CN101489667B - 制备纳米晶体金属氧化物的方法 - Google Patents

制备纳米晶体金属氧化物的方法 Download PDF

Info

Publication number
CN101489667B
CN101489667B CN2007800266253A CN200780026625A CN101489667B CN 101489667 B CN101489667 B CN 101489667B CN 2007800266253 A CN2007800266253 A CN 2007800266253A CN 200780026625 A CN200780026625 A CN 200780026625A CN 101489667 B CN101489667 B CN 101489667B
Authority
CN
China
Prior art keywords
metal oxide
oxide
initial compounds
particle
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800266253A
Other languages
English (en)
Other versions
CN101489667A (zh
Inventor
汉斯-约尔格·韦尔克
格茨·布尔格费尔德
西格弗里德·波利尔(已死亡)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie AG
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38542657&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101489667(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Publication of CN101489667A publication Critical patent/CN101489667A/zh
Application granted granted Critical
Publication of CN101489667B publication Critical patent/CN101489667B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0054Drying of aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种制备纳米晶体金属氧化物颗粒的方法,该方法包括步骤:a)借助于一种载体流,把一种起始化合物引入反应腔内,b)把所述起始化合物投入到处理区中,进行脉冲流的脉冲作用的热处理,c)形成纳米晶体的金属氧化物颗粒,d)从反应器中取出在步骤b)和c)中得到的纳米晶体氧化物颗粒,所述起始化合物以一种溶液、悬浊液、悬浮液或者以固定的状态引入到所述反应腔中。本发明还涉及一种通过根据本发明的方法得到的催化剂材料,尤其是用于从一氧化碳和氢气制备甲醇的催化剂材料。

Description

制备纳米晶体金属氧化物的方法
本发明涉及一种制备纳米金属氧化物的方法以及根据本发明所述方法制备的纳米金属氧化物,以及其用作催化剂,尤其是用于从一氧化碳和氢气制备甲醇。
金属氧化物,尤其是混合金属氧化物有广泛的应用领域,例如在陶瓷、聚合物添加剂、填料、染料、反应表面、催化剂等等。
金属氧化物尤其还用作催化剂,例如在汽车的废气催化剂领域,在制备光催化剂时的二氧化钛或者掺杂的氧化钛,并且用于制备氧化催化剂,尤其是用于制备甲醇。在此,制备工艺中催化剂起始材料的煅烧过程对成品催化剂的质量具有相当的影响。
析出物成分可以影响结晶过程的目标控制。在此,尤为重要的因素是不同催化剂系统的结晶尺寸(R.Schlogl et al.,Angewandte Chemie 116,1628-1637(2004))。
人们越来越多地注重所谓的“纳米晶体”粉末,尽管往往存在未解决的制备问题。
至今,总体上纳米晶体氧化物粉末通过化学合成、通过机械方法或者通过所谓的热化学方法制备。在钙钛矿的情况下,采用常规方法,例如可达到2-10m2/g的BET表面积。
典型地,在化学合成的情况下纳米晶体粉末从所谓的前体化合物着手,通过化学反应制备,例如借助于羟化沉淀,通过水解金属有机化合物和水热方法合成。在此典型地,所述纳米晶体的最终结构在煅烧以后才达到。
机械制备方法,通常是以强力地把不均匀的颗粒碾磨成均匀的颗粒为特征,这样一来,往往还因为作用在所述颗粒上的压力导致了不希望的相变甚至非晶态的颗粒。
其缺点是,在此构成的颗粒几何尺寸不是均匀分布的。此外,还存在碾磨工具磨损并从而污染产品的风险,这尤其在催化剂技术领域内是不利的。
热物理方法中,例如在WO 2004/005184中描述了基于引入热能得到液体和/或气体的起始化合物的方法。该国际专利申请尤其涉及所谓等离子体热解方法(PSP),其中通过氢氧吹管火焰喷射并且分解起始材料。一个典型的技术应用在于制备二氧化硅,其中采用一个氢氧吹管火焰喷射挥发性的硅化合物。
此外,在合成纳米晶体颗粒时借用所谓等离子体合成方法,其中,起始材料在等离子体中加热到6,000K而被蒸发。其它常用的方法是,例如CVD方法,在此,其气相析出物发生反应,在其中形成代表性的非氧化粉末。
然而,上述现有技术的缺点在于存在较宽的颗粒尺度分布、颗粒之间有不希望的凝结或者不充分的相转换。
本发明的任务是提供一种制备尽可能单态分布的纳米晶体颗粒粉末的方法,该方法克服了现有技术存在的上述缺点,尤其是不希望的相变缺点,使之能够调节纳米晶体颗粒大小,并且提供有特定的内表面积和确定的结晶结果的颗粒。
根据本发明,该任务通过一种制备纳米晶体金属氧化物颗粒的方法实现,该方法包括下述步骤:
a)借助于一种载体流,把一种起始化合物引入反应腔内,
b)把所述起始化合物投入到处理区中,进行脉冲流的脉冲作用的热处理(也称为“脉冲作用的热处理”),
c)形成纳米晶体的金属氧化物颗粒,
d)从反应器中取出在步骤b)和c)中得到的纳米晶体氧化物颗粒,
其中,所述起始化合物以一种溶液、悬浊液、悬浮液或者以固定的状态引入到所述反应腔中。
令人惊喜地发现,该方法可以在相对低的温度240℃至700℃实施,尤其优选的温度是240℃至600℃,在其它的变例中为340℃至680℃。在另一个特定的实施方式(直接供给粉末)中,所述温度为<300℃。迄今为止,从现有技术公知的优选温度都高于700℃,甚至于高达1400℃。
我们特别惊喜地发现,通过如本发明所述的方法可以达到有针对性的结晶过程,尤其是晶体的尺寸和对应的金属氧化物的微孔大小分布。这可以进一步通过在火焰中或者在反应器温度中的停留时间对其施以有利的影响。通过所述的脉冲热处理可以防止出现纳米晶体颗粒聚集。典型的是,立即通过热气流转送到一个较冷的区域中,在该区域中可部分地得到颗粒直径小于20纳米的纳米结晶。
根据本发明所得到的纳米晶体可导致明显地高的BET表面积。例如以钙钛矿群为例,在常规的合成方法的情况下,对于纳米晶体钙钛矿而言,所述钙钛矿群有约2-10m2/g的BET表面积,然而根据本发明的方法可以导致具有100-200m2/g的BET表面积的钙钛矿纳米结晶。此外,在使用铝三仲丁基盐作材料、颗粒大小为20-40纳米的情况下,可得到具有40-150m2/g特定表面积的γ-Al2O3。根据本发明制备的富铝红柱石的BET值可达12-14m2/g,同时具有2μm的D50值。
总体上,根据本发明方法的其它主要优点在于,例如无附加过滤步骤和/或干燥步骤或者不添加额外的溶质、在非常短的周期内,例如在几个毫秒内,通常在比现有技术的常规方法较低的温度下就可以煅烧悬浮物。由此形成的纳米晶体具有显著高的BET表面积,因而在催化活性材料的情况下,导致具有较高反应性、较好的转换性和选择性的催化剂。通过每个颗粒在根据本发明方法产生的均匀温度场中,近似相同的停留时间形成有严格单态粒子分布的特别均匀的最终产品。
在制备这种单态纳米晶体金属氧化物粉末的情况下,有一种用于实施根据本发明方法的设备,例如已在DE 10109892 A1中公知。然而,与该文中说明的设备和该文公开的方法相比,本发明却不需要任何其中在蒸发温度下加热起始材料的前置步骤。
代表性地,把用之制备根据本发明所述的金属氧化物粉末的材料直接通过载体流,尤其是载体气体,优选的是惰性气体,例如氮气等等,引入所谓的反应室,更准确地说是引入燃烧室。连接在反应室排气侧的是共鸣管,该共鸣管具有与反应室相比明显缩小的过流截面积。在燃烧室的底部设有几个阀门,以便向所述燃烧室中输入燃气。在此,该空气动力阀依据流体工程和声学,相匹配于燃烧室和共鸣管几何尺寸,以便在燃烧室中产生均匀的“无焰”温度场的压力波,在所述共鸣管中主要传播脉冲。这就形成了一种所谓的亥姆霍兹共鸣器,其具有10至150Hz之间的脉冲频率的脉冲流,优选的范围是30至110Hz之间。
典型地,向反应室中供给材料,可采用一种喷射器或者用一种适当的双喷嘴或者用一种定量加料器。
根据本发明的方法,使得能够通过直接加料制备出单态的、纳米晶体的氧化物粉末。令人惊讶的是,还可以直接把氧化物粉末送入燃烧室中,而其中不含有由此形成的需要被过滤的晶体材料。此外,根据本发明的方法,还使得在制备如本发明所述的金属氧化物时采用低于现有技术的温度,从而可以避免由于<1000℃的非常高的温度的趋势很可能得出的产品表面积缩小。此外,当采用金属盐溶液的情况下,还能够省去沉淀步骤,结果是,它们可以在反应器中直接煅烧。
优选地,载体流是一种载体气体,例如空气、氮气或者空气/氮气混合物。当然,作为一种可供选择的替代方案,流体还可以采用液体,或者是已经存在于溶液中的起始材料。载体流的种类对于在处理区中的停留时间的影响比较大。因而根据本发明还可以直接采用难溶化合物,譬如硫酸盐、氧化物、氮化物等等的悬浮液和悬浊液。
优选的是,起始化合物以稀释的形式引入反应室中,从而可保证其在处理区范围内的精细分布。
有利的是,采用彼此特别不一样的不同的起始化合物,以便可能制备更复杂的金属氧化物或者混合氧化物。如果要制备基于不同金属氧化物协同效应的复杂的催化剂系统时,这尤其是有利的。
通过控制脉冲(指的是,规律地或者不规律地脉冲热处理的脉冲宽度和波幅)以及起始化合物在处理区中的停留时间(代表性地,200ms至2s),还可以精确地确定结晶尺寸。在30至110Hz的脉冲频率下,典型的结晶尺寸为5至100nm。
经热处理以后,把形成的纳米晶体的金属氧化物尽可能借助于载体流立刻传送到反应室中较冷的区域中,从而使之能够在所述较冷的区域中沉积并被取出。根据本发明方法的产量是几乎100%,因为在此形成的全部产物都能够从反应器中取出。
如前文所述,令人惊奇地发现,已经以固体形态存在的氧化物也可以用作起始材料,根据本发明,这些材料可以通过随后的脉冲温度处理,把所述固体形态的氧化物转换成纳米晶体颗粒。这有利地打开了根据本发明方法的另一些特别宽广的应用领域,因为其不需要选择特定的起始化合物,例如在一定情况下要考虑到它们的溶解性、蒸发性。在根据本发明方法的更进一步的发展中,可溶解金属化合物被用作起始化合物同样也是可能的。在此,可以采用特别容易得到的起始化合物,譬如金属或者过渡金属的金属硝酸盐、金属氯酸盐、金属醋酸盐,等等。
令人惊讶地发现,所述热处理可以在240℃至700℃的温度实现,这相对于迄今为止公知的热分解方法是有利的,后者通常在高于1,000℃的温度下完成。这降低了导致产品污染的分解和副反应发生的风险,另外,在实施根据本发明的方法时在能量预算方面也是很有利的,因为耗能较低。
典型地,所述方法在15至40巴的压力之间完成。
除了本发明所述的方法以外,本发明的任务,通过根据本发明方法得到的纳米金属氧化物材料,同样能实现。已发现,根据本发明所述的纳米晶体金属氧化物材料,优选的是具有5纳米至100μm范围内的结晶尺寸,更优选的是10纳米至10μm的结晶尺寸,特别优选的是10至100纳米之间范围内的结晶尺寸,如前所述,这可以通过调节热处理的脉冲优选地实现。
在非常优选的实施方式中,根据本发明的金属氧化物是铜、锌和氧化铝的混合物或者铜锰和氧化铝的混合物,譬如,它们可以在用CO和氢气合成甲醇时用作催化剂。其它优选的金属氧化物是非掺杂的或者掺杂的钙钛矿、尖晶石和其它多成分系统。
下面借助于非限定性的实施例对本发明作详细地说明。所采用的设备还是对应于DE 10109892 A1中描述的设备,区别在于在实施根据本发明的方法中使用的设备没有预备蒸发步骤。
实施例
总则
变例1
在反应室中直接添加喷雾干燥的粉末
借助于一个定量送料器,实现金属氧化物的一定情况下喷雾干燥的粉末的材料供给。所述粉末在反应器中的停留时间在510至700ms之间。选择产量大约在10公斤每小时。温度在245℃至265℃之间。
变例2
添加悬浮物
用沉淀的原始产品所得的两次滤饼制备水性悬浮液(30%固体部分),并且借助于一个双喷嘴把所述悬浮液喷入反应器的燃烧室中。该方法在460℃至680℃的温度进行。
在送入反应室以前,通过一个筛子把所述悬浮液与不溶解的剩余材料相分离。
变例3
喷射溶液
借助于一种沉积物喷嘴向所述燃烧室中喷入Cu-Zn-Al甲酸盐(作为替代可用Cu-Mn-Al甲酸盐)的水溶液(约40%)。在此,实施根据本发明的方法选择350℃至460℃的温度范围。另外还发现,也可以采用较低浓度(10至30%)的对应溶液。所述材料的BET表面积在60(Cu/Mn/Al混合氧化物)与70m2/g之间(Cu/Zn/Al混合氧化物)。常规的“湿化学”制备的Cu/Zn/Al混合氧化物BET表面积在15至35m2/g之间。表1示出根据本发明的材料的微孔容积分布。
全部变例都得到一种非晶形的纳米晶体材料。
表1:
根据本发明的Cu/Zn/Al混合氧化物的微孔大小分布(BET:70m2/g)
  微孔半径(nm)   %比的微孔容积分布
  7500-875   0.83
  875-40   9.42
  40-7   67.27
  7-3.7   22.48
如从表1中可见,得出的产品具有几乎单态的分布,其中多数微孔半径在40至7nm的范围内。
实施例1
通过采用不同的借助于根据本发明的方法得到的纳米晶体粉末中,还可以得到不同的粉末特性,例如在BET表面积和颗粒尺寸方面。
表2示出用不同起始材料得到氧化铝的粉末特性。
表2:
用不同起始材料得到的Al2O3的粉末特性
  起始材料   分子式   特定表面积   XRD刚玉D=2,088埃   颗粒尺寸
  m2/g   cps   nm
  铝-醇盐   Al(C4H9O)3   53   33   0.5-50
  氯化铝   AlCl3   81   3   5-100
  硝酸铝   Al(NO3)3 9H2O   17   56   5-75
  “伪”波美石   AlO(OH)H2O   11   286   300-500
  Gibbsit   Al(OH)3   26   419   60-100
  氧化铝   Al2O3   55   12   30-50
在表3中示出借助于本发明所述方法得到的纳米晶体粉末对不同的金属氧化物的特性。
表3:
不同纳米粉末的特性
  产品   TiO2  Al2O3   ZnO   ZrO2   ZrO2-Y2O3
  颗粒尺寸(nm)   5…50  5…75   5…100   10…50   10…50
  形态   球  球   球   球   空心圆锥体
  晶相   金红石80%锐钛矿20%  γ-α-Al2O3   红锌矿   混合相四方晶/单斜晶   四方晶
  特定表面积(BET)(m2/g)   25  50…150   19   14   10
在表2中用常规方法(湿化学沉积和煅烧)制备的产品的BET值,测量如下:
TiO2:15-17m2/g
Al2O3:30-40m2/g
ZnO:1.0-1.5m2/g
ZnO2:1-1.8m2/g
ZnO2/Y2O3:0.5-1.5m2/g
由此可以清楚地看到,借助于本发明所述的方法可以制备有特别大的BET表面积的氧化物。

Claims (12)

1.制备纳米晶体金属氧化物颗粒的方法,该方法包括下述步骤:
a)借助于一种载体流,把一种起始化合物引入反应腔内,
b)把所述起始化合物投入到处理区中,在240至600℃温度下且停留时间从200ms至2s,进行脉冲流的脉冲作用的热处理,
c)形成纳米晶体的金属氧化物颗粒,
d)从反应器中取出在步骤b)和c)中得到的纳米晶体氧化物颗粒,
其特征在于,所述起始化合物以一种溶液、悬浊液、悬浮液或者以固定的状态引入到所述反应腔中。
2.如权利要求1所述的方法,其特征在于,所述载体流是气体。
3.如权利要求1或2所述的方法,其特征在于,所述起始化合物以稀释的形式引入反应室中。
4.如权利要求3所述的方法,其特征在于,采用彼此相同或不同的一种或者多种起始化合物。
5.如权利要求4所述的方法,其特征在于,脉冲流的脉冲有规则地或者不规则地发生。
6.如权利要求5所述的方法,其特征在于,在处理区的热处理之后,由此形成的纳米金属颗粒被传送到反应室的更冷区域。
7.如权利要求6所述的方法,其特征在于,采用一种金属氧化物作为起始材料。
8.如权利要求6所述的方法,其特征在于,采用可溶性的金属化合物作为起始材料。
9.如权利要求8所述的方法,其特征在于,所述方法在15至40巴的压力之间完成。
10.通过上述权利要求1-9所述的任一项方法得到的纳米晶体金属氧化物材料。
11.如权利要求10所述的纳米金属氧化物材料,其特征在于,其结晶尺寸在10纳米至10微米的范围内。
12.如权利要求10或11所述的纳米金属氧化物材料,其特征在于,其含有铜氧化物、锌氧化物和铝氧化物或者铜氧化物、锰氧化物和铝氧化物。
CN2007800266253A 2006-07-13 2007-07-11 制备纳米晶体金属氧化物的方法 Expired - Fee Related CN101489667B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006032452A DE102006032452B4 (de) 2006-07-13 2006-07-13 Verfahren zur Herstellung nanokristalliner Metalloxide
DE102006032452.8 2006-07-13
PCT/EP2007/006158 WO2008006565A1 (de) 2006-07-13 2007-07-11 Verfahren zur herstellung nanokristalliner metalloxide

Publications (2)

Publication Number Publication Date
CN101489667A CN101489667A (zh) 2009-07-22
CN101489667B true CN101489667B (zh) 2012-09-12

Family

ID=38542657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800266253A Expired - Fee Related CN101489667B (zh) 2006-07-13 2007-07-11 制备纳米晶体金属氧化物的方法

Country Status (9)

Country Link
US (1) US9579631B2 (zh)
EP (2) EP2335821B1 (zh)
JP (2) JP5399239B2 (zh)
CN (1) CN101489667B (zh)
DE (1) DE102006032452B4 (zh)
DK (2) DK2054152T3 (zh)
EA (1) EA016985B1 (zh)
PL (1) PL2054152T3 (zh)
WO (1) WO2008006565A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949539A (zh) * 2015-07-23 2018-04-20 昭荣化学工业株式会社 纳米晶体的制造方法和纳米晶体制造装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020630A1 (de) * 2005-05-03 2006-11-23 Süd-Chemie AG Herstellung von Cu/Zn/Al-Katalysatoren über den Formiatweg
DE102007059990A1 (de) * 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102008006607B4 (de) * 2008-01-30 2011-03-03 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
DE102008017309A1 (de) * 2008-04-04 2009-10-08 Süd-Chemie AG Verfahren zur Herstellung molybdänhaltiger Mischoxidkatalysatoren
DE102008017311A1 (de) * 2008-04-04 2009-10-08 Süd-Chemie AG Verfahren zur Herstellung eines nanokristallinen Molybdänmischoxidkatalysators
DE102008017308B4 (de) 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren
DE102008026094A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Nickeloxide
DE102008026209A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Nickeloxide
DE102008026208A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung kupfer- und chromhaltiger Mischoxide
DE102008026210B4 (de) * 2008-05-30 2012-06-28 Süd-Chemie AG Nanokristallines Kupferoxid und Verfahren zu dessen Herstellung
DE102016003717A1 (de) 2016-03-31 2017-10-05 Fte Automotive Gmbh Vorrichtung zur Reduktion von Vibrationen in einem hydraulischen Betätigungssystem, insbesondere einer hydraulischen Kupplungsbetätigung für Kraftfahrzeuge
DE102009009182A1 (de) * 2009-02-16 2010-08-19 Süd-Chemie AG Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
WO2014164950A1 (en) * 2013-03-12 2014-10-09 Ut-Battelle, Llc Method for synthesizing metal oxide particles
DE102015003398B4 (de) * 2015-03-18 2018-11-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas und Verwendung eines Pulsationsreaktors
DE102016002566B4 (de) 2016-03-04 2022-01-20 Horst Büchner Vorrichtung und Verfahren zur thermischen Materialbehandlung
DE102016004977B4 (de) 2016-04-22 2023-09-21 Ibu-Tec Advanced Materials Ag Verfahren und Vorrichtung zur thermischen Materialbehandlung in einem Schwingfeuer-Reaktor
RU2625877C1 (ru) * 2016-07-18 2017-07-19 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Экстракционный способ получения наноразмерных кристаллов оксидов металлов
DE102016225172A1 (de) * 2016-12-15 2018-06-21 Clariant International Ltd Tablettierter Katalysator mit erhöhter Stabilität gegenüber Säureeinwirkung
US11325183B2 (en) * 2017-03-21 2022-05-10 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Surface-modified metal compound particles, and method for producing surface-modified metal compound particles
DE102018205398A1 (de) * 2018-04-10 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Mischoxid-Pulvern sowie ein Mischoxid-Pulver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109892A1 (de) * 2001-02-24 2002-09-05 Ibu Tec Gmbh & Co Kg Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
CN1520380A (zh) * 2001-03-13 2004-08-11 Ĭ��ר�����޹�˾ 在脉冲反应器中生产多元金属氧化物粉末的方法
WO2006027270A3 (de) * 2004-09-10 2007-01-04 Unicore Ag & Co Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD114454A1 (zh) 1974-04-02 1975-08-05
DD155161B1 (de) 1980-12-10 1988-09-07 Richard Schrader Verfahren zur herstellung von poliermitteln
US4529377A (en) 1983-02-28 1985-07-16 Georgia Tech Research Institute Pulse combustor apparatus
DD238608A1 (de) 1985-06-21 1986-08-27 Dessau Zementanlagenbau Veb Verfahren und vorrichtung zur gewinnung von knochenasche
DD245648A1 (de) 1986-01-02 1987-05-13 Dessau Zementanlagenbau Veb Verfahren und vorrichtung zur herstellung hochdisperser kieselsaeuren
US4699588A (en) 1986-03-06 1987-10-13 Sonotech, Inc. Method and apparatus for conducting a process in a pulsating environment
US4909731A (en) 1986-03-06 1990-03-20 Sonotech, Inc. Method and apparatus for conducting a process in a pulsating environment
US4770626A (en) 1986-03-06 1988-09-13 Sonotech, Inc. Tunable pulse combustor
US4929172A (en) 1989-04-25 1990-05-29 Georgia Tech Research Corporation Stably operating pulse combustor and method
JPH0375812A (ja) 1989-08-17 1991-03-29 Sanyo Electric Co Ltd 文章作成装置
JPH04357117A (ja) * 1991-06-03 1992-12-10 Nkk Corp 噴霧焙焼による酸化鉄の製造方法及びその噴霧焙焼装置
JP3650422B2 (ja) * 1994-08-03 2005-05-18 パルテック株式会社 アルカリ金属化合物の低嵩密度微細粒子の製造方法
JPH09175812A (ja) * 1995-12-26 1997-07-08 Kao Corp 結晶性珪酸化合物の製造方法
US6413489B1 (en) * 1997-04-15 2002-07-02 Massachusetts Institute Of Technology Synthesis of nanometer-sized particles by reverse micelle mediated techniques
DE19827603A1 (de) 1998-06-20 1999-12-23 Zeiss Carl Fa Optisches System, insbesondere Projektions-Belichtungsanlage der Mikrolithographie
EP1142830A1 (de) * 2000-04-03 2001-10-10 Degussa AG Nanoskalige pyrogene Oxide, Verfahren zur deren Herstellung und die Verwendung dieser Oxide
DE60118514T2 (de) 2001-01-24 2006-08-24 Tas, Ahmet Cüneyt, Prof. Dr. Verfahren zur Herstellung von kristallinem Phosphorpulver bei niedriger Temperatur
EP1378489A1 (en) 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Metal oxides prepared by flame spray pyrolysis
CN1708354A (zh) * 2002-11-08 2005-12-14 第一工业制药株式会社 无机微粒、无机原料粉末以及它们的制造方法
JP2004321924A (ja) * 2003-04-24 2004-11-18 Toyota Central Res & Dev Lab Inc 水性ガスシフト反応用触媒
JP4928273B2 (ja) 2004-01-23 2012-05-09 ベリー スモール パーティクル コンパニー リミテッド 多孔質複合酸化物の製造方法
EP1761459B1 (en) 2004-03-15 2017-02-01 Eidgenössische Technische Hochschule Zürich Flame synthesis of metal salt nanoparticles, in particular calcium and phosphate comprising nanoparticles
JP2005320189A (ja) 2004-05-07 2005-11-17 Toray Ind Inc ジルコニウム含有複合化合物およびその製造方法
WO2006078825A2 (en) * 2005-01-21 2006-07-27 Cabot Corporation Processes for forming nanoparticles
JP4799885B2 (ja) * 2005-03-14 2011-10-26 株式会社 赤見製作所 金属化合物粉末の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109892A1 (de) * 2001-02-24 2002-09-05 Ibu Tec Gmbh & Co Kg Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
CN1520380A (zh) * 2001-03-13 2004-08-11 Ĭ��ר�����޹�˾ 在脉冲反应器中生产多元金属氧化物粉末的方法
WO2006027270A3 (de) * 2004-09-10 2007-01-04 Unicore Ag & Co Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949539A (zh) * 2015-07-23 2018-04-20 昭荣化学工业株式会社 纳米晶体的制造方法和纳米晶体制造装置
CN107949539B (zh) * 2015-07-23 2021-03-16 昭荣化学工业株式会社 纳米晶体的制造方法和纳米晶体制造装置

Also Published As

Publication number Publication date
DE102006032452B4 (de) 2013-10-02
US20090325794A1 (en) 2009-12-31
PL2054152T3 (pl) 2016-10-31
EP2335821B1 (de) 2016-03-16
DE102006032452A1 (de) 2008-01-17
WO2008006565A1 (de) 2008-01-17
EA200970119A1 (ru) 2009-06-30
EA016985B1 (ru) 2012-08-30
EP2335821A1 (de) 2011-06-22
DK2335821T3 (en) 2016-06-27
DK2054152T3 (en) 2016-06-13
JP5898160B2 (ja) 2016-04-06
US9579631B2 (en) 2017-02-28
JP2009542573A (ja) 2009-12-03
JP2014111520A (ja) 2014-06-19
EP2054152A1 (de) 2009-05-06
EP2054152B1 (de) 2016-04-13
JP5399239B2 (ja) 2014-01-29
CN101489667A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
CN101489667B (zh) 制备纳米晶体金属氧化物的方法
CN101511730B (zh) 制备纳米晶体混合金属氧化物的方法及由该方法获得的纳米晶体混合金属氧化物
CN101456539A (zh) 制备纳米结晶水滑石化合物的方法
US8722009B2 (en) Nanocrystalline copper oxide and method for the production thereof
CN101171201A (zh) 经甲酸盐途径制备Cu/Zn/Al催化剂的方法
Kominami et al. Synthesis of highly active tungsten (VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions
Umapathy et al. Synthesis and characterization of Fe2 (MoO4) 3 nano-photocatalyst by simple sol–gel method
EP2218685B1 (de) Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
CN114653370B (zh) 金属氧化物基金属单原子催化剂及其制备方法和应用
CN108970601B (zh) 一种具有氧化锌/二氧化钛异质结构的光催化涂层及其制备方法和应用
Maskrot et al. Blue TiO/SiO2 nanoparticles by laser pyrolysis
KR20080111796A (ko) 비표면적 조절이 가능한 구형의 나노 산화세륨 나노 분말의제조방법
CN114956152A (zh) 一种超声雾化制备针状CuO粉体的方法
JP7186362B2 (ja) 酸化チタン粒子及びその製造方法
Levy et al. Synthesis of nanophased metal oxides in supercritical water: Catalysts for biomass conversion
JPH10137593A (ja) 高光触媒活性アナタース形微粒子酸化チタンおよびその製造方法
Sakanoue et al. Photocatalytic activities of rutile and anatase nanoparticles selectively prepared from an aqueous solution
KR20110110986A (ko) 화염 분무 열분해를 이용한 전이금속이 도핑된 산화아연 나노분말 및 이의 제조 방법
RU2738596C1 (ru) Способ получения ультрадисперсных частиц однородных оксидных керамических композиций, состоящих из ядра и внешних оболочек
KR100446869B1 (ko) 금속 산화물 나노 입자의 제조방법
KR20020012392A (ko) 이산화티탄 분말의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SC INTELLECTUAL PROPERTY JOINT LTD.

Free format text: FORMER OWNER: SUED CHEMIE AG

Effective date: 20130110

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130110

Address after: Munich, Germany

Patentee after: SUED CHEMIE AG

Address before: Munich, Germany

Patentee before: Sued Chemie AG

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120912

Termination date: 20200711

CF01 Termination of patent right due to non-payment of annual fee