CN101808934A - 生产氢的方法、氢生产系统及燃料电池系统 - Google Patents

生产氢的方法、氢生产系统及燃料电池系统 Download PDF

Info

Publication number
CN101808934A
CN101808934A CN200880108856A CN200880108856A CN101808934A CN 101808934 A CN101808934 A CN 101808934A CN 200880108856 A CN200880108856 A CN 200880108856A CN 200880108856 A CN200880108856 A CN 200880108856A CN 101808934 A CN101808934 A CN 101808934A
Authority
CN
China
Prior art keywords
hydrogen
jar
reaction
technology
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880108856A
Other languages
English (en)
Other versions
CN101808934B (zh
Inventor
丹下恭一
小岛由继
市川贵之
大松千绘
日野聪
藤井博信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Toyota Motor Corp
Original Assignee
Hiroshima University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Toyota Motor Corp filed Critical Hiroshima University NUC
Publication of CN101808934A publication Critical patent/CN101808934A/zh
Application granted granted Critical
Publication of CN101808934B publication Critical patent/CN101808934B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

一种生产氢的方法,其包括:第一工艺,其中金属的氮化合物与水反应生产氨和金属的氢氧化物;第二工艺,其中金属的氢化合物和第一工艺中生产的氨发生反应;和第三工艺,其中金属的氢化物与第一工艺中生产的金属的氢氧化物发生反应。

Description

生产氢的方法、氢生产系统及燃料电池系统
发明背景
1.发明领域
本发明涉及生产氢的方法,用于实施生产氢的方法的氢生产系统,以及引入氢生产系统的燃料电池系统。
2.背景技术描述
近年来,作为解决全球变暖问题的关键技术之一,人们对燃料电池系统广泛地开展了各种探索和研究。燃料电池是由电解质层(electrolyte layer)和一对电极构成,并引起电化学反应。每个燃料电池中的电化学反应会产生电能,并输出电能。在各种燃料电池系统中,热电联合系统(cogenerationsystem)和一般用于汽车等等的固态-聚合物型燃料电池系统(称为“PEFC”)利用了含氢气体和含氧气体。因此,为了将此PEFC投入到实际应用中,可靠的氢的生产技术和氢的储存技术是必要的。
迄今为止,那些已经被提出的氢的储存技术包括压缩氢气然后将其储存于高压氢气罐中、将液态氢储存在液态氢罐中,以及将吸附氢的氢吸附材料(在必要时称为“氢的生产材料”)储存在罐中。然而,在应用高压氢气罐的情况下,大体积的高压氢气罐使其难以提供一个紧凑的系统,且其还需要高的增压能量来增加氢气压力使其达到理想的高水平,而这并不具有效率。在使用液态氢罐的情况下,存在一些问题。例如,由于必须连续地冷却氢使其温度保持在极低的温度(-253℃或更低),倾向于消耗大量的能量来保证氢得到适当地储存,且同时其难以避免所谓的“蒸发损耗”,即,由于热从外界进入液态氢罐致使液态氢蒸发。由于在使氢得到适当储存的过程中倾向于消耗少量的能量且更适合用来避免“蒸发损耗”,PTFC受到了人们的重视。
公开的PCT申请No.2002-526658的日语译文(JP-A-2002-526658)描述了涉及氢吸附材料的技术。这一公开文本提出了具有高氢容量的,且能够在高比率下不可逆地提高氢量的锂基团氢化合物。进一步地,日本专利申请公开文本No.2005-154232(JP-A-2005-154232)描述了涉及氢储存材料的技术。在该公开文本中描述的氢储存材料是由金属的氢化合物和氨构成的,且氢是通过金属的氢化合物和氨之间的反应生成的。进一步地,日本专利申请公开文本No.2006-182598(JP-A-2006-182598)描述了涉及氢的生产的技术。这一公开文本提出了氢生产系统,其通过用未分离的氢进行反应而生成有机氢化物来重复利用副产物。
人们认为通过利用在JP-A-2002-526658中描述的氢储存材料使从小质量中生产大量氢成为可能。然而,该氢储存材料的氢生成反应的温度范围是约200到300℃,因此引起该反应的热需要从外部提供。由于这个原因,如果该氢储存材料用于氢生产系统,所述系统的整个电力生产效率倾向于降低,这是人们不希望出现的。同时,人们认为利用在JP-A-2005-154232中描述的氢储存材料使得有可能生产大量氢。然而,由于用于生产氢的氨需要预先完全地储存在生产氢的系统中,需要在氢生产系统中另外引入控制氨的气味的系统,因此这一氢储存材料不适于用在交通工具中。进一步地,根据在JP-A-2006-182598中描述的技术,利用生成的适合于氢的生产的有机氢化物,氢的生产能够循环进行。然而,有机氢化物(其代表为十氢化萘等)的单位物质生成的氢的量(将被称作“氢容量”)是相对小的,且有机氢化物的氢生成反应出现在约200到350℃的温度范围内,其在如JP-A-2002-526658的情况下一样是不合需要的。
为了实现可持续的氢社会,需要用少量能量生产氢,需要再次使用或循环氢生产材料,需要避免在氢的生产上以及在氢生产材料的再次使用或再循环上新产生废物,并且需要利用具有大的氢容量的氢生产材料。然而,人们认为迄今为止提出的氢生产材料中没有哪种符合所有这些要求。也就是说,迄今为止提出的氢生产材料没有一种符合这些一般要求且适合用于小型车辆。
发明概述
本发明提供了可用于实现可持续氢社会的生产氢的方法,适合于实施该生产氢的方法的氢生产系统,以及引入该氢生产系统的燃料电池系统。
本发明的第一方面涉及生产氢的方法,其包括:第一工艺,其中金属的氮化合物和水反应生成氨和金属的氢氧化物;第二工艺,其中金属的氢化合物和第一工艺中生成的氨起反应;和第三工艺,其中金属的氢化合物和第一工艺中生成的金属的氢氧化物起反应。
根据依据本发明的第一方面的生产氢的方法,氢能够利用少量能量生成。在本发明的第一方面的生产氢的方法中,进一步地,氢的生产使用了氨,该氨是在第一工艺中生成的。因此,不需要为氢的生产预先储存氨。进一步地,如下文描述的,在第二工艺中和氢一起生成的金属氨基化合物被转化(reform)成为该金属的氢化合物,在第三工艺中生成的金属的氧化物被转化成为该金属的氮化合物,氨基化合物和金属氧化物的这一转化不会产生废物。进一步地,本发明的第一方面的生产氢的方法提供了高的氢容量并且仅仅需要液态水,固态或液态的金属的氮化合物,以及固态或液态的金属的氢化合物,作为生产氢的材料。因此,本发明的第一方面的生产氢的方法能够缩小氢生产系统的尺寸。
本发明第一方面的生产氢的方法可以是这样的:金属的氢化合物是锂的氢化合物或镁的氢化合物。本发明第一方面的生产氢的方法可以是这样的:金属的氮化合物是锂的氮化合物或镁的氮化合物。
在这种情况下,生产氢的能量的量可以进一步地降低,并且能够更容易地降低带有生产氢的物质的系统的尺寸,且随后将进行描述的金属的氢化合物的转化或金属的氮化合物的转化能够变得更为方便。
进一步地,本发明第一方面的生产氢的方法可以是这样的:第二工艺中金属的氢化合物和氨之间的反应是在TiCl3(钛(III)氯化物)存在的条件下进行的。
在这种情况下,氢的生产反应的反应速率提高了,因此氢的产率提高了。
进一步地,本发明第一方面的生产氢的方法可以是这样的:在第三工艺中金属的氢化合物和金属的氢氧化物之间的反应是在TiCl3的存在下进行的。
在这种情况下,氢的生产反应的反应速率提高了,因此氢的产率提高了,确保氢的生产反应平稳进行所要求的温度降低了。
进一步地,本发明第一方面的生产氢的方法可以是这样的:金属的氢化合物可以通过在第二工艺中生成的金属的氨基化合物与氢之间的反应生成。
在这种情况下,金属的氢化合物可以通过利用在第二工艺中生成的金属的氨基化合物来生产,即,用于生产氢的方法的金属的氢化合物是可再生的。
进一步地,本发明第一方面的生产氢的方法可以是这样的:金属的氮化合物是通过获得自第三工艺中生成的金属氧化物的金属与氮气之间的反应生成的。
在这种情况下,用于生产氢的方法的金属的氮化合物是可再生的。
进一步地,本发明第一方面的生产氢的方法可以是这样的:与氮起反应的金属是由通过熔融盐电解还原金属氧化物获得的。
在这种情况下,与氮反应的金属能够容易地获得。
根据本发明的第一方面,实施生产氢的方法的氢生产系统,可具有:储存金属的氮化合物的第一罐;储存水的第二罐;以及各自储存金属的氢化合物的第三罐和第四罐;用于分离第一工艺中生产的氨的分离装置。在氢生产系统中,第一工艺的实施可以通过将第二罐中的水输送到第一罐中进行的,第二工艺的实施可以通过在第一工艺后将分离装置分离出的氨输送到第三罐中进行,第三工艺的实施可以通过在第一工艺后将第一罐中的金属的氢氧化物输送到第四罐中进行。
根据如上所述配置的氢生产系统,第一工艺可以通过将储存在第二罐中的水输送到第一罐中实施,第二工艺可以通过将由金属的氮化合物和第一罐中的水反应生成的氨输送到储存金属的氢化合物的第三罐中实施,第三工艺通过将第一工艺(金属的氢氧化物和水)中生成的金属的氢氧化物输送到储存金属的氢化合物的第四罐中实施。
根据本发明的第一方面,实施生产氢的方法的氢生产系统可具有:储存金属的氮化合物的第一罐;储存水的第二罐;以及各自储存金属的氢化合物的第三罐和第四罐;分离在第一工艺中生成的氨的分离装置;储存由分离装置分离出的氨的第五罐;以及用于控制流体在第一罐和第四罐之间的移动的流动控制装置。在氢生产系统中,第一工艺的实施可通过将第二罐中的水输送到第一罐进行,第二工艺的实施可通过在第一工艺后将氨从第五罐输送到第三罐进行,所以,由于第二工艺产生的热,流动控制装置处形成开口,第三工艺的实施可在第一工艺后通过将第一罐中的金属的氢氧化物和水经过开口输送到第四罐中进行。
根据如上所述配置的氢生产系统,第一工艺的实施通过将储存在第二罐中的水输送到第一罐中进行,第二工艺的实施通过将由第一罐中的金属的氮化合物和水反应生成并通过分离装置分离到第五罐的氨输送到储存金属的氢化合物的第三罐中进行,第三工艺的实施通过将第一工艺中生成的金属的氢氧化物通过由于第二工艺中产生的热而形成的开口输送到第四罐中进行。
在氢生产系统中,该金属可以是锂或镁。
在这种情况下,可以利用生产氢的方法容易地生产氢。
在氢生产系统,TiCl3可以另外地储存在第三罐中。
在这种情况下,氢的生产反应的反应速率提高了,因此氢的产率得到提高。
在氢生产系统中,TiCl3可以另外地储存在第四罐中。
在这种情况下,氢的生产反应的反应速率提高了,因此,氢的产率得以提高,且确保氢的生产反应平稳进行所需的温度得到降低。
在具有燃料电池的燃料电池系统和氢生产系统中,氢生产系统生产的氢可以被输送到燃料电池,燃料电池产生的水可以被输送到第二罐中。
根据如上所述的燃料电池系统,氢生产系统生产的氢被输送到燃料电池,燃料电池依靠由此输送来的氢工作。进一步地,在这一燃料电池系统中,由于在燃料电池中产生的水被输送到氢燃料电池系统的第二罐,在燃料电池处产生随后又离开燃料电池的水可以被有效地利用。
附图简介
上述的以及进一步阐述的本发明目的、特性和优势通过下列关于附图的实施方案的说明会变得更加明显,其中类似的数字表示类似的元件,其中:
图1是用于说明根据本发明第一个实施方案的生产氢的方法的工艺流程图;
图2是用于说明根据本发明第二个实施方案的生产氢的方法的工艺流程图;
图3是用于说明本发明第一个实施方案中的氢化锂生产方法的示意图;
图4A和图4B显示的是用在本发明第一个实施方案中用于容纳氨基化锂的容器(第三罐)的示意图;
图5显示的是根据本发明第三个实施方案的氢生产系统以及根据本发明第五个实施方案的氢生产系统的示意图;
图6显示的是根据本发明第四个实施方案的氢生产系统和根据本发明第六个实施方案的氢生产系统的示意图;以及
图7显示的是根据本发明第七个实施方案的燃料电池系统的示意图。
实施方案详述
图1的流程图说明的是根据本发明第一个实施方案的生产氢的方法(必要时,该方法称为“生产氢的第一方法”)的工艺。参见图1,生产氢的第一方法包括第一工艺(S11)和第二工艺(S12),以及第三工艺(S13)。氢是通过这些S11到S13的工艺生产的。
在第一工艺S11中,氮化三锂(Li3N)与水(H2O)反应,其由下面列出的化学反应式(1)表示。
(1)   Li3N+3H2O→NH3+3LiOH
以上化学反应式(1)代表的反应是放热反应,其是由例如固态氮化三锂(Li3N)与液态水(H2O)接触而引起,且该反应可以在室温下进行。在第一工艺S11中生产的氨(NH3)用在第二工艺S12中,在第一工艺S11中生产的氢氧化锂(LiOH)用在如下所示的第三工艺S13中。
在第二工艺S12中,第一工艺S11中生产的氨(NH3)与一氢化锂(LiH)起反应,其反应式(2)如下所示。
(2)    NH3+LiH→LiNH2+H2
以上化学反应式(2)代表的反应是放热反应,其是由例如气态氨(NH3)与固态一氢化锂(LiH)接触引起的,且该反应可在室温下进行。在生产氢的第一方法中,如此,氢的生产是在第二工艺S12中。如将在以后详述的,利用根据本发明的金属氢化合物生产方法(一氢化锂生产方法),第二工艺S12中生产的氨基化锂(LiNH2)被转化成为一氢化锂(LiH)。
在第三工艺S13中,氢氧化锂(LiOH)与一氢化锂(LiH)反应,其由下面的化学反应式(3)表示。
(3)    LiOH+LiH→Li2O+H2
以上化学反应式(3)代表的反应是放热反应,其是由例如固态氢氧化锂(LiOH)与固态一氢化锂(LiH)接触引起的,且该反应可在室温下进行。在生产氢的第一方法中,如此,氢的生产还可在第三工艺S13中。如将在以后详述的,利用根据本发明的金属氮化合物生产方法(氮化三锂生产方法),第三工艺S13中生产的氧化锂(Li2O)被转化成为氮化三锂(Li3N)。
由于第三工艺S13的反应发生在如上所述的固态与固态之间,所以相比于第一工艺S11和第二工艺S12,其反应效率可较低。考虑到这些,优选使用以下方法来改进第三工艺S13的反应效率:(a)固态LiOH与磨成颗粒度几十纳米左右的颗粒的固态LiH反应;(b)磨成颗粒度为几十纳米左右的颗粒的固态LiOH与磨成颗粒度为几十纳米左右的颗粒的固态LiH反应;以及(c)溶于液体(例如,纯水)的LiOH与固态LiH反应。尽管方法(a)和(b)中的反应发生在固态和固态之间,但由于LiOH是磨成颗粒或LiOH和LiH都是磨成颗粒的,因此LiOH和LiH之间的接触面积较大,进而反应效率得以提高。进一步地,因为方法(c)中的反应发生在溶解的LiOH和固态LiH之间,反应效率很高。通过方法(c),反应效率尤其容易提高。
根据生产氢的第一方法,氢是由以上反应化学式(1)到(3)代表的放热反应生产的。因此,氢的生产可以不用到大量的热,另外各个反应是在室温下进行的。因此,生产氢的第一方法能够用少量的能量生产氢。
如上所述的,在生产氢的第一方法中,利用Li3N、H2O、和LiH来生产氢。在这些中,Li3N和LiH可利用后面叙述的方法再生,H2O可以获得自例如燃料电池产生的水。因此,生产氢的第一方法允许从再生的Li3N和LiH生产氢,因此可用于实现可持续的氢社会。
根据生产氢的第一方法,进一步地,由于用于第二工艺S12的NH3是在第一工艺S11中生产的,因此不需要为生产氢储存NH3,即,NH3的需要量可以通过Li3N与H2O反应获得。如此,生产氢的第一方法消除了预先储存NH3的必要性,因此简化了制备NH3的系统。
根据生产氢的第一方法,进一步地,在第二工艺S12和第三工艺S13中的氢的生产中达到的氢容量是6.6到11.0质量%,其比迄今为止提出的大部分生产氢的方法达到的氢容量要高。因此,生产氢的第一方法能够实现用少量的氢的生产材料生产大量氢。
虽然第二工艺S12和第三工艺S13在图1说明的实例中是同时进行的,但生产氢的第一方法不局限于这一特征。例如,第三工艺S13可在第二工艺S12后实施,或第二工艺S12可在第三工艺S13后实施。然而,考虑到第二工艺S12中产生的热会促进由反应化学式(3)代表的反应,第三工艺S13优选在第二工艺S12后实施。
另外,虽然第二工艺S12可以以任何方式实施,只要第一工艺S11中产生的氨(NH3)可以适当地与一氢化锂(LiH)反应,但第一工艺S11中生产的氨(NH3)优选在催化由反应化学式(2)代表的反应的TiCl3的存在下与一氢化锂(LiH)反应。在这种情况下,由反应化学式(2)代表的反应的反应速率提高了,因此从由反应化学式(2)代表的反应中获得的氢的产率得以提高。当由反应化学式(2)代表的反应是在TiCl3存在的情况下实施时,TiCl3的量并非必然地受到限制。例如,设置LiH∶TiCl3=1∶0.05摩尔比。
在生产氢的第一方法中,进一步地,虽然第三工艺S13可以以任何方式实施,只要第一工艺S11中生产的氢氧化锂(LiOH)能够合适地与一氢化锂(LiH)反应,优选地,该氢氧化锂(LiOH)是在催化由反应化学式(3)代表的反应的TiCl3的存在下与一氢化锂(LiH)反应。在这种情况下,由反应化学式(3)代表的反应的反应速率得以提高,因此从由反应化学式(3)代表的反应获得的氢的产率得以提高。另外,尽管由反应化学式(3)代表的反应需要在约250℃的高温下实施以确保其在不存在TiCl3的情况下平稳进行,反应平稳进行所需要的温度在TiCl3存在的情况下可降至约180℃。因此,利用TiCl3可以降低生产氢所需的能量的量。当由反应化学式(3)代表的反应在TiCl3存在的情况下实施时,TiCl3的量并非必然地受到限制。例如,设置LiH∶TiCl3=1∶0.05摩尔比。
图2的流程图说明了根据本发明的第二实施方案的生产氢的方法(必要时,这一方法称为“生产氢的第二方法”)的流程。在这一实例中,使用镁生产氢。在生产氢的第二方法中,对应于生产氢的第一方法的第一到第三工艺的工艺将分别被称为“第一反应工艺(S21)”,“第二反应工艺(S22)”,和“第三反应工艺(S23)”。也就是说,在生产氢的第二方法中,氢是通过第一反应工艺S21,第二反应工艺S22,和第三反应工艺S23来进行生产的。
在第一反应工艺S21中,二氮化三镁(Mg3N2)与水(H2O)的反应由如下所示的反应化学式(4)表示。
(4)    Mg3N2+6H2O→2NH3+3Mg(OH)2
以上反应化学式(4)代表的反应是放热反应,其是由例如固态二氮化三镁(Mg3N2)与液态水(H2O)接触引起,该反应可以在室温下进行。在第一反应工艺S21中生产的氨(NH3)用在第二反应工艺S22中,在第一反应工艺S21中生产的氢氧化镁(Mg(OH)2)用在如下的第三反应工艺S23中。
在第二反应工艺S22中,第一反应工艺S21中生产的氨(NH3)与二氢化镁(MgH2)起反应,其反应化学式(5)如下所示。
(5)    2NH3+MgH2→Mg(NH2)2+2H2
以上反应化学式(5)代表的反应是放热反应,其是由例如气态氨(NH3)与固态二氢化镁(MgH2)接触引起的,该反应可在室温下进行。根据生产氢的第二方法,氢是在第二反应工艺S22中生产的。如将在以后详述的,利用根据本发明的金属氢化合物生产方法(二氢化镁生产方法),在第二反应工艺S22中生产的氨基化镁(Mg(NH2)2)被转化成为二氢化镁(MgH2)。
在第三反应工艺S23中,第二反应工艺S21中生产的氢氧化镁(Mg(OH)2)与二氢化镁(MgH2)起反应,其反应化学式(6)如下所示。
(6)    Mg(OH)2+MgH2→2MgO+2H2
以上反应化学式(6)代表的反应是放热反应,其是由例如固态氢氧化镁(Mg(OH)2)与固态二氢化镁(MgH2)接触引起的,该反应可在室温下进行。根据生产氢的第二方法,氢也是在第三反应工艺S23中生产的,如将在以后详述的,利用根据本发明的金属氮化合物生产方法(二氮化三镁生产方法),在第三反应工艺S23中生产的氧化镁(MgO)被转化成为二氮化三镁(Mg3N2)。
由于第三反应工艺S23的反应发生在如上所述的固态和固态之间,反应效率相比于第一反应工艺S21和第二反应工艺S22可能较低,考虑到此,优选下列方法来提高第三反应工艺S23中的反应效率:(a)固态Mg(OH)2与磨成颗粒度为几十纳米左右的颗粒的固态MgH2反应;(b)磨成颗粒度在几十纳米左右的颗粒的固态Mg(OH)2与磨成颗粒度在几十纳米左右的颗粒的固态MgH2反应;和(c)溶于液体(例如,纯水)的Mg(OH)2与固态MgH2反应。虽然方法(a)和(b)中的反应发生在固态和固态之间,但因为Mg(OH)2被磨成了颗粒或MgH2和Mg(OH)2都被磨成了颗粒,MgH2和Mg(OH)2之间的接触面积增大了,因此反应效率得以提高。进一步地,由于方法(c)中的反应发生在溶解的Mg(OH)2和固态MgH2之间,反应效率较高。通过方法(c),能够特别容易地提高反应效率。
根据生产氢的第二方法,氢是由以上反应化学式(4)到(6)代表的放热反应生产的。因此,氢的生产可以不用到大量的热,另外各个反应是在室温下进行的。如此,生产氢的第二方法能够用少量的能量生产氢。
如上所述,在生产氢的第二方法中使用Mg3N2、H2O和MgH2生产氢。在这些中,Mg3N2和MgH2能够利用后面描述的方法再生,H2O能够获得自例如燃料电池生产的水。因此,生产氢的第二方法可实现自再生的Mg3N2和MgH2生产氢,因此可用于实现可持续氢社会。
根据生产氢的第二方法,进一步地,由于用于第二反应工艺S22中的NH3是在第一反应工艺S21中生产的,因此不需要为生产氢而储存NH3,即,所需的NH3的量能够通过Mg3N2与H2O的反应获得。如此,生产氢的第一方法消除了预先储存NH3的需要,由此简化了制备NH3的系统。
根据生产氢的第二方法,进一步地,在第二反应工艺S22和第三反应工艺S23中的氢的生产中达到的氢容量是4.6到11.0质量%,其比迄今为止提出的大部分生产氢的方法达到的氢容量要高。如此,生产氢的第二方法能够实现用少量的氢的生产材料生产大量氢。
虽然第二反应工艺S22和第三反应工艺S23在图2说明的实例中是同时进行的,当生产氢的第二方法不局限于这一特征。例如,第三反应工艺S23可以在第二反应工艺S22后实施,或第二反应工艺S22可以在第三反应工艺S23后实施。然而,考虑到第二反应工艺S22中产生的热会促进由反应化学式(6)代表的反应,优选第三反应工艺S23在第二反应工艺S22后实施。
另外,虽然第二反应工艺S22可以以任何方式实施,只要第一反应工艺S21中产生的氨(NH3)可以适当地与二氢化镁(MgH2)反应,第一反应工艺S21中生产的氨(NH3)优选在有催化由反应化学式(5)代表的反应的TiCl3存在的情况下,与二氢化镁(MgH2)反应。在这种情况下,反应化学式(5)代表的反应的反应速率提高了,因此从由反应化学式(5)代表的反应中获得的氢的产率得以提高。当由反应化学式(5)代表的反应是在TiCl3存在的情况下实施时,TiCl3的量并非必然地受到限制。例如,设置MgH2∶TiCl3=1∶0.05摩尔比。
在生产氢的第二方法中,第三反应工艺S23可以以任何方式实施,只要在第一反应工艺S21中生产的氢氧化镁(Mg(OH)2)能够适当地与二氢化镁(MgH2)反应。在第一反应工艺S21中生产的氢氧化镁(Mg(OH)2)优选在有催化由反应化学式(6)代表的反应的TiCl3存在下与二氢化镁(MgH2)反应。在这种情况下,反应化学式(6)代表的反应的反应速率提高了,因此从由反应化学式(6)代表的反应中获得的氢的产率得以提高。进一步地,当确保由反应化学式(6)代表的反应在没有TiCl3存在的情况下平稳进行所需的温度为T1,确保所述反应在TiCl3存在的情况下平稳进行所需的温度为T2时,T2低于T1。因此,TiCl3的使用降低了生产氢所需的能量的量。当由反应化学式(6)代表的反应在TiCl3存在的情况下实施时,TiCl3的量没有具体限定。例如,设置MgH2∶TiCl3=1∶0.05摩尔比。
图3图示说明了用在本发明的第一实施方案中的一氢化锂生产方法。在该一氢化锂生产方法中,生产氢的第一方法的第二工艺S12中生产的氨基化锂(LiNH2)与氢(H2)反应,同时由反应化学式(2)代表的反应的逆反应发生,生产氨(NH3)和一氢化锂(LiH)。LiNH2和H2之间的反应的实施是通过例如将含有LiNH2的容器置于炉中加热到300℃,然后在1MPa的压力下向该炉中输送氢(参见图3)进行的。然而,由于由反应化学式(2)代表的反应与其逆反应是彼此可逆的,在LiNH2与H2反应生成NH3和LiH后,生成的NH3和LiH又彼此反应(即,由反应化学式(2)代表的反应发生),因此又生成了LiNH2和H2。因此,没有生成LiH,即,反应化学式(2)代表的反应的逆反应没有发生。为应对该情况,在第一实施方案的一氢化锂生产方法中,优选地,将LiNH2和H2反应生成的NH3通过过滤器收集起来,由反应化学式(2)代表的反应的逆反应在没有NH3的情况下发生。用于收集NH3的过滤器是由例如冷却的活性炭等组成。在这种情况下,液氨通过该活性炭过滤器收集。
同时,如果在第二工艺S12中生产的LiNH2接触到空气,氧化物膜等在LiNH2上形成,这使得LiNH2难以与H2反应。因此,当LiH利用上述的一氢化锂生产方法再生时,第二工艺S12中生产的LiNH2优选储存在密封的容器中。图4A和图4B中显示的容器1是此类容器的一个实例。图4A显示了该容器1的开启状态,图4B显示了该容器1的闭合状态。参见图4A和图4B,容器1用于容纳在第二工艺S12中生产的LiNH2,并具有内容器2和输出容器3。例如,内容器2是由不锈钢或类似材料构成,其厚度为0.5到1mm左右,外容器3是由耐压铝合金或类似材料构成。只要在引入容器1的氢生产系统中第二工艺S12中生产氢气时(未显示在图4A和图4B中),内容器2是用带有阀门4的盖板5密闭的(参见图4B)。当由于氢气的生产,内容器2中的压力超过预定值时,阀门4便开启借此收集到内容器2中的氢气。另一方面,当由于彼此起反应的LiH或NH3耗尽而使第二工艺S12中止时,阀门4关闭的容器1与引入容器1的氢生产系统分离,然后其经受LiH的再生工艺。即,将分离开的容器1放入图3中显示的再生生产线中的炉中。炉的温度设置在约300℃。然后,在例如1MPa的压力下,将H2输入容器1中。在这时候,H2经由开启的阀门4被送到内容器2中。然后,在内容器2中,H2与LiNH2反应,因而产生出NH3和LiH。在容器1中生产的NH3经由其它阀门(未显示在图中)收集,因此只有LiH被留着容器1中。在LiH再生工艺结束后,将阀门4密闭的容器1从LiH再生线上移开,然后其又一次被设置在氢生产系统中,所以容器1中的LiH与经由阀门4供应的NH3反应,以生产氢。
根据如上所述的一氢化锂生产方法,LiH能够通过将第二工艺S12中生产的LiNH2与H2反应而再生。与上述一氢化锂生产方法中的LiNH2反应的H2的量和在第二工艺S12中生产的H2的量相比非常少。因此,用于上述一氢化锂生产(再生)的氢的使用不会影响可由生产氢的第一方法获得的氢的量大的事实。
同时,在第二实施方案中用到的二氢化镁生产方法中,在第二反应工艺S22中生产的氨基化镁(Mg(NH2)2)与氢(H2)反应,从而发生了由反应化学式(5)代表的反应的逆反应,产生了氨(NH3)和二氢化镁(MgH2)。Mg(NH2)2与H2之间的反应的实施是通过例如将含有Mg(NH2)2的耐热容器放入炉中加热到250到350℃,然后在0.5到2MPa的压力下向该炉中供应氢进行的。由于反应化学式(5)代表的反应与其逆反应是彼此可逆的,在Mg(NH2)2和H2反应产生NH3和MgH2后,产生的NH3和MgH2又彼此发生反应(即,由反应化学式(5)代表的反应发生),因此产生了Mg(NH2)2和H2。因此,没有产生MgH2,即,反应化学式(5)代表的反应的逆反应没有发生。为应对这一情况,在第二实施方案的二氢化镁生产方法中,由MgH2和H2反应产生的NH3优选通过过滤器收集,从而在没有NH3的情况下,反应化学式(5)代表的逆反应发生。用于收集NH3的过滤器是由例如冷却的活性炭或类似材料组成。在这种情况下,液氨是通过活性炭过滤器收集的。
同时,如果在第二反应工艺S22中生产的Mg(NH2)2接触到空气,则会在Mg(NH2)2上形成氧化物膜或类似物,这使得Mg(NH2)2难以与H2反应。因此,当MgH2是利用上述二氢化镁生产方法再生时,优选将在第二反应工艺S22中生产的Mg(NH2)2储存在密封的容器中,如图4中显示的容器1。
根据如上所述的锂镁生产方法,MgH2能够通过将第二反应工艺S22中生产的Mg(NH2)2与H2反应而再生。与上述二氢化镁生产方法中的Mg(NH2)2反应的H2的量和在第二反应工艺S22中生产的H2的量相比非常少。因此,用于上述二氢化镁生产(再生)的氢的使用不会影响由生产氢的第二方法获得的氢的量大的事实。
在第一实施方案中用到的氮化三锂生产方法中,将由氮气(N2)与从生产氢的第一方法的第三工艺S13中生产的氧化锂(Li2O)获得的锂(Li)进行反应而再生的氮化三锂(Li3N)用在第一工艺S11中。并不限于从Li2O获得Li的方法。例如,锂可以通过熔融盐电解还原Li2O获得。
根据如上所述的氮化三锂生产方法,如此,Li3N能够通过将获得自第三工艺S13中生产的Li2O的Li与N2反应而再生,如已知的,Li和N2之间的反应发生在温和条件下,因此Li3N的再生可以在不使用大量能量的情况下进行。
根据生产氢的第一方法,如上所述,NH3和LiOH是通过第一工艺S11中的H2O与Li3N进行反应而生产的,第二工艺S12中第一工艺S11生产的NH3与的LiH进行反应,产生了H2和LiNH2,第三工艺S13中第一工艺S11中生产的LiOH与的LiH进行反应,产生了H2和Li2O。同时,一氢化锂生产方法将LiH从第二工艺S12中生产的LiNH2中再生出来,氮化三锂生产方法将Li3N从第三工艺S13中生产的Li2O中再生出来。因此,根据第一实施方案中的生产氢的方法,一氢化锂生产方法,和氮化三锂生产方法,氢能够利用Li3N和LiH生产,LiH和Li3N能够利用制氢后剩余的LiNH2和Li2O再生。因此,根据第一实施方案的生产氢的方法,一氢化锂生产方法,和氮化三锂生产方法,氢的生产材料能够重新使用,这对于实现可持续氢社会而言是非常理想的。
在第二实施方案中用到的二氮化三镁生产方法中,将由氮气(N2)与从生产氢的第二方法的第三反应工艺S23中生产的氧化镁(MgO)中获得的镁(Mg)进行反应而再生的二氮化三镁(Mg3N2)用在第一反应工艺S21中。从MgO中获得Mg的方法并不受到限制。例如,Mg可以通过熔融盐电解还原MgO获得。
根据如上所述的二氮化三镁生产方法,如此,Mg3N2能够通过从第三反应工艺S23中生产的MgO获得的Mg与N2反应再生。如已知的,Mg和N2之间的反应发生在温和条件下,因此,Mg3N2的再生能够在不使用大量能量的情况下进行。
根据生产氢的第二方法,如上所述,NH3和Mg(OH)2是通过第一反应工艺S21中的H2O与Mg3N2反应而生产的,第二反应工艺S22中第一反应工艺S21中生产的NH3与MgH2反应,生产了H2和Mg(NH2)2,第三反应工艺S23中第一反应工艺S21中生产的Mg(OH)2与MgH2反应,生产了H2和MgO。同时,二氢化镁生产方法利用第二反应工艺S22中生产的Mg(NH2)2再生了MgH2,二氮化三镁生产方法从第三反应工艺S23中生产的MgO中再生了Mg3N2。因此,根据第二实施方案的生产氢的方法,二氢化镁生产方法,和二氮化三镁生产方法,氢能够利用Mg3N2和MgH2生产,MgH2和Mg3N2能够利用制氢后剩余的Mg(NH2)2和MgO再生出来。因此,根据第二实施方案的生产氢的方法,二氢化镁生产方法,和二氮化三镁生产方法,氢的生产材料能够重新使用,这对于实现可持续的氢社会而言是非常理想的。
图5图解显示了根据本发明的第三实施方案的氢生产系统10。氢生产系统10(必要时,称作“系统10”)实施了生产氢的第一方法来生产氢。系统10具有储存Li3N的第一罐11,储存水的第二罐12,储存LiH的第三罐13,储存LiH的第四罐14,分离NH3的分离装置15,包含有第一罐11、第四罐14、分离装置15、以及过滤器17、18的罐16。第一罐11和第二罐12通过管线51彼此连接。第一罐11,分离装置15,以及第三罐13通过管线52彼此连接。第一罐11和第四罐14通过管线53彼此连接。第三罐13和过滤器17通过管线54彼此连接。第四罐14和过滤器18通过管线55彼此连接。
当氢生产系统10生产氢时,水从第二罐12供应到第一罐11,所以反应化学式(1)代表的反应发生在供应的水和储存在第一罐11的Li3N之间(第一工艺S11),产生了LiOH和NH3。第一罐11中产生的NH3通过由活性炭或类似材料组成的分离装置15被分离出来,该分离装置15位置在重力方向上高于第一罐11。由分离装置15分离出的NH3经由管线52输送到第三罐13中。由于LiH储存在NH3被送达的第三罐13中,反应化学式(2)代表的反应发生在储存在第三罐13的LiNH2与送达的NH3之间(第二工艺S12),产生了LiNH2和H2。第三罐13中产生的H2经由管线54输送到过滤器18,因而除去了杂质。另一方面,第三罐13中产生的LiNH2被保持在第三罐13中,并且例如其利用如上所述的一氢化锂生产方法转化成为LiH。
同时,第一罐11中生产的LiOH经由管线53,被单独,或与提供到第一罐11的水一起输送到第四罐14。第四罐14的位置在重力方向上低于第一罐11。由于LiH是储存在LiOH被送达的第四罐14,反应化学式(3)代表的反应发生在储存在第四罐14的LiH和送达的LiOH之间(第三工艺S13),产生了Li2O和H2。第四罐14中产生的H2经由管线55输送到过滤器18,因而除去了杂质。另一方面,第四罐14中生产的Li2O被保持在第四罐14中。例如,其通过如上所述的氮化三锂生产方法转化成为Li3N。
如此,氢生产系统10实施生产氢的第一方法,氢的生产是通过第一工艺S11,第二工艺S12,和第三工艺S13而进行的。
图6显示了根据本发明第四实施方案的氢生产系统20。在图6中,与图5中相同的部分和元件用相同的附图标记表示。氢生产系统20(必要时,称为“系统20”)实施生产氢的第一方法以生产氢。
系统20具有储存Li3N的第一罐11,储存水的第二罐12,储存LiH的第三罐21,储存LiH的第四罐14,分离NH3的分离装置15,储存分离出的NH3的第五罐22,以及控制第一罐11和第四罐14之间流体流动的流动控制装置23,包含有第一罐11、第三罐21、第四罐14、分离装置15、以及流动控制装置23和过滤器17、18的罐16。第一罐11和第二罐12经由管线51彼此连接。第一罐11,分离装置15,以及第五罐22经由管线52彼此连接。第一罐11和第四罐14经由管线53彼此连接。第三罐21和第五罐22经由管线56彼此连接。第三罐21和过滤器17经由管线54彼此连接。第四罐14和过滤器18经由管线55彼此连接。流动控制装置23设置在管线53中。只要流动控制装置23被关闭,第一罐11和第四罐14之间就不允许有流体运动(例如,LiOH和水不被允许从第一罐11输送到第四罐14)。
当氢生产系统20生产氢时,水经由管线51从第二罐12供应到第一罐11,所以反应化学式(1)代表的反应发生在供应的水和储存在第一罐11的Li3N之间(第一工艺S11),产生了LiOH和NH3。第一罐11中产生的NH3通过由活性炭或类似材料组成的分离装置15被分离出来,所述分离装置15位置在重力方向上高于第一罐11。由分离装置15分离出的NH3经由管线52输送到第五个罐22中,然后经由管线56输送到第三罐21中。由于LiH储存在NH3被送达的第三罐21中,反应化学式(2)代表的反应发生在储存在第三罐13的LiH与送达的NH3之间(第二工艺S12),产生了LiNH2和H2。第三罐21中产生的H2经由管线54输送到过滤器17,因而除去了杂质。另一方面,第三罐21中产生的LiNH2被保持在第三罐21中。例如,其利用如上所述的一氢化锂生产方法转化成为LiH。
同时,在第三罐21中发生由反应化学式(2)代表的生产LiNH2和H2的反应是放热反应。由于该热量,罐16的温度增加最高可达约80到120℃。由于由例如聚乙烯构成的流动控制装置23的熔点约为70到100℃,当反应化学式(2)代表的反应进行时,在流动控制装置23上会形成孔(开口)。由于第四罐14的位置在重力方向上低于第一罐11,当由于反应化学式(2)代表的反应而在流动控制装置23上形成开口时,存在于第一罐11中的LiOH或LiOH和水经由提供于管线53中的流动控制装置23上的开口移动到第四罐14中。由于LiH储存在LiOH被输送至的第四罐14中,由反应化学式(3)代表的反应发生在储存在第四罐14中的LiH和被输送至那里的LiOH之间(第三工艺S13),产生了Li2O和H2。第四罐14中产生的H2经由管线55输送到过滤器18,由此除去杂质。另一方面,第四罐14中生产的Li2O被保持在第四罐中。例如,其利用如上所述的氮化三锂生产方法转化成为Li3N。
如此,当氢生产系统20实施生产氢的第一方法以使得第二工艺S12是在第一工艺S11后实施、第三工艺S13是在第二工艺S12后实施时,氢的生产是在第二工艺S12和第三工艺S13中。
在系统10和20中,LiOH从第一罐11到到第四罐14的输送既可以是只有固态LiOH从第一罐11输送到第四罐14,也可以是LiOH和水都从第一罐11输送到第四罐14。当只有固态LiOH输送的情况下,固态LiOH和固态LiH彼此反应,因此反应速率倾向于低。更具体地说,当固态LiOH和固态LiH彼此反应时,LiOH的反应速率是0.02到0.03(g/sec/1kgH2),通过反应化学式(1)到(3)代表的反应生产氢时所用的Li3N的利用率(usage rate)约为23%。因此,当氢是通过固态LiOH与固态LiH反应生产时,为了提高Li3N的利用率,固态LiOH和固态LiH在彼此反应之前都优选磨成颗粒度为几十纳米左右的颗粒。用在第三工艺S13中反应的此类LiOH颗粒和LiH颗粒的利用,相对于LiOH和LiH没有预先磨成颗粒的情况,LiOH和LiH之间的接触面积提高了,因此Li3N的利用率提高最高达约65%。另一方面,当由反应化学式(3)代表的反应通过将第一罐11中的LiOH和水输送到第四罐14中而进行时,LiOH的反应速率是0.1到0.3(g/sec/1kgH2),Li3N的利用率约为50到60%。考虑到提高反应化学式(3)代表的反应的反应速率和Li3N的利用率,第三工艺S13优选通过将LiOH和水从第一罐11输送到第四罐14中来实施。
进一步地,在LiH是储存在系统10的第三罐13中和系统20的第三罐21中时,至少LiH是储存在第三罐13、21中是足够的,即,是否其它材料应该储存在第三罐13和第三罐21中是无需指定的。然而,TiCl3是优选储存在第三罐13、21中,因为其提高了反应化学式(2)代表的反应的反应速率,因而也提高了通过所述反应生产的氢的产率。当LiH和TiCl3同时储存在第三罐13、21中时,TiCl3的量并非必然地受到限制。例如,设置LiH∶TiCl3=1∶0.05摩尔比率。
进一步地地,在LiH储存在系统10的第四罐14中和系统20的第四罐14中时,至少LiH是储存在第四罐14中是足够的,因此,是否其它材料应该储存在第四罐14中是无需指定的。然而,除了LiH之外,优选将TiCl3储存在第四罐14中,因为其提高了由反应化学式(3)代表的反应的反应速率,因而也提高了通过所述反应生成的氢的产率,且其还降低了为确保该反应平稳进行所需的温度。当LiH和TiCl3同时储存在第四罐14中时,TiCl3的量并非必然地受到限制。例如,设置LiH∶TiCl3=1∶0.05摩尔比率。
根据本发明的第五实施方案的氢生产系统30实施生产氢的第二方法来生产氢。系统30的基本结构与如上所述的系统10的基本结构相同,因此系统30的各部分和元件的附图标记标注在图5中的括号里。在下文中,系统30将参照图5进行描述。
系统30具有储存Mg3N2的第一罐31,储存水的第二罐32,储存MgH2的第三罐33,储存MgH2的第四罐34,分离NH3的分离装置35,包含有第一罐31、第四罐34、分离装置35,以及过滤器37、38的罐36。第一罐31和第二罐32经由管线51彼此连接。第一罐31,分离装置35,以及第三罐33经由管线52彼此连接。第一罐31和第四罐34经由管线53彼此连接。第三罐33和过滤器37经由管线54彼此连接。第四罐34和过滤器38经由管线55彼此连接。
当氢生产系统30生产氢时,水经由管线51从第二罐32供应到第一罐31,所以反应化学式(4)代表的反应发生在供应的水和储存在第一罐31的Mg3N2之间(第一反应工艺S21),产生了Mg(OH)2和NH3。第一罐31中产生的NH3通过由活性炭或类似材料组成的分离装置35被分离出来,所述分离装置35位置在重力方向上高于第一罐31。由分离装置35分离出的NH3经由管线52输送到第三罐33中。由于MgH2储存在NH3被送达的第三罐33中,反应化学式(5)代表的反应发生在储存在第三罐13的MgH2与送达的NH3之间(第二反应工艺S22),产生了Mg(NH2)2和H2。第三罐33中产生的H2经由管线54输送到过滤器37,因而除去了杂质。另一方面,第三罐33中产生的Mg(NH2)2被保持在第三罐33中,并例如利用如上所述的二氢化镁生产方法转化成为MgH2
同时,第一罐31中生产的Mg(OH)2是经由管线53,独立地或与供应到第一罐31中的水一起输送到第四罐34中。第四罐34的位置在重力方向上低于第一罐31。由于MgH2储存在Mg(OH)2被送达的第四罐34中,反应化学式(6)代表的反应发生在储存在第四罐34中的MgH2和送达第四罐34的Mg(OH)2之间(第三反应工艺S23),产生了MgO和H2。第四罐34中生产的H2经由管线55输送到过滤器38,因而除去了杂质。另一方面,第四罐34中生产的MgO被保持在第四罐34中。例如,其利用如上所述的二氮化三镁生产方法转化成为Mg3N2
如此,当系统30实施生产氢的第二方法时,氢是通过第一反应工艺S21到第三反应工艺S23生产的。
根据本发明的第六实施方案的氢生产系统40实施生产氢的第二方法以生产氢。第六实施方案的系统40的基本结构与如上所述的系统20的基本结构相同,因此系统40中对应的部分和元件的附图标记标注在图6中的括号里。在下文中,系统40将参照图6描述。
系统40具有储存Mg3N2的第一罐31,储存水的第二罐32,储存MgH2的第三罐41,储存MgH2的第四罐34,分离NH3的分离装置35,储存分离出的NH3的第五罐42,用来控制第一罐31和第四罐34之间流体流动的流动控制装置43,包含有第一罐31、第三罐41、第四罐34、分离装置35、流动控制装置43、过滤器37、38的罐36。第一罐31和第二罐32经由管线51彼此连接。第一罐31,分离装置35,和第五罐42经由管线52彼此连接。第一罐31和第四罐34经由管线53彼此连接。第三罐41和第五罐42经由管线56彼此连接。第三罐41和过滤器37经由管线54彼此连接。第四罐34和过滤器38经由管线55彼此连接。流动控制装置43位于管线53中。当流动控制装置43关闭时,不允许第一罐31和第四罐34之间有流体运动(例如,不允许Mg(OH)2和水从第一罐31传输到第四罐34中)。
当氢生产系统40生产氢时,水经由管线51从第二罐32供应到第一罐31中,所以反应化学式(4)代表的反应发生在供应的水和储存在第一罐31中的Mg3N2之间(第一反应工艺S21),产生了Mg(OH)2和NH3。第一罐31中生产的NH3通过由活性炭或类似材料组成的分离装置35进行分离,所述分离装置35位置在重力方向上高于第一罐31。由分离装置35分离出的NH3经由管线52输送到第五罐42中,然后经由管线56输送到第三罐41中。由于MgH2储存在NH3被送达的第三罐41中,反应化学式(5)代表的反应发生在储存在第三罐41的MgH2和送达第三罐41的NH3之间(第二反应工艺S22),产生了Mg(NH2)2和H2。在第三罐41中生产的H2经由管线54输送到过滤器37,因而除去了杂质。另一方面,在第三罐41中生产的Mg(NH2)2被保持在第三罐41中。例如,其利用如上所述的二氢化镁生产方法转化成为MgH2
同时,在第三罐41中发生的由反应化学式(5)代表的生产Mg(NH2)2和H2的反应是放热反应。由于该热量,罐36的温度增加最高可达约100到140℃。由于由例如,聚乙烯构成的流动控制装置43的熔点约为70到100℃,当反应化学式(5)代表的反应进行时,在流动控制装置43上会形成孔(开口)。由于第四罐34的位置在重力方向上低于第一罐31的位置,当由于反应化学式(5)代表的反应而在流动控制装置43上形成开口时,存在于第一罐31中的Mg(OH)2和水经由提供于管线53中的流动控制装置上的开口转移到第四罐34中。由于MgH2储存在Mg(OH)2被输送至的第四罐34中,由反应化学式(6)代表的反应发生在储存在第四罐34中的MgH2和被输送至那里的Mg(OH)2之间(第三反应工艺S23),产生了MgO和H2。第四罐34中产生的H2经由管线55输送到过滤器38,由此除去杂质。另一方面,第四罐34中生产的MgO被保持在第四罐34中。例如,其利用如上所述的二氮化三镁生产方法转化成为Mg3N2
如此,当系统40实施生产氢的第二方法时,第二反应工艺S22是在第一反应工艺S21后进行,第三反应工艺S23是在第二反应工艺S22后进行,氢的生产是在第二反应工艺S22和第三反应工艺S23中。
尽管第一罐31中的Mg(OH)2和水输送到第四罐34以进行如上所述的系统30、40中的第三反应工艺S23,本发明不局限于这一特征。例如,第三反应工艺S23可通过只输送留在第一罐31中的固态Mg(OH)2到第四罐34中进行,然而,在这种情况下,由于是固态Mg(OH)2与固态MgH2彼此反应,反应速率倾向于低。更具体地说,当固态Mg(OH)2与固态MgH2彼此反应时,Mg(OH)2的反应速率是0.01到0.03(g/sec/1kgH2),用于反应化学式(4)到(6)代表的反应的Mg3N2的利用率为约15到20%。因此,当通过固态Mg(OH)2与固态MgH2反应生产氢时,为了提高Mg3N2的利用率,优选在反应前,将固态MgH2和固态Mg(OH)2磨成几十纳米左右的颗粒。
相对于MgH2和固态Mg(OH)2没有预先磨成颗粒时,在第三反应工艺S23的反应中应用此类MgH2颗粒和Mg(OH)2颗粒增加了MgH2和Mg(OH)2之间的接触面积,因此Mg3N2的利用率提高最高达约30到35%。另一方面,当第三反应工艺S23是通过将第一罐31中的水和Mg(OH)2供应到第四罐34中进行时,Mg(OH)2的反应速率是0.07到0.1(g/sec/1kgH2),Mg3N2的利用率约为40到55%。因此,考虑到提高反应化学式(6)代表的反应的反应速率以及Mg3N2的利用率,反应化学式(6)代表的反应优选通过将第一罐31中的水和Mg(OH)2输送到第四罐34中引起。
进一步地,在MgH2是储存在系统30的第三罐33中和系统40的第三罐41中时,至少MgH2是储存在第三罐33、41中是足够的,即,是否其它材料应该储存在第三罐33、41中是无需指定的。然而,除了MgH2外,优选将TiCl3储存在第三罐33、41中,因为其提高了反应化学式(5)代表的反应的反应速率,也因此提高了由所述反应生产的氢的产率。当MgH2和TiCl3都储存在第三罐33、41中时,TiCl3的量并非必然地受到限制。例如,设置MgH2∶TiCl3=1∶0.05摩尔比率。
进一步地,当MgH2储存在系统30的第四罐34中和系统40的第四罐34中时,至少MgH2是储存在第四罐34中是足够的,因此,是否其它材料应该储存在第四罐34中是无需指定的。然而,除了MgH2之外,优选将TiCl3储存在第四罐34中,因为其提高了由反应化学式(6)代表的反应的反应速率,因而也提高了通过所述反应生成的氢的产率,且其还降低了为确保该反应平稳进行所需的温度。当MgH2和TiCl3同时储存在第四罐34中时,TiCl3的量并非必然地受到限制。例如,设置MgH2∶TiCl3=1∶0.05摩尔比率。
在本发明的氢生产系统中,向第一罐输送水来实施第一工艺或第一反应工艺可以以各种方式进行。但是,如果向第一罐输送了大量的水,其会引起快速的温度升高从而提高了氨的压力,这会导致产生氨和水蒸气的混和气体。为了防止这一情况发生,优选将水低速率地逐渐输送到第一罐或向第一罐输送冷却的水。
图7显示了根据本发明第七实施方案的燃料电池系统100。在图7中,与图6中显示的相同的那些部分和元件用相同的附图标记标注,因此不再重复描述。燃料电池系统100在下文中将参照图7描述。
燃料电池系统100具有由多个燃料电池(未在图中显示)构成的燃料电池模块70和氢生产系统20。燃料电池模块70和氢生产系统20经由管线55和管线60彼此连接。通过氢生产系统20生产的氢经由管线55输送到燃料电池模块70,随后输送到燃料电池模块70的各个燃料电池的阳极。当燃料电池模块70由提供给各个燃料电池的阳极的氢和提供给各个燃料电池阴极的空气产生电能时,产生了水。水经过位于管线60中的过滤器61进行过滤以除去含在其中的杂质,然后将其输送到第二罐12中。在输送到第二罐12后,随后经由管线51将水输送到第一罐11并用来生产氢。根据燃料电池系统100,如此,由氢生产系统20生产的氢供应给燃料电池模块70,该燃料电池模块70利用供应的氢工作,在燃料电池模块70工作过程中产生的水随后被输送到第二罐12中来生产氢。根据燃料电池系统100,因此,氢的生产材料能够重复使用。
虽然燃料电池系统100具有氢生产系统20,其仍可能具有其它氢生产系统,如氢生产系统10、30、或40。然而,因为反应化学式(3)和(6)代表的反应是速率决定性的反应(rate-determining reactions),在高温时它们的反应速率会增加,如果第三工艺S13和第三反应工艺S23分别是在第二工艺S12和第二反应工艺S22后实施,通过反应化学式(3)代表的反应进行的氢的生产所需的时间和通过反应化学式(6)代表的反应进行的氢的生产所需的时间会变短,因此氢的生产效率会因此提高。由于这个原因,优选将氢生产系统20或氢生产系统40合并入燃料电池系统100。
进一步地,提供给燃料电池系统100的氢生产系统20的氮化三锂,水等的质量并不必须受到限制。例如,当需要利用氢生产系统20生产5kg氢时,人们认为至少需要625mol的氮化三锂,2500mol的一氢化锂和1875mol的水。进一步地,需要约20到40kg的水来促进反应化学式(3)代表的反应以实现较高的氢的生产速率。该水可以从燃料电池模块70中生成的水获得,因此氢生产系统20仅仅要求具有625mol的氮化三锂,2500mol的一氢化锂和1875mol的水。
进一步地,燃料电池系统100的氢生产系统20的尺寸(即,罐16的尺寸)并不必须受到限制。例如,当利用氢生产系统20生产5kg的氢时,可以使用容量为约170L、重量约为160kg的罐作为罐16。
进行了针对TiCl3对氢的生产反应的影响的研究(反应速率、氢的产率和反应温度)。这一研究是通过利用具有都含有LiH但不含有TiCl3的第三罐21和第四罐14的系统20,利用具有对应于第三罐21和第三罐13并含有LiH和TiCl3的第三罐和第四罐的氢生产系统20’(在下文中将称作“系统20’”)生产氢进行的。注意的是,系统20’的其它结构与系统20的一致。
在准备该研究的过程中,LiH如下储存在第三罐21和第四罐14中。首先,利用包含氩气氛的手套箱(露点:-85℃,氧浓度:1ppm或更低)对LiH称重,随后将LiH放入研磨容器中。然后,将研磨容器抽真空,随后在该研磨容器中形成氢气氛(1MPa)。然后,在室温下进行球磨10小时。然后,将研磨容器放入含有氩气氛的手套箱,将研磨好的LiH放进手套箱中的第三罐21和第四罐14中。
另一方面,如下将LiH和TiCl3放进系统20’的第三罐和第四罐中。系统20’的第三罐和第四罐在下文中将分别被称为“第三罐21’”和“第四罐14’”。首先,利用包含氩气氛的手套箱(露点:-85℃,氧浓度:1ppm或更低)称量摩尔比率为LiH∶TiCl3=1∶0.05的LiH和TiCl3,将LiH和TiCl3放入研磨容器中。然后,该研磨容器被抽真空,随后在该研磨容器中形成氢气氛(1MPa)。然后,在室温下进行球磨10小时。然后,将研磨容器放入含有氩气氛的手套箱中,研磨好的LiH TiCl3被放入手套箱中的第三罐21’和第四罐14’中。
在20℃,在系统20中,通过反应化学式(2)代表反应的氢的生产的速率(反应速率)是0.1到0.3[g/sec]。另一方面,在20℃,在系统20’中,通过反应化学式(2)代表的反应的氢的生产速率(反应速率)是0.5到1[g/sec]。在200℃,在系统20中,反应化学式(3)代表的反应的氢的生产速率(反应速率)是0.02到0.03[g/sec]。另一方面,在200℃,在系统20’中,反应化学式(3)代表的反应的氢的生产速率(反应速率)是0.05到0.1[g/sec]。
在25℃,在系统20中,反应化学式(2)代表的反应的氢的生产产率为约65到75%。另一方面,在25℃,在系统20’中,反应化学式(2)代表的反应的氢的生产产率为约80到85%。在250℃,在系统20中,反应化学式(3)代表的反应的氢的生产产率为约65到75%。另一方面,在180℃,在系统20’中,反应化学式(3)代表的反应的氢的生产产率为约80到85%。
在系统20的情况下,由反应化学式(3)代表的反应的氢的生产的氢生产目标速率X是在约250℃左右的热条件下实现的。另一方面,在系统20’的情况下,由反应化学式(3)代表的反应的氢的生产的氢生产目标速率X是在约180℃左右的热条件下实现的。
本发明中的“第一工艺后”可以指如“在第二工艺中将要参加反应的氨已经在第一工艺中生产出后”,或“在第三工艺中将要参加反应的金属的氢氧化物已经在第一工艺中生产出后”。在本发明的氢生产系统中,第二工艺和第三工艺可在第一工艺末尾之后实施,或第二工艺和/或第三工艺可以在第一工艺过程期间实施。
虽然上面已经说明了本发明的一些实施方案,但是应该知晓的是,本发明并不局限于已说明的实施方案的细节,对本领域技术人员而言,在未背离本发明的精神和范围的情况下,其还可以有各种改变,改性或改进。

Claims (14)

1.一种生产氢的方法,其特征在于其包括
第一工艺,其中金属的氮化合物和水反应以生产氨和金属的氢氧化物;
第二工艺,其中金属的氢化合物和第一工艺中生产的氨反应;和
第三工艺,其中金属的氢化合物和第一工艺中生产的金属的氢氧化物反应。
2.权利要求1的生产氢的方法,其中
第二工艺中的金属的氢化合物和氨的反应在TiCl3存在下实施。
3.权利要求1或2的生产氢的方法,其中
第三工艺中的金属的氢化合物和金属的氢氧化物的反应在TiCl3存在下实施。
4.权利要求1-3中任一项的生产氢的方法,其中
金属的氢化合物通过第二工艺中生产的金属的氨基化合物和氢的反应生产。
5.权利要求1-4中任一项的生产氢的方法,其中
金属的氢化合物是锂的氢化合物或镁的氢化合物。
6.权利要求1-5中任一项的生产氢的方法,其中
金属的氮化合物通过从第三工艺中生产的金属的氧化物得到的金属和氮的反应生产。
7.权利要求6的生产氢的方法,其中
与氮反应的金属由通过熔融盐电解还原金属的氧化物得到。
8.权利要求1-7中任一项的生产氢的方法,其中
金属的氮化合物是锂的氮化合物或镁的氮化合物。
9.一种实施权利要求1的生产氢的方法的氢生产系统,其包括储存金属的氮化合物的第一罐;
储存水的第二罐;和
各自储存金属的氢化合物的第三罐和第四罐;
用于分离第一工艺中生产的氨的分离装置;
其中
通过将第二罐中的水输送到第一罐实施第一工艺;
在第一工艺之后,通过将分离装置分离的氨输送到第三罐实施第二工艺;
在第一工艺之后,通过将第一罐中的金属的氢氧化物输送到第四罐实施第三工艺。
10.一种实施权利要求1的生产氢的方法的氢生产系统,其包括储存金属的氮化合物的第一罐;
储存水的第二罐;和
各自储存金属的氢化合物的第三罐和第四罐;
用于分离第一工艺中生产的氨的分离装置;
储存分离装置分离的氨的第五罐;和
用于控制流体在第一罐和第四罐之间的移动的流动控制装置;
其中
通过将第二罐中的水输送到第一罐实施第一工艺;
在第一工艺之后,通过将来自第五罐的氨输送到第三罐实施第二工艺,从而使得由于第二工艺产生的热在流动控制装置处产生开口;和
在第一工艺之后,通过将第一罐中的金属的氢氧化物和水通过开口输送到第四罐实施第三工艺。
11.权利要求9或10的氢生产系统,其中
金属为锂或镁。
12.权利要求9-11中任一项的氢生产系统,其中
在第三罐中还储存了TiCl3
13.权利要求9-12中任一项的氢生产系统,其中
在第四罐中还储存了TiCl3
14.一种燃料电池系统,其包括
燃料电池;和
权利要求9-13中任一项的氢生产系统,其中
将氢生产系统生产的氢输送到燃料电池;和
将在燃料电池处生产的水输送到第二罐。
CN2008801088563A 2007-09-28 2008-09-26 生产氢的方法、氢生产系统及燃料电池系统 Expired - Fee Related CN101808934B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP255558/2007 2007-09-28
JP2007255558 2007-09-28
JP2008168085A JP4512151B2 (ja) 2007-09-28 2008-06-27 水素発生方法、水素発生材料の製造方法、水素製造装置、及び、燃料電池システム
JP168085/2008 2008-06-27
PCT/IB2008/002507 WO2009040646A2 (en) 2007-09-28 2008-09-26 Hydrogen production method, hydrogen production system, and fuel cell system

Publications (2)

Publication Number Publication Date
CN101808934A true CN101808934A (zh) 2010-08-18
CN101808934B CN101808934B (zh) 2012-12-05

Family

ID=40511952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801088563A Expired - Fee Related CN101808934B (zh) 2007-09-28 2008-09-26 生产氢的方法、氢生产系统及燃料电池系统

Country Status (6)

Country Link
US (1) US8460834B2 (zh)
EP (1) EP2197784B1 (zh)
JP (1) JP4512151B2 (zh)
CN (1) CN101808934B (zh)
CA (1) CA2701648C (zh)
WO (1) WO2009040646A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516437A (zh) * 2019-01-02 2019-03-26 广东石油化工学院 一种电化学还原-热化学循环分解水制氢的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236729A1 (en) * 2008-12-05 2011-09-29 Roustaei Alex Hr Hydrogen cells or microcells with a hydrogen generator
US9490482B2 (en) 2009-11-20 2016-11-08 Ulrich Wietelmann Galvanic elements containing oxygen-containing conversion electrodes
JP5891358B2 (ja) * 2011-03-08 2016-03-23 パナソニックIpマネジメント株式会社 エネルギーシステム
AU2012287009B2 (en) 2011-07-25 2018-01-18 H2 Catalyst, Llc Methods and systems for producing hydrogen
CN104891435B (zh) * 2015-05-14 2017-04-12 大连理工大学 一种用质子响应型铱配合物催化氨硼烷水解制氢的方法
CN114243068B (zh) * 2021-12-20 2023-10-10 重庆大学 一种基于镁基材料的氢能供电设备
CN114530619B (zh) * 2022-04-22 2022-07-19 浙江海盐力源环保科技股份有限公司 一种燃料电池尾气消氢装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490851A (en) * 1947-03-06 1949-12-13 Metal Hydrides Inc Production of lithium amide and other metal compounds
US5427657A (en) * 1994-05-19 1995-06-27 General Motors Corporation Fused fluoride electrolytes for magnesium oxide electrolysis in the production of magnesium metal
AU9425498A (en) 1998-10-07 2000-04-26 Mcgill University Lithium-based hydrogen storage compositions
JP2001048504A (ja) * 1999-07-29 2001-02-20 Nippon Soda Co Ltd 窒化リチウムの製造方法
WO2003037784A2 (en) * 2001-10-31 2003-05-08 National University Of Singapore Method for reversible storage of hydrogen and materials for hydrogen storage
FR2841893B1 (fr) * 2002-07-02 2004-08-27 Francois Lacoste Procede de synthese de nitrure de calcium
US6967012B2 (en) * 2003-06-25 2005-11-22 General Motors Corporation Imide/amide hydrogen storage materials and methods
US20050019244A1 (en) * 2003-07-23 2005-01-27 Spiegelman Jeffrey J. Method for the point of use production of ammonia from water and nitrogen
US7537748B2 (en) * 2003-08-11 2009-05-26 National University Corporation, Hiroshima University Hydrogen storage matter and manufacturing method and apparatus for the same
JP4500534B2 (ja) * 2003-11-28 2010-07-14 太平洋セメント株式会社 水素貯蔵材料および水素発生方法
JP4450412B2 (ja) * 2004-02-02 2010-04-14 財団法人電力中央研究所 電気分解方法とこれを利用したリチウム再生電解方法及び使用済酸化物原子燃料の還元方法
US7959896B2 (en) * 2004-02-26 2011-06-14 GM Global Technology Operations LLC Hydrogen storage system materials and methods including hydrides and hydroxides
US7521036B2 (en) * 2004-02-26 2009-04-21 General Motors Corporation Hydrogen storage materials and methods including hydrides and hydroxides
US7341703B2 (en) * 2004-02-27 2008-03-11 General Motors Corporation Mixed hydrogen generation material
JP2006305486A (ja) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp 水素貯蔵材料およびその製造方法
EP1604947A1 (en) * 2004-06-07 2005-12-14 ETH Zürich Process and apparatus for producing hydrogen or ammonia
JP2006008439A (ja) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp 水素貯蔵材料およびその製造方法
US7569294B2 (en) * 2004-12-23 2009-08-04 Air Products And Chemicals, Inc. Modular portable battery charging system using hydrogen fuel cells
JP2006182598A (ja) 2004-12-27 2006-07-13 Nissan Motor Co Ltd 水素製造システム
US7413721B2 (en) * 2005-07-28 2008-08-19 Battelle Energy Alliance, Llc Method for forming ammonia
JP2007169081A (ja) * 2005-12-19 2007-07-05 Kazunari Ikuta アンモニアの製造方法及びこれに用いる反応容器
US20100323253A1 (en) * 2006-02-22 2010-12-23 University Of Utah Resarch Foundation Systems and Methods for Hydrogen Storage and Generation from Water Using Lithium Based Materials
EP2114825A2 (en) * 2007-01-16 2009-11-11 HSM Systems, Inc. Procedures for ammonia production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516437A (zh) * 2019-01-02 2019-03-26 广东石油化工学院 一种电化学还原-热化学循环分解水制氢的方法

Also Published As

Publication number Publication date
WO2009040646A2 (en) 2009-04-02
JP4512151B2 (ja) 2010-07-28
WO2009040646A3 (en) 2009-06-25
EP2197784B1 (en) 2013-10-23
EP2197784A2 (en) 2010-06-23
CA2701648C (en) 2013-01-08
JP2009096707A (ja) 2009-05-07
US20100330443A1 (en) 2010-12-30
US8460834B2 (en) 2013-06-11
CN101808934B (zh) 2012-12-05
CA2701648A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
CN101808934B (zh) 生产氢的方法、氢生产系统及燃料电池系统
Møller et al. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage
US8273140B1 (en) Method and apparatus for hydrogen production from water
Grochala et al. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen
CN100449843C (zh) 储氨装置在能量生产中的用途
Graetz New approaches to hydrogen storage
CN1989067B (zh) 产生氢的材料、氢的制造装置及燃料电池
US7594939B2 (en) System for hydrogen storage and generation
Rönnebro et al. Recent advances in metal hydrides for clean energy applications
EP1125337A2 (en) Electrical energy storage compound
US20030026757A1 (en) Method of production of pure hydrogen near room temperature from aluminum-based hydride materials
US6328821B1 (en) Modified magnesium based hydrogen storage alloys
CN102173385B (zh) 一种用氨基络合物合成高容量固态储氢材料氨硼烷的方法
CN101565168B (zh) 一种多元轻金属配位铝氢化物储氢材料的制备方法
US8147796B2 (en) Hydrogen storage in a combined MxAlH6/M′y(NH2)z system and methods of making and using the same
CN102219181A (zh) 铌基配位硼氢化物复合储氢材料及制备方法与用途
US20100323253A1 (en) Systems and Methods for Hydrogen Storage and Generation from Water Using Lithium Based Materials
CN102167286A (zh) 一种多元轻质配位氢化物储氢材料及其制备方法与用途
JPH06223825A (ja) 金属の活性化方法と蓄電池の製造方法
CN107190193A (zh) 一种纳米晶非晶Mg‑M‑Y储氢合金及其制备方法和用途
CN102515095A (zh) 一种金属锰氧化物负载氨硼烷储氢材料及其制备方法
CN104291268A (zh) 一种用湿化学法制备产氢材料改性铝粉体的方法
US7776776B2 (en) Method for preparing catalyst platinum supported on lithium cobalt oxide
Guo Light metal borohydrides and Mg-based hydrides for hydrogen storage
JP2010265136A (ja) 水素化物複合体、イミド材料及び水素ガスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20210926

CF01 Termination of patent right due to non-payment of annual fee