CN101443857A - 高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置 - Google Patents

高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置 Download PDF

Info

Publication number
CN101443857A
CN101443857A CNA2007800171484A CN200780017148A CN101443857A CN 101443857 A CN101443857 A CN 101443857A CN A2007800171484 A CNA2007800171484 A CN A2007800171484A CN 200780017148 A CN200780017148 A CN 200780017148A CN 101443857 A CN101443857 A CN 101443857A
Authority
CN
China
Prior art keywords
polymer
electrode
conducting polymer
conductive polymer
electron conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800171484A
Other languages
English (en)
Other versions
CN101443857B (zh
Inventor
朴宗爀
李相英
李玉珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN101443857A publication Critical patent/CN101443857A/zh
Application granted granted Critical
Publication of CN101443857B publication Critical patent/CN101443857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

公开了一种用于制备高电子电导率聚合物的方法,所述方法包含将导电聚合物用能够将可移动电荷载体引入所述聚合物重复单元的掺杂剂进行掺杂以改进所述导电聚合物的电子电导率的步骤,其中在将所述聚合物用所述掺杂剂掺杂时对所述聚合物施以高于所述聚合物导带的电压。还公开了通过该方法获得的高电子电导率聚合物、含有所述高电子电导率聚合物的电极及包含所述电极的电化学装置。用于提高导电聚合物电子电导率的新型掺杂方法可以为导电聚合物提供与常规导电剂相当的电导率。

Description

高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置
技术领域
本发明涉及一种用于将导电聚合物改性以获得与常规导电剂相当的高电子电导率的方法。本发明还涉及具有通过该方法改良的电子电导率的导电聚合物,以及使用所述导电聚合物黏合剂的电化学能量存储装置。
背景技术
通常,二次电能存储装置是用于存储并聚积电力以将其输送至外部电路的系统。这样的电能存储装置的具体实例包括普通电池、电容器、电化学电容器(超电容器、超级电容器和双电层电容器)等。这样的电池的典型实例——锂二次电池通过锂离子的嵌入/脱嵌机制完成充电/放电,而电化学电容器通过双电层机制或法拉第机制(Faradaymechanism)完成充电/放电。这种能量存储装置的电极通常包括电极活性物质、黏合剂和导电剂。在这些组分中,所述黏合剂和所述导电剂通常分别由具有极好导电性的聚合物和含碳材料形成。对于常规的锂二次电池,所述黏合剂和所述导电剂的用量为电极总重量的约5重量%。对于电化学电容器,它们的用量为约10重量%或者更高。
同时,这样的二次电能存储装置的电极活性物质需要聚合物黏合剂以使所述电极活性物质例如活性炭能够以光滑薄膜的形式包被于集电器上。这样的需求还依赖于具体系统的组成。另外,还将导电剂引入这样的装置中以降低其内阻。然而,使用这样的聚合物黏合剂和导电剂并不能增加所述能量存储装置的容量。因此,需要开发通过引入新物质以增加二次电能存储装置容量的方法,所述新物质不仅能作为黏合剂而且能作为导电剂以增加电极中电极活性物质的量。
发明内容
技术问题
因此,考虑到上述的问题而完成了本发明。本发明人关注一种用于导电聚合物中以改良其电子电导率的新型掺杂方法。本发明人发现,通过该掺杂方法改性的导电聚合物在保持其作为黏合剂的功能的同时具有等于或高于常规导电剂的高电子电导率。
本发明基于此项发现。
技术方案
本发明提供了一种用于制备高电子电导率聚合物的方法,所述方法包含一个这样的步骤,即将导电聚合物用能够将可移动电荷载体引入聚合物重复单元的掺杂剂进行掺杂以改进所述导电聚合物的电子电导率,其中在将所述聚合物用所述掺杂剂掺杂时对所述聚合物施以高于该聚合物导带的电压。
本发明还提供了通过以上方法获得的高电子电导率聚合物、含有所述导电聚合物的电极及包含所述电极的电化学装置。
以下将对本发明进行更加详细的说明。
通常,导电聚合物是指由有机单体形成并具有由碳-碳键形成的π-共轭体系的聚合物,在所述体系中碳Pz轨道是重叠且交替排列的。本文使用的术语“导电聚合物”是指具有扩展的π-共轭基团(π-conjugated group)以形成电子转移复合物的聚合物。
这样的导电聚合物不同于非导电聚合物,它们允许存在于重复单元内的可移动电荷的自由移动,并且由于这些移动电荷而呈现约10-5~101S/cm的电导率。然而,这样的导电聚合物显示出与常规导电剂相比相对较低的电导率,因此在用这样的导电聚合物制造电极时,需要另外的导电剂以使得电极活性物质内形成电连接。因此,这在某种程度上限制了电极中可容纳的电极活性物质的量,从而限制了对电化学装置的容量及输出的提高。
因此,本发明提供了新型的掺杂方法,通过该方法可以显著地提高用于形成电极的导电聚合物的电子电导率。
现有技术已经提出了将掺杂剂掺杂于导电聚合物中以增加聚合物的电导率的方法。然而,由于所述导电聚合物是电化学中性的,将掺杂剂中带有正电荷或负电荷的组分掺杂至所述聚合物的重复单元之中多少有几分困难。因此,对这样的聚合物进行改性以具有与导电剂相当的电导率存在限制。
与之相反,本发明在将掺杂剂掺杂至所述导电聚合物时,控制电化学中性的导电聚合物以带有电化学正极性(+)或负极性(-),以增加掺杂至所述聚合物中的可移动电荷。
换言之,将盐(一类掺杂剂)在溶剂中离解成正电荷和负电荷,并将这样的电荷引入导电聚合物的重复单元之中,以增加可移动电荷。在本文中,如果将某一电压施加至导电聚合物,那么原来为中性的所述导电聚合物可部分地带正电荷(+)或负电荷(-)。因此,所述掺杂剂中大量的正电荷(+)和负电荷(-)可以通过静电吸引力分别被纳入带负电荷(-)或正电荷(+)的导电聚合物中。因此,掺杂至所述聚合物中的可移动电荷增加,从而显著地增大导电聚合物的电子电导率。
实际上,从下文的实验性实施例可看出,施以本发明的新型掺杂方法进行改性的高电子电导率聚合物具有比掺杂前提高至少100倍的电子电导率,并显示出与常规导电剂相当的电导率(见下文表1)。
本发明的新型掺杂方法包括一个这样的步骤,即将导电聚合物用引入其中的掺杂剂进行掺杂时,对所述导电聚合物施以一电压。也可在所述聚合物用所述掺杂剂进行掺杂后对所述聚合物施以某一电压。
首先,掺杂剂的引入包括将可移动电荷载体引入导电聚合物的重复单元中。上述引入的掺杂剂可以激活所述聚合物重复单元中的电荷转移,并因此可在保持聚合物的其他物理性质的同时提高聚合物的电导率。
对于所述掺杂剂没有具体限制,只要所述掺杂剂使可移动电荷载体——例如电荷和/或空穴——被引入所述导电聚合物的重复单元中,以激活中性聚合物重复单元中的电荷转移。
例如,在溶液中将盐离解并将其引入至导电聚合物的重复单元中以引起所述导电聚合物分子之间的部分电荷转移,导致其电子电导率的增加。另外,如果电荷转移发生在所述聚合物链、即重复单元中,那么这样的盐可以带电荷状态存在于聚合物链中,而不是移动的电荷。因此,所述聚合物在这样的盐协助下可以保持其原物理性质。
可用于本发明中的掺杂剂的非限制性实例包括可在水性溶剂或非水溶剂中电离的盐类的化合物、通过与酸或盐反应能产生正电荷或负电荷的化合物,等等。具体优选酸、氧化剂(p型掺杂剂)、还原剂(n型掺杂剂)等。这样的掺杂剂的具体实例包括非取代的或者由Na、K、Li或Ca取代的磺酸(例如2-丙烯-氨基-1-丙磺酸(2-acrylo-amido-1-propanesulfonic acid)、十二烷基苯磺酸、樟脑磺酸);含PF6 -,BF6 -,Cl-,SO4 2-,ClO4 -或F-的过渡金属盐(例如金、铁、铜或铂的盐);I2;AsF6;LiBF4;具有足以掺杂聚合物的氧化还原对的其他氧化/还原剂;C1~C6烷基卤化物或芳基卤化物;酸酐;等等。除了以上这些之外,能够通过上述机制激活电荷转移的其他化合物也包括在本发明的范围之内。
对于引入导电聚合物的掺杂剂的量没有特别限制。然而,所述掺杂剂优选相对于每100摩的所述导电聚合物以30~50摩的量使用。如果所述掺杂剂的用量过低,那么将不可能获得所需程度的高电子传导特性。
同时,在本发明的新型掺杂方法中的施加电压包括对导电聚合物施加电压,所述电压高于所述导电聚合物特有的导带。施加至聚合物的电压可引起所述导电聚合物的电化学性质的变化,使原来中性的所述导电聚合物可以部分地带正电荷(+)或负电荷(-)。
例如,当在作为参比电极的Ag-AgCl的存在下对导电聚合物施加0~2V的电压时,所述导电聚合物会部分地带正电荷(+)。另一方面,当对所述聚合物施加-1~-3V的电压时,所述导电聚合物带负电荷(-)。因此,存在于溶液中的大量可移动的正电荷(+)或负电荷(-)可通过静电吸引力移向这样的带电荷聚合物,并可被有效地引入至所述聚合物的重复单元中。
此外,施加这样的电压可激活掺杂后的导电聚合物重复单元中的电荷转移,并因此进一步提高其高电子传导特性。
对于施加至导电聚合物上的电压没有特别限制,只要该电压可使得所述导电聚合物重复单元中的电荷发生激活。施加在所述导电聚合物上的电压优选高于该导电聚合物的导带。
在本文中,不同类型的导电聚合物具有不同的导带。因此,对于电压范围、施加电压的时间、施以电压的方法等没有特别限制。
在本发明新型掺杂方法的一个优选实施方案中,将导电聚合物膜浸泡在其中离解有掺杂剂的溶液中,然后对其施以电压。在一个变化方案中,将可电离的掺杂剂分散至含溶解于溶剂的导电聚合物的溶液中,然后对其施加在一定范围内的电压,然后进行浓缩和干燥。
所述溶剂优选具有与待使用的导电聚合物相近的溶解度参数。可以用于本发明中溶剂的非限制性实例包括丙酮、四氢呋喃、二氯甲烷、氯仿、二甲基甲酰胺、N-甲基-2-吡咯烷酮、环己烷、水或上述物质的混合物。
对于施以本发明的新型电化学掺杂方法的导电聚合物的组成、形状、分子量范围等没有特别限制,只要所述聚合物具有导电性即可。
可用于本发明的导电聚合物的非限制性实例包括聚苯胺、聚吡咯、聚噻吩、PEDOT(聚乙撑二氧噻吩)、聚对苯撑(poly(p-phenylene))、聚乙炔、聚亚噻吩亚乙烯基(poly(thienylenevinylene))或上述物质的混合物。
本发明的高电子电导率聚合物可以进一步包含导电无机颗粒以增加其电导率。可用于本发明的导电无机颗粒包括本领域技术人员已知的常规的导电无机颗粒。更优选具有较高电导率的导电无机颗粒。例如,所述导电无机颗粒可以具有1S/cm~105S/cm的电导率。
另外,所述导电无机颗粒优选具有纳米级的直径,使得它们可以均匀地分散于所述导电聚合物中。
如上所述,被改性以具有高电子电导率的所述导电聚合物在其重复单元中存在数量显著增多的可移动电荷。在本文中,可以将所述导电聚合物以这样的方式改性,即相对于所述高电子电导率聚合物重复单元中存在的每一个可移动电子,在所述聚合物中存在的电子数目为0.1~1,优选0.1~0.3。
对于所述导电聚合物的电导率也没有特别限制,只要所述导电聚合物与常规的非掺杂导电聚合物相比具有提高的电导率即可。例如,所述导电聚合物可具有10-5~105S/cm的电导率。
所述高电子电导率聚合物可以应用于多个领域。优选地,所述高电子电导率聚合物可以应用于同时需要高电子电导率和黏合剂功能的多个应用中。
另外,本发明提供了包含与集电器结合的电极活性物质层的电极,其中所述电极活性物质层包含:(a)电极活性物质;及(b)具有改进的电导率的所述高电子电导率聚合物。
由于所述改进的导电聚合物具有10g/cm或更大的粘附力及10-5~105S/cm的电导率,它不但能作为黏合剂而且能作为导电剂。在本文中,所述改性的导电聚合物可以具有10~100g/cm、优选30~50g/cm的粘附力。所述改性的导电聚合物还可以具有比常规导电聚合物提高至少100%的电子电导率。例如,所述改性的导电聚合物具有比常规导电聚合物高10~100倍、优选10~50倍的电子电导率。
实际上,由于本发明的高电子电导率聚合物具有比常规导电聚合物至少提高10倍的电子电导率,因此它在被引入电极时足以作为导电剂,从而不需要碳基导电剂即可在电极活性物质中产生电连接并且引起离子或电荷运动。因此,使用所述电极的电化学装置可以提供显著降低的电阻。所述高电子电导率聚合物还可令人满意地作为黏合剂以使所述电极活性物质颗粒相互之间及与集电器之间产生物理连接和电连接。再者,所述导电聚合物可作为电极活性物质,这是因为它通过电荷吸附存储能量并因此对容量的增加有贡献。其结果是,使用所述导电聚合物的电极通过这种电极活性物质量的增加而使电化学装置具有高输出及大容量。
虽然常规导电聚合物在用作电极活性物质时会产生充电/放电循环特性方面的问题,但是本发明的高电子电导率聚合物虽然充电/放电稳定性稍有降低,仍可保持其作为黏合剂及导电剂的主要功能。因此,本发明的高电子电导率聚合物不会对电池的总体充电/放电循环特性产生不利影响。
再者,虽然常规电极主要由电极活性物质、聚合体黏合剂及导电剂组成,但是本发明的电极可以仅通过使用电极活性物质及所述高电子电导率聚合物制备。因此,通过这种不同于常规电极体系的简单的电极设计,所述电极的制造方法具有提高的简易性及成本效益。
在所述电极中,所述导电聚合物的用量为100重量份的总电极物质中占0.01~90重量份,但并不以此为限。
本发明的电极除了包含上述的导电聚合物之外,还可包含本领域技术人员熟知的黏合剂及导电剂。
所述黏合剂的非限制性实例包括特氟龙(teflon)、PVdF(聚偏二氟乙烯)、苯乙烯-丁二烯橡胶(SBR)、基于纤维素的聚合物或上述物质的混合物。本领域技术人员熟知的任何导电剂也可以用于本发明中。对于所述黏合剂及导电剂的量没有特别限制。
可以通过本领域技术人员已知的常规方法制备使用本发明的高电子电导率聚合物的电极。在一个优选的实施方案中,将含有电极活性物质及所述导电聚合物的电极浆料结合于电流集电器上。
在所述电极活性物质中,阴极活性物质包括当前用于电化学装置阴极中的常规阴极活性物质,所述阴极活性物质的具体实例包括金属、金属合金、金属氧化物、石油焦、活性炭、石墨或其他含碳物质。阳极活性物质也可以与上述阴极活性物质相同。
阴极集电器的非限制性实例包括由铝、镍或其结合物形成的箔。阳极集电器的非限制性实例包括由铜、金、镍、铜合金或上述物质的结合物形成的箔。
再者,本发明提供了包含阴极、阳极、隔离物及电解质的电化学装置,其中所述阴极或所述阳极之一或二者含有上述的高电子电导率聚合物。
所述电化学装置包括在其中进行电化学反应的任何装置。所述电化学装置的具体实例包括所有类型的原电池、二次电池、燃料电池、太阳能电池、电容器等。优选二次电池,特别是锂二次电池以及基于电荷吸附于两电极表面/从两电极表面脱附的机制而储存能量的吸附/脱附型电化学装置。锂二次电池的具体实例包括锂-金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。这样的吸附/脱附型电化学装置的非限制性实例包括双电层电容器、超电容器、伪电容器(pseudocapacitor)等。
本发明的电化学装置可以通过使用本领域技术人员熟知的方法获得。例如,可以通过使用阴极、阳极及插入两电极之间的隔离物形成电极组合装置,然后将电解质注入其中。
对于可用于本发明的电解质没有特别限制,只要所述电解质具有离子导电性即可。例如,可以使用含有电解质盐的电解质,所述电解质盐被溶解于或电离于电解质溶剂中。
所述电解质盐包括以式A+B-表示的盐,其中A+代表选自于Li+、Na+、K+及上述物质的结合物的碱金属阳离子,B-代表选自于PF6 -、BF4 -、Cl-、Br-、I-、ClO4 -、AsF6 -、CH3CO2 -、CF3SO3 -、N(CF3SO2)2 -、C(CF2SO2)3 -及上述物质的结合物的阴离子。另外,还可以使用(CH3)4N盐、(C2H5)4N盐等。
可用于本发明的电解质溶剂包括水性溶剂或非水溶剂。其非限制性实例包括碳酸异丙烯酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、二甲基亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、四氢呋喃、N-甲基-2-吡咯烷酮(NMP)、碳酸甲乙酯(EMC)、γ丁内酯(GBL)及上述物质的混合物。
至于所述隔离物,可以使用已知用于防止两电极直接接触的常规微孔隔离物,这样的隔离物的具体实例包括基于聚烯烃的隔离物及/或基于纤维素的隔离物。
附图说明
本发明的上述目的及其他目的、特征和优点通过以下的详细描述并结合以下附图变得更加显而易见,附图中:
图1为示出用于电能存储装置且包含本发明的高电子电导率聚合物作为黏合剂的电极的结构示意图;
图2是通过SEM(扫描电子显微镜)拍摄的用于电能存储装置且包含本发明的高电子电导率聚合物作为黏合剂的电极的照片;以及
图3为显示包含实施例1及比较实施例1~3的各电极的电能存储装置在10mA/cm2的充电/放电电流密度下的容量差异的图表。
具体实施方式
以下将详细地描述本发明的优选实施方案。应了解这些实施例只为说明目的,本发明的范围并不以此为限。
实施例1
1-1.通过引入盐/施加电压制备具有提高的电导率的导电聚合物
将由PEDOT(聚乙撑二氧噻吩)(分子量30,000;粘附力:10g/cm或更大;电导率:~1×10-5S/cm)形成的导电聚合物膜涂布于铂片上,并对其施以1V(相对于Ag/AgCl)的电压1小时,同时将所述导电聚合物膜浸入2重量%的HCl溶液以提供掺杂聚合物PEDOT。使用铂作为对电极。
1-2.制造电极
向作为溶剂的蒸馏水中加入90重量%的作为电极活性物质的活性炭(MSP20,Kansai Coke and Chemicals Co.,Ltd.)及10重量%的通过实施例1-1制备的改性导电聚合物PEDOT,以提供作为电极浆料的二元混合物。将所述电极浆料施加至作为阴极集电器的具有约20μm厚度的铝(Al)箔上,随后进行干燥,以提供阴极。使用与阴极相同的电极作为阳极。
图1示出该实施例中获得的电极示意图,图2显示所述电极的表面。
1-3.制造电池
将所述阴极、隔离物及所述阳极连续堆叠以提供电极组合装置。然后将含有1M溶解的四乙基四氟硼酸铵(TEABF4)的碳酸异丙烯酯(PC)注入所述电极组合装置中以提供电化学装置。
比较实施例1
以如实施例1所述的同样的方式制备电极和电化学装置,不同之处是将75重量%的作为电极活性物质的活性炭、10重量%的作为导电剂的Super-P以及15重量%的作为黏合剂的PTFE加入至作为溶剂的蒸馏水中以提供电极。
比较实施例2
以如实施例1所述的同样的方式制备电极和电化学装置,不同之处是使用未掺杂的导电聚合物PEDOT以提供电极。
比较实施例3
以如实施例1所述的同样的方式制备电极和电化学装置,不同之处是使用其导电性仅通过引入盐而未施加任何电压而提高的导电聚合物PEDOT以提供电极。
实验实施例1.电子电导率的比较及评估
将实施例1的改性的高电子电导率聚合物(PEDOT)作为样品,而将当前在锂二次电池以及双电层电容器和碳纳米管(CNT)中作为导电剂使用的通常被作为高电子电导率物质的Super-P作为对照。分别将上述材料粒化,使用四探针法测定每种材料的电子电导率。
在该试验后,可以看出本发明的高电子电导率聚合物(PEDOT)与所述常规导电剂Super-P相比优良的电导率,并且呈现出与碳纳米管相当的电子电导率(见下表1)。这证明了所述导电聚合物在电池中足可以作为导电剂。
[表1]
 
条件 碳纳米管 Super-p 实施例1的改性的导电聚合物         
电导率(S/cm) 5×10-2 1×10-2 5×10-2
实验实施例2.粘附力试验
进行以下试验以评估实施例1和比较实施例1~3的电极粘附力。
粘附力试验是通过将胶带贴于每种电极的电极活性物质层表面并从上面揭除所述胶带而进行的。在除去所述胶带后,在胶带上保留的每种电极活性物质层的量示于以下的表2中。
在该试验后,可以看出使用黏合剂(PTFE)的比较实施例1的电极被所述电极活性物质轻微污染。与之相反,实施例1及比较实施例2和3的使用导电聚合物的每种电极均未被所述电极活性物质污染(见下表2)。这证明了所述导电聚合物可以作为高品质黏合剂。
[表2]
 
条件 实施例1 比较实施例1 比较实施例2&3
污染情况 未污染 轻微污染 未污染
实验实施例3.电化学装置品质的评估
进行以下试验以评估实施例1及比较实施例1~3的吸附/脱附型电化学装置的放电容量。结果显示于图3中。
在计算每种电极相比于总重量的放电比电容时,实施例1的吸附/脱附型电化学装置(双电层电容器)显示了与比较实施例1相比相对较高的放电容量,这是因为实施例1的装置在电极活性物质的量方面与比较实施例1相比增加约15%或更多(见图3)。
与之相反,可以看出比较实施例2和3的使用未改性的导电聚合物(常规的PEDOT)的电化学装置的品质有所降低,尽管该装置使用了增大量的电极活性物质。
具体而言,实施例1的吸附/脱附型电化学装置与比较实施例3相比具有显著改良的放电容量特性。这证明了在将导电聚合物用掺杂剂掺杂的时候,应同时施加电压以进一步提高所述导电聚合物的电子电导率,并进一步改良电化学装置的品质。
产业实用性
从上文可见,本发明的用于提高导电聚合物电导率的电化学掺杂方法通过装置中的电极活性物质用量的增加,可使电化学装置获得大容量及高输出特性。
虽然为示例目的对本发明的多个优选实施方案进行了说明,但是本领域技术人员应了解,在不偏离权利要求书中公开的本发明的范围与主旨的情况下,各种改进、补充和替代都是可能的。

Claims (16)

1.一种用于制备高电子电导率聚合物的方法,所述方法包含以下的步骤:将导电聚合物用能够将可移动电荷载体引入所述聚合物重复单元的掺杂剂进行掺杂以改进所述导电聚合物的电子电导率,其中在将所述聚合物用所述掺杂剂掺杂时对所述聚合物施加高于所述聚合物导带的电压。
2.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中对所述导电聚合物进行改性以使其电子电导率比未改性的导电聚合物的电子电导率增加至少100%。
3.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中所述掺杂剂包括可电离的盐。
4.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中所述掺杂剂选自酸、氧化剂和还原剂。
5.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中所述掺杂剂选自于非取代的或由Na、K、Li或Ca取代的磺酸;含PF6 -,BF6 -,Cl-,SO4 2-,ClO4 -或F-的过渡金属盐;I2;AsF6;LiBF4;C1~C6烷基卤化物或芳基卤化物;以及酸酐。
6.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中所述掺杂剂相对于每100摩的导电聚合物以30~50摩的量使用。
7.如权利要求1所述的用于制备高电子电导率聚合物的方法,其中所述导电聚合物选自于聚苯胺、聚吡咯、聚噻吩、PEDOT(聚乙撑二氧噻吩)、聚对苯撑、聚乙炔以及聚亚噻吩亚乙烯基。
8.一种通过权利要求1-7的任一项中限定的方法获得的导电聚合物。
9.如权利要求8所述的导电聚合物,其以下述方式掺杂,即对所述聚合物重复单元中存在的每一个可移动电子掺杂0.1~1个可移动电荷载体。
10.如权利要求8所述的导电聚合物,所述导电聚合物具有10g/cm或更高的粘附力及10-5~105S/cm的电导率。
11.一种电极,所述电极包含结合于集电器上的电极活性物质,其中所述电极活性物质层包含:
(a)一种电极活性物质;以及
(b)权利要求8限定的导电聚合物。
12.如权利要求11所述的电极,其中所述导电聚合物作为导电剂、黏合剂和电极活性物质中的至少一种。
13.如权利要求11所述的电极,所述电极用于吸附/脱附型电能存储装置中。
14.如权利要求11所述的电极,其含有导电聚合物的量为每100重量份形成所述电极活性物质层的材料中占0.01~90重量份。
15.一种电化学装置,所述装置包含阴极、阳极、隔离物和电解质,其中所述阴极和所述阳极之一或二者为权利要求11中限定的电极。
16.如权利要求15所述的电化学装置,所述装置选自于锂二次电池和电化学电容器。
CN2007800171484A 2006-05-12 2007-05-11 高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置 Active CN101443857B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020060042878 2006-05-12
KR20060042878 2006-05-12
KR10-2006-0042878 2006-05-12
PCT/KR2007/002334 WO2007133017A1 (en) 2006-05-12 2007-05-11 Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same

Publications (2)

Publication Number Publication Date
CN101443857A true CN101443857A (zh) 2009-05-27
CN101443857B CN101443857B (zh) 2013-06-05

Family

ID=38694082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800171484A Active CN101443857B (zh) 2006-05-12 2007-05-11 高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置

Country Status (6)

Country Link
US (1) US20100151319A1 (zh)
EP (1) EP2027588B1 (zh)
JP (2) JP2009537061A (zh)
KR (1) KR100812063B1 (zh)
CN (1) CN101443857B (zh)
WO (1) WO2007133017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360709A (zh) * 2013-06-25 2013-10-23 辅讯光电工业(苏州)有限公司 多功能光学膜及其组成物、多功能光学板及其制造方法
CN114005971A (zh) * 2021-10-22 2022-02-01 陕西红马科技有限公司 一种具有p-型掺杂导电高分子涂层的正极材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176719A (ja) * 2007-12-26 2009-08-06 Sony Corp 電解液、二次電池およびスルホン化合物
WO2010028162A2 (en) * 2008-09-04 2010-03-11 The Regents Of The University Of California Charge storage device architecture for increasing energy and power density
US9601696B2 (en) 2011-03-28 2017-03-21 Sumitomo Chemical Company, Limited Electroluminescent composition and electric device with high brightness
EP2706584A1 (en) * 2012-09-07 2014-03-12 Novaled AG Charge transporting semi-conducting material and semi-conducting device
KR101426493B1 (ko) 2013-05-09 2014-08-05 국민대학교산학협력단 의사-커패시터용 전도성 고분자 중공 나노구 제조방법
KR101402851B1 (ko) 2013-07-11 2014-06-02 광주과학기술원 폴리아닐린 및 폴리피롤을 포함하는 전도성 네트워크 복합체 및 그 제조방법
WO2017090231A1 (ja) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 電気化学デバイスおよびその製造方法
CN110105549A (zh) * 2019-04-23 2019-08-09 上海萃励电子科技有限公司 一种MnO2负载聚3-烷基噻吩的合成方法
TW202108591A (zh) * 2019-06-28 2021-03-01 日商出光興產股份有限公司 導電性低聚物、導電性組合物、導電助劑、使用上述導電性組合物而形成之蓄電器用電極、透明電極、電池用電極、或電容器用電極
KR102311271B1 (ko) * 2020-02-14 2021-10-13 광주과학기술원 전도성 고분자가 코팅된 전극재

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321114A (en) * 1980-03-11 1982-03-23 University Patents, Inc. Electrochemical doping of conjugated polymers
EP0058469B1 (en) * 1981-01-22 1987-07-22 Showa Denko Kabushiki Kaisha Battery having acetylene high polymer electrode
JPS61200669A (ja) * 1985-03-04 1986-09-05 Nitto Electric Ind Co Ltd 電池
US4904553A (en) * 1987-04-16 1990-02-27 Bridgestone Corporation Polyaniline
JP2725786B2 (ja) * 1987-07-06 1998-03-11 株式会社リコー シート状電極、その製造方法およびそれを用いた二次電池
DE3829541A1 (de) * 1987-09-03 1989-03-16 Ricoh Kk Blattfoermige elektrode, verfahren zur herstellung derselben und diese enthaltende sekundaerbatterie
FI89377C (fi) * 1990-03-30 1993-09-27 Neste Oy Foerfarande foer framstaellning av en elledande polymerprodukt
JP2960859B2 (ja) * 1994-11-14 1999-10-12 昭和電工株式会社 自己ドープ型導電性ポリマー水溶液及びその製造方法
JP2803040B2 (ja) * 1995-01-30 1998-09-24 工業技術院長 チオフェン化合物及び導電性高分子
US6120940A (en) * 1996-10-30 2000-09-19 The Johns Hopkins University Electrochemical storage cell containing at least one electrode formulated from a phenylene-thienyl based polymer
US5733683A (en) * 1996-10-30 1998-03-31 The Johns Hopkins University Electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer
JPH1197025A (ja) * 1997-09-18 1999-04-09 Hitachi Maxell Ltd リチウム二次電池
JP3699589B2 (ja) * 1998-03-23 2005-09-28 日立マクセル株式会社 正極用ペ―スト組成物と正極の製造方法ならびに正極およびそれを用いたリチウム二次電池
KR100304052B1 (ko) 1998-09-08 2001-09-24 전형구 2개의전도성고분자층을갖는알루미늄전해캐패시터용알루미늄박막
KR100442408B1 (ko) * 1998-11-05 2004-11-06 제일모직주식회사 고전도성및고투명성을갖는폴리티오펜계전도성고분자용액조성물
JP3778875B2 (ja) 2001-05-11 2006-05-24 三井化学株式会社 ドーパント剤及び該ドーパント剤を含んでなる導電性高分子材料
JP2003226743A (ja) * 2001-11-30 2003-08-12 Sanyo Chem Ind Ltd 導電性高分子の製造方法
JP3876221B2 (ja) 2002-02-15 2007-01-31 独立行政法人科学技術振興機構 共役系高分子の電解不斉重合方法と光学活性共役系高分子
JP3632686B2 (ja) * 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
US7581911B2 (en) * 2002-09-18 2009-09-01 Utility Composites International Limited Plastic impact driven fasteners
JP4104068B2 (ja) * 2002-11-29 2008-06-18 イーメックス株式会社 高強度ポリピロールフィルムの製造方法及び被覆層形成方法
WO2004050748A1 (ja) * 2002-11-29 2004-06-17 Eamex Corporation 高強度ポリピロールフィルムの製造方法
KR100706067B1 (ko) * 2005-01-25 2007-04-11 한양대학교 산학협력단 산 또는 염기 도핑된 미세다공성을 갖는 수소이온 전도성 고분자, 그 제조방법, 상기 고분자를 이용한 고분자막, 및 그 고분자막을 채용한 연료전지
JP2006233276A (ja) 2005-02-25 2006-09-07 Tokyo Institute Of Technology 固体膜へのドーピング方法およびドーピング・パターン形成方法
JP2006286418A (ja) * 2005-03-31 2006-10-19 Tdk Corp 透明導電体
JP4802640B2 (ja) * 2005-09-30 2011-10-26 Tdk株式会社 固体電解コンデンサの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360709A (zh) * 2013-06-25 2013-10-23 辅讯光电工业(苏州)有限公司 多功能光学膜及其组成物、多功能光学板及其制造方法
CN114005971A (zh) * 2021-10-22 2022-02-01 陕西红马科技有限公司 一种具有p-型掺杂导电高分子涂层的正极材料及其制备方法
CN114005971B (zh) * 2021-10-22 2024-04-19 陕西红马科技有限公司 一种具有p-型掺杂导电高分子涂层的正极材料及其制备方法

Also Published As

Publication number Publication date
JP5999367B2 (ja) 2016-09-28
US20100151319A1 (en) 2010-06-17
CN101443857B (zh) 2013-06-05
KR100812063B1 (ko) 2008-03-07
EP2027588B1 (en) 2017-01-18
EP2027588A1 (en) 2009-02-25
JP2014041824A (ja) 2014-03-06
KR20070109940A (ko) 2007-11-15
WO2007133017A1 (en) 2007-11-22
JP2009537061A (ja) 2009-10-22
EP2027588A4 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
CN101443857B (zh) 高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置
Friebe et al. High-power-density organic radical batteries
Muench et al. Polymer-based organic batteries
CN101438446B (zh) 使用导电性聚合物复合材料的具有高容量和高功率的电化学贮能装置
Mastragostino et al. Supercapacitors based on composite polymer electrodes
US8520365B2 (en) Charge storage device architecture for increasing energy and power density
US20110261502A1 (en) Charge storage device architecture for increasing energy and power density
AU2002325514A1 (en) Redox active reversible electrode and novel cell using it
US20110043968A1 (en) Hybrid super capacitor
CN103346021A (zh) 一种混合型电化学电容器
JP5011561B2 (ja) 電極材料
JPWO2010055762A1 (ja) 電気二重層キャパシタ
CN110235283A (zh) 电化学装置用正极和电化学装置、以及它们的制造方法
WO2000002949A1 (en) Polymer gel electrode
Gunday et al. High-temperature symmetric supercapacitor applications of anhydrous gel electrolytes including doped triazole terminated flexible spacers
US20090251849A1 (en) Energy Storage Device Having Novel Energy Storage Means
WO2015016701A1 (en) Method for preparing graphene-based conducting nano-composite film
KR101861356B1 (ko) 슈퍼커패시터 전극용 그래핀-도전성 폴리머계 복합체 및 그의 제조방법
JP2006310384A (ja) 多孔性電極の製造方法、多孔性電極、及び電気化学デバイス
Zhang et al. Supercapacitor for Sustainable Energy Storage
CN106601495A (zh) 纳米共聚苯胺与活性炭构建的三非对称固态电化学电容器
WO2014130491A1 (en) Charge storage device architecture for increasing energy and power density
Lee Study of Flexible Multi-wall Carbon Nano-tubes/Conductivepolymer Composites for Supercapacitor Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211222

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.