用平滑化、铜焊或焊接操作的情况下实施,则将也是有利的。
发明内容
简而言之,根据一个实施例,一种功率覆盖模块包括:
至少一个半导体功率器件;
结合到该至少一个半导体功率器件上的功率覆盖层(POL);
在该至少一个半导体功率器件的与POL相对的一侧上结合到该至少一个半导体功率器件上的第一散热器;以及
与POL的结合到至少一个半导体上的一侧相对而单独地经由柔顺热界面材料(TIM)结合到POL上的第二散热器,该至少一个半导体功率器件、POL、第一散热器和第二散热器一起形成双侧冷却的功率覆盖模块。
根据另一实施例,一种功率覆盖模块包括:
至少一个半导体功率器件;
结合到至少一个半导体功率器件上的功率覆盖层;
结合到该至少一个半导体功率器件上的第一衬底组件,该第一衬底组件包括:
包括第一平坦表面和基本上平行于第一平坦表面的第二平坦表面的陶瓷层;
结合到第一平坦表面上的金属层;
结合到第二平坦表面上的通道层;以及
结合到通道层的与第二平坦表面相对的表面上的歧管层,第一衬底组件层一起被构造成单个整体式衬底;以及
单独地经由柔顺热界面材料(TIM)结合到功率覆盖层上的第二衬底组件,该第二衬底组件包括:
包括第三平坦表面和基本上平行于第三平坦表面的第四平坦表面的陶瓷层;
结合到第三平坦表面上的金属层;
结合到第四平坦表面上的通道层;以及
结合到与第四平坦表面相对的通道层的表面上的歧管层,第二衬底组件层一起被构造成单个整体式衬底。
附图说明
当参看附图来阅读下文的具体实施方式时,本发明的这些和其它特征、方面和优点将会得到更好地理解,在附图中,相似的标记在所有图中表示相似的部件,其中:
图1是示出了本领域中已知的具有功率覆盖层的双侧热交换器冷却的功率模块的侧视侧面图;
图2是示出了根据一实施例的具有功率覆盖层的双侧通道冷却的功率模块的侧视侧面图;
图3是示出了适用于与图2所示的带功率覆盖层的双侧通道冷却的功率模块一起使用的通道散热器的侧视侧面图;以及
图4是根据另一实施例的带有功率覆盖层的双侧通道冷却的功率模块的透视图。
虽然以上所标识的附图阐述了备选实施例,但是还构想了本发明的其它实施例,如在讨论中所指出的那些。在所有情况下,本公开内容以示意而非限制的方式展现了本发明的示出的实施例。可由本领域技术人员设计出落在本发明原理的范畴和精神内的许多种其它修改和实施例。
部件列表:
(10)双侧热交换器冷却的功率模块
(12)功率芯片
(14)顶侧热交换器
(16)底侧热交换器
(20)双侧通道冷却的功率模块
(22)半导体功率芯片
(24)功率覆盖层(POL)
(26)柔顺热界面材料(TIM)
(27)金属层
(28)通道散热器组件
(30)通道散热器组件
(32)衬底
(34)顶部金属层
(36)焊接结合部
(38)衬底
(40)通道层
(42)歧管层
(43)壳体入口端口
(44)壳体
(45)壳体
(46)通道
(48)壳体出口端口
(50)双侧通道冷却的功率模块
具体实施方式
图1是示出了本领域已知的使用功率覆盖技术的双侧热交换器冷却的功率模块10的侧视侧面图。使用功率覆盖技术的半导体功率模块的双侧冷却在本领域中是已知的。由于功率覆盖技术的独特平面结构,使用功率覆盖技术的模块可从功率模块的顶侧和底侧两侧上冷却,因为在平滑化操作后从功率器件的顶面上消除了丝焊料(wire bond)或甚至焊接凸块使得该顶面实质上是平坦的。因为热冷却结构连接到产生热量的芯片区域,图1所示的结构可具有显著较低的接合温度。
利用功率覆盖技术的双侧热交换器冷却的功率模块10包括功率芯片12,功率芯片12被构造成使用功率覆盖技术且经由冶金结合而附连到顶侧常规热交换器14和底侧常规热交换器16上的功率模块。然而,包括使用微通道技术的已知方法的常规热交换器技术采用冶金结合技术,诸如焊接或铜焊,且因此诸如上文所述需要额外的表面平滑化操作。
图2是示出了根据一实施例使用功率覆盖技术的双侧通道冷却的功率模块20的侧视图。功率模块20包括结合到功率覆盖层(POL)24上的多个半导体功率芯片22,功率覆盖层(POL)24具有可包括(例如)铜和卡普顿(Kapton)的区域。根据一实施例,具有大于大约2W/mK的热导率的柔顺热界面材料(TIM)26层结合到POL 24上、与POL 24的结合到半导体功率芯片22的一侧相对。合适的TIM的实例包括但不限于粘合剂、油脂、凝胶、垫、膜、液态金属、可压缩金属以及相变材料。液态金属TIM(例如)通常为在电力电子应用中通常遇到的温度下呈液态的铟-镓合金。可压缩金属足够软以在散热器与POL配合表面之间进行密切接触,且可包括例如铟。以此方式,诸如本文所述的散热器可热学地结合到POL 24上而不用将散热器直接铜焊或冶金结合到POL 24上,或者无需在将POL 24结合到散热器上之前使POL24平面化。
包括(例如)氧化铝(Al2O3)、氮化铝(AlN)、氧化铍(BeO)或氮化硅(Si3N4)的第一陶瓷衬底32经由第一铜金属层27结合到TIM 26上。诸如铜34的顶部金属层以冶金的方式结合到陶瓷衬底32的相对侧上。也可采用其它类似陶瓷材料,只要该陶瓷材料可与铜层27、34以冶金的方式结合。金属层27、34可为(例如)结合到陶瓷衬底32上的直接结合铜(DBC)或活性金属焊接(AMB)层。
根据一实施例,第一通道散热器组件28经由焊接结合部36附连到衬底32上,该焊接结合部36在与衬底32的结合到TIM 26上的一侧相对的铜层34与通道散热器组件28之间。第二衬底38和第二通道散热器组件30类似地结合到半导体功率芯片22的外部暴露的平坦表面上,与结合到POL 24上的半导体功率芯片22的一侧相对。根据一方面,通道散热器组件28可与通道散热器组件30相同且因此在本文中仅详细地描述通道组件28,以在理解此实施例时保留简要性且提高清楚性。根据其它实施例,散热器组件28也可具有与散热器组件30不同的结构。一种散热器组件(例如)可为空气冷却的,而另一散热器组件可为液体冷却的,以提供具有功率覆盖层的双侧冷却的功率模块。
根据一实施例,通道散热器28包括通道层40,在下文中参看图3更详细地描述了该通道层40,通道层40以冶金的方式结合到歧管层42上,歧管层42也在下文中参看图3进一步详细地进行了描述。
现在参看图3,根据一实施例,散热器组件28包括大约0.3mm的通道层40厚度和大约0.3mm的歧管层42厚度。根据另一实施例,散热器组件28包括大约0.15mm的通道层40厚度和大约0.15mm的歧管层42厚度。
通道层40可包括包含微通道尺寸到毫通道尺寸的通道几何结构。根据本发明的一些方面,通道46可具有(例如)大约0.05mm至大约5.0mm的特征大小。示例性通道46构造可由沿着衬底延伸的连续微通道形成。根据另一实施例,通道46为大约0.1mm宽且由若干大约0.2mm的间隙分开。根据又一实施例,通道46为大约0.3mm宽且由若干大约0.5mm的间隙分开。根据再一实施例,通道46为大约0.6mm宽且由若干大约0.8mm的间隙分开。
歧管层42限定了若干入口歧管和若干出口歧管(未示出)。入口歧管被构造成以便接收冷却剂,且出口歧管被构造成以便排出冷却剂。在一实施例中,入口歧管和出口歧管是交错的。根据本发明的一方面,通道层40内的通道46可大体上垂直于入口歧管和出口歧管而定向。这种结构提供简单的组装过程,这降低了散热器组件28的总成本。
通道散热器组件28也可附连到基板/壳体44上,以紧邻功率器件22表面提供流体通路,从而使得能实用地且具有成本效益地实施通道冷却技术。基板/壳体44包括入口端口43和出口端口48,入口端口43被构造成以便向入口歧管供应冷却剂,且出口端口48被构造成以便从出口歧管排出冷却剂。
图4是根据另一实施例使用功率覆盖技术的双侧通道冷却的功率模块50的透视图。根据一实施例,功率模块50包括第一基板/壳体44,第一基板/壳体44结合到诸如图2和图3中所描绘的散热器组件28上,且其包括与歧管层42内的歧管通路成镜像(mirror)的流体通路(未示出)。基板/壳体44进一步包括至少一个入口端口43和至少一个出口端口48,且更特别地结合到诸如图3中所描绘的歧管层42的表面上,其以诸如上文所述的方式形成散热器组件28的一部分,以提供延伸的歧管层入口端口和出口端口。由于仅要求基板44提供传递冷却流体的机构,基板44无需由适合于提供传热机构的金属构成。作为替代,实际传热过程由衬底层、通道层与歧管层之间的冶金结合来实现。
第二基板/壳体45如图4所示在功率模块50的相对侧上结合到图2所示的热交换器组件30上,以提供使用功率覆盖技术的双侧通道冷却的功率模块50。根据一实施例,通道层40、歧管层42和对应的基板/壳体44、45被构造成结合到对应的衬底32、38上的整体式散热器组件。根据另一实施例,通道层40和歧管层42一起被构造成结合到对应的衬底32、38上的整体式散热器组件。对应的基板/壳体44、45则结合到包括诸如图3所描绘的通道层40和歧管层42的各个整体式散热器组件上。根据另一实施例,各个衬底32、38结合到对应的通道层40和对应的歧管层42上,以形成相应的整体式散热器组件。然后,基板/壳体44、45附连到各个相应的整体式散热器组件上,以完成如图4所示的双侧通道冷却的功率模块50。
根据本发明的一方面,歧管通路的截面比与通道层通道相关联的截面更大,以便为对应的散热器组件28、30提供所希望的高水平的冷却能力。可采用许多冷却剂以用于散热器组件28、30,且实施例并不限于特定的冷却剂。示范性冷却剂包括水、乙二醇、丙二醇、油、飞行器燃料和其组合。根据一些实施例,冷却剂包括单相液体和/或多相液体。在操作中,冷却剂经由基板/壳体入口端口43进入歧管42且流动通过通道层通道,之后经由基板/壳体出口端口48通过排出歧管返回。
根据一方面,通道层通道并不延伸穿过通道层40,以便使冷却剂与功率器件22的热表面隔离。更特定而言,各个陶瓷衬底32、38充当功率器件22与冷却剂之间的电介质阻碍物。
总体阐述,已参看图2至图4描述了通道型冷却组件实施例和制造这些实施例的方法。这些实施例可使用高温铜焊工艺,该工艺避免了大体与焊接技术相关联的对通道46的污染或损坏。另外,可密切地控制可包括对应的衬底32、38、歧管层42和通道层40的散热器层的材料和厚度,以防止在加热和冷却处理步骤期间层之间的不希望的相互作用。以此方式,与对应的通道层40相关联的更精细的特征可受到保护以防止在制造过程期间受损坏;而且可以高度的确定性形成散热器组件特征。
根据一实施例,各个衬底结构在子组装过程期间被构造成单个整体式器件,该器件包括对应的陶瓷层32、38,冶金结合到陶瓷层32、38上的金属层27,冶金结合到陶瓷层32、38上的通道层40以及冶金结合到通道层40的表面上的歧管层42。包括至少一个入口端口43和至少一个出口端口48的单独的基板/壳体44、45在衬底结构子组装过程之后的最终组装过程期间结合到衬底结构的表面上,且被构造成以便提供延伸的歧管层入口端口和出口端口。
在最终组装阶段期间组合整体式衬底结构与整体式基板/壳体有利地避免了使用常规微通道构造技术通常与焊接技术相关联的对通道46的污染或损坏。由于基板/壳体44、45仅充当冷却流体流动机构且并不用作散热器装置,基板/壳体44、45可由适用于在不使用焊接的情况下将基板/壳体结合到衬底结构上的塑料或其它非金属化合物制备。
尽管已在本文中示出和描述了本发明的仅某些特征,但本领域技术人员将想到许多修改和变化。因此,将理解的是,所附权利要求书意图涵盖落在本发明的真实精神内的所有这些修改和变化。
Claims (6)
1.一种功率模块(20),包括:
至少一个半导体功率器件(22);
结合到所述至少一个半导体功率器件(22)上的功率覆盖层(24);
在所述至少一个半导体功率器件(22)的与所述功率覆盖层(24)相对的一侧上结合到所述至少一个半导体功率器件(22)上的第一衬底组件,该第一衬底组件包括:
包括第一平坦表面和基本上平行于第一平坦表面的第二平坦表面的陶瓷层(38);
结合到第一平坦表面上的金属层(27);
结合到第二平坦表面上的通道层(34);以及
结合到通道层(34)的与第二平坦表面相对的表面上的歧管层(36),第一衬底组件的层一起被构造成单个整体式衬底;以及
与所述功率覆盖层(24)的结合到所述至少一个半导体功率器件(22)上的一侧相对而单独地经由柔顺热界面材料(26)结合到所述功率覆盖层(24)上的第二衬底组件,该第二衬底组件包括:
包括第三平坦表面和基本上平行于第三平坦表面的第四平坦表面的陶瓷层(32);
结合到第三平坦表面上的金属层(27);
结合到第四平坦表面上的通道层(34);以及
结合到与第四平坦表面相对的通道层(34)的表面上的歧管层(36),第二衬底组件的层一起被构造成单个整体式衬底;
其中,所述柔顺热界面材料(26)是在所述功率覆盖层(24)连接至第二衬底组件的面上与所述功率覆盖层(24)直接接触的唯一材料。
2.根据权利要求1所述的功率模块(20),其特征在于,所述陶瓷层(32)、(38)选自氧化铝(Al2O3)、氮化铝(AlN)、氧化铍(BeO)和氮化硅(Si3N4)。
3.根据权利要求1所述的功率模块(20),其特征在于,壳体(44)、(45)附连到各个相应的单个整体式衬底上,以形成双侧通道冷却的功率模块(20)。
4.根据权利要求1所述的功率模块(20),其特征在于,所述柔顺热界面材料(26)具有大于2W/mK的热导率。
5.根据权利要求1所述的功率模块(20),其特征在于,所述柔顺热界面材料(26)选自粘合剂、油脂、凝胶、垫、膜、液态金属、可压缩金属和相变材料。
6.根据权利要求1所述的功率模块(20),其特征在于,所述歧管层(36)构造成接收冷却剂并排出冷却剂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/404272 | 2009-03-13 | ||
US12/404,272 US8358000B2 (en) | 2009-03-13 | 2009-03-13 | Double side cooled power module with power overlay |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101840914A CN101840914A (zh) | 2010-09-22 |
CN101840914B true CN101840914B (zh) | 2015-08-05 |
Family
ID=42244978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010146956.4A Active CN101840914B (zh) | 2009-03-13 | 2010-03-12 | 具有功率覆盖层的双侧冷却的功率模块 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8358000B2 (zh) |
EP (1) | EP2228820A3 (zh) |
JP (2) | JP5801996B2 (zh) |
CN (1) | CN101840914B (zh) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8114712B1 (en) | 2010-12-22 | 2012-02-14 | General Electric Company | Method for fabricating a semiconductor device package |
US8804340B2 (en) * | 2011-06-08 | 2014-08-12 | International Rectifier Corporation | Power semiconductor package with double-sided cooling |
US8622754B2 (en) * | 2011-07-31 | 2014-01-07 | General Electric Company | Flexible power connector |
US8487416B2 (en) | 2011-09-28 | 2013-07-16 | General Electric Company | Coaxial power module |
CN102664177B (zh) * | 2012-05-16 | 2014-10-29 | 中国科学院电工研究所 | 一种双面冷却的功率半导体模块 |
US8941208B2 (en) * | 2012-07-30 | 2015-01-27 | General Electric Company | Reliable surface mount integrated power module |
US9299630B2 (en) * | 2012-07-30 | 2016-03-29 | General Electric Company | Diffusion barrier for surface mount modules |
US9337163B2 (en) * | 2012-11-13 | 2016-05-10 | General Electric Company | Low profile surface mount package with isolated tab |
US8872328B2 (en) * | 2012-12-19 | 2014-10-28 | General Electric Company | Integrated power module package |
KR101459857B1 (ko) * | 2012-12-27 | 2014-11-07 | 현대자동차주식회사 | 히트싱크 일체형 양면 냉각 파워모듈 |
US8987876B2 (en) | 2013-03-14 | 2015-03-24 | General Electric Company | Power overlay structure and method of making same |
US10269688B2 (en) | 2013-03-14 | 2019-04-23 | General Electric Company | Power overlay structure and method of making same |
AT514085B1 (de) | 2013-06-11 | 2014-10-15 | Austria Tech & System Tech | Leistungsmodul |
US9209151B2 (en) | 2013-09-26 | 2015-12-08 | General Electric Company | Embedded semiconductor device package and method of manufacturing thereof |
WO2015093169A1 (ja) | 2013-12-19 | 2015-06-25 | 富士電機株式会社 | 半導体モジュールおよび電気駆動車両 |
US9806051B2 (en) | 2014-03-04 | 2017-10-31 | General Electric Company | Ultra-thin embedded semiconductor device package and method of manufacturing thereof |
US9613843B2 (en) | 2014-10-13 | 2017-04-04 | General Electric Company | Power overlay structure having wirebonds and method of manufacturing same |
KR101755769B1 (ko) * | 2014-10-29 | 2017-07-07 | 현대자동차주식회사 | 양면 냉각 파워 모듈 및 이의 제조 방법 |
JP6048481B2 (ja) * | 2014-11-27 | 2016-12-21 | 株式会社豊田自動織機 | 電子機器 |
US10182513B2 (en) * | 2015-01-16 | 2019-01-15 | Hamilton Sundstrand Space Systems International, Inc. | Phase change material heat sinks |
US9980415B2 (en) | 2015-08-20 | 2018-05-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Configurable double-sided modular jet impingement assemblies for electronics cooling |
US9953899B2 (en) | 2015-09-30 | 2018-04-24 | Microfabrica Inc. | Micro heat transfer arrays, micro cold plates, and thermal management systems for cooling semiconductor devices, and methods for using and making such arrays, plates, and systems |
KR20170039431A (ko) * | 2015-10-01 | 2017-04-11 | 현대자동차주식회사 | 솔더링 접합방식 인버터 및 이를 적용한 하이브리드 차량 |
KR101734712B1 (ko) | 2015-12-09 | 2017-05-11 | 현대자동차주식회사 | 파워모듈 |
US10032694B2 (en) | 2016-03-08 | 2018-07-24 | Toyota Motor Engineering & Manufacturing North America, Inc | Power electronics assemblies having a semiconductor cooling chip and an integrated fluid channel system |
US10121729B2 (en) | 2016-07-25 | 2018-11-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Power electronics assemblies having a semiconductor device with metallized embedded cooling channels |
US9972607B2 (en) | 2016-08-08 | 2018-05-15 | Semiconductor Components Industries, Llc | Semiconductor device and method of integrating power module with interposer and opposing substrates |
US10333493B2 (en) | 2016-08-25 | 2019-06-25 | General Electric Company | Embedded RF filter package structure and method of manufacturing thereof |
KR20180038597A (ko) * | 2016-10-06 | 2018-04-17 | 현대자동차주식회사 | 양면냉각형 파워모듈 및 그 제조방법 |
US10231364B2 (en) | 2016-10-24 | 2019-03-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Fluidly cooled power electronics assemblies having a thermo-electric generator |
US10615100B2 (en) * | 2016-12-08 | 2020-04-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electronics assemblies and cooling structures having metalized exterior surface |
US10178813B2 (en) * | 2017-01-26 | 2019-01-08 | The United States Of America As Represented By The Secretary Of The Army | Stacked power module with integrated thermal management |
WO2018146816A1 (ja) * | 2017-02-13 | 2018-08-16 | 新電元工業株式会社 | 電子機器 |
CN107634037A (zh) * | 2017-03-02 | 2018-01-26 | 天津开发区天地信息技术有限公司 | 高导热封装基板 |
US10541209B2 (en) | 2017-08-03 | 2020-01-21 | General Electric Company | Electronics package including integrated electromagnetic interference shield and method of manufacturing thereof |
US10541153B2 (en) | 2017-08-03 | 2020-01-21 | General Electric Company | Electronics package with integrated interconnect structure and method of manufacturing thereof |
US10804115B2 (en) | 2017-08-03 | 2020-10-13 | General Electric Company | Electronics package with integrated interconnect structure and method of manufacturing thereof |
US10403558B2 (en) * | 2017-08-23 | 2019-09-03 | Ford Global Technologies, Llc | Power module with multi-layer substrate |
US10607857B2 (en) * | 2017-12-06 | 2020-03-31 | Indium Corporation | Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger |
US10916931B2 (en) * | 2018-01-15 | 2021-02-09 | Infineon Technologies Ag | Temperature sensing and fault detection for paralleled double-side cooled power modules |
US11444036B2 (en) | 2018-07-18 | 2022-09-13 | Delta Electronics (Shanghai) Co., Ltd. | Power module assembly |
EP4075498A3 (en) * | 2018-07-18 | 2023-03-01 | Delta Electronics (Shanghai) Co., Ltd. | Power module structure |
US11342241B2 (en) | 2018-07-18 | 2022-05-24 | Delta Electronics (Shanghai) Co., Ltd | Power module |
DE102018212438A1 (de) | 2018-07-25 | 2020-01-30 | Infineon Technologies Ag | Halbleitergehäuse mit elektromagnetischer abschirmstruktur und verfahren zu dessen herstellung |
DE102018212443A1 (de) | 2018-07-25 | 2020-01-30 | Infineon Technologies Ag | Halbleitergehäuse mit passivem elektrischem Bauteil und Verfahren zu dessen Herstellung |
DE102018212436A1 (de) * | 2018-07-25 | 2020-01-30 | Infineon Technologies Ag | Halbleitergehäuse mit symmetrisch angeordneten leisungsanschlüssen und verfahren zu dessen herstellung |
DE102018126972A1 (de) | 2018-07-25 | 2020-01-30 | Infineon Technologies Ag | Halbleitergehäuse mit überlappenden elektrisch leitfähigen bereichen und verfahren zu dessen herstellung |
FR3085539B1 (fr) * | 2018-09-04 | 2021-09-10 | Commissariat Energie Atomique | Module electronique de puissance |
CN109920785A (zh) * | 2019-03-13 | 2019-06-21 | 黄山学院 | 双面散热ipm混合模块的封装结构及加工工艺 |
FR3095778B1 (fr) | 2019-05-06 | 2022-06-03 | Safran | Procede de fabrication d’un module electronique de puissance |
US12027975B2 (en) | 2020-05-22 | 2024-07-02 | Marel Power Solutions | Packaged module with sintered switch |
US11398445B2 (en) | 2020-05-29 | 2022-07-26 | General Electric Company | Mechanical punched via formation in electronics package and electronics package formed thereby |
WO2022033547A1 (en) * | 2020-08-12 | 2022-02-17 | Lite-On Semiconductor Corporation | Double side cooling power package |
US11551993B2 (en) * | 2020-08-28 | 2023-01-10 | Ge Aviation Systems Llc | Power overlay module and method of assembling |
US11430777B2 (en) | 2020-11-19 | 2022-08-30 | Semiconductor Components Industries, Llc | Power module package for direct cooling multiple power modules |
US11343943B1 (en) | 2020-11-23 | 2022-05-24 | Abb Schweiz Ag | Heat dissipation for power switches |
US11950394B2 (en) | 2021-10-12 | 2024-04-02 | Ge Aviation Systems Llc | Liquid-cooled assembly and method |
CN216852863U (zh) * | 2021-11-24 | 2022-06-28 | 广东福德电子有限公司 | 一种基于氮化铝的自来水冷却桥臂 |
CN116230666B (zh) * | 2023-05-05 | 2023-08-08 | 烟台台芯电子科技有限公司 | 一种dbc双面微通道制冷igbt模块及其制造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306680B1 (en) * | 1999-02-22 | 2001-10-23 | General Electric Company | Power overlay chip scale packages for discrete power devices |
CN101320715A (zh) * | 2007-05-25 | 2008-12-10 | 株式会社丰田自动织机 | 半导体器件 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3022178B2 (ja) * | 1994-06-21 | 2000-03-15 | 日産自動車株式会社 | パワーデバイスチップの実装構造 |
JP3879150B2 (ja) * | 1996-08-12 | 2007-02-07 | 株式会社デンソー | 半導体装置 |
JPH11233696A (ja) * | 1998-02-17 | 1999-08-27 | Mitsubishi Electric Corp | パワー半導体モジュール及びパワー半導体モジュールと冷却装置の接合体 |
JP3903681B2 (ja) * | 1999-03-11 | 2007-04-11 | 三菱マテリアル株式会社 | 半導体装置 |
US6232151B1 (en) | 1999-11-01 | 2001-05-15 | General Electric Company | Power electronic module packaging |
JP4292686B2 (ja) * | 2000-06-08 | 2009-07-08 | 株式会社デンソー | 冷媒冷却型両面冷却半導体装置 |
US6930385B2 (en) | 2002-12-20 | 2005-08-16 | Ut-Battelle, Llc | Cascaded die mountings with spring-loaded contact-bond options |
US7126822B2 (en) * | 2003-03-31 | 2006-10-24 | Intel Corporation | Electronic packages, assemblies, and systems with fluid cooling |
US7327024B2 (en) | 2004-11-24 | 2008-02-05 | General Electric Company | Power module, and phase leg assembly |
US7353859B2 (en) * | 2004-11-24 | 2008-04-08 | General Electric Company | Heat sink with microchannel cooling for power devices |
JP4285470B2 (ja) * | 2005-11-11 | 2009-06-24 | 株式会社デンソー | 半導体装置 |
US7331378B2 (en) * | 2006-01-17 | 2008-02-19 | Delphi Technologies, Inc. | Microchannel heat sink |
JP4482824B2 (ja) * | 2006-03-03 | 2010-06-16 | 株式会社デンソー | 両面冷却型半導体装置 |
JP2007251076A (ja) * | 2006-03-20 | 2007-09-27 | Hitachi Ltd | パワー半導体モジュール |
JP2008135595A (ja) * | 2006-11-29 | 2008-06-12 | Toyota Central R&D Labs Inc | パワーモジュール |
US20080190748A1 (en) | 2007-02-13 | 2008-08-14 | Stephen Daley Arthur | Power overlay structure for mems devices and method for making power overlay structure for mems devices |
JP2008282969A (ja) * | 2007-05-10 | 2008-11-20 | Toyota Industries Corp | 冷却器及び電子機器 |
US7838418B2 (en) * | 2007-12-11 | 2010-11-23 | Apple Inc. | Spray dispensing method for applying liquid metal |
JP4840416B2 (ja) * | 2008-07-22 | 2011-12-21 | 富士通株式会社 | 半導体装置の製造方法 |
-
2009
- 2009-03-13 US US12/404,272 patent/US8358000B2/en active Active
-
2010
- 2010-03-04 EP EP10155503.5A patent/EP2228820A3/en not_active Ceased
- 2010-03-11 JP JP2010053928A patent/JP5801996B2/ja active Active
- 2010-03-12 CN CN201010146956.4A patent/CN101840914B/zh active Active
-
2015
- 2015-07-10 JP JP2015138365A patent/JP2015173301A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306680B1 (en) * | 1999-02-22 | 2001-10-23 | General Electric Company | Power overlay chip scale packages for discrete power devices |
CN101320715A (zh) * | 2007-05-25 | 2008-12-10 | 株式会社丰田自动织机 | 半导体器件 |
Also Published As
Publication number | Publication date |
---|---|
CN101840914A (zh) | 2010-09-22 |
EP2228820A2 (en) | 2010-09-15 |
US20100230800A1 (en) | 2010-09-16 |
US8358000B2 (en) | 2013-01-22 |
JP5801996B2 (ja) | 2015-10-28 |
EP2228820A3 (en) | 2016-01-20 |
JP2015173301A (ja) | 2015-10-01 |
JP2010219529A (ja) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101840914B (zh) | 具有功率覆盖层的双侧冷却的功率模块 | |
US7731079B2 (en) | Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled | |
JP5414349B2 (ja) | 電子装置 | |
CA2687936C (en) | Low cost manufacturing of micro-channel heatsink | |
CA2780658C (en) | Cooling device for a power module, and a related method thereof | |
TWI482244B (zh) | 熱交換器以及半導體模組 | |
US7265977B2 (en) | Active liquid metal thermal spreader | |
US20100175857A1 (en) | Millichannel heat sink, and stack and apparatus using the same | |
US20100302734A1 (en) | Heatsink and method of fabricating same | |
KR20110103905A (ko) | 방열장치 | |
WO2020248905A1 (zh) | 一种晶圆级三维堆叠微流道散热结构及其制造方法 | |
EP3850662B1 (en) | Module base with integrated thermal spreader and heat sink for thermal and structural management of high-performance integrated circuits or other devices | |
CN118263136A (zh) | 冷却集成的芯片封装结构及其制造方法 | |
CN117529053A (zh) | 液冷控温装置及其制造方法 | |
CN115604904A (zh) | 芯片散热装置、芯片散热系统、机箱及机柜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |