WO2022033547A1 - Double side cooling power package - Google Patents

Double side cooling power package Download PDF

Info

Publication number
WO2022033547A1
WO2022033547A1 PCT/CN2021/112235 CN2021112235W WO2022033547A1 WO 2022033547 A1 WO2022033547 A1 WO 2022033547A1 CN 2021112235 W CN2021112235 W CN 2021112235W WO 2022033547 A1 WO2022033547 A1 WO 2022033547A1
Authority
WO
WIPO (PCT)
Prior art keywords
conduction
double side
cooling substrate
power package
semiconductor chip
Prior art date
Application number
PCT/CN2021/112235
Other languages
French (fr)
Inventor
Chung Hsing Tzu
Original Assignee
Lite-On Semiconductor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite-On Semiconductor Corporation filed Critical Lite-On Semiconductor Corporation
Priority to CN202180004154.6A priority Critical patent/CN114556550A/en
Publication of WO2022033547A1 publication Critical patent/WO2022033547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/335Material
    • H01L2224/33505Layer connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • H01L2224/84815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the disclosure relates to a power package, and particularly relates to a double side cooling power package.
  • the power device generates high amount of heat during operation, the heat dissipation is thus one of the main issues to be improved.
  • the double side cooling power package undergoes compressive stress and/or thermal stress caused by the difference in thermal expansion coefficient, it may be cracked or damaged.
  • the disclosure provides a double side cooling power package which can solve the problem caused by compressive stress and/or thermal stress.
  • the double side cooling power package of the disclosure includes a first cooling substrate, a second cooling substrate, at least one semiconductor chip, and a plurality of first conduction ribbons.
  • the second cooling substrate is disposed opposite to the first cooling substrate.
  • the semiconductor chip is bonded on one of the first cooling substrate and the second cooling substrate.
  • the first conduction ribbons are disposed between the first cooling substrate and the second cooling substrate, wherein each of the first conduction ribbons includes a first portion, a second portion and a bendable portion connecting the first portion and the second portion.
  • the bendable portion forms a closed loop with the edge of the first portion.
  • One of the first portion and the second portion is in direct contact with the semiconductor chip, and another of the first portion and the second portion extends away from the semiconductor chip.
  • the first conduction ribbons are discontinuous structures.
  • the first conduction ribbons are continuous structures.
  • the first portion is in direct contact with the semiconductor chip.
  • the first portion is coupled to the semiconductor chip through a first solder.
  • the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
  • the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is coupled to the second cooling substrate through a second solder.
  • the second portion is in direct contact with the semiconductor chip.
  • the second portion is coupled to the semiconductor chip through a first solder.
  • the semiconductor chip is bonded on the first cooling substrate, and the first portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
  • the semiconductor chip is bonded on the first cooling substrate, and the first portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
  • the package further includes a plurality of metal preforms disposed between the second cooling substrate and the semiconductor chip, wherein the metal preforms are in direct contact with the second cooling substrate, and the one of the first portion and the second portion is disposed between the metal preform and the semiconductor chip.
  • the package further includes at least one second conduction ribbon disposed between the first cooling substrate and the second cooling substrate, wherein the second conduction ribbon has the same shape as each of the first conduction ribbons, and the second conduction ribbon and the semiconductor chip are non-contact.
  • the second conduction ribbon and the first conduction ribbons are discontinuous structures.
  • the second conduction ribbon and the first conduction ribbons are continuous structures.
  • the first cooling substrate and the second cooling substrate are direct bond copper (DBC) substrates.
  • DBC direct bond copper
  • the disclosure provides a specific conduction ribbons in the double side cooling power package.
  • the bendable portion of the conduction ribbon is elastically deformed during the thermal compression process, and thus it can absorb the stress incurred by the thermal compression and the thermal stress amongst different materials.
  • the robustness of the package and the semiconductor chips is therefore improved.
  • the disclosure is also advantageous in terms of the processing cost (only one or two solder reflow steps are needed) and ideal heat dissipation performance.
  • FIG. 1A is a schematic side view of a double side cooling power package according to a first embodiment of the disclosure.
  • FIG. 1B is a three-dimensional view of the first conduction ribbons in the double side cooling power package of FIG. 1A.
  • FIG. 2 is a schematic side view of a double side cooling power package according to a second embodiment of the disclosure.
  • FIG. 3 is a schematic side view of a double side cooling power package according to a third embodiment of the disclosure.
  • FIG. 4 is a schematic side view of a double side cooling power package according to a fourth embodiment of the disclosure.
  • FIG. 5 is a schematic side view of a double side cooling power package according to a fifth embodiment of the disclosure.
  • FIG. 6 is a schematic side view of a double side cooling power package according to a sixth embodiment of the disclosure.
  • FIG. 7 is a schematic side view of a double side cooling power package according to a seventh embodiment of the disclosure.
  • FIG. 8 is a schematic side view of a double side cooling power package according to a eighth embodiment of the disclosure.
  • FIG. 9 is a schematic side view of a double side cooling power package according to a ninth embodiment of the disclosure.
  • FIG. 1A is a schematic side view of a double side cooling power package according to a first embodiment of the disclosure.
  • FIG. 1B is a three-dimensional view of the first conduction ribbons in the double side cooling power package of FIG. 1A.
  • the double side cooling power package 10 of the first embodiment includes a first cooling substrate 100, a second cooling substrate 102, at least one semiconductor chip 104, and a plurality of first conduction ribbons 106.
  • the second cooling substrate 102 is disposed opposite to the first cooling substrate 100.
  • the first cooling substrate 100 and the second cooling substrate 102 are direct bond copper (DBC) substrates, for example.
  • the first cooling substrate 100 includes at least a upper metal layer 100a, a lower metal layer 100b, and a dielectric plate 100c between the upper metal layer 100a and the lower metal layer 100b.
  • the second cooling substrate 102 includes at least a upper metal layer 102a, a lower metal layer 102b, and a dielectric plate 102c between the upper metal layer 102a and the lower metal layer 102b.
  • the semiconductor chip 104 is bonded on the first cooling substrate 100 through a solder 108, but the disclosure is not limited thereto; in another embodiment, the semiconductor chip 104 is bonded on the first cooling substrate 100 by ultrasonic compression (UC) bonding.
  • the semiconductor chip 104 is, for example, an IGBT, a MOSFET, a FRD (fast recovery diode) , or a wide band gap-based chip.
  • the first conduction ribbons 106 are disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein each of the first conduction ribbons 106 includes a first portion 106a, a second portion 106b and a bendable portion 106c connecting the first portion 106a and the second portion 106b.
  • the conduction ribbons 106 extend along Y-direction with the same geometry as illustrated in FIGs 1A-1B.
  • a material of the conductive ribbons 104 is, for example, copper.
  • there are two first conduction ribbons 106 in the first embodiment and they are continuous structures, wherein the connection parts are those second portions 106, and it is expected that the current capacity and thermal capacity of the double side cooling power package 10 can be further improved due to the continuous structure.
  • the bendable portion 106c forms a closed loop with the edge E of the first portion 106a, and the bendable portion 106c is an elastically deformable structure that can absorb stress or pressure when the double side cooling power package 10 is affected by thermal expansion or compressive stress.
  • the first portion 106a is in direct contact with the semiconductor chip 104 by bonding through UC bonding, but the disclosure is not limited thereto; in another embodiment, the first portion 106a can be bonded to the semiconductor chip 104 through a solder (not shown) .
  • the second portion 106b extends away from the semiconductor chip 104, and the second portion 106b of each of the first conduction ribbons 106 is in direct contact with the second cooling substrate 102.
  • the method for bonding the second portion 106b to the second cooling substrate 102 includes UC bonding or Laser welding, etc.
  • the disclosure is not limited thereto; in another embodiment, the second portion 106b can be bonded to the second cooling substrate 102 through another solder (not shown) .
  • the size of each of the conductive ribbons 106 can be changed based on desired needs; for example, the thickness t1 of the first conduction ribbon 106, the thickness t2 of the semiconductor chip 104, and the height difference h between the second portion 106b and the first portion 106a can be changed based on desired needs.
  • FIG. 2 is a schematic side view of a double side cooling power package according to a second embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
  • the difference between the first and the second embodiments is an additional solder 200 disposed between the semiconductor chip 104 and the first portion 106a of each of the conductive ribbons 106.
  • the composition of the solder 200 is the same as that of the solder 108
  • single reflow process may be performed during the manufacture for the double side cooling power package 20 of the second embodiment. For instance, the solders 108 are applied on the first cooling substrate 100 first, the semiconductor chips 104 are attached on the solders 108b, the additional solders 200 are then applied on the first portion 106a, the first cooling substrate 100 and the second cooling substrate 102 are laminated for bonding the semiconductor chips 104 to the solders 200, and the single reflow process is performed.
  • the solder 108 can have a higher melting point than the solder 200, and two-step reflow processes may be performed during the manufacture for the double side cooling power package 20 of the second embodiment. For instance, the solders 108 are applied on the first cooling substrate 100 first, the semiconductor chips 104 are attached on the solders 108b, a first reflow process is then performed, the additional solders 200 are applied on the first portion 106a after the first reflow process, the first cooling substrate 100 and the second cooling substrate 102 are laminated for bonding the semiconductor chips 104 to the solders 200, and a second reflow process is performed. Since the melting point of the solder 108 is higher than that of the solder 200, the solder 108 will not melt and deform during the second reflow process.
  • FIG. 3 is a schematic side view of a double side cooling power package according to a third embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
  • the first conduction ribbons 106 in the double side cooling power package 30 of the third embodiment are discontinuous structures, wherein the second portions 106b of different first conduction ribbons 106 are separated. Therefore, according to the capacity of circuit, the locations of the semiconductor chips 104 as well as the first conduction ribbons 106 can be modified.
  • the first conduction ribbons 106 in the double side cooling power package 30 may be a combination of continuous structures and discontinuous structures.
  • FIG. 4 is a schematic side view of a double side cooling power package according to a fourth embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
  • the difference between the first and the fourth embodiments is a second conduction ribbon 400 added in the double side cooling power package 40 of the fourth embodiment.
  • the second conduction ribbon 400 is disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein the second conduction ribbon 400 has the same shape as each of the first conduction ribbons 106, but the size therebetween may be a little different.
  • the second conduction ribbon 400 includes a first portion 400a, a second portion 400b and a bendable portion 400c connecting the first portion 400a and the second portion 400b, wherein the first portion 400a is in direct contact with the first cooling substrate 100, and the second portion 400b is in direct contact with the second cooling substrate 102.
  • the second conduction ribbon 400 and the semiconductor chip 104 are non-contact, and thus it can provide additional path for electric current and heat depending on the design of the circuit or topology.
  • the second conduction ribbon 400 and the first conduction ribbons 106 are continuous structures, wherein the second portion 400b connects to one of the second portion 106b.
  • FIG. 5 is a schematic side view of a double side cooling power package according to a fifth embodiment of the disclosure, wherein the reference symbols used in the fourth embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the fourth embodiment, and will not be repeated here.
  • the difference between the fifth and the fourth embodiments is the second conduction ribbon 400 and the first conduction ribbons 106 are discontinuous structures in the double side cooling power package 50 of the fifth embodiment, wherein the second portions 106b and 400b are separated. Therefore, according to the capacity of circuit, the locations of the semiconductor chips 104 as well as the first conduction ribbons 106 and the second conduction ribbon 400 can be modified.
  • FIG. 6 is a schematic side view of a double side cooling power package according to a sixth embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
  • the difference between the first and the sixth embodiments is a plurality of metal preforms 600 added in the double side cooling power package 60 of the fourth embodiment.
  • the metal preforms 600 are disposed between the second cooling substrate 102 and the semiconductor chips 104, and the metal preforms 600 are preferably formed corresponding to the center of each of the semiconductor chips 104.
  • the metal preforms 600 are in direct contact with the lower metal layer 102b of the second cooling substrate 102 by Laser welding or UC bonding (also known as ultrasonic welding) such as thermal ultrasonic compression, for example.
  • the first portion 106a of the first conduction ribbons 106 is disposed between the metal preform 600 and the semiconductor chip 104, and the first portion 106a can be bonded to the metal preform 600 through a solder 602.
  • the thickness of the metal preforms 600 is less than or equal to the height difference between the second portion 106b and the first portion 106a. Since the metal preforms 600 is, for example, made of copper with excellent thermal conductivity, the heat generated by the semiconductor chips 104 can be effectively transferred to the second cooling substrate 102 through the metal preforms 600.
  • FIG. 7 is a schematic side view of a double side cooling power package according to a seventh embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
  • the double side cooling power package 70 of the seventh embodiment also includes a first cooling substrate 100, a second cooling substrate 102, semiconductor chips 104, and a first conduction ribbons 106.
  • the second portion 106b of the first conduction ribbons 106 is coupled to the semiconductor chip 104 through a solder 700, but the disclosure is not limited thereto; in another embodiment, the semiconductor chip 104 is bonded on the second portion 106b by ultrasonic compression (UC) bonding.
  • UC ultrasonic compression
  • the method for bonding the first portion 106a to the second cooling substrate 102 includes UC bonding or Laser welding, etc.
  • the disclosure is not limited thereto; in another embodiment, the first portion 106a can be bonded to the second cooling substrate 102 through another solder (not shown) .
  • FIG. 8 is a schematic side view of a double side cooling power package according to a eighth embodiment of the disclosure, wherein the reference symbols used in the seventh embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the seventh embodiment, and will not be repeated here.
  • the difference between the seventh and the eighth embodiments is a second conduction ribbon 800 added in the double side cooling power package 80 of the fourth embodiment.
  • the second conduction ribbon 800 is disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein the second conduction ribbon 800 has the same shape as the first conduction ribbon 106, but the size therebetween may be a little different.
  • the second conduction ribbon 800 includes a first portion 800a, a second portion 800b and a bendable portion 800c connecting the first portion 800a and the second portion 800b.
  • the first portions 106a and 800a can be bonded to the second cooling substrate 102 through a solder 802.
  • the second conduction ribbon 800 and the semiconductor chip 104 are non-contact, and thus it can provide additional path for electric current and heat depending on the design of the circuit or topology.
  • the second conduction ribbon 800 and the first conduction ribbon 106 are discontinuous structures, wherein the second portion 800b and 106b are separated.
  • the second conduction ribbon 800 and the first conduction ribbon 106 may be continuous structures, or a combination of continuous structures and discontinuous structures.
  • FIG. 9 is a schematic side view of a double side cooling power package according to a ninth embodiment of the disclosure, wherein the reference symbols used in the seventh embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the seventh embodiment, and will not be repeated here.
  • the difference between the seventh and the ninth embodiments is a plurality of metal preforms 900 added in the double side cooling power package 90 of the fourth embodiment.
  • the metal preforms 900 are disposed between the second cooling substrate 102 and the semiconductor chips 104, wherein the metal preforms 900 are in direct contact with the lower metal layer 102b of the second cooling substrate 102.
  • the metal preforms 900 can be formed by UC bonding or Laser welding, etc.
  • the second portion 106b of the first conduction ribbons 106 is disposed between the metal preform 900 and the semiconductor chip 104, and the second portion 106b can be bonded to the metal preform 900 through a solder 902.
  • the metal preforms 900 is, for example, made of copper with excellent thermal conductivity, the metal preforms 900 can efficiently conduct heat from the semiconductor chips 104 towards the second cooling substrate 102, thereby good for heat dissipation of the double side cooling power package 90.
  • the double side cooling power package according to the disclosure can absorb the stress incurred by the thermal compression and the thermal stress amongst different materials by a specific conduction ribbons.
  • the bendable portion of the conduction ribbon is elastically deformed during the thermal compression process, and thus the robustness of the package and the semiconductor chips is therefore improved.
  • the disclosure is also advantageous in terms of the processing cost (only one or two solder reflow steps are needed) and ideal heat dissipation performance through the conduction ribbons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A double side cooling power package includes a first cooling substrate, a second cooling substrate, at least one semiconductor chip, and a plurality of first conduction ribbons. The second cooling substrate is disposed opposite to the first cooling substrate. The semiconductor chip is bonded on one of the first cooling substrate and the second cooling substrate. The first conduction ribbons are disposed between the first cooling substrate and the second cooling substrate, wherein each of the first conduction ribbons includes a first portion, a second portion and a bendable portion connecting the first portion and the second portion. The bendable portion forms a closed loop with the edge of the first portion. One of the first portion and the second portion is in direct contact with the semiconductor chip, and another of the first portion and the second portion extends away from the semiconductor chip.

Description

DOUBLE SIDE COOLING POWER PACKAGE BACKGROUND Technical Field
The disclosure relates to a power package, and particularly relates to a double side cooling power package.
Description of Related Art
The power device generates high amount of heat during operation, the heat dissipation is thus one of the main issues to be improved.
Recently, a double side cooling power package has been widely used to utilize the heat sink efficiently. For example, there are two heat sinks disposed on two surfaces of the power device, and thus the heat dissipation efficiency can be improved.
However, if the double side cooling power package undergoes compressive stress and/or thermal stress caused by the difference in thermal expansion coefficient, it may be cracked or damaged.
SUMMARY
The disclosure provides a double side cooling power package which can solve the problem caused by compressive stress and/or thermal stress.
The double side cooling power package of the disclosure includes a first cooling substrate, a second cooling substrate, at least one semiconductor chip, and a plurality of first conduction ribbons. The second cooling substrate is disposed opposite to the first cooling substrate. The semiconductor chip is bonded on one of the first cooling substrate and the  second cooling substrate. The first conduction ribbons are disposed between the first cooling substrate and the second cooling substrate, wherein each of the first conduction ribbons includes a first portion, a second portion and a bendable portion connecting the first portion and the second portion. The bendable portion forms a closed loop with the edge of the first portion. One of the first portion and the second portion is in direct contact with the semiconductor chip, and another of the first portion and the second portion extends away from the semiconductor chip.
In an embodiment of the disclosure, the first conduction ribbons are discontinuous structures.
In an embodiment of the disclosure, the first conduction ribbons are continuous structures.
In an embodiment of the disclosure, the first portion is in direct contact with the semiconductor chip.
In an embodiment of the disclosure, the first portion is coupled to the semiconductor chip through a first solder.
In an embodiment of the disclosure, the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
In an embodiment of the disclosure, the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is coupled to the second cooling substrate through a second solder.
In an embodiment of the disclosure, the second portion is in direct contact with the semiconductor chip.
In an embodiment of the disclosure, the second portion is coupled to the semiconductor chip through a first solder.
In an embodiment of the disclosure, the semiconductor chip is bonded on the first cooling substrate, and the first portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
In an embodiment of the disclosure, the semiconductor chip is bonded on the first cooling substrate, and the first portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
In an embodiment of the disclosure, the package further includes a plurality of metal preforms disposed between the second cooling substrate and the semiconductor chip, wherein the metal preforms are in direct contact with the second cooling substrate, and the one of the first portion and the second portion is disposed between the metal preform and the semiconductor chip.
In an embodiment of the disclosure, the package further includes at least one second conduction ribbon disposed between the first cooling substrate and the second cooling substrate, wherein the second conduction ribbon has the same shape as each of the first conduction ribbons, and the second conduction ribbon and the semiconductor chip are non-contact.
In an embodiment of the disclosure, the second conduction ribbon and the first conduction ribbons are discontinuous structures.
In an embodiment of the disclosure, the second conduction ribbon and the first conduction ribbons are continuous structures.
In an embodiment of the disclosure, the first cooling substrate and the second cooling substrate are direct bond copper (DBC) substrates.
Based on the above, the disclosure provides a specific conduction ribbons in the double side cooling power package. In detail, the bendable portion of the conduction ribbon is elastically deformed during the thermal compression process, and thus it can absorb the stress incurred by the thermal compression and the thermal stress amongst different materials. The  robustness of the package and the semiconductor chips is therefore improved. In addition, the disclosure is also advantageous in terms of the processing cost (only one or two solder reflow steps are needed) and ideal heat dissipation performance.
To make the aforementioned more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
FIG. 1A is a schematic side view of a double side cooling power package according to a first embodiment of the disclosure.
FIG. 1B is a three-dimensional view of the first conduction ribbons in the double side cooling power package of FIG. 1A.
FIG. 2 is a schematic side view of a double side cooling power package according to a second embodiment of the disclosure.
FIG. 3 is a schematic side view of a double side cooling power package according to a third embodiment of the disclosure.
FIG. 4 is a schematic side view of a double side cooling power package according to a fourth embodiment of the disclosure.
FIG. 5 is a schematic side view of a double side cooling power package according to a fifth embodiment of the disclosure.
FIG. 6 is a schematic side view of a double side cooling power package according to a sixth embodiment of the disclosure.
FIG. 7 is a schematic side view of a double side cooling power package according to a seventh embodiment of the disclosure.
FIG. 8 is a schematic side view of a double side cooling power package according to a eighth embodiment of the disclosure.
FIG. 9 is a schematic side view of a double side cooling power package according to a ninth embodiment of the disclosure.
DESCRIPTION OF THE EMBODIMENTS
Referring to the embodiments below and the accompanied drawings for a sufficient understanding of the disclosure. However, the disclosure may be implemented in many other different forms and should not be construed as limited to the embodiments described hereinafter. In the drawings, for clarity, the elements and relative dimensions thereof may not be scaled. For easy understanding, the same elements in the following embodiments will be denoted by the same reference numerals.
FIG. 1A is a schematic side view of a double side cooling power package according to a first embodiment of the disclosure. FIG. 1B is a three-dimensional view of the first conduction ribbons in the double side cooling power package of FIG. 1A.
Referring to FIGs. 1A and 1B, the double side cooling power package 10 of the first embodiment includes a first cooling substrate 100, a second cooling substrate 102, at least one semiconductor chip 104, and a plurality of first conduction ribbons 106. The second cooling substrate 102 is disposed opposite to the first cooling substrate 100. In the embodiment, the first cooling substrate 100 and the second cooling substrate 102 are direct bond copper (DBC) substrates, for example. The first cooling substrate 100 includes at least a upper metal layer 100a, a lower metal layer 100b, and a dielectric plate 100c between the upper metal layer 100a and the lower metal layer 100b. The second cooling substrate 102 includes at least a upper  metal layer 102a, a lower metal layer 102b, and a dielectric plate 102c between the upper metal layer 102a and the lower metal layer 102b. The semiconductor chip 104 is bonded on the first cooling substrate 100 through a solder 108, but the disclosure is not limited thereto; in another embodiment, the semiconductor chip 104 is bonded on the first cooling substrate 100 by ultrasonic compression (UC) bonding. The semiconductor chip 104 is, for example, an IGBT, a MOSFET, a FRD (fast recovery diode) , or a wide band gap-based chip. The first conduction ribbons 106 are disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein each of the first conduction ribbons 106 includes a first portion 106a, a second portion 106b and a bendable portion 106c connecting the first portion 106a and the second portion 106b. The conduction ribbons 106 extend along Y-direction with the same geometry as illustrated in FIGs 1A-1B. A material of the conductive ribbons 104 is, for example, copper. In particular, there are two first conduction ribbons 106 in the first embodiment, and they are continuous structures, wherein the connection parts are those second portions 106, and it is expected that the current capacity and thermal capacity of the double side cooling power package 10 can be further improved due to the continuous structure. The bendable portion 106c forms a closed loop with the edge E of the first portion 106a, and the bendable portion 106c is an elastically deformable structure that can absorb stress or pressure when the double side cooling power package 10 is affected by thermal expansion or compressive stress. In the embodiment, the first portion 106a is in direct contact with the semiconductor chip 104 by bonding through UC bonding, but the disclosure is not limited thereto; in another embodiment, the first portion 106a can be bonded to the semiconductor chip 104 through a solder (not shown) . The second portion 106b extends away from the semiconductor chip 104, and the second portion 106b of each of the first conduction ribbons 106 is in direct contact with the second cooling substrate 102. Since the materials of the first conduction ribbons 106 and the lower metal layer 102b may be the same, the method for bonding the second portion 106b to  the second cooling substrate 102 includes UC bonding or Laser welding, etc. However, the disclosure is not limited thereto; in another embodiment, the second portion 106b can be bonded to the second cooling substrate 102 through another solder (not shown) . In addition, the size of each of the conductive ribbons 106 can be changed based on desired needs; for example, the thickness t1 of the first conduction ribbon 106, the thickness t2 of the semiconductor chip 104, and the height difference h between the second portion 106b and the first portion 106a can be changed based on desired needs.
FIG. 2 is a schematic side view of a double side cooling power package according to a second embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
Referring to FIG. 2, the difference between the first and the second embodiments is an additional solder 200 disposed between the semiconductor chip 104 and the first portion 106a of each of the conductive ribbons 106. If the composition of the solder 200 is the same as that of the solder 108, single reflow process may be performed during the manufacture for the double side cooling power package 20 of the second embodiment. For instance, the solders 108 are applied on the first cooling substrate 100 first, the semiconductor chips 104 are attached on the solders 108b, the additional solders 200 are then applied on the first portion 106a, the first cooling substrate 100 and the second cooling substrate 102 are laminated for bonding the semiconductor chips 104 to the solders 200, and the single reflow process is performed. In another embodiment, if the composition of the solder 200 is different from that of the solder 108, the solder 108 can have a higher melting point than the solder 200, and two-step reflow processes may be performed during the manufacture for the double side cooling power package 20 of the second embodiment. For instance, the solders 108 are applied on the first cooling substrate 100 first, the semiconductor chips 104 are attached on the solders 108b, a first reflow  process is then performed, the additional solders 200 are applied on the first portion 106a after the first reflow process, the first cooling substrate 100 and the second cooling substrate 102 are laminated for bonding the semiconductor chips 104 to the solders 200, and a second reflow process is performed. Since the melting point of the solder 108 is higher than that of the solder 200, the solder 108 will not melt and deform during the second reflow process.
FIG. 3 is a schematic side view of a double side cooling power package according to a third embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
Referring to FIG. 3, the first conduction ribbons 106 in the double side cooling power package 30 of the third embodiment are discontinuous structures, wherein the second portions 106b of different first conduction ribbons 106 are separated. Therefore, according to the capacity of circuit, the locations of the semiconductor chips 104 as well as the first conduction ribbons 106 can be modified. In another embodiment, the first conduction ribbons 106 in the double side cooling power package 30 may be a combination of continuous structures and discontinuous structures.
FIG. 4 is a schematic side view of a double side cooling power package according to a fourth embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
Referring to FIG. 4, the difference between the first and the fourth embodiments is a second conduction ribbon 400 added in the double side cooling power package 40 of the fourth embodiment. The second conduction ribbon 400 is disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein the second conduction ribbon 400 has the same shape as each of the first conduction ribbons 106, but the size therebetween may be a little  different. For example, the second conduction ribbon 400 includes a first portion 400a, a second portion 400b and a bendable portion 400c connecting the first portion 400a and the second portion 400b, wherein the first portion 400a is in direct contact with the first cooling substrate 100, and the second portion 400b is in direct contact with the second cooling substrate 102. The second conduction ribbon 400 and the semiconductor chip 104 are non-contact, and thus it can provide additional path for electric current and heat depending on the design of the circuit or topology. In the embodiment, the second conduction ribbon 400 and the first conduction ribbons 106 are continuous structures, wherein the second portion 400b connects to one of the second portion 106b.
FIG. 5 is a schematic side view of a double side cooling power package according to a fifth embodiment of the disclosure, wherein the reference symbols used in the fourth embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the fourth embodiment, and will not be repeated here.
Referring to FIG. 5, the difference between the fifth and the fourth embodiments is the second conduction ribbon 400 and the first conduction ribbons 106 are discontinuous structures in the double side cooling power package 50 of the fifth embodiment, wherein the  second portions  106b and 400b are separated. Therefore, according to the capacity of circuit, the locations of the semiconductor chips 104 as well as the first conduction ribbons 106 and the second conduction ribbon 400 can be modified.
FIG. 6 is a schematic side view of a double side cooling power package according to a sixth embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
Referring to FIG. 6, the difference between the first and the sixth embodiments is a plurality of metal preforms 600 added in the double side cooling power package 60 of the fourth  embodiment. The metal preforms 600 are disposed between the second cooling substrate 102 and the semiconductor chips 104, and the metal preforms 600 are preferably formed corresponding to the center of each of the semiconductor chips 104. The metal preforms 600 are in direct contact with the lower metal layer 102b of the second cooling substrate 102 by Laser welding or UC bonding (also known as ultrasonic welding) such as thermal ultrasonic compression, for example. In addition, the first portion 106a of the first conduction ribbons 106 is disposed between the metal preform 600 and the semiconductor chip 104, and the first portion 106a can be bonded to the metal preform 600 through a solder 602. In one embodiment, the thickness of the metal preforms 600 is less than or equal to the height difference between the second portion 106b and the first portion 106a. Since the metal preforms 600 is, for example, made of copper with excellent thermal conductivity, the heat generated by the semiconductor chips 104 can be effectively transferred to the second cooling substrate 102 through the metal preforms 600.
FIG. 7 is a schematic side view of a double side cooling power package according to a seventh embodiment of the disclosure, wherein the reference symbols used in the first embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the first embodiment, and will not be repeated here.
Referring to FIG. 7, the double side cooling power package 70 of the seventh embodiment also includes a first cooling substrate 100, a second cooling substrate 102, semiconductor chips 104, and a first conduction ribbons 106. However, the second portion 106b of the first conduction ribbons 106 is coupled to the semiconductor chip 104 through a solder 700, but the disclosure is not limited thereto; in another embodiment, the semiconductor chip 104 is bonded on the second portion 106b by ultrasonic compression (UC) bonding. The first portion 106a of the first conduction ribbon 106 is in direct contact with the second cooling substrate 102. Since the materials of the first conduction ribbon 106 and the lower metal layer  102b may be the same, the method for bonding the first portion 106a to the second cooling substrate 102 includes UC bonding or Laser welding, etc. However, the disclosure is not limited thereto; in another embodiment, the first portion 106a can be bonded to the second cooling substrate 102 through another solder (not shown) .
FIG. 8 is a schematic side view of a double side cooling power package according to a eighth embodiment of the disclosure, wherein the reference symbols used in the seventh embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the seventh embodiment, and will not be repeated here.
Referring to FIG. 8, the difference between the seventh and the eighth embodiments is a second conduction ribbon 800 added in the double side cooling power package 80 of the fourth embodiment. The second conduction ribbon 800 is disposed between the first cooling substrate 100 and the second cooling substrate 102, wherein the second conduction ribbon 800 has the same shape as the first conduction ribbon 106, but the size therebetween may be a little different. For example, the second conduction ribbon 800 includes a first portion 800a, a second portion 800b and a bendable portion 800c connecting the first portion 800a and the second portion 800b. The  first portions  106a and 800a can be bonded to the second cooling substrate 102 through a solder 802. The second conduction ribbon 800 and the semiconductor chip 104 are non-contact, and thus it can provide additional path for electric current and heat depending on the design of the circuit or topology. In the embodiment, the second conduction ribbon 800 and the first conduction ribbon 106 are discontinuous structures, wherein the  second portion  800b and 106b are separated. Alternatively, the second conduction ribbon 800 and the first conduction ribbon 106 may be continuous structures, or a combination of continuous structures and discontinuous structures.
FIG. 9 is a schematic side view of a double side cooling power package according to a ninth embodiment of the disclosure, wherein the reference symbols used in the seventh  embodiment are used to equally represent the same or similar devices. The description of the same components can be derived from the seventh embodiment, and will not be repeated here.
Referring to FIG. 9, the difference between the seventh and the ninth embodiments is a plurality of metal preforms 900 added in the double side cooling power package 90 of the fourth embodiment. The metal preforms 900 are disposed between the second cooling substrate 102 and the semiconductor chips 104, wherein the metal preforms 900 are in direct contact with the lower metal layer 102b of the second cooling substrate 102. The metal preforms 900 can be formed by UC bonding or Laser welding, etc. In addition, the second portion 106b of the first conduction ribbons 106 is disposed between the metal preform 900 and the semiconductor chip 104, and the second portion 106b can be bonded to the metal preform 900 through a solder 902. Since the metal preforms 900 is, for example, made of copper with excellent thermal conductivity, the metal preforms 900 can efficiently conduce heat from the semiconductor chips 104 towards the second cooling substrate 102, thereby good for heat dissipation of the double side cooling power package 90.
In summary, the double side cooling power package according to the disclosure can absorb the stress incurred by the thermal compression and the thermal stress amongst different materials by a specific conduction ribbons. In particular, the bendable portion of the conduction ribbon is elastically deformed during the thermal compression process, and thus the robustness of the package and the semiconductor chips is therefore improved. In addition, the disclosure is also advantageous in terms of the processing cost (only one or two solder reflow steps are needed) and ideal heat dissipation performance through the conduction ribbons.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
REFERENCE SIGNS LIST
10, 20, 30, 40, 50, 60, 70, 80, 90: double side cooling power package
100: first cooling substrate
100a, 102a: upper metal layer
100b, 102b: lower metal layer
100c, 102c: dielectric plate
102: second cooling substrate
104: semiconductor chip
106: first conduction ribbons
106a, 400a, 800a: first portion
106b, 400b, 800b: second portion
106c, 400c, 800c: bendable portion
108, 200, 602, 700, 802, 902: solder
400, 800: second conduction ribbon
600, 900: metal preform
E: edge
h: height difference
t1, t2: thickness

Claims (16)

  1. A double side cooling power package, comprising:
    a first cooling substrate;
    a second cooling substrate, disposed opposite to the first cooling substrate;
    at least one semiconductor chip, bonded on one of the first cooling substrate and the second cooling substrate; and
    a plurality of first conduction ribbons disposed between the first cooling substrate and the second cooling substrate, wherein each of the first conduction ribbons comprises a first portion, a second portion and a bendable portion connecting the first portion and the second portion, the bendable portion forms a closed loop with the edge of the first portion, one of the first portion and the second portion is coupled to the semiconductor chip, and another of the first portion and the second portion extends away from the semiconductor chip.
  2. The double side cooling power package according to claim 1, wherein the first conduction ribbons are discontinuous structures.
  3. The double side cooling power package according to claim 1, wherein the first conduction ribbons are continuous structures.
  4. The double side cooling power package according to claim 1, wherein the first portion is in direct contact with the semiconductor chip.
  5. The double side cooling power package according to claim 1, wherein the first portion is coupled to the semiconductor chip through a first solder.
  6. The double side cooling power package according to claim 1, wherein the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
  7. The double side cooling power package according to claim 1, wherein the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first  conduction ribbons is coupled to the second cooling substrate through a second solder.
  8. The double side cooling power package according to claim 1, wherein the second portion is in direct contact with the semiconductor chip.
  9. The double side cooling power package according to claim 1, wherein the second portion is coupled to the semiconductor chip through a first solder.
  10. The double side cooling power package according to claim 1, wherein the semiconductor chip is bonded on the first cooling substrate, and the first portion of each of the first conduction ribbons is in direct contact with the second cooling substrate.
  11. The double side cooling power package according to claim 1, wherein the semiconductor chip is bonded on the first cooling substrate, and the second portion of each of the first conduction ribbons is coupled to the second cooling substrate through a second solder.
  12. The double side cooling power package according to claim 1, further comprises a plurality of metal preforms disposed between the second cooling substrate and the semiconductor chip, wherein the metal preforms are in direct contact with the second cooling substrate, and the one of the first portion and the second portion is disposed between the metal preform and the semiconductor chip.
  13. The double side cooling power package according to claim 1, further comprises at least one second conduction ribbon disposed between the first cooling substrate and the second cooling substrate, wherein the second conduction ribbon has the same shape as each of the first conduction ribbons, and the second conduction ribbon and the semiconductor chip are non-contact.
  14. The double side cooling power package according to claim 13, wherein the second conduction ribbon and the first conduction ribbons are discontinuous structures.
  15. The double side cooling power package according to claim 13, wherein the second conduction ribbon and the first conduction ribbons are continuous structures.
  16. The double side cooling power package according to claim 1, wherein the first cooling substrate and the second cooling substrate comprise direct bond copper substrates.
PCT/CN2021/112235 2020-08-12 2021-08-12 Double side cooling power package WO2022033547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180004154.6A CN114556550A (en) 2020-08-12 2021-08-12 Double-sided cooling power packaging structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063064414P 2020-08-12 2020-08-12
US63/064,414 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033547A1 true WO2022033547A1 (en) 2022-02-17

Family

ID=80247726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112235 WO2022033547A1 (en) 2020-08-12 2021-08-12 Double side cooling power package

Country Status (3)

Country Link
CN (1) CN114556550A (en)
TW (1) TWI766791B (en)
WO (1) WO2022033547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261872A1 (en) * 2022-04-11 2023-10-18 Nexperia B.V. Molded electronic package with an electronic component encapsulated between two substrates with a spring member between the electronic component and one of the substrates and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178117A1 (en) * 2008-10-17 2010-04-21 Abb Research Ltd. Power semiconductor module with double side cooling
CN101840914A (en) * 2009-03-13 2010-09-22 通用电气公司 Power model with double-sided cooled of power overlay
US20110260314A1 (en) * 2010-04-27 2011-10-27 Stmicroelectronics S.R.L. Die package and corresponding method for realizing a double side cooling of a die package
CN107768328A (en) * 2017-10-31 2018-03-06 华北电力大学 A kind of power device for realizing two-side radiation and pressure equilibrium
CN109473401A (en) * 2018-11-14 2019-03-15 深圳市瓦智能科技有限公司 Electronic component with two-sided heat conduction and heat radiation structure
CN109494195A (en) * 2018-11-14 2019-03-19 深圳市瓦智能科技有限公司 Semiconductor element with two-sided heat conduction and heat radiation structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251206B (en) * 2015-03-19 2020-07-31 英特尔公司 Radio die package with backside conductive plate
DE102017213170A1 (en) * 2017-07-31 2019-01-31 Infineon Technologies Ag SOLDERING A LADDER TO ALUMINUM METALLIZATION
US10770369B2 (en) * 2018-08-24 2020-09-08 Advanced Semiconductor Engineering, Inc. Semiconductor device package
DE102019101631B4 (en) * 2019-01-23 2024-05-23 Infineon Technologies Ag Corrosion-protected molding compound, process for its preparation and its use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178117A1 (en) * 2008-10-17 2010-04-21 Abb Research Ltd. Power semiconductor module with double side cooling
CN101840914A (en) * 2009-03-13 2010-09-22 通用电气公司 Power model with double-sided cooled of power overlay
US20110260314A1 (en) * 2010-04-27 2011-10-27 Stmicroelectronics S.R.L. Die package and corresponding method for realizing a double side cooling of a die package
CN107768328A (en) * 2017-10-31 2018-03-06 华北电力大学 A kind of power device for realizing two-side radiation and pressure equilibrium
CN109473401A (en) * 2018-11-14 2019-03-15 深圳市瓦智能科技有限公司 Electronic component with two-sided heat conduction and heat radiation structure
CN109494195A (en) * 2018-11-14 2019-03-19 深圳市瓦智能科技有限公司 Semiconductor element with two-sided heat conduction and heat radiation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261872A1 (en) * 2022-04-11 2023-10-18 Nexperia B.V. Molded electronic package with an electronic component encapsulated between two substrates with a spring member between the electronic component and one of the substrates and method for manufacturing the same

Also Published As

Publication number Publication date
CN114556550A (en) 2022-05-27
TW202213656A (en) 2022-04-01
TWI766791B (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US11139278B2 (en) Low parasitic inductance power module and double-faced heat-dissipation low parasitic inductance power module
JP2010525588A (en) Cooling body
JP5895220B2 (en) Manufacturing method of semiconductor device
CN111276447B (en) Double-sided cooling power module and manufacturing method thereof
JP2019125708A (en) Semiconductor device
GB2485087A (en) Power electronic package
WO2022033547A1 (en) Double side cooling power package
JP5899952B2 (en) Semiconductor module
US11735557B2 (en) Power module of double-faced cooling
US11637052B2 (en) Semiconductor device and semiconductor device manufacturing method
JP6406996B2 (en) Semiconductor device
US11380646B2 (en) Multi-sided cooling semiconductor package and method of manufacturing the same
JP3841007B2 (en) Semiconductor device
US10957560B2 (en) Pressure sintering procedure in which power semiconductor components with a substrate are connected to each other via a sintered connection
WO2018020640A1 (en) Semiconductor device
CN111354710A (en) Semiconductor device and method for manufacturing the same
JP5987634B2 (en) Power semiconductor module
US20230119737A1 (en) Double-side cooling-type semiconductor device
KR200358317Y1 (en) Heat Sinker of Power Semiconductor Module Compensating Bending due to Thermal Stress and Power Semiconductor Module Using it
CN218996705U (en) Epoxy plastic package half-bridge module with welded copper bars
US11562938B2 (en) Spacer with pattern layout for dual side cooling power module
JP7492375B2 (en) Semiconductor Device
JP6827402B2 (en) Semiconductor device
CN114597183A (en) Packaging structure and power module applying same
WO2024132156A1 (en) A design for enhancing the long term reliability of a large joining area in a power semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855597

Country of ref document: EP

Kind code of ref document: A1