CN101456539A - 制备纳米结晶水滑石化合物的方法 - Google Patents

制备纳米结晶水滑石化合物的方法 Download PDF

Info

Publication number
CN101456539A
CN101456539A CNA2008101828767A CN200810182876A CN101456539A CN 101456539 A CN101456539 A CN 101456539A CN A2008101828767 A CNA2008101828767 A CN A2008101828767A CN 200810182876 A CN200810182876 A CN 200810182876A CN 101456539 A CN101456539 A CN 101456539A
Authority
CN
China
Prior art keywords
hydrotalcite
initial compounds
nanocrystalline
reaction chamber
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101828767A
Other languages
English (en)
Inventor
汉斯-约尔格·韦尔克
斯特凡·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie AG
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Publication of CN101456539A publication Critical patent/CN101456539A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0054Drying of aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及制备纳米结晶水滑石化合物的方法,包括步骤:将一个或者多个起始化合物通过载体流引入反应室,在温度250至400℃使起始化合物在处理区域经受脉冲热处理,形成纳米结晶金属氧化物颗粒,从反应器中取出获得的纳米结晶水滑石颗粒,其中起始化合物以溶液,浆液,悬浮液或者固体聚集态的形式引入反应室,并根据本发明方法得到的纳米结晶水滑石材料,及其作为吸附剂和催化剂材料的用途。

Description

制备纳米结晶水滑石化合物的方法
本发明涉及一种制备纳米结晶水滑石化合物的方法和根据本发明方法得到的纳米结晶水滑石化合物及其用途。
水滑石是一类被术语“层状矿物”覆盖的无机材料。
水滑石化合物通常以MII 1-xMIII x(OH)2An- x/nyH2O的通式出现,其中M是二价或者三价的金属阳离子,An-是n价的阴离子。
这种既可以天然存在又可以合成制备的水滑石矿物,具有化学式Mg6Al2(CO3)OH16·4H2O.。它具有通过逐渐释放氢氧化铝而结合酸的能力并因此广泛应用于工业和作为药物产品。国际非专有名词(INN)也叫做菱水碳铝镁石。水滑石几乎不溶于水,它存储时必须要避光保存和密封。
此外水滑石,尤其是合成制备的水滑石,被用来作为PVC和聚烯烃的共稳剂。然而,术语水滑石,也用来描述菱水碳铝镁石的矿物组,其是天然和合成的碱性复盐水滑石的衍生体。用于该矿物组的英文术语是“层状复盐(LDH)”。不像硅酸粘土矿,水滑石化合物不含任何硅酸,SiO2。水滑石化合物包括天然存在的碳酸镁铁矿和水硅铁石以及水镁铝石和碳酸镁铬矿,其彼此之间仅仅由于八面体层的堆叠顺序而不同和具有六方晶系或斜六方晶系的晶格。
天然的水滑石族系的代表唯一地显示出CO3 2-阴离子和OH基团作为查层阴离子(R.Allmann“Neues Jahrbuch für Minaralogie Monatshefte”,1968,140-144)。还存在掺杂M+++位置的水滑石,例如镍/铝/铬或镍/铝/铁水滑石(F.Kooli,Journal of Solid State Chemistry,118,1995,285-291)。合成水滑石具有上述天然水滑石相同的化学式或者经合成方法来结合水滑石完成可能的掺杂,例如钙/铝硫酸盐水滑石,带有硫酸根阴离子的镁/锌/水滑石(F.Kooli etal,Journal of Materials Science 28,1993,2769—2773)。
此外,除了它们作为抗酸剂的用途之外(cf.N.Bejoy,Resonance2001,pp57-61),水滑石还被用来作为催化剂或者用于结合有机溶剂或者结合含废物的重金属。水滑石化合物通常在温度300—500℃分解,形成相应的二价或三价金属的混合氧化物。
水滑石的制备已被充分认知,至于水滑石本身,其可用热液地制备,也可通过湿化学方法将碳酸镁与铝酸钠沉淀合成并随后煅烧来制备。如此获得的水滑石通常具有30—40m2/g的BET表面积。
当作为催化剂时,在制备方法中的催化剂起始材料的煅烧本质上影响了最终催化剂的性能。当用其作为那些吸附剂时,发生相同的情况,因为这些吸附剂都具有特别高BET表面积,使用其是有益的。
析出物的成分可以影响结晶过程的目标控制,其中,这里一个重要的因素是微晶尺寸(R.,etal.,“Angewandte Chemie”,116,1628-1637(2004))。
最近,尽管经常有未解决的制备问题,所谓的纳米结晶粉末越来越多地被研究。纳米结晶氧化物粉末迄今为止通常采用化学合成、机械加工或者所谓的热物理方法来制备。就钙钛矿而论,例如,采用常规方法获得的BET表面积为2—10m2/g和已经在上面提及的水滑石的情况,具有30—40m2/g的BET表面积。
代表性地,在化学湿合成时,开始自所谓前驱体化合物通过化学反应得到粉末,其仅在煅烧后代表性地得到最终结构。
缺点是,除了小的BET表面积之外,得到的颗粒经常还会出现不规则的尺寸分布,其特别是在采用机械制备方法中出现。
热物理方法中,例如在WO 2004/005184中所描述的,是建立在向固体、液体或者气体起始成分中引入热能的基础上。在先提到的国际专利申请特别涉及所谓的等离子体-热解喷雾方法(PSP),其中起始材料被雾化并在氢氧焰中分解。代表性的工业应用于制备二氧化硅,其中挥发性的硅化合物在氢氧焰中粉化。
人们还试图过采用所谓的等离子体合成方法来制备纳米结晶颗粒,其中起始材料在等离子体中加热到6,000K而被蒸发。更进一步的常用方法是,例如CVD方法,其气相析出物发生反应,在其中形成代表性的非氧化粉末。
不可能采用迄今为止已知的方法来使纳米结晶颗粒的BET表面积增大,特别是由于随后必须的煅烧。陶瓷的方法会导致材料的烧结和由此更进一步的活性表面的缩小。而为了提高其作为吸附剂又作为可能的催化剂的功能的材料活性,就不得不需要多孔性,也就是说,扩大了材料的单独颗粒的表面积。
迄今为止,对水滑石化合物采用的制备方法,仅做出了低于40m2/g的水滑石颗粒的BET表面积的值。
此外,前述的热方法总是存在着水滑石分解的危险,甚至是合成温度低于400℃,特别是由于长的反应时间所导致。
因此,本发明的目的在于提供一种方法,其避免了现有技术的上述缺点,特别是使获得具有超过40m2/g的水滑石颗粒的BET表面积的水滑石化合物成为可能。该方法还能够甚至在低温下实现,以避免水滑石分解成相应水滑石成分的二价或者三价金属成分的混合氧化物。
为了实现本发明的目的,制备纳米结晶水滑石化合物的方法,包括下述步骤:
a)通过载体流将一个或多个起始化合物引入反应室,
b)起始化合物主体在反应区域采用亥姆霍兹(Helmholtz)共振器在温度250—400℃时,经脉冲热处理,
c)形成纳米结晶水滑石颗粒,
d)从反应室中取出在步骤b)和c)中获得的纳米结晶水滑石颗粒,其中,起始化合物以溶液、浆液、悬浮液的形式或者以固体聚集态的形式引入反应室。
该方法使得精确控制结晶过程成为可能,尤其是在微晶尺寸和所得的水滑石的孔径分布的设置上精确控制。
这也可以通过在火焰中的停留时间或者反应室温度来额外有利地受到影响。反应温度在250—400℃的停留时间的优选值介于20min到1h之间。
让人意外的是,由此形成的纳米结晶颗粒由于采用脉冲热处理而阻止了其团聚,其结果是形成了分散的纳米结晶水滑石颗粒。由于在反应室中极其短暂的停留时间,也可以设定300—400℃的温度而不会发生热致分解反应。
无焰燃烧反应器在现有技术中已被熟知。因此DD 245674和DD 245649都公开了一种制备硅酸材料或者单相氧化物的方法,其中,氧化硅溶胶或者金属化合物在振荡火焰反应器中在脉动燃烧中雾化和热处理。该方法产生高度分散的氧化硅凝胶或者具有目标颗粒尺寸、表面尺寸和表面结构的氧化物。
所述脉冲反应器的工作原理,如在WO-A-02/072471中描述的,与声学谐振腔相同,其包括一个燃烧室、一个共鸣管和用于粉末分离的过滤器。所述共鸣管连接在排气侧紧挨燃烧室处,并且具有与燃烧室相比明显缩小的流动横截面。进入燃烧室的燃烧气体混合物被点燃,迅速地燃烧,由于气体入口侧在高于大气压下的情况下被空气动力阀基本密封,使其在共鸣管方向产生气压波。流出的气体进入共鸣管,在燃烧室内产生低于大气压的压力,导致新的气体混合物流过阀并且自燃。这种通过压力和低于大气压关闭和打开阀门的方法是自动调控和周期性的。
根据本发明的方法,优选的无焰燃烧过程是通过在燃烧室的共鸣管中燃烧引起一个气压波并激发声波振荡来实现。一个所谓的带有脉冲流的亥姆霍兹共振器由此而形成了。这种脉冲流特征在于高度的湍流。脉冲频率可以由反应器的几何尺寸来设定,并通过温度以目标方式变化。由无焰燃烧产生的气流优选脉冲在20到150Hz,特别优选在30到70Hz。
考虑到燃烧室中的压力和共鸣管中的速度得到的条件不稳定,其可能产生高强度的热传递,即,脉冲热气流向固体颗粒进行的非常快速和大规模的能量传递。因此,根据本发明,在反应室中在毫秒范围内非常短的停留时间内,能取得非常大的反应改进,优选在1ms到2ms之间,尤其优选在1ms到200ms之间。在一个更加优选的方法中,反应中或反应后通过涡旋起始化合物,反应混合物的停留时间在很大范围上得到控制。在锂磷酸铁颗粒的形成中,反应混合物受到流化床的影响。反应混合物因此描述为回转运动。
通过在脉冲反应器中周期性重复,热脉冲得到非常高的温度峰值。然而,起始化合物的高温反应持续时间很短。在反应室的反应区域中,低温的平均时间占主导。在平均温度是100℃到400℃之间时有利于反应完成,优选在250℃到450℃之间,更优选在300℃到400℃之间,最优选在300℃左右。平均温度是可以宏观尺度测量的温度。在此,根据本发明的方法与现有技术的方法相比具有决定性的优势。已知方法中,上述反应在600℃或者以上才能完成。
由于在低温发生反应,能得到特别细的颗粒几何尺寸。发生反应的温度也影响了由此得到的水滑石颗粒的表面。
典型情况是,纳米结晶水滑石颗粒被热气流立即传送到较冷的区域,在那里可以得到纳米结晶,其直径有时小于20nm。
根据本发明方法获得的水滑石具有明显增加的50—200m2/g的BET表面积,优选70—150m2/g。
通过采用根据本发明的方法制备水滑石颗粒时,可以实现减少超过20%的反应时间。以前,通过标准方法制备水滑石合成持续时间大约1—2天,但是采用根据本发明方法合成时间大约在1小时后就可以结束。
采用根据本发明的方法获得的水滑石的转化量,每天在300g到1t之间。
根据本发明的方法的进一步优点是,例如,没有额外的过滤和/或干燥步骤或者不用添加额外的溶剂悬浮液,就可以在非常短的周期内煅烧,与在前现有技术的已知方法相比,能在相对低的温度下,代表性地在几毫秒内,因而水滑石化合物的分解反应可以被彻底消除。
由此形成的纳米结晶水滑石化合物具有,如上解释的,显著提高的BET表面积,其作为催化剂使用时,导致催化剂具有提高的反应活性、改进的转化率和选择性。
由于几乎相同的每个颗粒在由该方法创造的均匀温度区域的停留时间,也带来了极端均匀的具有狭窄单态粒子分布的最终产品。
实现根据本发明的方法,制备这种单态纳米结晶水滑石的设备在例如DE101 09 82 A1中公知。
然而,不像在那里描述的设备和在那里公开的方法,本发明的方法不需要前-后端的起始材料必须被加热到蒸发温度的蒸发步骤。
代表性地,根据本发明的制备水滑石化合物的材料直接经载体流特别是载体气体,优选是惰性载体气体,例如氮气等等,引入所谓的反应室,更精确地进入燃烧室。连接在反应室排气侧的是共鸣管,该共鸣管具有与反应室相比明显缩小的流动横截面。燃烧室的底部装备有几个阀门,以便点火进入燃烧室。空气动力阀依据流体工程和声学相匹配于燃烧室和共鸣管几何尺寸,以便产生于燃烧室的均匀无焰温度场的压力波,在共鸣管中主要地传播脉冲。所谓的具有脉冲流的亥姆霍兹共振器就此形成。
代表性地,用喷射器或者用合适的两组件喷射器或者用Schenk分配器把材料供给反应室。优选地,起始化合物以溶解形式引入反应室,其结果是确保了处理区域的精细分散。溶液可以非常精细地喷雾分散到反应空间。化合物优选通过将溶解组分用载体流在15到40bar的压力下,喷雾引入反应器。由此,发生了非常迅速的排水和起始化合物的转化,结果得到了细结晶态的期望产品。采用水溶液的优点也是该介质的环境友好性。水在反应后被浓缩,并且不需要昂贵的处理和安排。还有,溶液中可以添加有机添加剂和溶剂成分。
根据本发明的方法,从而使得直接引用制备单态、纳米结晶水滑石化合物成为可能。令人惊讶的是,已经沉淀的水滑石化合物也可被直接引入燃烧室,其中,不含有由此形成的需要被过滤的结晶材料。此外,根据本发明的方法,使得当根据本发明制备水滑石化合物时较低的温度成为可能。并且,当采用来自金属盐的溶液时,可以避免额外的沉淀步骤,结果是,它们可以在反应器中直接煅烧。发生煅烧,如已经在上所述,比已知的现有技术温度更低,结果是水滑石的分解反应可以彻底被消除。
载体流优选气体,例如空气、氮气或空气/氮气混合物。它服务于向反应室以细的和均匀分布形式引入起始化合物。在气体的帮助下,也产生了对生产具有狭窄尺寸分布的精细纳米颗粒非常重要的湍流。
尤其特别优选的载体流是含有可燃气体的气体。因此,可以把可燃气体供给反应器,通过该方式可以致使反应器达到设定的温度。
采用合适的分离设备,将反应器中生产的颗粒从反应器区域中除去。由于颗粒是非常细的纳米结晶颗粒,在一个优选的实施方式中,它们从产物气流中被除去,例如通过气体旋风除尘器、一个表面或者静电除尘器。液体,或者甚至已经在溶液中存在的起始材料,也可以天然地作为流体替换使用。载体流的性质对于在处理区域的停留时间具有特别的影响。此处例如,悬浮液和相当难溶化合物的浆液,例如硫酸盐,氧化物,氮化物等等,根据本发明也可以被直接采用。
为了制备更复杂的水滑石或者混合的水滑石或者甚至掺杂的水滑石,如果采用不同的特别是彼此不同的起始化合物,它是有利的。这有利于特别是制备如果例如更复杂的建立在水滑石中不同金属的协同基础上的催化剂体系。
通过控制脉冲(规则地或者不规则地或者脉冲热处理的宽度和波幅)和起始化合物在处理区域的停留时间(代表性地200ms-2s),对结晶尺寸也可产生精确地影响。
除了热处理,由此形成的纳米结晶水滑石是,如有可能,通过载体流被立即传送进反应室更冷的区域,结果是,它们在更冷的区域被分离并被取出。根据本发明方法的产量是几乎100%,由于在此形成的全部产物都可以从反应器中作为固体取出。
如前所述,令人惊奇地发现,已经以固态存在的水滑石也可以用作起始材料,根据本发明,这些材料可以通过随后的脉冲温度处理转换成具有高BET表面积的纳米结晶颗粒,将上述做法引入现有技术方法中的煅烧处理,并因而也阻止了水滑石的分解。
这有利地打开了根据本发明方法的另一个应用领域,因为其不必选择特定的起始化合物,例如考虑到它们的溶解性、蒸发等等,例如水滑石可以首先用例如湿化学的常规方法制备,然后在所谓的脉冲反应器中仅需实现最终产品的煅烧。
自然地,根据本发明方法的更进一步的发展,可溶金属化合物被用作起始材料同样是可能的。特别是采用金属和过渡金属的碳酸盐、氢氧化物、硝酸盐和硫酸盐。
这些特别是镁、锌、钙、铝、镍、锰和铁的碳酸盐、硝酸盐、氢氧化物和硫酸盐,结果是更复杂的水滑石,例如已经在上述提到的,也可以制备。
作为已经由湿化学方法获得的水滑石的例子,这里有可能提到经典的水滑石(Mg6Al2OH16CO3·nH2O),水镁铝石(Mg3Fe(OH)8CO3·nH2O),碳酸镁铁矿或者水硅铁石(Mg3Cr(OH)8CO3·nH2O),碳镁铬矿或者水镁铬矿(Mg3Mn(OH)8CO3·nH2O),羟碳锰镁石(Mg3Fe(OH)9·2H2O),羟镁铝石(Ni3Al(OH)9CO3·4H2O)和水铝镍石。
根据本发明进一步可得到的水滑石也被提及,在例如由W.Hofmeister和H.von Platen发表的,“Cryatal Chemistry and Atomic Order in Brucite relateddoublelayer Structures”,Crystallography Reviews,3,1992,pp.3-29,参照其完成的全部公开的内容。所有这些采用湿化学方法能够得到的水滑石,都可以根据本发明的方法被煅烧,并且,随后展示出所得纳米结晶的高孔隙率和单态粒径分布。
在进一步优选的实施方式中,可以制备掺杂水滑石,其中起始化合物的额外的溶液,例如还可以添加出自可溶的铈、铁、铜、镍、银和金化合物。这里特别是它们的硝酸盐、氯化物、醋酸盐,等等,也是优选的,因为它们更容易溶解。
更令人惊讶的发现,根据本发明方法的热处理可以在250—450℃的温度实现,其相对于迄今为止的已知的在更高的温度下完成的热分解方法或者煅烧方法,是有利的,因为上述分解或者第二反应可以被消除,结果是,根据本发明方法的产品包含几乎没有杂质,并且当根据本发明的方法完成时,能量平衡也是更顺利的,因为更低的能量消耗。典型地,该方法在压力15—40bar之间完成。
本发明的目标,通过根据本发明方法得到的纳米结晶水滑石材料,同样能够实现。已发现,根据本发明的纳米结晶水滑石材料,优选具有在5nm-100μm范围内的结晶尺寸,优选在10nm-10μm,具有上面已经提到的单态分布,可以通过热处理的脉冲实现。
根据本发明,可得到水滑石材料还具有超过40m2/g的BET表面积,特别优选超过100m2/g,典型地在50—120m2/g之间。在个别的例子里,甚至可以得到高达150m2/g的BET表面积。
参考下述实施例,更详细地描述根据本发明的方法,其不被考虑为限制性的。所采用的设备大部分对应于DE 101 09 82 A1中描述的设备,区别在于根据本发明采用的设备没有预备蒸发步骤。
实施例1
首先,根据本身已知的湿化学方法,通过在50% KOH的碱性溶液中添加AlOH3,将碳酸镁转化成水滑石,并通过在70℃冷却将其沉淀,制备得到水滑石原材料。
由此所得的材料在根据本发明的设备中,实现喷雾干燥。所得的滤饼在371水中打浆,结果形成59.6Kg的原始悬浮液,其以相应每个量为15Kg的四部分雾化。脉冲反应器中,产量大约在12.5Kg每小时。
脉冲反应器的温度为250-400℃,从而低于喷雾干燥器的操作温度450-500℃,由此,可以避免温度诱导的水滑石分解成二价或三价的水滑石金属氧化物的可能的第二反应。
由此,得到的材料的BET表面积代表性地超过100m2/g。
在下表中再现试验结果:
测定
 
样品 温度[℃] 产量[Kg] XRD测试 BET表面积[m2/g]
1 500 0.27 无水滑石 95
2 400 0.41 水滑石 105
 
3 300 0.75 水滑石 81
4 250 0.50 水滑石 102
结果是,根据本发明的方法,在温度250-400℃间制备的具有81-105m2/g的BET表面积的水滑石,当温度超过400℃时得到的不是水滑石,而是热解产物。温度在300-400℃之间时获得BET表面积的最佳值。
实施例2
实施例2显示了根据本发明直接在脉冲反应器中的水滑石材料的制备。
MgCO3分散在水中,加热到90℃,并搅拌。(溶液1)
接着,添加了AlOH3溶液的50%的KOH溶液加热到75℃(溶液2)。
悬浮液本身或者略微加热到105℃,其结果形成乳浊液。
为了避免产物水滑石的分解反应,两种溶液经喷嘴被分别引入脉冲反应器中,在350℃雾化。
所得产物是纯的水滑石,具有120m2/g的BET表面积。
已经表明,与引入已经在先合成的粗糙的滑块石相比,在反应器中从起始化合物直接合成的水滑石具有更高的BET表面积。

Claims (14)

1、纳米结晶水滑石化合物的制备方法,包括步骤:
a)通过载体流将一个或多个起始化合物引入反应室,
b)起始化合物主体在反应区域采用亥姆霍兹(Helmholtz)共振器在温度250—400℃时,经脉冲热处理,
c)形成纳米结晶金属氧化物颗粒,
d)从反应室中取出在步骤b)和c)中获得的纳米结晶水滑石颗粒,
其特征在于,起始化合物以溶液,浆液,悬浮液或固体聚集态的形式引入反应室。
2、根据权利要求1的方法,其特征在于,在载体流是气体。
3、根据权利要求1或2的方法,其特征在于,起始化合物以雾化形式引入反应室。
4、根据权利要求3的方法,其特征在于,采用了彼此不同的几个起始化合物。
5、根据以上权利要求中任一项的方法,其特征在于,脉冲热处理的脉冲有规则地或无规则地发生。
6、根据以上权利要求中任一项的方法,其特征在于,在处理区域的热处理之后,由此形成的纳米结晶水滑石颗粒被传送到反应室的更冷区域。
7、根据权利要求6的方法,其特征在于,Mg,Zn,Ca,Al,Ni,Mn和Fe的氢氧化物、碳酸盐或者硫酸盐或者它们的混合物用作起始化合物。
8、根据权利要求7的方法,其特征在于,采用Mg3Fe(OH)8CO3·nH2O,Mg3Fe(OH)9·2H2O,Mg3Cr(OH)8CO3·nH2O,Ni3Al(OH)9CO3·4H2O,Mg3Mn(OH)8CO3·nH2O作为起始化合物。
9、根据权利要求7的方法,其特征在于,进一步添加起始化合物,其选自由Ce,Fe,Cu,Ni,Ag和Au化合物组成的组。
10、根据权利要求7或9的方法,其特征在于,采用可溶性金属化合物作为起始化合物。
11、根据以上权利要求中任一项的方法,其特征在于,该方法在压力15-40bar之间进行。
12、根据以上权利要求1-11中任一项所述的方法得到的纳米结晶水滑石材料。
13、根据权利要求12所述的纳米结晶水滑石材料,其特征在于,其结晶尺寸在10纳米至10微米之间。
14、根据权利要求13所述的纳米结晶水滑石材料,其特征在于,其BET表面积>40m2/g。
CNA2008101828767A 2007-12-13 2008-12-11 制备纳米结晶水滑石化合物的方法 Pending CN101456539A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007059990.2 2007-12-13
DE102007059990A DE102007059990A1 (de) 2007-12-13 2007-12-13 Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen

Publications (1)

Publication Number Publication Date
CN101456539A true CN101456539A (zh) 2009-06-17

Family

ID=40194724

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101828767A Pending CN101456539A (zh) 2007-12-13 2008-12-11 制备纳米结晶水滑石化合物的方法

Country Status (6)

Country Link
US (1) US20090162658A1 (zh)
JP (1) JP2009143798A (zh)
CN (1) CN101456539A (zh)
DE (1) DE102007059990A1 (zh)
DK (1) DK200801718A (zh)
GB (1) GB2457771A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136373A (zh) * 2012-03-26 2014-11-05 协和化学工业株式会社 水滑石粒子的制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY157620A (en) 2006-01-31 2016-06-30 Cytochroma Dev Inc A granular material of a solid water-soluble mixed metal compound capable of binding phosphate
GB0913525D0 (en) * 2009-08-03 2009-09-16 Ineos Healthcare Ltd Method
DE102009048348B4 (de) * 2009-10-06 2014-02-13 Heiko Ackermann Kohlenstoffnanoröhrenproduktionsprozess
GB201001779D0 (en) 2010-02-04 2010-03-24 Ineos Healthcare Ltd Composition
CN101979309B (zh) * 2010-09-03 2012-01-04 哈尔滨工程大学 以蛋壳为原料制备水滑石的方法
DE102013017826A1 (de) * 2013-10-24 2015-04-30 Nanopartica Gmbh Verfahren zur Herstellung eines Hydrotalkit - ähnlichen Oberflächenmaterials, mittels des Verfahrens hergestellte Produkte und deren Verwendungen
CN104984692A (zh) * 2015-02-25 2015-10-21 王建伟 一种工业化大批量稳定制备量子点的串联装置
DE102016001349A1 (de) * 2016-02-08 2017-08-24 Horst Büchner Verfahren zur thermischen Materialbehandlung
EP3498674B1 (en) 2016-08-10 2021-07-28 Nippon Paper Industries Co., Ltd. Composite body of hydrotalcite and fiber
WO2018180699A1 (ja) 2017-03-31 2018-10-04 日本製紙株式会社 無機粒子複合繊維シートの製造方法
DE102017128719A1 (de) * 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
CN113717988A (zh) * 2021-08-17 2021-11-30 广东省林业科学研究院 一种用于定向创制植物突变体的方法
EP4327927A1 (en) * 2022-08-23 2024-02-28 IBU-tec advanced materials AG Method and reactor for thermal treatment of battery precursor material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3440994A1 (de) 1984-11-09 1986-06-12 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zur verbesserung der zuendfaehigkeit und des brennverhaltens von braunkohlenbriketts
DD245649A1 (de) 1986-01-02 1987-05-13 Dessau Zementanlagenbau Veb Verfahren zur herstellung hochdisperser oxide
CA2355094C (en) * 1999-10-18 2009-11-24 Kyowa Chemical Industry Co., Ltd. Dye fixing agent for water-color ink,ink jet recording medium and porous hydrotalcite compound
DE10109892B4 (de) 2001-02-24 2010-05-20 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
DE10111938A1 (de) * 2001-03-13 2002-09-26 Merck Patent Gmbh Herstellung von Hochtemperatur-Supraleiter-Pulvern in einem Pulsationsreaktor
EP1378489A1 (en) 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Metal oxides prepared by flame spray pyrolysis
WO2005120699A1 (ja) * 2004-06-07 2005-12-22 National Institute For Materials Science 放射性元素含有廃棄物の吸着剤及び放射性元素の固定化方法
DE102004044266A1 (de) * 2004-09-10 2006-03-30 Umicore Ag & Co. Kg Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen und damit hergestellte Metalloxidverbindungen
DE102006032452B4 (de) * 2006-07-13 2013-10-02 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung nanokristalliner Metalloxide
CN101511730B (zh) * 2006-09-07 2012-05-09 Sued-化学公司 制备纳米晶体混合金属氧化物的方法及由该方法获得的纳米晶体混合金属氧化物
DE102006046803A1 (de) * 2006-09-29 2008-04-03 Ibu-Tec Gmbh & Co. Kg Verfahren und thermischer Reaktor zur Herstellung von Partikeln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136373A (zh) * 2012-03-26 2014-11-05 协和化学工业株式会社 水滑石粒子的制造方法

Also Published As

Publication number Publication date
DE102007059990A8 (de) 2009-10-15
DE102007059990A1 (de) 2009-06-18
GB0820964D0 (en) 2008-12-24
GB2457771A (en) 2009-09-02
JP2009143798A (ja) 2009-07-02
DK200801718A (en) 2009-06-14
US20090162658A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
CN101456539A (zh) 制备纳米结晶水滑石化合物的方法
CN101489667B (zh) 制备纳米晶体金属氧化物的方法
CN101511730B (zh) 制备纳米晶体混合金属氧化物的方法及由该方法获得的纳米晶体混合金属氧化物
KR880001777B1 (ko) 촉매 지지체 코우팅용 알루미나 조성물 및 그의 제조방법
RU2606505C2 (ru) Пористый неорганический композитный оксид
CN102574696B (zh) 基于氧化铈和氧化锆具有特定孔隙率的组合物、其制备方法及其在催化中的用途
CN102531015A (zh) 一种多孔氧化铝超细粉体的制备方法
CN101878186A (zh) 用于制备有控制结构与粒度的纳米多孔氧化铝基材料的方法和利用所述方法获得的纳米多孔氧化铝
WO2021083267A1 (zh) 载体、ft合成催化剂及其制备方法和应用
EP2218685B1 (de) Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
US20110172085A1 (en) Nanocrystalline copper oxide, and method for the production thereof
CN102107899B (zh) 一种片状γ相纳米氧化铝的制备方法
KR20170063506A (ko) 다공성 칼슘 결핍 히드록시아파타이트 과립의 제조 방법
CN112744851B (zh) 树莓型氧化物微球及其制备方法和应用
CN109574050B (zh) 一种超高比表面积碳酸铝铵的制备及其热分解制备氧化铝的方法
JPH0925119A (ja) 耐熱性遷移アルミナの製造方法
CN112742363B (zh) Ft合成催化剂及其制备方法和应用
CN112742400B (zh) 甲醇净化催化剂及其制备方法和应用
CN114956152A (zh) 一种超声雾化制备针状CuO粉体的方法
Kunshina et al. Synthesis of ZnTa 2 O 6 from peroxide solutions
CN112742373B (zh) 低温耐硫甲烷化催化剂及其制备方法和应用
KR101740408B1 (ko) 스트론튬 이온 및 칼슘 이온이 이중 도핑된 란탄 망간 산화물 입자 및 이의 연속 제조 방법
CN115784308A (zh) 无定形多组元难熔过渡金属氧化物纳米颗粒的制备方法
WO2023104565A1 (en) Catalysts comprising copper phyllosilicate
Ajarroud et al. Catalytic activity of (Cu (Znx) 3 (PO4) 2 (x= 0; 0.39; 0.5; 0.57) catalysts in isopropanol decomposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090617