JP6406996B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6406996B2
JP6406996B2 JP2014245488A JP2014245488A JP6406996B2 JP 6406996 B2 JP6406996 B2 JP 6406996B2 JP 2014245488 A JP2014245488 A JP 2014245488A JP 2014245488 A JP2014245488 A JP 2014245488A JP 6406996 B2 JP6406996 B2 JP 6406996B2
Authority
JP
Japan
Prior art keywords
fixing surface
substrate
semiconductor device
semiconductor element
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014245488A
Other languages
Japanese (ja)
Other versions
JP2016111111A (en
Inventor
藤野 純司
純司 藤野
晋助 浅田
晋助 浅田
三紀夫 石原
三紀夫 石原
吉松 直樹
直樹 吉松
井本 裕児
裕児 井本
功 大島
功 大島
洋輔 中田
洋輔 中田
政良 多留谷
政良 多留谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014245488A priority Critical patent/JP6406996B2/en
Publication of JP2016111111A publication Critical patent/JP2016111111A/en
Application granted granted Critical
Publication of JP6406996B2 publication Critical patent/JP6406996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device

Landscapes

  • Die Bonding (AREA)

Description

本発明は、パワーモジュールをはじめとする半導体素子のダイボンドに関するものである。   The present invention relates to die bonding of semiconductor elements including power modules.

産業機器から家電・情報端末まであらゆる製品にパワーモジュールが普及しつつあり、家電に搭載されるモジュールについては、小型化と高効率化が特に求められる。また、動作温度が高く、効率に優れている点で、今後の主流となる可能性の高いSiC半導体に適用できるパッケージ形態であることも同時に求められている。   Power modules are spreading in various products from industrial equipment to home appliances and information terminals, and miniaturization and high efficiency are particularly required for modules installed in home appliances. In addition, it is also required to have a package form that can be applied to SiC semiconductors that are likely to become mainstream in the future because of high operating temperature and excellent efficiency.

パワーモジュールは、輸送・産業機器だけでなく、エアコンなど家電にも普及が進んでおり、長期信頼性だけでなく、小型化と高効率化が求められつつある。小型化に伴い、発熱密度が大きくなると、ダイボンド部の品質(ボイドや未接合部)の放熱性への影響が顕著となる。また、高効率化のためチップの薄型化が進むと、半導体素子自体で熱を拡散することが難しくなり、やはりダイボンド部の品質による放熱性などへの影響が大きくなってきている。従来はボイドや未接合部の発生を抑制するために、真空はんだ付けなど高額な装置を用いたり、スクラブを行うなど工数の大きなプロセスを用いてきたが、根本的なボイドの抑制には至らなかった。さらに高性能なSiC半導体においては、動作温度が従来よりも高くなるため、放熱性の確保がこれまで以上に重要になると考えられている。   Power modules are spreading not only in transportation and industrial equipment but also in home appliances such as air conditioners, and not only long-term reliability but also miniaturization and high efficiency are being demanded. As the heat generation density increases with downsizing, the influence of the quality of the die bond part (void or unjoined part) on the heat dissipation becomes significant. Further, as the chip becomes thinner for higher efficiency, it becomes difficult to diffuse the heat in the semiconductor element itself, and the influence on the heat dissipation and the like due to the quality of the die bond portion is increasing. Conventionally, in order to suppress the generation of voids and unjoined parts, expensive processes such as vacuum soldering have been used and processes that require a large number of man-hours such as scrubbing have been used, but fundamental voids have not been suppressed. It was. Further, in a high-performance SiC semiconductor, the operating temperature is higher than in the past, so it is considered that ensuring heat dissipation is more important than ever.

近年、減圧しながらはんだ付けすることにより、はんだ付け部のボイドを縮小するダイボンド手法が一般化しつつある。しかし、この方法では、減圧時にボイドがパワー半導体素子外周部から抜けるタイミングではんだが弾け、微小なはんだが飛散し、隣接するパワー半導体素子上に付着することでワイヤボンドが困難となるという問題がある。   In recent years, die bonding techniques for reducing voids in soldered portions by soldering while reducing pressure are becoming common. However, with this method, there is a problem in that the wire is difficult to be bonded because the solder repels at the timing when the void is removed from the outer periphery of the power semiconductor element at the time of decompression, and the minute solder scatters and adheres to the adjacent power semiconductor element. is there.

また、半導体素子が薄くなることで剛性が低下し、ワイヤボンド電極の直下に大きなボイドが存在すると、ワイヤボンドの衝撃によってチップが破壊される可能性があった。ボイドを抑制する構造として、特許文献1では、ヒートシンクの底面を角錐状に加工し、はんだ付け時のボイドの抜けを促進するはんだ付け方法が提案されている。   Further, the rigidity of the semiconductor element is reduced due to the thinning of the semiconductor element, and if a large void is present directly under the wire bond electrode, the chip may be broken by the impact of the wire bond. As a structure for suppressing voids, Patent Document 1 proposes a soldering method in which the bottom surface of a heat sink is processed into a pyramid shape to promote void removal during soldering.

特開平07−297329号公報JP 07-297329 A

特許文献1では、ヒートシンクと回路パターンの間のボイドを抑制することはできるが、パワー半導体装置のチップとヒートシンクの間のボイドを抑制することはできない。チップとヒートシンクの間のボイドを、ヒートシンクと回路パターンの間と同様の構成で抑制しようとすると、チップの裏面(ダイボンド面)を薄さ100μmの脆いSiチップに対して機械加工を行うことになるが、この機械加工は困難で、できたとしても加工ひずみが信頼性に影響を与えるという問題がある。   In Patent Document 1, a void between the heat sink and the circuit pattern can be suppressed, but a void between the chip of the power semiconductor device and the heat sink cannot be suppressed. If the void between the chip and the heat sink is suppressed with the same configuration as that between the heat sink and the circuit pattern, the back surface (die bond surface) of the chip is machined on a brittle Si chip having a thickness of 100 μm. However, this machining is difficult, and even if it can be done, there is a problem that the processing strain affects the reliability.

この発明は、上記のような問題点を解決するためになされたものであり、簡単なプロセスでダイボンド部のボイドを抑制できる半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a semiconductor device capable of suppressing voids in a die bond portion by a simple process.

本発明は、半導体素子の一面である素子固着面が基板の一面である基板固着面にはんだにより固着された半導体装置において、素子固着面が基板固着面に対して凹または凸となるよう、半導体素子が湾曲しており、素子固着面と基板固着面との距離が、一方向に漸次増大しているようにした。
The present invention relates to a semiconductor device in which an element fixing surface, which is one surface of a semiconductor element, is fixed to a substrate fixing surface, which is one surface of a substrate, by solder so that the element fixing surface is concave or convex with respect to the substrate fixing surface. The element is curved, and the distance between the element fixing surface and the substrate fixing surface is gradually increased in one direction.

この発明によれば、簡単なプロセスでダイボンド部のボイドが抑制された半導体装置を提供できる。   According to the present invention, it is possible to provide a semiconductor device in which voids in the die bond portion are suppressed by a simple process.

本発明の実施の形態1による半導体装置の構成を示す側面断面図および上面図である。FIG. 2 is a side sectional view and a top view showing the configuration of the semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態1による半導体装置のダイボンドプロセスを示す概念図である。It is a conceptual diagram which shows the die-bonding process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の効果を説明する模式図である。It is a schematic diagram explaining the effect of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の別の構成を示す側面断面図である。It is side surface sectional drawing which shows another structure of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置のさらに別の構成を示す上面図である。It is a top view which shows another structure of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置のさらに別の構成を示す上面図である。It is a top view which shows another structure of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態2による半導体装置の構成を示す側面断面図および上面図である。It is side surface sectional drawing and the top view which show the structure of the semiconductor device by Embodiment 2 of this invention. 本発明の実施の形態2による半導体装置の別の構成を示す上面図である。It is a top view which shows another structure of the semiconductor device by Embodiment 2 of this invention. 本発明の実施の形態3による半導体装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態3による半導体装置のダイボンドプロセスを示す概念図である。It is a conceptual diagram which shows the die-bonding process of the semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態3による半導体装置の詳細構成を示す側面断面図である。It is side surface sectional drawing which shows the detailed structure of the semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態4による半導体装置の詳細構成を示す側面断面図である。It is side surface sectional drawing which shows the detailed structure of the semiconductor device by Embodiment 4 of this invention.

実施の形態1.
図1は、本発明の実施の形態1による半導体装置の構成を示す図であり、図1(a)は側面断面図、図1(b)は上面図である。図2は、本発明の実施の形態1による半導体装置のダイボンドプロセスの概念図である。図2(a)のように、10mm×10mm×1mmのCu製ヒートスプレッダ2上に、エポキシ樹脂製の突起4(直径0.5mm、高さ0.2mm)を、ディスペンサー供給したのち加熱硬化させて2か所に形成する。次に図1(b)のように、例えば5mm×5mm×厚さ0.2mmのはんだリボン31(Sn−Ag−Cu共晶:融点217℃)を配置し、7mm×7mm×厚さ0.2mmのパワー半導体素子1(IGBT:Insulated Gate Bipolar Transistor、裏面メタライズ層:Al
/Ni/Au、表面メタライズ層:AlSi/Ni/Au)を搭載する。最後に図2(c)のように、リフロー炉にて加熱し、はんだを溶融させてはんだダイボンド部32を形成する。はんだダイボンド部32は、突起4のある辺では厚さが0.2mm程度となり、突起のない辺では厚さが0.05mm程度となる。すなわち、半導体素子の辺長7mmでダイボンド部32の厚さが150μm異なるよう、基板であるヒートスプレッダ2の基板固着面201に対し、半導体素子1の素子固着面101が傾いて、すなわち両固着面の距離が、一方向に漸次増大するように固着されている。なお、上記の寸法は、典型的な一例であり、それらの寸法に限らず、使用される半導体素子などにより種々の寸法の半導体装置に本発明を適用できるのは言うまでもない。図1(a)では縦方向、すなわち厚み方向と
横方向の寸法比は、実際の寸法比で示されておらず、本発明の特徴を示すため、厚み方向を横方向に比較して拡大して示している。以後の図面も同様、厚み方向の寸法は、横方向に比較して拡大して示す。
Embodiment 1 FIG.
1A and 1B are diagrams showing a configuration of a semiconductor device according to a first embodiment of the present invention. FIG. 1A is a side sectional view and FIG. 1B is a top view. FIG. 2 is a conceptual diagram of the die bonding process of the semiconductor device according to the first embodiment of the present invention. As shown in FIG. 2A, an epoxy resin projection 4 (diameter 0.5 mm, height 0.2 mm) is heated on a 10 mm × 10 mm × 1 mm Cu heat spreader 2 and then heated and cured. Form in two places. Next, as shown in FIG. 1B, for example, a solder ribbon 31 (Sn—Ag—Cu eutectic: melting point 217 ° C.) having a size of 5 mm × 5 mm × thickness 0.2 mm is disposed, and 7 mm × 7 mm × thickness 0. 2 mm power semiconductor device 1 (IGBT: Insulated Gate Bipolar Transistor, back metallization layer: Al
/ Ni / Au, surface metallized layer: AlSi / Ni / Au). Finally, as shown in FIG. 2C, the solder die bond portion 32 is formed by heating in a reflow furnace and melting the solder. The solder die bond portion 32 has a thickness of about 0.2 mm on the side where the projection 4 is present, and has a thickness of about 0.05 mm on the side where the projection is not present. That is, the element fixing surface 101 of the semiconductor element 1 is inclined with respect to the substrate fixing surface 201 of the heat spreader 2 as a substrate so that the side length of the semiconductor element is 7 mm and the thickness of the die bond portion 32 is different by 150 μm. The distance is fixed so as to gradually increase in one direction. Note that the above dimensions are typical examples, and it goes without saying that the present invention can be applied to semiconductor devices having various dimensions depending on the semiconductor elements used and the like. In FIG. 1 (a), the dimensional ratio between the vertical direction, that is, the thickness direction and the horizontal direction is not shown as an actual dimensional ratio. It shows. Similarly in the subsequent drawings, the dimension in the thickness direction is shown enlarged compared to the horizontal direction.

ボイドの排出機構に関して、はんだ中のボイドの移動原理について説明する。文献”水平の狭い矩形流路内の気泡挙動に関する実験”(日本機械学会論文集(B編)、Vol.61、No.581、(1995)、pp201−207)によれば、平板間に挟まれた液体中の気体は、表面張力の働きにより液体の断面積の大きな方へ移動するとある。本発明の実施の形態1による半導体装置においては、図3の側面断面図を用いた模式図に示すように、はんだダイボンド部32は、突起のない辺から、突起のある辺に向けて、すなわち一方向に向けて厚さが漸次増大している。はんだやパワー半導体素子のメタライズ層から気化成分が出てボイドが発生して複数のボイドがつながって大きくなると、パワー半導体素子1とヒートスプレッダ2に挟まれてボイド51は扁平した形状となる。やがてボイド51は、表面積の小さな球に近い形状を取ることができるように、はんだ厚さの大きい方へ移動して、球形に近いボイド52となる。そのままボイドが外部に排出されることによって、ボイドの低減が可能となる。この際、減圧リフロー炉を用いることで、復圧時にボイドが小さくなることはもちろん、減圧時にボイドが大きくなることで上記の移動が容易となる。なお、ダイボンド部32の厚さがどの程度増大していれば良いかは、はんだ溶融時の粘性などのパラメータにより異なる。   Regarding the void discharge mechanism, the principle of movement of the void in the solder will be described. According to the document "Experiment on bubble behavior in a horizontal narrow rectangular channel" (The Japan Society of Mechanical Engineers (B), Vol.61, No.581, (1995), pp201-207), it is sandwiched between flat plates. The gas in the liquid may move toward the larger cross-sectional area of the liquid due to the action of surface tension. In the semiconductor device according to the first embodiment of the present invention, as shown in the schematic diagram using the side cross-sectional view of FIG. 3, the solder die bond portion 32 is directed from the side having no projection toward the side having the projection, that is, The thickness gradually increases in one direction. When a vaporized component comes out of the metallization layer of the solder or the power semiconductor element and a void is generated and a plurality of voids are connected and enlarged, the void 51 is flattened between the power semiconductor element 1 and the heat spreader 2. Eventually, the void 51 moves toward the larger solder thickness so that it can take a shape close to a sphere with a small surface area, and becomes a void 52 that is close to a sphere. The voids can be reduced by discharging the voids to the outside as they are. At this time, by using the reduced pressure reflow furnace, not only the void is reduced at the time of return pressure, but also the above movement is facilitated by the increase of the void at the time of pressure reduction. Note that how much the thickness of the die bond portion 32 should be increased depends on parameters such as viscosity at the time of melting the solder.

図4は、本発明の実施の形態1による半導体装置の別の構成を示す側面断面図である。半導体素子1が、両面に導電膜が形成されているセラミック基板20にはんだダイボンド部32により固着されている。図1に示した半導体装置と同様、半導体素子1の素子固着面101とセラミック基板20の基板固着面201とは相対的に傾いて、一方向に向けて両固着面の距離が漸次増大している。またセラミック基板20が導体のベース基板21にはんだ33により固着されている。セラミック基板20の他面202とベース基板21の一面211が相対的に傾いて、一方向に向けて両固着面の距離が漸次増大している。このように、ダイオードをはじめとする半導体素子を基板にはんだ付けする場合や、導体層を表裏に形成したセラミック基板をベース基板にはんだ付けする場合であっても、固着面間の距離を一方向に漸次増大するように配置してはんだ付けすることにより、ボイドを抑制できるという効果が得られる。   FIG. 4 is a side sectional view showing another configuration of the semiconductor device according to the first embodiment of the present invention. The semiconductor element 1 is fixed to a ceramic substrate 20 having conductive films formed on both surfaces by solder die bonding portions 32. Similar to the semiconductor device shown in FIG. 1, the element fixing surface 101 of the semiconductor element 1 and the substrate fixing surface 201 of the ceramic substrate 20 are relatively inclined, and the distance between both the fixing surfaces gradually increases in one direction. Yes. The ceramic substrate 20 is fixed to the conductor base substrate 21 with solder 33. The other surface 202 of the ceramic substrate 20 and the one surface 211 of the base substrate 21 are relatively inclined, and the distance between the two fixing surfaces gradually increases in one direction. In this way, even when a semiconductor element such as a diode is soldered to a substrate, or a ceramic substrate having a conductor layer formed on the front and back is soldered to a base substrate, the distance between the fixing surfaces is one-way. By arranging and soldering so as to gradually increase, voids can be suppressed.

また、突起4としてここでは熱硬化型エポキシ樹脂を用いたが、Agフィラーを分散させた導電性接着剤であってもよく、AlやCu製のワイヤボンドを用いても突起の形成が可能となる。また、CuやNi製のボール状スペーサをパワー半導体素子1の素子固着面とヒートスプレッダの基板固着面との間に設置しても同様の効果が得られる。さらに突起を、はんだ付けを行う下層のヒートスプレッダやセラミック基板側ではなく、上層のパワー半導体素子1の素子固着面に形成しても同様の効果が得られる。また、はんだ材としてここではSn−Ag−Cu共晶はんだを用いたが、Sn−Cu系やSn−Pb系など他の組成のはんだ材でも同様の効果が得られる。   Moreover, although the thermosetting epoxy resin was used here as the protrusion 4, a conductive adhesive in which an Ag filler is dispersed may be used, and the protrusion can be formed even by using a wire bond made of Al or Cu. Become. Further, the same effect can be obtained by installing a ball-like spacer made of Cu or Ni between the element fixing surface of the power semiconductor element 1 and the substrate fixing surface of the heat spreader. Further, the same effect can be obtained by forming the protrusion on the element fixing surface of the upper power semiconductor element 1 instead of the lower layer heat spreader or the ceramic substrate side to be soldered. In addition, Sn—Ag—Cu eutectic solder is used here as the solder material, but the same effect can be obtained with a solder material having other composition such as Sn—Cu series or Sn—Pb series.

また、図1では、突起4を2個設けたが、図5に示すように、1個の突起を設けるだけでもよい。さらに図6に示すように、高さの大きな突起41(例えば高さ0.2mm程度)と小さな突起42(例えば高さ0.1mm程度)を対向する2辺に2個ずつ配置することによって、突起のない辺のはんだ高さが小さくなり過ぎて、熱膨張係数差による歪が大きくなることで温度サイクル性が低下するのを防止することが可能となる。   Further, although two protrusions 4 are provided in FIG. 1, only one protrusion may be provided as shown in FIG. Further, as shown in FIG. 6, by arranging two projections 41 having a large height (for example, about 0.2 mm in height) and two small projections 42 (for example having a height of about 0.1 mm) on two opposing sides, It is possible to prevent the temperature cycle performance from deteriorating due to an excessively small solder height on the side having no protrusion and a large distortion due to a difference in thermal expansion coefficient.

以上説明したように、本発明の実施の形態1による半導体装置によれば、半導体素子1の素子固着面101とヒートスプレッダ2などの基板の基板固着面201との間の距離を一方向に向けて漸次増大させたので、はんだが溶融中にボイドが外部に排出され、ダイボンド部のボイドを抑制することができる。具体的な構成方法の一つとして、突起4やスペーサといった、素子固着面101と基板固着面201の距離を保つ離隔部材を、半導体素子1の素子固着面101の中央から偏った位置に少なくとも1個設けることにより、離隔部材の位置と高さ、および半導体素子1の寸法により決定される傾きで、半導体素子1の素子固着面101とヒートスプレッダ2などの基板の基板固着面201との間の距離を一方向に向けて漸次増大させることができる。   As described above, according to the semiconductor device according to the first embodiment of the present invention, the distance between the element fixing surface 101 of the semiconductor element 1 and the substrate fixing surface 201 of the substrate such as the heat spreader 2 is directed in one direction. Since it is gradually increased, voids are discharged to the outside while the solder is melted, and voids in the die bond portion can be suppressed. As one specific configuration method, a separation member that maintains the distance between the element fixing surface 101 and the substrate fixing surface 201, such as the protrusion 4 or the spacer, is at least 1 at a position offset from the center of the element fixing surface 101 of the semiconductor element 1. The distance between the element fixing surface 101 of the semiconductor element 1 and the substrate fixing surface 201 of the substrate such as the heat spreader 2 with the inclination is determined by the position and height of the separating member and the dimension of the semiconductor element 1 Can be gradually increased in one direction.

また、一面に半導体素子1が固着された基板20の他面202とベース基板21の一面211がはんだにより固着された半導体装置において、基板20の他面202とベース基板21の一面211との距離を、一方向に向けて漸次増大させることによって、はんだが溶融中にボイドが外部に排出され、ダイボンド部のボイドを抑制することができる。この場合も、具体的な構成方法の一つとして、突起40やスペーサといった、基板20の他面202とベース基板21の一面211との距離を保つ離隔部材を、基板20の他面202の中央から偏った位置に少なくとも1個設けることにより、離隔部材の位置と高さ、および基板20の寸法により決定される傾きで、基板20の他面202とベース基板21の一面211との間の距離を一方向に向けて漸次増大させることができる。   In the semiconductor device in which the other surface 202 of the substrate 20 to which the semiconductor element 1 is fixed on one surface and the one surface 211 of the base substrate 21 are fixed by solder, the distance between the other surface 202 of the substrate 20 and the one surface 211 of the base substrate 21. Is gradually increased in one direction, voids are discharged to the outside while the solder is melted, and voids in the die bond portion can be suppressed. Also in this case, as one specific configuration method, a separation member that maintains the distance between the other surface 202 of the substrate 20 and the one surface 211 of the base substrate 21, such as the protrusion 40 and the spacer, is the center of the other surface 202 of the substrate 20. The distance between the other surface 202 of the substrate 20 and the one surface 211 of the base substrate 21 with an inclination determined by the position and height of the separating member and the dimensions of the substrate 20 is provided. Can be gradually increased in one direction.

実施の形態2.
図7(a)および図7(b)は、それぞれ本発明の実施の形態2による半導体装置の構成を示す側面断面図および上面図である。本実施の形態2では一つの基板に複数の半導体素子を固着する場合の実施の形態である。例えば図7に示すように、パワー半導体素子であるIGBT11と対で使用することで1in1パッケージを構成するパワー半導体素子であるダイオード12をヒートスプレッダ2に並べてダイボンドする場合がある。この場合、突起4をそれぞれ外側に形成することで、はんだダイボンド部32の厚い部分をそれぞれの外側にする。このように配置することでボイドが抜ける方向を、隣り合う半導体素子に対して反対側に制御することが可能となり、ボイドが弾ける際のはんだ飛散による、隣り合う半導体素子上へのはんだ付着を防止することが可能となる。
Embodiment 2. FIG.
7A and 7B are a side sectional view and a top view, respectively, showing the configuration of the semiconductor device according to the second embodiment of the present invention. In the second embodiment, a plurality of semiconductor elements are fixed to one substrate. For example, as shown in FIG. 7, there are cases where diodes 12, which are power semiconductor elements constituting a 1 in 1 package, are paired with a heat spreader 2 and die-bonded when used in pairs with IGBTs 11, which are power semiconductor elements. In this case, by forming the protrusions 4 on the outer sides, the thick portions of the solder die bond portions 32 are on the outer sides. By arranging in this way, it is possible to control the direction in which the void is removed to the opposite side with respect to the adjacent semiconductor element, preventing solder adhesion on the adjacent semiconductor element due to solder scattering when the void is flipped. It becomes possible to do.

さらに、図8に示すように、IGBT11とダイオード12との対を複数、同じヒートスプレッダ2に並べてダイボンドする場合もある。このような場合、一の半導体素子の素子固着面と固着相手であるヒートスプレッダ2のような基板の基板固着面との距離が漸次増大する方向には、隣り合う半導体素子が存在しないように配置すればよい。   Further, as shown in FIG. 8, a plurality of pairs of IGBTs 11 and diodes 12 may be arranged on the same heat spreader 2 and die bonded. In such a case, the adjacent semiconductor elements are not present in the direction in which the distance between the element fixing surface of one semiconductor element and the substrate fixing surface of the substrate such as the heat spreader 2 which is the fixing partner gradually increases. That's fine.

実施の形態3.
図9は本発明の実施の形態3による半導体装置の構成を示す側面断面図、図10は実施の形態3による半導体装置のダイボンドプロセスの概念図である。図10(a)に示すように、10mm×10mm×1mmのCu製ヒートスプレッダ2上に、エポキシ樹脂製の突起4(例えば直径0.5mm、高さ0.2mm)を、ディスペンサー供給したのち加熱硬化させて2か所に形成する。次に図10(b)のように、5mm×5mm×厚さ0.2mmのはんだリボン31(Sn−Ag−Cu共晶:融点217℃)を配置し、回路面(上面)に凸のそりを付与した、7mm×7mm×厚さ0.2mmのパワー半導体素子13(IGBT:Insulated Gate Bipolar Transistor、裏面メタライズ層:Al/Ni/Au、表面メタライズ層:AlSi/Ni/Au)を搭載する。最後に図10(c)のように、リフロー炉にて加熱し、はんだを溶融させてはんだダイボンド部32を形成する。はんだダイボンド部32は、突起4のある辺では厚さが0.2mm程度となり、突起のない辺では厚さが0.05mm程度となる。この際、減圧リフロー炉を用いることで、復圧時にボイドが小さくなることはもちろん、減圧時にボイドが大きくなることで上記の移動が容易となる。
Embodiment 3 FIG.
FIG. 9 is a side sectional view showing the configuration of the semiconductor device according to the third embodiment of the present invention, and FIG. 10 is a conceptual diagram of the die bonding process of the semiconductor device according to the third embodiment. As shown in FIG. 10A, an epoxy resin protrusion 4 (for example, a diameter of 0.5 mm and a height of 0.2 mm) is dispensed on a 10 mm × 10 mm × 1 mm Cu heat spreader 2 and then heat-cured. To form in two places. Next, as shown in FIG. 10B, a solder ribbon 31 (Sn—Ag—Cu eutectic: melting point 217 ° C.) having a size of 5 mm × 5 mm × thickness 0.2 mm is disposed, and a convex warp on the circuit surface (upper surface). The power semiconductor element 13 (IGBT: Insulated Gate Bipolar Transistor, back surface metallization layer: Al / Ni / Au, surface metallization layer: AlSi / Ni / Au) having a thickness of 7 mm × 7 mm × thickness 0.2 mm is mounted. Finally, as shown in FIG. 10C, the solder die bond portion 32 is formed by heating in a reflow furnace to melt the solder. The solder die bond portion 32 has a thickness of about 0.2 mm on the side where the projection 4 is present, and has a thickness of about 0.05 mm on the side where the projection is not present. At this time, by using the reduced pressure reflow furnace, not only the void is reduced at the time of return pressure, but also the above movement is facilitated by the increase of the void at the time of pressure reduction.

図9に示すように、パワー半導体素子13にはそりが付与されて、固着面側が凹となるよう湾曲している。パワー半導体素子13が湾曲しているため、素子固着面101と基板固着面201の距離の変化率が位置によって異なる。このため、突起4部分において、素子固着面101の傾斜が緩やかとなり、すなわち素子固着面101と基板固着面201の距離の変化率が小さくなり、パワー半導体素子の回路面がほぼ平坦に近い状態となる。この平坦に近い状態の部分にワイヤボンド5を形成することで、比較的広い面積で良好な接合状態を保つことができ、信頼性の確保が可能となる。   As shown in FIG. 9, the power semiconductor element 13 is warped and curved so that the fixing surface side is concave. Since the power semiconductor element 13 is curved, the rate of change in the distance between the element fixing surface 101 and the substrate fixing surface 201 varies depending on the position. For this reason, in the protrusion 4 portion, the inclination of the element fixing surface 101 becomes gentle, that is, the rate of change of the distance between the element fixing surface 101 and the substrate fixing surface 201 becomes small, and the circuit surface of the power semiconductor element is almost flat. Become. By forming the wire bond 5 in the portion in a nearly flat state, a good bonding state can be maintained over a relatively wide area, and reliability can be ensured.

詳細には、図11に示すように、IGBTは主端子132(エミッタ端子)の接続は電極板6に対するはんだ付け33等で回路形成することが可能であり、その場合にはパワー半導体素子の平坦度は要求されないが、ゲート端子133や温度センス端子はワイヤボンドにより接続される場合が依然多く、その場合にはパワー半導体素子の平坦度が信頼性上重要となる。よって、パワー半導体素子のこれらのワイヤボンド接続部は平坦である必要がある。Si基材部分130の回路面(上面)にあるゲート端子133や主端子132のメタライズ厚さを、裏面のメタライズ層131に比較して薄く形成して、それぞれの面で生じる膜応力に差を設けることで、パワー半導体素子にそりを付与することが可能となる。膜厚に差異を設けることが困難な場合でも、ゲート端子133や主端子132の合計面積を、裏面メタライズの面積より小さくすることでも可能となる。   In detail, as shown in FIG. 11, the IGBT can be connected to the main terminal 132 (emitter terminal) by soldering 33 to the electrode plate 6 or the like. In that case, the power semiconductor element is flattened. However, the gate terminal 133 and the temperature sense terminal are still often connected by wire bonds, and in that case, the flatness of the power semiconductor element is important for reliability. Therefore, these wire bond connecting portions of the power semiconductor element need to be flat. The metallization thickness of the gate terminal 133 and the main terminal 132 on the circuit surface (upper surface) of the Si base portion 130 is formed thinner than the metallization layer 131 on the back surface, and the difference in film stress generated on each surface is different. By providing, it becomes possible to give a warp to the power semiconductor element. Even when it is difficult to provide a difference in film thickness, it is possible to make the total area of the gate terminal 133 and the main terminal 132 smaller than the area of the back surface metallization.

ここでは、パワー半導体素子をヒートスプレッダにダイボンドする場合について示したが、半導体素子としては、パワー半導体素子だけではなく、ダイオードをはじめとするその他の半導体素子であっても、また半導体素子を固着する相手が、セラミック基板であっても同様の効果が得られる。また、導体層を表裏に形成し、一面に半導体素子が固着されたセラミック基板を導体のベース基板にはんだ付けする場合であっても、半導体素子が固着されたセラミック基板にそりを付与し、固着面間の距離を一方向に漸次増大するように配置してはんだ付けすることにより、ボイドを抑制できるという効果が得られる。   Here, the case where the power semiconductor element is die-bonded to the heat spreader has been described. However, the semiconductor element is not limited to the power semiconductor element but may be other semiconductor elements such as a diode, and the semiconductor element may be fixed. However, the same effect can be obtained even with a ceramic substrate. In addition, even when a ceramic layer with a semiconductor element fixed on one side is soldered to the base substrate of the conductor, a warp is applied to the ceramic substrate to which the semiconductor element is fixed. By arranging and soldering so that the distance between the surfaces gradually increases in one direction, an effect of suppressing voids can be obtained.

また、突起4としてここでは熱硬化型エポキシ樹脂を用いたが、Agフィラーを分散させた導電性接着剤であってもよく、AlやCu製のワイヤボンドを用いても突起の形成が可能となる。また、CuやNi製のボール状スペーサを配置しても同様の効果が得られる。さらに突起をはんだ付けを行う下層のヒートスプレッダやセラミック基板側ではなく、上層のパワー半導体素子やセラミック基板の底面に形成しても同様の効果が得られる。   Moreover, although the thermosetting epoxy resin was used here as the protrusion 4, a conductive adhesive in which an Ag filler is dispersed may be used, and the protrusion can be formed even by using a wire bond made of Al or Cu. Become. Further, the same effect can be obtained even when a ball-shaped spacer made of Cu or Ni is arranged. Further, the same effect can be obtained if the protrusions are formed not on the lower heat spreader or the ceramic substrate side where the soldering is performed but on the bottom surface of the upper power semiconductor element or the ceramic substrate.

また、はんだ材としてここではSn−Ag−Cu共晶はんだを用いたが、Sn−Cu系やSn−Pb系など他の組成のはんだ材でも同様の効果が得られる。また、ここではパワー半導体素子13上面の主端子132の電気的接合にはんだ付けを用いたが、導電性接着剤やAgナノパウダ等を用いても同様の効果が得られる。   In addition, Sn—Ag—Cu eutectic solder is used here as the solder material, but the same effect can be obtained with a solder material having other composition such as Sn—Cu series or Sn—Pb series. Here, soldering is used for electrical joining of the main terminals 132 on the upper surface of the power semiconductor element 13, but the same effect can be obtained by using a conductive adhesive or Ag nanopowder.

実施の形態4.
図12は本発明の実施の形態4による半導体装置の詳細な構成を示す側面断面図である。10mm×10mm×1mmのCu製ヒートスプレッダ2上に、エポキシ樹脂製の突起4(直径0.5mm、高さ0.2mm)を、ディスペンサー供給したのち加熱硬化させて2か所に形成する。次に、5mm×5mm×厚さ0.2mmのはんだリボン31(Sn−Ag−Cu共晶:融点217℃)を配置し、素子固着面101側に凸となるようそりを付与した、7mm×7mm×厚さ0.2mmのパワー半導体素子13(IGBT:Insulated Gate Bipolar Transistor、裏面メタライズ層:Al/Ni/Au、表面メタライズ層:AlSi/Ni/Au)を搭載する。最後に、リフロー炉にて加熱し、はんだを溶融させてはんだダイボンド部32を形成する。はんだダイボンド部32は、突起4のある辺では厚さが0.2mm程度となり、突起のない辺では厚さが0.05mm程度となる。この際、減圧リフロー炉を用いることで、復圧時にボイドが小さくなることはもちろん、減圧時にボイドが大きくなることで上記の移動が容易となる。
Embodiment 4 FIG.
FIG. 12 is a side sectional view showing a detailed configuration of the semiconductor device according to the fourth embodiment of the present invention. On the heat spreader 2 made of Cu of 10 mm × 10 mm × 1 mm, epoxy resin projections 4 (diameter 0.5 mm, height 0.2 mm) are supplied to a dispenser and then heat-cured to form in two places. Next, a solder ribbon 31 (Sn—Ag—Cu eutectic: melting point 217 ° C.) of 5 mm × 5 mm × thickness 0.2 mm was placed, and a warp was applied to the element fixing surface 101 side so as to be convex, 7 mm × A power semiconductor element 13 (IGBT: Insulated Gate Bipolar Transistor, back surface metallization layer: Al / Ni / Au, surface metallization layer: AlSi / Ni / Au) of 7 mm × 0.2 mm thickness is mounted. Finally, it is heated in a reflow furnace to melt the solder and form the solder die bond portion 32. The solder die bond portion 32 has a thickness of about 0.2 mm on the side where the projection 4 is present, and has a thickness of about 0.05 mm on the side where the projection is not present. At this time, by using the reduced pressure reflow furnace, not only the void is reduced at the time of return pressure, but also the above movement is facilitated by the increase of the void at the time of pressure reduction.

図12に示すように、パワー半導体素子13にはそりが付与されて、固着面側に凸となるよう湾曲している。パワー半導体素子13が湾曲しているため、素子固着面101と基板固着面201の距離の変化率が位置によって異なる。このため、突起4の無い側において、素子固着面101と基板固着面201の距離の変化率が小さくなり、突起4のない側のパワー半導体素子13の回路面がほぼ平坦に近い状態となる。この平坦に近い状態の部分にワイヤボンド5を形成することで、比較的広い面積で良好な接合状態を保つことができ、信頼性の確保が可能となる。詳細には、図12に示すように、IGBTは主端子132(エミッタ端子)の接続は電極板6に対するはんだ付け33等で回路形成することが可能であり、その場合にはパワー半導体素子の平坦度は要求されないが、ゲート端子133や温度センス端子はワイヤボンドにより接続される場合が依然多く、その場合にはパワー半導体素子の平坦度が信頼性上重要となる。よって、パワー半導体素子13のこれらのワイヤボンド接続部は平坦である必要がある。パワー半導体素子13にそりを付与するには、Si基材部分130の回路面(上面)にあるゲート端子133や主端子132のメタライズ厚さを、裏面のメタライズ層131に比較して厚く形成することで、それぞれの面で生じる膜応力に差を設けることで可能となる。   As shown in FIG. 12, the power semiconductor element 13 is warped and curved so as to protrude toward the fixing surface. Since the power semiconductor element 13 is curved, the rate of change in the distance between the element fixing surface 101 and the substrate fixing surface 201 varies depending on the position. For this reason, the rate of change of the distance between the element fixing surface 101 and the substrate fixing surface 201 becomes small on the side without the projection 4, and the circuit surface of the power semiconductor element 13 on the side without the projection 4 becomes almost flat. By forming the wire bond 5 in the portion in a nearly flat state, a good bonding state can be maintained over a relatively wide area, and reliability can be ensured. Specifically, as shown in FIG. 12, the IGBT can be connected to the main terminal 132 (emitter terminal) by soldering 33 to the electrode plate 6 or the like, and in this case, the power semiconductor element is flattened. However, the gate terminal 133 and the temperature sense terminal are still often connected by wire bonds, and in that case, the flatness of the power semiconductor element is important for reliability. Therefore, these wire bond connecting portions of the power semiconductor element 13 need to be flat. In order to give warpage to the power semiconductor element 13, the metallized thickness of the gate terminal 133 and the main terminal 132 on the circuit surface (upper surface) of the Si base portion 130 is formed thicker than the metallized layer 131 on the back surface. This is possible by providing a difference in the film stress generated on each surface.

ここでは、パワー半導体素子をヒートスプレッダにダイボンドする場合について示したが、半導体素子としては、パワー半導体素子だけではなく、ダイオードをはじめとするその他の半導体素子であっても、また半導体素子を固着する相手が、セラミック基板であっても同様の効果が得られる。また、導体層を表裏に形成し、一面に半導体素子が固着されたセラミック基板の他面を導体のベース基板にはんだ付けする場合であっても、半導体素子が固着されたセラミック基板にそりを付与し、固着面間の距離を一方向に漸次増大するように配置してはんだ付けすることにより、ボイドを抑制できるという効果が得られる。   Here, the case where the power semiconductor element is die-bonded to the heat spreader has been described. However, the semiconductor element is not limited to the power semiconductor element but may be other semiconductor elements such as a diode, and the semiconductor element may be fixed. However, the same effect can be obtained even with a ceramic substrate. In addition, even when the conductor layer is formed on the front and back, and the other surface of the ceramic substrate with the semiconductor element fixed on one side is soldered to the base substrate of the conductor, the ceramic substrate with the semiconductor element fixed is warped. And the effect that a void can be suppressed is acquired by arrange | positioning and soldering so that the distance between fixed surfaces may increase gradually to one direction.

また、突起4としてここでは熱硬化型エポキシ樹脂を用いたが、Agフィラーを分散させた導電性接着剤であってもよく、AlやCu製のワイヤボンドを用いても突起の形成が可能となる。また、CuやNi製のボール状スペーサを用いても同様の効果が得られる。さらに突起をはんだ付けを行う下層のヒートスプレッダやセラミック基板側ではなく、上層のパワー半導体素子やセラミック基板の底面に形成しても同様の効果が得られる。   Moreover, although the thermosetting epoxy resin was used here as the protrusion 4, a conductive adhesive in which an Ag filler is dispersed may be used, and the protrusion can be formed even by using a wire bond made of Al or Cu. Become. The same effect can be obtained by using a ball spacer made of Cu or Ni. Further, the same effect can be obtained if the protrusions are formed not on the lower heat spreader or the ceramic substrate side where the soldering is performed but on the bottom surface of the upper power semiconductor element or the ceramic substrate.

また、はんだ材としてここではSn−Ag−Cu共晶はんだを用いたが、Sn−Cu系やSn−Pb系など他の組成のはんだ材でも同様の効果が得られる。また、ここではパワー半導体素子13上面の主端子132の電気的接合にはんだ付けを用いたが、導電性接着剤やAgナノパウダ等を用いても同様の効果が得られる。   In addition, Sn—Ag—Cu eutectic solder is used here as the solder material, but the same effect can be obtained with a solder material having other composition such as Sn—Cu series or Sn—Pb series. Here, soldering is used for electrical joining of the main terminals 132 on the upper surface of the power semiconductor element 13, but the same effect can be obtained by using a conductive adhesive or Ag nanopowder.

なお、本発明は、その発明の範囲内において、各実施の形態を適宜、組み合わせ、変形、省略したりすることが可能である。   In the present invention, the embodiments can be appropriately combined, modified, and omitted within the scope of the invention.

1 パワー半導体素子、2 ヒートスプレッダ、11 IGBT、12 ダイオード、13 そりを付与したパワー半導体素子、4 突起(離隔部材)、5 ワイヤボンド、20 セラミック基板、21 ベース基板、31 はんだリボン、32 はんだダイボンド部、101 素子固着面、133 ゲート端子(ワイヤボンド接続部)、201 基板固着面、202 セラミック基板の他面、211 ベース基板の一面 DESCRIPTION OF SYMBOLS 1 Power semiconductor element, 2 Heat spreader, 11 IGBT, 12 Diode, 13 Power semiconductor element which provided the warp, 4 Protrusion (separation member), 5 Wire bond, 20 Ceramic substrate, 21 Base substrate, 31 Solder ribbon, 32 Solder die bond part , 101 Device fixing surface, 133 Gate terminal (wire bond connection part), 201 Substrate fixing surface, 202 Other surface of ceramic substrate, 211 One surface of base substrate

Claims (9)

半導体素子の一面である素子固着面が基板の一面である基板固着面にはんだにより固着された半導体装置において、
前記素子固着面が前記基板固着面に対して凹または凸となるよう、前記半導体素子が湾曲しており、
前記素子固着面と前記基板固着面との距離が、一方向に漸次増大していることを特徴とする半導体装置。
In a semiconductor device in which an element fixing surface which is one surface of a semiconductor element is fixed to a substrate fixing surface which is one surface of a substrate by solder,
The semiconductor element is curved such that the element fixing surface is concave or convex with respect to the substrate fixing surface,
A distance between the element fixing surface and the substrate fixing surface is gradually increased in one direction.
前記素子固着面が前記基板固着面に対して凹となるよう、前記半導体素子が湾曲していることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor element is curved so that the element fixing surface is concave with respect to the substrate fixing surface. 前記素子固着面と前記基板固着面との間であって、前記素子固着面の中央から偏った位置に、前記素子固着面と前記基板固着面との距離を保つ離隔部材を設けたことを特徴とする請求項1または2に記載の半導体装置。 A separation member for maintaining a distance between the element fixing surface and the substrate fixing surface is provided at a position between the element fixing surface and the substrate fixing surface and deviating from a center of the element fixing surface. The semiconductor device according to claim 1 or 2 . 前記離隔部材は、前記基板固着面に形成された突起であることを特徴とする請求項に記載の半導体装置。 The semiconductor device according to claim 3 , wherein the separation member is a protrusion formed on the substrate fixing surface. 前記離隔部材は、前記素子固着面と前記基板固着面との間に設置されたスペーサであることを特徴とする請求項に記載の半導体装置。 The semiconductor device according to claim 3 , wherein the separation member is a spacer disposed between the element fixing surface and the substrate fixing surface. 前記基板の一面に、複数の半導体素子が固着されており、一の半導体素子の素子固着面と前記基板固着面との距離が漸次増大する方向には、隣り合う半導体素子が存在しないことを特徴とする請求項1からのいずれか1項に記載の半導体装置。 A plurality of semiconductor elements are fixed to one surface of the substrate, and there are no adjacent semiconductor elements in a direction in which the distance between the element fixing surface of one semiconductor element and the substrate fixing surface gradually increases. The semiconductor device according to any one of claims 1 to 5 . 前記素子固着面と前記基板固着面との距離の変化率が小さい側であって、前記半導体素子の前記素子固着面と反対側の面にワイヤボンド接続部が配置されたことを特徴とする請求項1または2に記載の半導体装置。 The wire bond connection portion is disposed on a surface of the semiconductor element on a side opposite to the element fixing surface on a side where a change rate of a distance between the element fixing surface and the substrate fixing surface is small. Item 3. The semiconductor device according to Item 1 or 2 . 前記素子固着面と前記基板固着面との距離の変化率が大きい側であって、前記半導体素子の前記素子固着面と反対側の面に前記半導体素子の主端子が配置されており、前記主端子が板状電極板と接続されていることを特徴とする請求項7に記載の半導体装置。The main terminal of the semiconductor element is disposed on the surface of the semiconductor element opposite to the element fixing surface, on the side where the change rate of the distance between the element fixing surface and the substrate fixing surface is large. 8. The semiconductor device according to claim 7, wherein the terminal is connected to a plate electrode plate. 前記素子固着面と前記基板固着面との間に、両面が導体層である板状部材が配置され、前記素子固着面と前記板状部材との間、および前記板状部材と前記基板固着面との間が、反対方向に、それぞれ一方向に漸次増大していることを特徴とする請求項1に記載の半導体装置。Between the element fixing surface and the substrate fixing surface, a plate-like member having a conductor layer on both sides is disposed, between the element fixing surface and the plate-like member, and between the plate-like member and the substrate fixing surface. 2. The semiconductor device according to claim 1, wherein the distance between and increases gradually in one direction in the opposite direction.
JP2014245488A 2014-12-04 2014-12-04 Semiconductor device Active JP6406996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245488A JP6406996B2 (en) 2014-12-04 2014-12-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245488A JP6406996B2 (en) 2014-12-04 2014-12-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2016111111A JP2016111111A (en) 2016-06-20
JP6406996B2 true JP6406996B2 (en) 2018-10-17

Family

ID=56124777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245488A Active JP6406996B2 (en) 2014-12-04 2014-12-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6406996B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6745901B2 (en) * 2016-11-21 2020-08-26 三菱電機株式会社 Semiconductor device
KR102422569B1 (en) * 2019-12-27 2022-07-20 주식회사 아모그린텍 Ribbon for brazing and manufacturing method thereof
JP7392632B2 (en) * 2020-11-06 2023-12-06 三菱電機株式会社 Semiconductor device, die pad, and semiconductor device manufacturing method
WO2023209766A1 (en) * 2022-04-25 2023-11-02 三菱電機株式会社 Semiconductor device and method for producing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322010A (en) * 1997-05-16 1998-12-04 Toyota Motor Corp Component bonding method and component used in the method
JP2004349545A (en) * 2003-05-23 2004-12-09 Mitsubishi Electric Corp Mounting method of imaging device

Also Published As

Publication number Publication date
JP2016111111A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP5579402B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
TWI485817B (en) Microelectronic packages with enhanced heat dissipation and methods of manufacturing
US7863731B2 (en) Heat-dissipating structure and heat-dissipating semiconductor package having the same
JP6487122B2 (en) Power semiconductor device
TW202107651A (en) Semiconductor device
KR20090062612A (en) Multi chip package
JP2009295959A (en) Semiconductor device, and method for manufacturing thereof
TWI691248B (en) Electronic module and method for manufacturing electronic module
JP6287789B2 (en) Power module and manufacturing method thereof
JP5214936B2 (en) Semiconductor device
US8786064B2 (en) Semiconductor package and method for manufacturing the same and semiconductor package module having the same
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
JP6406996B2 (en) Semiconductor device
JP4494240B2 (en) Resin-sealed semiconductor device
JP2019071412A (en) Chip package
JP2005064479A (en) Circuit module
JP6213554B2 (en) Semiconductor device
JP2012015225A (en) Semiconductor device
KR102163662B1 (en) Dual side cooling power module and manufacturing method of the same
JP2012009655A (en) Semiconductor package and method of manufacturing the semiconductor package
US20080164604A1 (en) Heat dissipating semiconductor package
JP6747304B2 (en) Power semiconductor device
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP2013069988A (en) Semiconductor device and method of manufacturing the same
EP3751603A3 (en) Semiconductor package with a heat sink bonded to a semiconductor chip with a bonding layer and to a molding material with a thermal interface material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R151 Written notification of patent or utility model registration

Ref document number: 6406996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250