CN101794780B - 纳米管金属氧化物半导体场效应管技术与器件 - Google Patents

纳米管金属氧化物半导体场效应管技术与器件 Download PDF

Info

Publication number
CN101794780B
CN101794780B CN2009102172571A CN200910217257A CN101794780B CN 101794780 B CN101794780 B CN 101794780B CN 2009102172571 A CN2009102172571 A CN 2009102172571A CN 200910217257 A CN200910217257 A CN 200910217257A CN 101794780 B CN101794780 B CN 101794780B
Authority
CN
China
Prior art keywords
power device
nanotube
semiconductor power
column
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102172571A
Other languages
English (en)
Other versions
CN101794780A (zh
Inventor
哈姆扎·依玛兹
伍时谦
管灵鹏
安荷·叭剌
马国荣
何佩天
陈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpha and Omega Semiconductor Cayman Ltd
Original Assignee
Alpha and Omega Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha and Omega Semiconductor Ltd filed Critical Alpha and Omega Semiconductor Ltd
Publication of CN101794780A publication Critical patent/CN101794780A/zh
Application granted granted Critical
Publication of CN101794780B publication Critical patent/CN101794780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures

Abstract

本发明提出了一种沉积在半导体衬底中的半导体功率器件,其中半导体衬底具有数个沟槽。每个沟槽都用数个导电类型交替的外延层填充,数个外延层构成纳米管,堆积成层状,作为传输沟槽,沿侧壁方向延伸,纳米管大量沉积在每个沟槽的中心处,并有“缝隙填充”层填充纳米管之间的合并缝隙。“缝隙填充”层可以是非常轻掺杂的硅或生长、沉积的介电层。在一个典型实施例中,用立柱分隔数个沟槽,每个立柱的宽度约为沟槽宽度的1/3至1/2。

Description

纳米管金属氧化物半导体场效应管技术与器件
技术领域
本发明主要涉及一种半导体功率器件。更确切地说,本发明涉及一种交替掺杂纳米管的结构和方法,用于制备尺寸可变地电荷平衡的半导体功率器件,用简单的制作工艺,提高击穿电压并明显降低阻抗。
背景技术
为了在降低串联电阻的同时进一步增加击穿电压,传统的制作工艺和器件结构包括带有超级结型结构的器件等,仍然遇到工艺上的难题。鉴于传统的高压器件的结构特点,一般要求许多费时、复杂并且昂贵的制作工艺,因此高压半导体功率器件的实际应用非常有限。尤其是一些制作高压功率器件的工艺及其复杂,导致高压功率器件的产量和收益很低。
与传统工艺相比,超级结技术的优势是,使得漏源阻抗和导通电阻没有显著增加的情况下,获得更高击穿电压(BV)。对于标准功率晶体管源极,击穿电压主要依靠低掺杂漂流层。因此,漂流层具有较大的厚度以及相对较低的掺杂浓度,以便获得更高的额定电压。然而,这也会大幅增加导通电阻。在传统的功率器件中,导通电阻(Rdson)近似遵循以下函数关系式:
导通电阻∝击穿电压2.5
相比之下,带有超级结型结构的器件在漂流区内达到电荷平衡。导通电阻与击穿电压之间更加遵循函数关系,这种函数关系可以用下式表示:
导通电阻∝击穿电压
因此,对于高压器件应用,需要改进器件性能,通过设计和制作带有超级结型结构的半导体功率器件,在获得高击穿电压的同时,降低导通电阻。漂流区内邻近通道的区域具有相反的导电类型。只要邻近通道的区域掺杂与之相反的导电类型,漂流区就可以高掺杂。在截止状态时,两个区域的电荷相互抵消,漂流区被耗尽,可以承受高电压。这被称为超级结效应。在导通状态时,由于掺杂浓度较高,因此漂流区的导通电阻较低。研究表明,对于一个超级结器件的漂流区,最佳的掺杂浓度为1E12/cm2
尽管如此,传统的超级结技术在制作功率器件时,仍然会遇到许多技术瓶颈和技术难题。此外,所用到的制作工艺常常并不符合标准铸造工艺。而且,这些器件的结构特点和制作工艺,并不有利于从低压到高压的器件应用。换言之,部分工艺及其费时而且/或者及其冗长复杂,并不适用于较高的额定电压。而且原有技术制造的器件,在超级结区域,很难制备垂直短通道。这些通过不同制作工艺制备的各种结构的传统器件,无一例外地都在实际应用中遇到瓶颈和困难,下文将作进一步阐述。
高压设备中,有三种基本类型的半导体功率器件结构。第一种类型包括带有如图1A所示的标准结构,标准的垂直双扩散金属氧化物半导体结构并不具备电荷平衡的功能特点。因此,根据I-V性能检测和仿真分析验证,这种类型的器件并没有在一维理论品质因数(即约翰逊极限)之上的击穿电压增益。由于带有这种结构的器件一般漏极漂流区掺杂浓度较低,因此为了满足高击穿电压的要求,它们的导通电阻相对较高。为了降低导通电阻,这种类型的器件通常具有较大的晶粒尺寸。尽管这种器件具有制作工艺简单而且成本较低的优势,但是鉴于上述不足:晶粒成本非常昂贵(由于每个晶片上的晶粒极其少)、不可能在标准封装中使用较大的晶粒,因此它们并不适用于标准封装中带有高电流、低阻抗的器件。
第二种类型的器件包括一个二维电荷平衡的结构,以便对于给定的电阻,获得高于约翰逊极限的击穿电压,或者对于给定的击穿电压,获得低于约翰逊极限的电阻率(导通电阻×产品面积)。这种类型的器件结构通常是用超级结工艺制备的。在超级结型结构中,沿着与垂直器件的漂流漏极区中的电流方向平行的电荷平衡,基于PN结或静电场起电板技术,因此用于氧化物旁路设备时,可以使设备获得较高的击穿电压。第三种类型的结构包括一个三维电荷平衡,在水平和竖直方向上都有耦合。由于本发明旨在改善超级结技术器件的结构配置和生产工艺,因此超级结器件的局限与难题将在下文讨论。
图1B为带有超级结器件的横截面视图,通过增大漂流区中的漏极掺杂浓度,来降低电阻率(阻抗乘以有源区面积),并保持额定击穿电压不变。通过漏极中形成的P型垂直立柱,获得电荷平衡,使得高压时,漏极横向完全耗尽,因此处于夹断状态,以便保护通道免受N+衬底处高压漏极的侵害。欧洲专利0053854(1982)、美国专利4,754,310,尤其是该专利的图13以及美国专利5,216,275,都介绍了这项技术。在之前的这些介绍中,垂直超级结是作为N型和P型掺杂物的垂直立柱。在垂直耗尽型金属氧化物半导体器件中,通过一种侧壁掺杂结构,形成附图中所示的一个掺杂立柱,获得垂直电荷平衡。除了掺杂立柱,美国专利4134123和美国专利6037632还提到了用于增大击穿电压或降低电阻的掺杂浮岛。要形成导电类型交替的垂直立柱比较困难,尤其是当立柱很深,并且/或者立柱宽度很小时。对于超级结型器件来说,制作工艺通常很复杂、昂贵,并且由于加工工艺较多,其中多个工艺进行缓慢而且产量很低,因此制作超级结型器件需要很长的加工时间。
此外,对于垂直超级结器件,制作工艺在刻蚀或填充沟槽方面比较困难。主要问题包括要求用外延层填充沟槽,覆盖侧壁的外延层在沟槽中心合并的界面不能有空隙。图1D(美国专利6,608,350中的图1)表示填充遇到的缺口困难,即当侧壁大约90度时,填充缺口(图1D)会形成空隙。另外,电荷平衡和击穿电压也易受沟槽侧壁角度的影响。根据传统工艺的多外延和硼植入技术,P和N立柱越宽,器件性能越次。这种制作工艺,还增加了生产成本。因此,传统结构和制作方法受限于缓慢、昂贵的加工工艺,对于大量应用来说并不经济。
因此,只有在功率半导体器件设计和制作技术中,使用新结构和新制作方法制备功率器件,上述问题和局限才能迎刃而解。
发明内容
本发明的目的在于提供出一种纳米管金属氧化物半导体场效应管器件及其制备方法,以便在漂流区内形成掺杂立柱,通过简便的处理过程,达到电荷平衡。
简化后的处理过程,是通过刻蚀大约5到10微米或以上的较大开口的沟槽,围绕在3到5微米的立柱周围,堆积多个外延层形成纳米管。厚度从几微米到小于1微米不等以N型和P型交替掺杂的多个外延层,生长构成纳米管填充到沟槽中,至沟槽中心缝隙的宽度小于特定的填充工艺(多数情况是大约1微米或更小)。然后,用缝隙填充层填充中心缝隙.缝隙填充层可以是绝缘的,比如通过热生长氧化物、沉积氧化物、沉积绝缘材料或本征生长或沉积硅(生长硅比沉积硅要好)。缝隙填充介电层可以通过轻掺杂或不掺杂介电层实现,例如,缝隙填充的掺杂物浓度可以等于或小于邻近纳米管中掺杂物浓度的10%。剩余的缝隙也可以用中心纳米管填充,但是若要精确制造比较困难,还可能达不到电荷平衡。因此,有必要找到一种更加可行的缝隙填充方法。制作过程简单方便,使用标准生产模具和设备就可以便捷地实现绝大多数生产工艺。上述技术难题和技术局限也就迎刃而解。
更确切地说,本发明一方面是为了提出一种全新的改良型的器件结构以及制作方法,以便在沟槽刻蚀和外延填充之前,掺杂初始外延层,在垂直沟槽内,形成多个不同导电类型的纳米管。形成的纳米管和立柱可以根据掺杂浓度进行调节,以达到电荷平衡。为了优化电荷平衡,多数个纳米管掺杂浓度都是每个纳米管大约掺杂2E12/cm2(可以分成两半,每一半1E12/cm2)。多数个纳米管在一个小区域内用作通道(N-型掺杂纳米管作为N-型器件的传导通道),可以构建低导通电阻的半导体功率器件。
本发明的另一方面是为了提出一种全新的改良型的器件结构以及制作方法,以便在垂直沟槽内,形成多个不同导电类型的纳米管,垂直沟槽内的纳米管厚度约为从小于1微米到几微米。例如,每个沟槽都可容纳5至20个传导通道(纳米管)。与单一传导通道超级结功率器件的传统结构相比,本发明的纳米管结构可以比传统的超级结器件降低5至10倍的阻抗。
本发明的另一方面是为了提出一种全新的改良型的器件结构以及制作方法,以便在垂直沟槽内,通过刻蚀带有相对较大倾斜角(倾斜角是相对竖直线定义的)的沟槽侧壁,形成多个不同导电类型的纳米管。硅沟槽的普通倾斜角约为1°(如果以沟槽底部的平面为基准,则为89°)。例如,本发明的倾斜角可以是5°到1°,对于功率半导体器件的性能没有显著的影响。
沟槽宽度可以从沟槽底部到表面逐渐增加;并且可以具有多个沟槽宽度(不同的沟槽步进宽度从0.5微米到2微米不等)因此,不同宽度的立柱可以使填充变得更加简便。
由于可以通过轻掺杂初始材料,刻蚀大沟槽形成立柱,并调节纳米管的掺杂浓度,来灵活调整电荷平衡,因此对沟槽侧壁的严格角度要求就不必要了,较大的倾斜角也是允许的。立柱是轻掺杂的,只有一小部分对电荷平衡有贡献,因此立柱的宽度不同将不会严重影响电荷平衡。又因为,纳米管是生长的,无论倾斜角如何,每个管子的厚度都将保持均匀一致。因此,可以应用更加方便、经济的制作工艺。
本发明的另一方面是为了提出一种全新的改良型的器件结构以及制作方法,以便在垂直沟槽内,形成多个交替导电类型的纳米管,起传导通道的作用,并获得电荷平衡。所述的基本的超级结型结构可以应用于许多不同类型的垂直器件制作,包括金属氧化物半导体场效应管、双极结晶体管、二极管、结型场效应管、绝缘栅极双极场效应管等,但并不局限于这些器件。
本发明的一个较佳实施例,提出了一种设置在半导体衬底中的半导体功率器件,其中半导体衬底中具有数个沟槽。每个沟槽都用多个导电类型交替的外延层填充,构成的纳米管堆积成层状,沿侧壁方向延伸,起传导通道的作用,并有一个绝缘层填充在每个沟槽中的合并缝隙中。在一个实施例中,数个纳米管之间的沟槽合并缝隙基本都处于沟槽中心,沟槽通过立柱相互隔开,每个立柱的宽度大约占沟槽宽度的1/2或1/3。
在另一个典型实施例中,每个沟槽的宽度约为10微米,与邻近的沟槽被立柱隔开,立柱的宽度在3至5微米之间。在另一个典型实施例中,每个宽约10微米的沟槽都用多个导电类型交替的外延层填充,构成纳米管,纳米管的厚度在0.2至2微米之间。在另一个典型实施例中,半导体立柱的深度在10至120微米之间,每个沟槽的深度约为5至120微米。例如,10微米的深度能用于大约能承受100V的器件,120微米的深度能用于大约能承受1200V的器件。
在另一个典型实施例中,半导体衬底包括一个N+衬底和一个在纳米管和立柱下方含有N+纳米管合并区的底部区域,该底部区域同纳米管的底部合并在一起,并连接到底部衬底区。例如,纳米管合并区可以是N+底部扩散区,由从底部衬底区的扩散形成,或者由顶部注入(纳米管生长的中间过程)形成,或者如下文将要提到的,用作背部碾磨之后的背部注入。在另一个典型实施例中,所述沟槽的侧壁与半导体衬底顶面的垂直方向形成一小倾斜角。在另一个典型实施例中,半导体衬底包括一个带有P-型外延层的N+衬底,P-型外延层位于N+衬底上,便于在其中的沟槽开口。
本发明还提出了一种在带有轻掺杂和厚的N-或P-外延层的N++半导体衬底上制备半导体功率器件的方法。这种方法包括开掘轻掺杂立柱之间的数个深沟槽,用交替掺杂N和P的多个外延层填充深沟槽,所述交替掺杂N和P的多个外延层溢出沟槽并覆盖在带有一顶部外延层的半导体衬底的一个顶面上。通过极轻掺杂的硅层或热生长氧化物或沉积介电层,将剩余的缝隙完全填充。这种方法包括用化学机械抛光的方法,向下除去所述的多个外延层一直到初始立柱表面。化学机械抛光之后,通过离子注入或外延生长,形成厚度为1-2微米的N层。
本发明还提出了在轻掺杂单晶衬底(没有初始外延层)上制备半导体功率器件的另一种方法。如上所述,沟槽和纳米管形成在单晶衬底上,但衬底的背部磨薄直达纳米管,再在其背面由植入或生长形成重掺杂的底部衬底。
对于本领域的技术人员,阅读以下典型实施例的详细说明及其参考附图之后,本发明的这些特点和优势无疑将显而易见。
本发明所述的纳米管金属氧化物半导体场效应管技术与器件,其与现有技术相比,优点在于,通过简便的处理过程,达到电荷平衡,制作过程简单方便,使用标准生产模具和设备就可以便捷地实现绝大多数生产工艺。
附图说明
图1A至图1D表示传统的垂直功率器件结构的横截面视图。
图2为带有超级结型结构的高压功率器件的横截面视图,并有纳米管形成在沟槽中,作为本发明的一个实施例。
图2-1表示一个带有如图2所示的多个单位元101的器件的横截面视图,这些单位元一个接一个遍布于半导体晶粒上。
图2-2表示图2所示不带P-植入顶层130的一个单位元101的透视图。
图2A表示类似于图2-2所示不带P-植入顶层130、带有N-型支柱110’的一个单位元101的透视图。
图2A-1为图2A所示器件的横截面视图,表示导电类型和掺杂物浓度。
图2A-2为本发明的一种可选实施例的横截面视图,带有中心纳米管而非绝缘缝隙填充。
图2B为类似于图2A器件的透视图,带有一个电连接到所有N-型立柱的N+型表面层。
图2C为一种垂直平面金属氧化物半导体场效应管的透视图,这种场效应管带有一个平面多晶硅栅极,沿着P和N型立柱成90°的方向延伸,并垫有一个栅极氧化物层。
图2D为除了带有一个电连接所有的N-型立柱115N的N-型表面层之外,其他部分类似于图2C所示的另一种典型实施例。
图2E为包括含有全部N-立柱115-N,沉积在顶部表面上的肖特基金属,以便形成肖特基二极管。
图2E-1表示和图2E相同的实施例,只是除去了肖特基金属,以便表示下部结构。
图2E-2和图2E-1相同,只是图2E-2中的层120是由一种氧化物制成,而不是低掺杂(本征)硅。
图2F表示本发明的另一种实施例,其中包含P+型衬底105’,衬底105’带有N-型底部缓冲层105-B’以及在P立柱115-P和N立柱115-N和N-型立柱110’下面的立柱缓冲层105-C’,以便形成一种绝缘栅双极晶体管器件。
图2F-1表示一种除了带有沟槽栅极之外,其他部分均类似于图2F所示的绝缘栅双极晶体管器件。
图2G-2H表示其余的实施例,其中各种器件结构都沿与P和N型立柱115-P和115-N成90°方向,形成在图2A的表面111上。
图2G表示图2A所示的结型场效应管(JFET),从平面111的视图,其中此器件还包括P型栅极区、N+源极接触区以及N-区,以便形成一个结型场效应管器件。
图2H表示双极结型晶体管(BJT),其中包括一个N+发射区和一个P-型基极区,衬底作为集电极,以便形成带有衬底的双极结型晶体管。
图2I表示另一个典型实施例,其中还包括一个沟槽金属氧化物半导体场效应管,这种场效应管带有一个沟槽多晶硅栅极,沿着P和N型立柱成90°的方向延伸,并垫有一个栅极氧化物层。
图2J表示类似于图2I的另一个典型实施例,其中栅极垫形成在场氧化物层上方。
图3A至图3J为本发明加工过程的横截面视图和俯视图,表示本发明用于制作图2所示的带有超级结型结构的高压功率器件。
图4为一个具有电荷平衡交替N和P纳米管的单位元301的一种可选结构的透视图,它位于N++衬底上,周围带有N-立柱,中心具有绝缘栅极填充层。
图4A为半导体功率器件300的有源区390的一部分的透视图,此半导体器件300具有图4所示的纳米管单位元301结构。
图4A-1表示本发明的半导体器件300装置的俯视图。
图4B为半导体功率器件300的终止区的近距离横截面视图,带有如图4所示的垂直纳米管结构。
图5表示半导体功率器件的完整终止区399的横截面视图,带有如图4至图4B所示的纳米管结构。
图6为类似于图5所示的终止区的横截面视图,在最终的终值结构中,带有可选的静电场起电板设计。
图6A表示可选的终止区399”结构的横截面视图。
图7A至图7E为一系列横截面视图,表示制备本发明半导体功率器件的可选的制备过程。
图8A至图8G为一系列横截面视图,表示在缝隙填充过程中,解决产生空隙难题的制备过程。
图9A表示一个封闭的元结构的俯视图,此元包括在有源区内的多个纳米管单位元,沉积在半导体衬底的中心部分。
图9B-1表示半导体器件终止区的第一终止环的俯视图。
图9B表示可选的、交错的方形单位元的俯视图。
图9C表示可选的、六角形的单位元的俯视图。
具体实施方式
以下将详细介绍本发明的一个或多个实施例,以及用于解释说明的附图。文中提出了本发明有关的多个实施例,但本发明并不局限于任一实施例。本发明的范围仅由权利要求书和本发明涵盖的各种变化、修改和等效的内容所决定。为了对本发明进行完整说明,以下还将详细介绍多个具体示例。这些示例仅用作举例说明,依据权利要求书,无需这些具体示例中的任何一个或全部示例,本发明仍可实施。
参考图2垂直纳米管高压二极管器件100的单位元101的横截面视图,提出了本发明新结构和新制造特性的新概念。高压二极管器件100位于重掺杂的N型底部衬底105(比如位于N+下方的N+红磷衬底)上,纳米管合并区105-B可作扩散底部区105-B,以及一个通过扩散过程形成的N+立柱扩散区105-C,以下将详细介绍。高压器件还包括多个N-型纳米管和P-型纳米管,由N-型薄外延层115-N和P-型薄外延层115-P形成。这些纳米管作为交替N-外延层115-N和P-外延层115-P,位于两个P-型立柱110之间作为垂直纳米管,从P-植入顶层130延伸至底部N+区105-B。高压纳米管二极管器件100还包括一个缝隙填充物120——一种非常轻掺杂的硅或一种氧化物(或其他电介质)区域——形成在每个单位元101中心,纳米管的中央位置。纳米管形成在半导体衬底的顶部。半导体衬底还可包括一个由立柱110构成的轻掺杂的外延层。下文还将介绍,可以选用不带初始外延层的轻掺杂的单晶衬底制作立柱110。
在一个典型实施例中,每个N-型纳米管都宽约0.25微米,掺杂浓度约为2E12/cm2(相当于单位体积浓度为8E16/cm3),大多数P-型纳米管宽约0.5微米,掺杂浓度约为2E12/cm2。距离P-型立柱110最近的P-型纳米管宽约0.5微米,掺杂浓度约为8.5E11/cm2。周围的P-型立柱110宽约1.5微米,掺杂浓度约为1.5E11/cm2(每单位体积在2E14/cm3到1E15/cm3之间)。由此可知,P-型立柱110和邻近P-型立柱110的P-型管总的掺杂浓度为1E12/cm2。每个掺杂浓度为1E12/cm2的P-型纳米管和N-型纳米管,都可以被认为是两个邻近的半个管,每一半的掺杂浓度为1E12/cm2,通过整个周围两个互补的、带等量电荷的纳米管,组合成一个电荷平衡的纳米管。正如上述举例的掺杂浓度,带有相反导电类型的纳米管相互之间达到电荷平衡,并且带有P-型立柱110,获得超级结效应。图2仅给出了一个独立单位元101.图2-1表示一个带有多个单位元101的高压二极管器件100的横截面视图,这些单位元一个接一个地遍布整个半导体晶粒。因此,两个紧邻的单位元101与邻近的P-型立柱110合并,合并后宽约3微米,但每半个合并的立柱部分在1.5微米的尺寸内,掺杂浓度仍然为1.5E11/cm2,因此,每单位体积上P-型立柱110的掺杂浓度约为1E15/cm3。例如,立柱宽度约占所述沟槽宽度的1/2到1/4。图2-2表示不带P-植入物顶层130的单位元1-1的透视图。图2A表示不带P-植入物顶层130、带有N-型立柱110’的透视图。
如图2所示的高压纳米管二极管器件100,由数个纳米管N-沟槽和P-沟槽组成,降低了阻抗,获得较低的漏极-源极阻抗。例如,带有N-型纳米管的器件宽约0.25微米,总掺杂浓度为1E12/cm2,其阻抗与带有沟槽的宽约5微米、掺杂浓度1E12/cm2的器件漏-源电阻大致相同。传统的超级结器件的漏-源电阻约为25-30毫欧cm-2,所述的带有十个纳米管的器件,在600V击穿电压时,预计漏-源电阻约为2-4毫欧cm-2。
如图2所示的垂直结型结构,可以通过多种工艺完成,例如金属氧化物半导体场效应管、双极结型晶体管(BJT)、结型场效应管(JFET)以及绝缘栅双极晶体管(IGBT)等。纳米管可以用外延层构成,包括厚度约为0.5微米、掺杂浓度0.6-0.8E12cm-2的P-层,形成在N-层旁边,N-层厚约0.25至0.5微米,最好是掺杂砷或锑,掺杂浓度约为1.6-2E12cm-2。形成的P-型立柱宽约0.5至1微米,掺杂浓度为1.6E12至2E12/cm2。这些薄的N-型和P-型立柱重复形成在沟槽内,直到这些层在沟槽的中心部分合并为止。形成一层电介质的或非常轻掺杂的硅填充层120,填充合并的纳米管立柱之间的缝隙。如上所述,缝隙填充层可以用氧化物、沉积介电材料或本征硅生长。
如图2-1所述的垂直超级结型结构,是由一个宽P-型柱/立柱结构构成的,此P-型柱/立柱结构宽约2至5微米、在N++衬底上轻掺杂浓度范围为0.1-0.2E12cm-2。如果不使用P-型柱/立柱结构,可以通过在N++衬底上,轻掺杂(2E14-1E15cm-3)N-外延层,作为原材料,使这些立柱为P-型。图2A表示纳米管一种可选结构,在沟槽之间形成N-型立柱110’。相对于图2而言,立柱和纳米管的导电类型反转,但衬底105仍为N-型,同N-型扩散底部和立柱区域、105-B和105-C一样。掺杂浓度如图2A-1所示,并且仍然保持电荷平衡。只要这些立柱以及N-型和P-型纳米管保持电荷平衡,那么它们的导电类型、厚度、数量和排布都可以重新配置。
图2A-2表示本发明一种类似于图2A-1的可选实施例100’,但是沟槽中心并不是用绝缘缝隙填充物填充,而是用中心纳米管115’填充。这种中心纳米管115可以通过外延生长完全填充周围纳米管之间的剩余缝隙。此处所举示例,中心纳米管115’厚约1微米,掺杂浓度约为2E12/cm2,同周围的纳米管一起获得电荷平衡。由于存在容差、电荷平衡以及缝隙填充等问题,要生产实现这个实施例比较困难。
下文将说明,可以在与P和N型立柱成90°方向的表面上形成各种结构;下文还将给出更多的实施例,用于说明在图2A中的111平面上,可以看到这些结构的横截面。如图2B所示的一个实施例中,一个N+型表面层130′电连接到全部的N-型立柱上。可以植入或生产,制造顶部表面层130’。在另一个实施例中,此器件还包括一个垂直平面金属氧化物半导体场效应管,这个场效应管带有垫在栅极氧化物层155上的平面多晶硅栅极150,沿与P和N型立柱成90°的方向上延伸,P-本体区160包围着N+源极区170,并且如图2C所示,P+本体接触区180形成在源极区域170之间的顶面附近。对于金属氧化物半导体场效应管,N+衬底105起漏极的作用。图2C所示的金属氧化物半导体场效应管结构叠加在图2A的平面111上。图2D表示另一种典型实施例,除了有一个N-型表面层130’电连接到全部的N-型立柱115-N上,其余均类似于图2C所示的实施例。短接N-型立柱115-N与N-型表面层130′,有助于降低导通电阻和扩散电阻。类似于图2C,图2D所示的器件也包含一个在与P和N型立柱成90°的方向上形成的垂直平面金属氧化物半导体场效应管,其中所有的P立柱115-P电连接到P-本体区160上。N-型纳米管115-N和N-型立柱110’连接到N-型表面130’上,作为超级结的漂流区。图2E给出的典型实施例还包括一个沉积在顶面上的肖特基金属131,用于连接全部的N-立柱115-N。可以随意选择是否要用P+电阻接触区181,为P立柱115-P和肖特基金属131之间提供电阻接触。图2E-1所示的实施例与图2E大致相同,只是除去了肖特基金属131,以便露出下面的结构。图2E-2与图2E-1大致相同,只是图2E-2中所用的缝隙填充物120不是由低掺杂(本征)硅制成,而是由氧化物制成。图2F表示本发明的另一种实施例,其中此器件还具有P+型衬底105’和N-型立柱110’,在P立柱115-P和N立柱115-N下方,带有N-型缓冲层105-B’和105-C,以便形成绝缘栅双极晶体管器件。这个绝缘栅双极晶体管器件也包含一个平面栅极191、一个N+发射/源极区192、P-本体区193、P+本体接触194以及栅极氧化物195。P+衬底105’起集电极的作用。图2F-1表示一种类似的绝缘栅双极晶体管器件,只是此器件不带有平面栅极,而带有栅极沟槽191’。图2G-2H给出了另外几种实施例,在图2A中的平面111上,沿与P和N型立柱115-P和115-N成90°的方向上形成的各种器件结构,图2G给出的结型场效应管(JFET),正如图2A中的平面111方向上所示,其中此器件还包括P型栅极区151、N+源极接触区152以及N-区153,以便形成一个结型场效应管器件。N+衬底105起漏极的作用。图2H表示双极结型晶体管(BJT),其中此器件还包括一个N+发射区161和P-型基极区162,以便形成双极结型晶体管。N+衬底105起集电极的作用。
图2I给出了另一种典型实施例,其中此器件还包括一个沟槽金属氧化物半导体场效应管,带有垫在栅极氧化物层155上的平面多晶硅栅极150’,沿与P和N型立柱成90°的方向上延伸,P-本体区160包围着N+源极区170,并且P+本体接触区180形成在源极区域170之间的顶面附近。N+衬底105起漏极的作用。图2J给出了另一种类似于图2I的典型实施例,其中栅极垫150”的起点形成在场氧化物层165的顶部。类似于图2I,此器件还包括一个沿与P和N型立柱成90°的方向上形成的沟槽金属氧化物半导体场效应管,其中全部的P立柱电连接到P-本体区160上。
参考图3A至图3F所示的一系列侧面横截面视图,用于表示带有如图2所示的纳米管的一种半导体功率器件的制作步骤。图3A表示一个初始N+红磷硅衬底205,即一个N+重掺杂硅衬底,支撑起一个P-型外延层120,其中P-型外延层120厚约40微米,P-掺杂浓度约为1E15/cm3。在图3B-1和3B-2中,通过刻蚀工艺打开沟槽212-1和212-2。此沟槽宽约10微米,P-立柱210-P宽约3微米(作为示例,立柱宽度可能在2至5微米之间变化)。由于侧壁的倾斜角和立柱210-P不会对电荷平衡性能产生重要影响,因此沟槽212-1和212-2的侧壁并不是近似垂直立柱(大约89至90°的倾斜角),而是略微倾斜,倾斜角β约为85-88°(从垂直轴方向上测量,倾斜角为2-5°)。
在图3C中,N外延层215-N和P外延层215-P交替生长,覆盖沟槽212-1和212-2周围的沟槽侧壁和顶部表面区域。在P-外延层215-P附近,生长完数个N-外延层215-N后,会在沟槽中心部分附近留下微小的缝隙。可以通过热生长或沉积绝缘缝隙填充物220来填充微小的中心缝隙。在图3D中,使用化学机械抛光工艺除去P-立柱210-P上方和沟槽顶面上方的顶部表面。在图3E中,在高温下,使用N-扩散工艺扩散来自于N+衬底205中的重掺杂N-掺杂离子,在本例中,衬底205可以扩散大约5微米,扩散入沟槽的底部,用外延层覆盖,并扩散入P立柱210-P底部,以便形成N+扩散底部区域205-B以及N+扩散立柱区域205-C。这种扩散将N和P外延层215-N、215-P的剩余部分变为垂直纳米管。如图2所示,如果这些N和P外延层215-N、215-P以及立柱210-P的电荷浓度选择得当,则会获得电荷平衡,并且这些垂直纳米管可以用于制备超级结。图3E所示的扩散过程的纵横比要比图2所示的更加接近真实情况。
可以使用一种P植入物在衬底的顶面上,形成顶部P+区,以便形成类似于如图2所示的高压垂直二极管。
从图3F开始给出了另一种有助于扩散过程的方法,这种方法的第一步与图3A和图3B-1相同。但是如图3F所示,在形成一些N和P外延层215-N和215-P之后,暂停外延生长,如图3G所示的那样,使用垂直(各向异性的)N+植入物215,在裸露的外延层215-N和215-P中,形成N+区250。可以首先生长一个氧化物层(图中没有给出),以便在植入过程中保护侧壁,之后再除去此氧化物层。在图3H中,沿着缝隙填充220,像以往一样生长剩余的N和P型外延层215-N和215-P。在图3J的扩散过程中,N+区250有助于形成N+扩散底部区域205-B和N+扩散立柱区域205-C。
图4表示一个具有电荷平衡的单位元301的另一种结构,N和P纳米管315-N和315-P交替围绕在N-立柱310周围,并且中心位置具有一个介电缝隙填充层320,支撑在N++衬底305上。衬底305上还有一个N+扩散底部区305-B以及N+扩散立柱区305-C。这种简化的纳米管结构比上述结构更加便于生产。作为示例,图4给出了N和P纳米管315-N和315-P以及N-立柱310的宽度和掺杂浓度。在图4所示的实施例中,纳米管和立柱均达到电荷平衡,在图2至图3所示的实施例中也是如此。图4A给出了使用图4的纳米管单位元301结构的半导体功率器件300的有源区390。在本例中,功率器件300为沟槽金属氧化物半导体场效应管(类似于图2I中)。这个沟槽金属氧化物半导体场效应管是由带有垫在栅极氧化物层355上的沟槽多晶硅栅极350构成,沿与P和N型立柱315-P和315-N成90°的方向上延伸,P-本体区360包围着N+源极区370,并且P+本体接触区380形成在源极区域370之间的顶面附近。N+衬底305起漏极的作用。
参照图4A-1至图6所示,对于半导体功率器件300的终止区399的结构,在本实施例中是作为一个金属氧化物半导体场效应管实现的。图4A-1表示半导体器件300装置的俯视图。有源区390占据了功率器件300的中心部分。在有源区390内,源极金属350-I的一部分以及栅极金属350-G形成了源极垫和栅极垫。功率器件300的其他部分可以用钝化层302覆盖。有源区外面是终止区399。终止区399在有源区周围、功率器件300的边缘附近,形成一个环。漏极位于底边上,在俯视图中不可见。
图4B为图4A-1中的半导体功率器件300的终止区399的近距离横截面视图,带有图4至图4A所述的垂直纳米管结构,以使半导体功率器件300获得很高的击穿电压。为了简化,图4B中并没有给出钝化层。半导体功率器件300支撑于重掺杂N型衬底上,即如图所示的红磷衬底N++层305。纳米管结构的底部包括一个N+扩散层305-B以及N-立柱310的底部,N-立柱310具有一个N+立柱扩散层305-C,可以通过上述N++红磷衬底305的扩散过程形成。半导体功率器件还包括数个N-型薄外延层315-N以及P-型薄外延层315-P。这些纳米管作为交替N-外延层315-N,直接位于N-型立柱310之间的P-外延层315-P附近,作为垂直纳米管,被一个氧化物绝缘层330覆盖,从衬底顶面延伸至底部N+区305-B和N+衬底305。这种纳米管结构还包括一个中心缝隙填充物(轻掺杂硅或介电材料)320,基本上形成在N-型和P-型纳米管315-N和315-P之间的中心区域中。半导体功率器件300还包括形成在纳米管结构顶部上的P-本体区域340。半导体功率器件300还包括数个多晶硅场板345,通过顶部金属层350电连接到P+-区域340上,最里面的金属层350-I也电连接到半导体功率器件的源极区域上,其他金属层350起漂流金属的作用。P+区340与P-型纳米管315-P短接。作为一个典型实施例,最里面的金属层350-I通常工作在零电压下;每个连续的漂流金属层350可用于承载大约50伏电压。每个纳米管终止群都在有源区390附近形成一个环398。图4B表示两个这样的群以及第三个的开头部分。每个纳米管群的基本结构(不包括P+区340、氧化物330、多晶硅场板345以及漂流金属350)都与有源区390中的单位元301的结构相同,并且在相同时间形成。
图5表示半导体功率器件300的整个终止区399的横截面视图,带有如图4至图4B所示的纳米管结构。增加纳米管超级结环398的数量,并调节N-区360的掺杂浓度以及场板345以及两步场板346的电压。在最后一个场环之后,形成了最终的终止结构397,含有两步场板346,用于通过使用多晶硅和金属结合来降低表面场;另外还形成场板区346,并电连接到划痕线(将要从此处锯开),以便终止耗尽,在锯开后到达晶粒边缘。在晶粒边缘还有一个N+沟槽终点370。终止区399可以承载高达760伏的击穿电压,带有如图5所示的纳米管超级结型结构的十环,以及最终两步场板346的边缘结构。所示的钝化层380覆盖着终止区399的大部分区域。
图6为在最终的终止结构397’中带有交替场板设计的终止区399’的横截面视图;如图5所示,形成场板346’(而不是346)需要三个步骤,而不是两个步骤。这些场板346’是通过热生长氧化物层、多晶硅、沉积氧化物(硼磷酸盐玻璃(BPSG)或原硅酸四乙酯(TEOS))以及金属层形成,比图5所示的最终终止结构397更加适用,但却需要额外的制作步骤。
图6A为另一种可选的终止结构399”的横截面视图。这种结构是通过使用更宽的沟槽(比有源区沟槽要宽),以便在外延生产过程后留下宽的缝隙。在沟槽内形成单位元301’,在结构上,301’与有源区的单位元301(图4)相似,并且可以按照相同的步骤在同一时间形成,但是中间会留下一个更宽的缝隙。立柱和邻近的纳米管形成硅岛环361,硅岛环361周围2-5微米的缝隙用介电材料362填充,并且其顶面还具有漂流P-区363。漂流P-区穿过N型纳米管和立柱,桥接P-型纳米管。
这些被介电材料362分离的硅岛环361构成一个漂流电容器366网络,基于网络中相同的电容值,此网络分开了漂流P-区363中的电压。换言之,可以通过使用被硅侧壁电极分离的沟槽电容器366来实现本发明的高压截止。作为示例,宽缝隙362可以用氧化物和带有多晶硅混合物(SIPOS)的硅氧化物填充,以便降低来自于厚SiO2的压力,从而防止裂开。在通过金属氧化物半导体场效应管/有源器件处理之后,通过刻蚀和外延填充金属化、或作为有源沟槽刻蚀和外延填充过程的一部分之前,形成终止沟槽。
图4B-6的终止区399和399’采用图4所示的纳米管单位元301结构,相同原则也同样适用于其他电荷平衡的纳米管结构,比如图2至图3所示的纳米管结构。
图7A至图7D表示用于制作本发明的半导体功率器件的交替制作过程的一系列横截面视图。含有N-立柱315-N以及P-立柱315-P的纳米管形成在一个没有外延层的、单独的、轻掺杂的N-型硅衬底305’中。这种结构类似于图2至图3所示的结构,但没有初始外延层形成的立柱,取而代之的是形成在轻掺杂的单晶衬底中的纳米管。在图7B中,带有本体区域343的金属氧化物半导体晶胞,在沟槽栅极342附近含有源极区域341。在图7B-1中,沉积一个介电层364(BPSG或TEOS),用于在接下来的背面研磨等过程中保护顶面。在图7C中,衬底305的底部悬空。在图7D中,在衬底305的底部,植入、沉积或外延生长N和N+区域310-1和310-2。N区310-1与纳米管和立柱的底部合并在一起,并作为纳米管合并区。如果这个层并不是轻掺杂,那么用植入的方法会更好。为了支持图2F所示的绝缘栅双极晶体管器件,区域310-1和310-2可以分别作为N-缓冲和P+层。对于金属氧化物半导体场效应管,在N++层(对于绝缘栅双极晶体管而言,是N-缓冲以及P+层)的背部之后,如图7E所示,可以形成顶面介电层364,顶边处理的其他过程(例如金属、钝化)也可以完成。或者,如果背部处理可以在足够低的温度下进行,那么顶边处理过程就可以在背部处理之前完成。
图8A至图8C为制作过程的一系列横截面视图,用于解决在缝隙填充过程中形成空隙的难题。在图8A中,沟槽308形成在N++衬底305上的N-外延层310中,并且相对于垂直轴的倾斜角θ很大。作为示例,倾斜角θ可以在2-5°之间(相对于沟槽308的底面而言,就是85-88°)。在图8B中,生长数个N-掺杂外延层315-N和P-掺杂外延层315-P,覆盖在沟槽308的侧壁和底面上。中间部分仍然带有角形缝隙308’。外延层的顶部将通过化学机型研磨过程去除,此处为了简化,不再赘述。在图8C中,中间缝隙308’用缝隙填充层320填充,缝隙填充层320可以是氧化物或本征硅或其他类型的介电材料。由于倾斜角结构,缝隙填充过程可以更加方便地实现,这就解决了在填充掺杂纳米管之间的缝隙时形成空隙的难题。图8D表示缝隙填充过程中,如果侧壁过于垂直时,存在的一种潜在的空隙形成问题;这个问题与缝隙很窄的情况可以合并成一个问题。
图8E-图8G表示本发明的可选实施例,使用不同宽度的沟槽和立柱,以便改善外延生长后的缝隙填充过程。在图8E中,沟槽有一个角度增加步骤,以改变沟槽的宽度。在这种情况下,沟槽的倾斜角θ没必要太大。沟槽甚至可以是垂直的,经过改变沟槽宽度的处理后,从而改善了沟槽填充过程。通过使用沟槽刻蚀工艺结合图8F-8G所示的隔离物,沟槽宽度可以逐渐修正。在图8F中,对沟槽的一部分进行刻蚀。在图8G中,在侧壁上形成隔离物,再对沟槽的另一部分进行刻蚀,以便在沟槽中形成一个阶梯。作为示例,可以首先刻蚀沟槽深度的1/3,然后形成0.1-1微米厚的隔离物。然后使用隔离物,刻蚀沟槽的剩余部分,以便形成一个两阶梯立柱(与沟槽)。通过增加一个隔离物以及刻蚀处理过程,就可以形成一个具有三种不同宽度的立柱。隔离物可以由一种氧化物、氮化物或两者的混合物(或一种等效的材料)构成。
图9A表示一种密闭元结构的俯视图,这种密闭元的有源区490中含有数个纳米管单位元401,单位元401大量沉积在半导体衬底的中间部分中。每个纳米管单位元401包括N和P型立柱415-N和415-P的同心交替环,围绕在N-型立柱410周围,中心用缝隙填充物420填充。单位元401的横截面结构与图4中的单位元301的结构类似。如图2至图8所示,衬底由数个纳米管,填充在数个沟槽内,开口在衬底/外延层中。半导体晶粒中的单位元可能具有不同的形状和走向,但是同一个半导体晶粒中的每个单位元的纳米管部分的总宽度’w’应该保持一致。由于缓慢掺杂不会对电荷平衡产生太大地影响,因此如果对立柱区进行缓慢掺杂的话,立柱区410的宽度将更加容易改变。这个半导体功率器件还包括一个终止区499(不按比例),终止区499在晶粒边缘491外围的有源区490周围形成一个环,如上述图4至图6所示,终止区499有数个纳米管立柱,可应用于高压环境。本图并没有按照比例给出,仅用于说明不同结构的相对位置。图9中也没有给出终止区的具体结构,其具体结构应类似于图4-图6所示的终止区399和399’。
图9B-1表示半导体器件的终止区499的第一终止环498的俯视图。终止环的基本结构与单位元401类似。可以看出,终止环498环绕在有源区490周围。终止环498的其余部分超出了图9B-1的边界。图9B表示在有源区中,单位元401的交错矩形形状。图9C表示单位元401的一种可选的六角形形状。
为了便于理解,上述实施例详细阐述了各项细节,但并不能将本发明的范围局限于此。本发明还有很多不同的实现方法。上述的实施例仅用作解释说明,并不具有限制性。

Claims (30)

1.一种半导体功率器件,包含一个带有数个从顶面开口的沟槽的半导体衬底;其特征在于,
每个所述的沟槽用多个具有交替导电类型的外延层填充,该交替导电类型的外延层沿侧壁方向延伸,堆积成层状,构成纳米管用作传导通道,所述的沟槽通过立柱分隔,所述的纳米管和立柱都是电荷平衡的,在每个所述的沟槽的大约中心处由一缝隙填充物填充所述的纳米管之间的一合并缝隙,所述的半导体衬底在所述的纳米管下面,还包括一个纳米管合并区,在纳米管和立柱的底部合并在一起。
2.如权利要求1所述的半导体功率器件,其特征在于,所述的缝隙填充物包括一个中心纳米管。
3.如权利要求1所述的半导体功率器件,其特征在于,所述的缝隙填充物包括轻掺杂硅,掺杂浓度等于或小于邻近纳米管掺杂浓度的10%。
4.如权利要求1所述的半导体功率器件,其特征在于,所述的缝隙填充物包括一个介电层。
5.如权利要求1所述的半导体功率器件,其特征在于,所述的立柱宽度大约是所述沟槽宽度的1/4至1/2。
6.如权利要求1所述的半导体功率器件,其特征在于,数个沟槽,每个的宽度都约为10微米,邻近的沟槽被立柱分隔,立柱宽度大约是2至5微米。
7.如权利要求1所述的半导体功率器件,其特征在于,数个沟槽,每个的宽度都约为10微米,用数个具有交替导电类型的外延层填充,外延层构成厚度在0.2至2微米之间的纳米管。
8.如权利要求1所述的半导体功率器件,其特征在于,数个沟槽,每个的深度都约为5至120微米。
9.如权利要求1所述的半导体功率器件,其特征在于,数个沟槽的侧壁形成时,在垂直方向上具有微小倾斜角。
10.如权利要求1所述的半导体功率器件,其特征在于,所述的半导体衬底含有一个带有P-型立柱的N+底部衬底。
11.如权利要求1所述的半导体功率器件,其特征在于,所述的半导体衬底含有一个带有N-型立柱的N+底部衬底。
12.如权利要求1所述的半导体功率器件,其特征在于,所述的立柱含有一个轻掺杂的外延层。
13.如权利要求1所述的半导体功率器件,其特征在于,所述的立柱含有一个单晶衬底。
14.一种在半导体衬底上制备半导体功率器件的方法,其特征在于,包含以下步骤:
在轻掺杂的立柱之间开通数个深沟槽;
用N和P交替掺杂的多个外延层填充深沟槽;
所述的交替掺杂的多个外延层溢出并覆盖带有一顶面外延层的半导体衬底顶面;
所述的多个交替掺杂外延层形成电荷平衡的纳米管,作为沿侧壁方向的传导输通道;
用一缝隙填充物填充剩余的一中心缝隙;
通过化学机械抛光处理,从顶面向下到初始立柱表面除去交替掺杂的多个外延层;
在多个外延层和立柱的底部,形成纳米管合并区,以便将纳米管合并在一起,并将纳米管的底部连接到底部衬底区。
15.如权利要求14所述的半导体功率器件的制备方法,其特征在于,用缝隙填充物填充所述的中心缝隙还包括用轻掺杂的硅作为所述的缝隙填充物,掺杂浓度等于或小于邻近纳米管掺杂浓度的10%。
16.如权利要求14所述的半导体功率器件的制备方法,其特征在于,用缝隙填充物填充所述的中心缝隙还包括形成一个氧化物层填充所述的中心缝隙。
17.如权利要求14所述的半导体功率器件的制备方法,其特征在于,用缝隙填充物填充所述的中心缝隙还包括在所述的中心缝隙中沉积一个介电层。
18.如权利要求14所述的半导体功率器件的制备方法,其特征在于,还包含生长一约1-5微米厚的N-外延层。
19.如权利要求14所述的半导体功率器件的制备方法,其特征在于,所述的形成纳米管合并区的步骤还包含步骤:从底部衬底区扩散掺杂。
20.如权利要求14所述的半导体功率器件的制备方法,其特征在于,所述的开通数个深沟槽的步骤,是在顶面带有一轻掺杂外延层的底部衬底顶面进行的。
21.如权利要求14所述的半导体功率器件的制备方法,其特征在于,所述的开通数个深沟槽的步骤,是在一个单晶半导体衬底顶面进行的。
22.如权利要求21所述的半导体功率器件的制备方法,其特征在于,还包含以下步骤:将衬底的背面减薄,形成半导体功率器件的底部。
23.如权利要求14所述的半导体功率器件的制备方法,其特征在于,在所述的立柱之间开通所述的沟槽还包含开通带有侧壁的沟槽,侧壁在垂直方向形成微小倾斜角,便于缝隙填充。
24.如权利要求14所述的半导体功率器件的制备方法,其特征在于,在所述的立柱之间开通所述的沟槽还包含开通带有阶梯的多种宽度的沟槽。
25.如权利要求21所述的半导体功率器件的制备方法,其特征在于,还包含以下步骤:将半导体衬底的背面减薄,随后采用离子注入和快速热退火。
26.如权利要求21所述的半导体功率器件的制备方法,其特征在于,还包含以下步骤:将半导体衬底的背面减薄,随后采用外延生长。
27.一种半导体功率器件,包含一个带有数个从顶面开口的沟槽的半导体衬底;其特征在于,
每个所述的沟槽都用多个导电类型交替的外延层填充,这些外延层构成纳米管,堆积成层状,作为传输通道,沿侧壁方向延伸,带有相反导电类型的纳米管相互之间达到电荷平衡;所述的半导体衬底位于所述的纳米管下面,还包括一个扩散底部区域,从重掺杂衬底扩散入用所述的外延层覆盖的沟槽底部,所述的外延层的剩余部分变为垂直纳米管。
28.如权利要求27所述的半导体功率器件,其特征在于,一个中心纳米管填充沟槽中心位置的剩余缝隙。
29.如权利要求27所述的半导体功率器件,其特征在于,用立柱分隔沟槽,纳米管和立柱达到电荷平衡。
30.如权利要求27所述的半导体功率器件,其特征在于,还包括有源区周围的终止区,所述的终止区包括形成在纳米管结构顶部的P-型本体区域,通过顶部金属层连接多晶硅场板,所述的P-型本体区域与P-型纳米管短接。
CN2009102172571A 2008-12-31 2009-12-29 纳米管金属氧化物半导体场效应管技术与器件 Active CN101794780B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/319,164 US7943989B2 (en) 2008-12-31 2008-12-31 Nano-tube MOSFET technology and devices
US12/319,164 2008-12-31

Publications (2)

Publication Number Publication Date
CN101794780A CN101794780A (zh) 2010-08-04
CN101794780B true CN101794780B (zh) 2013-09-18

Family

ID=42283731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102172571A Active CN101794780B (zh) 2008-12-31 2009-12-29 纳米管金属氧化物半导体场效应管技术与器件

Country Status (3)

Country Link
US (3) US7943989B2 (zh)
CN (1) CN101794780B (zh)
TW (1) TWI455310B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893488B2 (en) * 2008-08-20 2011-02-22 Alpha & Omega Semiconductor, Inc. Charged balanced devices with shielded gate trench
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US10121857B2 (en) * 2008-12-31 2018-11-06 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
US9508805B2 (en) * 2008-12-31 2016-11-29 Alpha And Omega Semiconductor Incorporated Termination design for nanotube MOSFET
US8299494B2 (en) 2009-06-12 2012-10-30 Alpha & Omega Semiconductor, Inc. Nanotube semiconductor devices
US7910486B2 (en) * 2009-06-12 2011-03-22 Alpha & Omega Semiconductor, Inc. Method for forming nanotube semiconductor devices
US7892924B1 (en) * 2009-12-02 2011-02-22 Alpha And Omega Semiconductor, Inc. Method for making a charge balanced multi-nano shell drift region for superjunction semiconductor device
KR101121574B1 (ko) * 2010-01-12 2012-03-06 (주) 트리노테크놀로지 전하 균형 전력 디바이스 및 그 제조 방법
KR101669261B1 (ko) * 2010-06-14 2016-10-25 삼성전자주식회사 수직 채널 트랜지스터를 구비한 반도체 소자 및 그 제조 방법
US9490372B2 (en) * 2011-01-21 2016-11-08 Semiconductor Components Industries, Llc Method of forming a semiconductor device termination and structure therefor
CN102655172A (zh) * 2011-03-04 2012-09-05 特瑞诺科技股份有限公司 电荷平衡功率器件及其制造方法
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) * 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP5827063B2 (ja) 2011-08-03 2015-12-02 ローム株式会社 半導体装置およびその製造方法
CN102306662B (zh) * 2011-09-21 2014-03-19 苏州博创集成电路设计有限公司 超结纵向双扩散金属氧化物场效应管的终端结构
CN103137473B (zh) * 2011-12-02 2016-02-10 上海华虹宏力半导体制造有限公司 以具有外延层的衬底制造场终止型igbt器件的方法
US8704296B2 (en) * 2012-02-29 2014-04-22 Fairchild Semiconductor Corporation Trench junction field-effect transistor
CN103367400B (zh) * 2012-03-30 2016-05-11 旺宏电子股份有限公司 半导体结构及其制造方法
US20130265102A1 (en) * 2012-04-09 2013-10-10 Macronix International Co., Ltd. Semiconductor structure and method for manufacturing the same
TWI463650B (zh) * 2012-07-11 2014-12-01 Anpec Electronics Corp 功率半導體元件及其製作方法
US9112026B2 (en) 2012-10-17 2015-08-18 Semiconductor Components Industries, Llc Semiconductor devices and method of making the same
US9070580B2 (en) 2013-05-01 2015-06-30 Infineon Technologies Austria Ag Semiconductor device with a super junction structure based on a compensation structure with compensation layers and having a compensation rate gradient
US9117694B2 (en) 2013-05-01 2015-08-25 Infineon Technologies Austria Ag Super junction structure semiconductor device based on a compensation structure including compensation layers and a fill structure
US9024383B2 (en) * 2013-05-01 2015-05-05 Infineon Technologies Austria Ag Semiconductor device with a super junction structure with one, two or more pairs of compensation layers
TWI524524B (zh) * 2013-05-06 2016-03-01 台灣茂矽電子股份有限公司 功率半導體元件之製法及結構
US9558986B2 (en) * 2013-09-18 2017-01-31 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
US9082845B1 (en) * 2014-03-31 2015-07-14 Ixys Corporation Super junction field effect transistor
US9508596B2 (en) * 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9171949B1 (en) * 2014-09-24 2015-10-27 Alpha And Omega Semiconductor Incorporated Semiconductor device including superjunction structure formed using angled implant process
CN105529262A (zh) * 2014-09-29 2016-04-27 无锡华润华晶微电子有限公司 一种垂直双扩散金属氧化物半导体场效应管及其制作方法
JP6471508B2 (ja) * 2015-01-19 2019-02-20 富士電機株式会社 半導体装置
CN106298870A (zh) * 2015-06-08 2017-01-04 北大方正集团有限公司 半导体器件的制造方法和半导体器件
CN105405889B (zh) * 2015-11-04 2019-01-08 中国科学院微电子研究所 一种具有全方位电流扩展路径的沟槽mosfet
US9583586B1 (en) 2015-12-22 2017-02-28 Alpha And Omega Semiconductor Incorporated Transient voltage suppressor (TVS) with reduced breakdown voltage
CN109494151B (zh) * 2017-09-12 2021-03-30 联华电子股份有限公司 垂直金属氧化物半导体晶体管及其制作方法
US10644102B2 (en) 2017-12-28 2020-05-05 Alpha And Omega Semiconductor (Cayman) Ltd. SGT superjunction MOSFET structure
US11233157B2 (en) 2018-09-28 2022-01-25 General Electric Company Systems and methods for unipolar charge balanced semiconductor power devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
WO2001047028A1 (fr) * 1999-12-22 2001-06-28 Stmicroelectronics S.A. Fabrication de composants unipolaires
CN101064308A (zh) * 2001-08-23 2007-10-31 通用半导体公司 合并器件的形成方法和设计方法
WO2008039548A2 (en) * 2006-09-30 2008-04-03 Alpha & Omega Semiconductor, Ltd. Trench junction barrier controlled schottky
CN101288173A (zh) * 2005-08-25 2008-10-15 飞思卡尔半导体公司 采用多晶填充的沟槽的半导体器件

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984996A (en) * 1995-02-15 1999-11-16 The University Of Connecticut Nanostructured metals, metal carbides, and metal alloys
JP3291957B2 (ja) 1995-02-17 2002-06-17 富士電機株式会社 縦型トレンチmisfetおよびその製造方法
JP3938964B2 (ja) * 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
US6191446B1 (en) * 1998-03-04 2001-02-20 Advanced Micro Devices, Inc. Formation and control of a vertically oriented transistor channel length
GB9826041D0 (en) * 1998-11-28 1999-01-20 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
JP2006210368A (ja) * 1999-07-02 2006-08-10 Toyota Central Res & Dev Lab Inc 縦型半導体装置及びその製造方法
DE10006964C2 (de) * 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
US6509240B2 (en) * 2000-05-15 2003-01-21 International Rectifier Corporation Angle implant process for cellular deep trench sidewall doping
JP4764987B2 (ja) * 2000-09-05 2011-09-07 富士電機株式会社 超接合半導体素子
JP3899231B2 (ja) * 2000-12-18 2007-03-28 株式会社豊田中央研究所 半導体装置
US6818513B2 (en) * 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
WO2002067333A1 (en) * 2001-02-21 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP3973395B2 (ja) * 2001-10-16 2007-09-12 株式会社豊田中央研究所 半導体装置とその製造方法
US6855970B2 (en) * 2002-03-25 2005-02-15 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor device
JP4229648B2 (ja) * 2002-06-25 2009-02-25 富士通株式会社 電子デバイスの製造方法
JP2004221487A (ja) * 2003-01-17 2004-08-05 Sharp Corp 半導体装置の製造方法及び半導体装置
JP2004342660A (ja) * 2003-05-13 2004-12-02 Toshiba Corp 半導体装置及びその製造方法
KR100709462B1 (ko) * 2004-02-16 2007-04-18 주식회사 하이닉스반도체 다층 나노 튜브 셀을 이용한 메모리 장치
US7141866B1 (en) * 2004-04-16 2006-11-28 Hewlett-Packard Development Company, L.P. Apparatus for imprinting lithography and fabrication thereof
US20050242411A1 (en) * 2004-04-29 2005-11-03 Hsuan Tso [superjunction schottky device and fabrication thereof]
JP4068597B2 (ja) * 2004-07-08 2008-03-26 株式会社東芝 半導体装置
KR100531177B1 (ko) * 2004-08-07 2005-11-29 재단법인서울대학교산학협력재단 격자 변형된 반도체 박막 형성 방법
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
JP2006147661A (ja) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd 受光装置とその製造方法およびカメラ
US7598586B2 (en) * 2004-12-24 2009-10-06 Rohm Co., Ltd. Semiconductor device and production method therefor
TWI401749B (zh) * 2004-12-27 2013-07-11 Third Dimension 3D Sc Inc 用於高電壓超接面終止之方法
US7176524B2 (en) * 2005-02-15 2007-02-13 Semiconductor Components Industries, Llc Semiconductor device having deep trench charge compensation regions and method
KR100640159B1 (ko) * 2005-03-31 2006-10-30 주식회사 하이닉스반도체 채널길이를 증가시킨 반도체소자 및 그의 제조 방법
KR100652410B1 (ko) * 2005-05-07 2006-12-01 삼성전자주식회사 탄소나노튜브의 전기역학적 특성을 이용한 나노 반도체스위치소자 및 그의 제조방법과 탄소나노튜브의 전기역학적특성을 이용한 메모리소자 및 그의 구동방법
JP4865260B2 (ja) 2005-06-23 2012-02-01 株式会社豊田中央研究所 半導体装置
KR100723516B1 (ko) * 2005-12-13 2007-05-30 삼성전자주식회사 색 결정층을 구비하는 컬러 필터층, 이를 구비하는 영상감지 소자 및 컬러 필터층의 형성 방법
US7592668B2 (en) * 2006-03-30 2009-09-22 Fairchild Semiconductor Corporation Charge balance techniques for power devices
JP4182986B2 (ja) * 2006-04-19 2008-11-19 トヨタ自動車株式会社 半導体装置とその製造方法
JP5011881B2 (ja) * 2006-08-11 2012-08-29 株式会社デンソー 半導体装置の製造方法
US7598517B2 (en) * 2006-08-25 2009-10-06 Freescale Semiconductor, Inc. Superjunction trench device and method
JP4637196B2 (ja) * 2007-03-16 2011-02-23 富士フイルム株式会社 固体撮像素子
KR100827524B1 (ko) * 2007-04-06 2008-05-06 주식회사 하이닉스반도체 반도체 소자의 제조 방법
CN101868856B (zh) * 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
JP5103118B2 (ja) * 2007-09-27 2012-12-19 オンセミコンダクター・トレーディング・リミテッド 半導体ウエハおよびその製造方法
JP4770928B2 (ja) * 2009-01-13 2011-09-14 ソニー株式会社 光学素子および固体撮像素子
US7892924B1 (en) * 2009-12-02 2011-02-22 Alpha And Omega Semiconductor, Inc. Method for making a charge balanced multi-nano shell drift region for superjunction semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
WO2001047028A1 (fr) * 1999-12-22 2001-06-28 Stmicroelectronics S.A. Fabrication de composants unipolaires
CN101064308A (zh) * 2001-08-23 2007-10-31 通用半导体公司 合并器件的形成方法和设计方法
CN101288173A (zh) * 2005-08-25 2008-10-15 飞思卡尔半导体公司 采用多晶填充的沟槽的半导体器件
WO2008039548A2 (en) * 2006-09-30 2008-04-03 Alpha & Omega Semiconductor, Ltd. Trench junction barrier controlled schottky

Also Published As

Publication number Publication date
TW201025611A (en) 2010-07-01
US9024375B2 (en) 2015-05-05
CN101794780A (zh) 2010-08-04
US20110183499A1 (en) 2011-07-28
US20100163846A1 (en) 2010-07-01
US7943989B2 (en) 2011-05-17
US20130221430A1 (en) 2013-08-29
TWI455310B (zh) 2014-10-01
US8263482B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
CN101794780B (zh) 纳米管金属氧化物半导体场效应管技术与器件
US7582519B2 (en) Method of forming a trench structure having one or more diodes embedded therein adjacent a PN junction
TWI399815B (zh) 具有優化的可製造性的垂直功率裝置的高壓結構及方法
US8598623B2 (en) Nanotube semiconductor devices and nanotube termination structures
US6184555B1 (en) Field effect-controlled semiconductor component
KR100879588B1 (ko) 슈퍼접합 장치를 제조하기 위한 평탄화 방법
US6979862B2 (en) Trench MOSFET superjunction structure and method to manufacture
CN101924137B (zh) 纳米管半导体器件及其制备方法
US20100317158A1 (en) Method for Forming Nanotube Semiconductor Devices
US9508805B2 (en) Termination design for nanotube MOSFET
US9646836B2 (en) Semiconductor device manufacturing method
US10686035B2 (en) Nano-tube MOSFET technology and devices
CN104716179A (zh) 一种具有深孔的ldmos器件及其制造方法
CN101471381B (zh) 沟槽栅mosfet及其制造方法
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
TWI567974B (zh) 用於納米管mosfet的端接設計
CN209981222U (zh) 一种高压多次外延型超结mosfet的结构
CN100502041C (zh) 半导体器件
CN113113463B (zh) 半导体器件、用于半导体器件的超级结结构及其制造方法
KR101361037B1 (ko) Sj―mosfet의 제조 방법 및 그에 의해 제조된 sj―mosfet

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200708

Address after: Ontario, Canada

Patentee after: World semiconductor International L.P.

Address before: 495 mercury street, Sunnyvale, California, USA

Patentee before: Alpha and Omega Semiconductor Inc.

TR01 Transfer of patent right