CN101410951B - 低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法 - Google Patents

低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法 Download PDF

Info

Publication number
CN101410951B
CN101410951B CN2004800023084A CN200480002308A CN101410951B CN 101410951 B CN101410951 B CN 101410951B CN 2004800023084 A CN2004800023084 A CN 2004800023084A CN 200480002308 A CN200480002308 A CN 200480002308A CN 101410951 B CN101410951 B CN 101410951B
Authority
CN
China
Prior art keywords
conductor
central conductor
mosfet device
side flap
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800023084A
Other languages
English (en)
Other versions
CN101410951A (zh
Inventor
卡尔·拉登斯
奥默·H·多库马西
布鲁斯·B·多里斯
奥利格·格卢申科夫
杰克·A·曼德尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN101410951A publication Critical patent/CN101410951A/zh
Application granted granted Critical
Publication of CN101410951B publication Critical patent/CN101410951B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28105Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor next to the insulator having a lateral composition or doping variation, or being formed laterally by more than one deposition step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种低GIDL电流MOSFET器件(90)结构及其制备方法,该器件提供了低GIDL电流。该MOSFET器件结构包含其边缘可与源极/漏极扩散(88,88)略微重叠的中部栅极导体(10),以及通过薄的绝缘和扩散阻挡层(50,52)与中部栅极导体分开的侧翼栅极导体(70,70)。

Description

低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法
技术领域
本发明一般地涉及低栅极感生的漏极泄漏(Gate-Induced Drain Leakage,GIDL)电流的金属氧化物半导体场效应晶体管(MOSFET)器件结构及其制备方法。
背景技术
随着器件几何尺寸收缩,由于栅极感生的漏极泄漏(GIDL)电流所导致的可靠性问题迫使器件在低于所期望的最佳器件性能的电压下工作。
当器件偏置而使得在NMOSFET中的漏极电势比栅极电势更正向(大于+1V)时,或使得在PMOSFET中的栅极电势比漏极电势更正向(大于+1V)时,沿着栅极导体与漏极扩散区相重叠的区域在场效应管的表面漏极耗尽区中产生了电子-空穴对导致了GIDL电流。
发明内容
本发明提供了一种低GIDL电流的MOSFET器件结构以及一种制备低GIDL电流MOSFET器件的方法,该器件提供了相对传统MOSFET器件减少的低GIDL电流。该MOSFET器件结构包含其边缘可与源极/漏极扩散区略微重叠的中部栅极导体,以及通过薄的绝缘和扩散阻挡层从中部栅极导体分开的侧翼栅极导体。
对于NMOSFET器件,侧翼栅极导体优选地由N+多晶硅形成,而对于PMOSFET器件,侧翼栅极导体优选地由P+多晶硅形成。如果所期望的是高Vt(阈值电压)NMOSFET(如在DRAM应用中),那么中部栅极导体区域可以是P+多晶硅,或者如果需要低Vt NMOSFET来增强性能(PFET可以使用互补掺杂),那么可以是N+多晶硅。侧翼栅极导体和中部栅极导体可以通过重叠金属侧壁导电层而搭接在一起。此外,在中部栅极导体之下和侧翼栅极导体之下的栅极绝缘体的厚度是可以独立确定的。这允许在侧翼栅极导体之下的栅极绝缘体的厚度优选地比在中部栅极导体之下的栅极绝缘体的厚度要大。
附图说明
参考下面结合附图对本发明一些实施例的详细说明,本领域的技术人员可以更容易地理解本发明的低GIDL MOSFET及其制备方法的上述目的和优点,在附图中相同的元件由相同的标记指代,在附图中:
图1-9图示了根据本发明的教导的制备低GIDL MOSFET的方法。
图1图示了在MOSFET栅极电极多晶硅沉积已经通过标准光刻和RIE工艺构图之后的器件。
图2图示了在用比如HDP的各向异性介质沉积来形成水平表面上的偏移膜之后的器件。
图3图示了在沉积了导电扩散阻挡层(即,WN、TiN)和沿着PC的侧壁形成比如CVD W/WN分隔物的金属分隔物之后的器件。
图4图示了在剥离偏移膜HDP电介质来形成悬挂分隔物之后的器件。
图5图示了在相对W金属分隔物选择性地氧化多晶硅和硅衬底之后的器件。
图6图示了在沉积薄的LPCVD多晶硅来填充由W分隔物之下的底切(undercut)区域所形成的块(divot)之后的器件。
图7示出了在薄LPCVD硅通过各向同性蚀刻(类似带蚀刻(strap etch))从场区域去除而在侧壁块上留下了薄LPCVD硅之后的器件。
图8示出了在S/D延伸/晕圈(halo)和分隔物通过比如离子注入的传统工艺形成之后的器件。
图9示出了在硅化物通过传统工艺形成之后的器件。
具体实施方式
图1-9图示了根据本发明的教导的制备低GIDL MOSFET(金属氧化物半导体场效应晶体管)的方法。
图1图示了在MOSFET基本/主要中部栅极电极多晶硅沉积10已经通过在栅极氧化物介电绝缘体14所覆盖的衬底12上方进行标准光刻和RIE(反应离子蚀刻)工艺而构图之后的器件。
在蚀刻之前,可以选择性地掺杂栅极多晶体(poly crystal,PC)多晶硅。在所图示的实施例中,栅极10掺杂了P型杂质以得到高Vt(阈值电压)表面沟道NFET或低Vt掩埋沟道NFET。
图2图示了在各向异性介质沉积20被用来形成水平表面上的比如二氧化硅的偏移膜之后的器件,各向异性介质沉积20比如是高密度等离子体(HDP),优选为氧化物。
图3图示了在沉积导电扩散阻挡层30(即,W/WN(钨/氮化钨)、TiN,以防止侧壁的金属和栅极多晶硅之间反应)并使用化学气相沉积(CVD)和各向异性RIE沿着PC的侧壁形成比如CVD钨/氮化钨分隔物的金属分隔物32之后的器件。
金属侧壁分隔物防止在栅极电极多晶硅和随后形成的侧壁块(sidewalldivot)多晶硅栅极延伸70之间形成整流结。
图4图示了剥离偏移膜HDP电介质20来在底切区40上形成悬挂分隔物32之后的器件。
图5图示了在相对W金属分隔物在50处选择性地氧化多晶硅和硅衬底之后的器件(例如,参看S.Iwata et al.,IEEE Trans.Electron Devices,ED-31,p.1174(1984))。暴露的多晶硅栅极电极的侧壁52被氧化,该氧化物阻挡层提供了一薄绝缘和扩散阻挡层以防止由于n+栅极侧翼栅极导体和p+中部栅极导体多晶硅的逸出功不同而导致产生结。
图6图示了在沉积薄LPCVD(低压化学气相沉积)多晶硅60来填充由W分隔物之下的底切区域所形成的块(divot)之后的器件。
该薄的LPCVD多晶硅可以掺杂或不掺杂地沉积。如果掺杂了,那么它掺杂的极性与S/D扩散区的相反。如果是未掺杂沉积的,那么该薄LPCVD多晶硅可以使用如下公知方法中的任何一种或其组合来进行掺杂,比如低能量角度离子注入、等离子体浸没、气相掺杂或固体源掺杂。所有的掺杂技术都将利用光刻工艺界定的区块掩模层(氧化物或氮化物)来在NFET和PFET之间进行区分。
图7示出了在薄的LPCVD硅从场区域去除之后的器件,通过诸如使用F1和C1基(类似带蚀刻(strap etch))的化学干法蚀刻(CDE)的各向同性蚀刻来去除薄的LPCVD硅,而在侧壁块上保留薄的LPCVD硅70。
图8示出了在S/D延伸/晕圈84和分隔物86通过传统工艺形成之后的器件,这些传统工艺包括具名(titled)或未具名的离子注入。源极和漏极区88是重度掺杂区域;而延伸/晕圈区84是轻度掺杂的,在第一实施例中与侧翼栅极导体在80略微重叠,在第二实施例中与中部栅极导体在82略微重叠。
图9示出了在自对准多晶硅化物(salicide)92通过传统工艺形成之后的低GIDL电流MOSFET器件90。
所述的制备方法产生了这样的低GIDL电流MOSFET器件90,其具有边缘可与源极/漏极扩散略微重叠的中部栅极导体,和通过薄的绝缘与扩散阻挡层与中部栅极导体分开的侧翼栅极导体。
对于NMOSFET器件,侧翼栅极导体优选地由N+多晶硅制成,而对于PMOSFET器件,侧翼栅极导体优选地由P+多晶硅制成。如果期望的是高Vt(阈值电压)NMOSFET(就如在DRAM应用中),那么中部栅极导体区可以是P+多晶硅,而如果需要低VtNMOSFET以增强性能,那么中部栅极导体区可以是N+多晶硅(PFET将使用互补掺杂)。
侧翼栅极导体和中部栅极导体通过重叠侧壁导电层搭接在一起。此外,在中部栅极导体之下和在侧翼栅极导体之下的栅极导体GI厚度可以独立地确定。这允许在侧翼栅极导体之下的栅极绝缘体优选地比中部栅极导体之下的要厚。
在栅极电极边缘处反掺杂的LPCVD块区域和栅极电极掺杂区域之间的互扩散被侧壁氧化物阻挡层抑制。在反掺杂的块和栅极电极之间的电接触由金属分隔物提供。
已经进行了仿真来研究由于外部栅极导体(N+侧壁)的栅极氧化物的再生长所导致在中部栅极导体的边缘下鸟喙(bird’s beak)形成的程度。该仿真涉及在第二栅极氧化物(用于N+侧壁栅极导体)的再生长之前的中部栅极导体的边缘的几何形状,在处理中此时在中部栅极之下存在30的栅极氧化物。对该结构进行典型的栅极氧化循环(950℃、150s、RTO、100%干燥O2)以在随后将包含外部N+栅极导体段的区域中的衬底表面上生长30
Figure G2004800023084D00042
的氧化物,结果是出现的鸟喙可以忽略。显然,该鸟喙非常少,并且对器件的可操作性没有影响。
即使形成了大的鸟喙,N+外部栅极区域相对P+外部栅极区域的1.1V逸出功漂移将导致反型(inversion)首先在外部栅极区域出现。于是,沟道电流将由中部栅极区决定,中部栅极区具有最高的Vt,最小化了鸟喙将对沟道电流产生的任何影响。
本发明提供了制备低栅极感应的泄漏电流(GIDL)MOSFET器件的方法,该方法包括在构图的中部栅极导体和周围衬底区域的水平表面上形成偏移膜的步骤,优选地通过使用各向异性电介质沉淀来在中部栅极导体和周围衬底区域的水平表面上形成偏移膜。优选地通过在由栅极电介质覆盖的衬底上沉积多晶硅,然后通过光刻和反应离子蚀刻工艺构图MOSFET中部栅极导体,来形成该构图的中部栅极导体。
然后,该方法继续在中部栅极导体的侧壁上沉积导电扩散阻挡层,然后在中部栅极导体的侧壁上的导电扩散阻挡层上形成金属分隔物,在此之后剥离偏移膜以在底切区域上形成悬挂金属分隔物。
然后,该方法继续氧化在悬挂金属分隔物之下的中部栅极导体以防止在中部栅极导体与随后形成的左、右侧翼栅极导体之间形成整流结,然后沉积多晶硅层来填充悬挂金属分隔物之下的底切区域,在此之后通过各向同性蚀刻去除多晶硅层,同时在悬挂金属分隔物之下的底切区域中保留多晶硅层,以形成左、右侧翼栅极导体。
然后,该方法继续通过形成源极和漏极延伸/晕圈和分隔物,然后在导体上形成自对准多晶硅化物而完成。在优选实施例中,中部栅极导体和左、右侧翼栅极导体优选地由掺杂多晶硅形成。
所述的方法提供了一种具有低栅极感应的泄漏(GIDL)电流的MOSFET器件,其包括源极扩散区、漏极扩散区和中部栅极。中部栅极包括中部栅极导体、左侧翼栅极导体和右侧翼栅极导体,其中左侧翼栅极导体和右侧翼栅极导体由薄的绝缘和扩散阻挡层与中部栅极导体分开。
中部栅极导体的左、右横向边缘可以与源极扩散区和漏极扩散区中之一重叠。左、右侧翼栅极导体的左、右横向边缘也可以与源极扩散区和漏极扩散区中之一重叠。
中部栅极导体与左、右侧翼栅极导体通过重叠金属侧壁导电层而搭接在一起。重叠金属侧壁导电层包括沿中部栅极导体的左、右侧壁形成的左、右金属侧壁分隔物,以防止在中部栅极导体与左、右侧翼栅极导体之间形成整流结。左、右侧翼栅极导体通过导电扩散阻挡层与中部栅极导体分开。
在左、右侧翼栅极导体之下的栅极绝缘体的厚度可以独立地确定,使得它可以比中部导体之下的栅极绝缘体的厚度更厚。
所述中部栅极导体由N+多晶硅形成,以形成高阈值电压的P型金属氧化物半导体场效应晶体管。所述中部栅极导体是P+多晶硅形成,以形成低阈值电压的P型金属氧化物半导体场效应晶体管。
尽管本文对于本发明的低GIDL MOSFET及其制备方法的一些实施例和变形进行了详细地说明,但是应当清楚的是,本发明的公开内容和教导将对本领域的技术人员提示多种可选的设计。
工业实用性
本发明总体上对于电子器件,更确切地说,对于低GIDL MOSFET结构具有工业实用性。

Claims (17)

1.一种金属氧化物半导体场效应晶体管器件(90),所述金属氧化物半导体场效应晶体管器件提供了低栅极感应的漏极泄漏电流,包括:
源极扩散区(88)、漏极扩散区(88)和中部栅极(10);
所述中部栅极包括中部栅极导体(10)、沿所述中部栅极导体的左、右侧壁形成的左、右金属侧壁分隔物(32)、所述左、右金属侧壁分隔物下的左侧翼栅极导体(70)和右侧翼栅极导体(70),其中,所述左、右金属侧壁分隔物中的每一个都由导电扩散阻挡层(30)与所述中部栅极导体分开。
2.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体的左、右横向边缘分别与所述源极扩散和漏极扩散区域重叠。
3.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述左侧翼栅极导体的左横向边缘和右侧翼栅极导体的右横向边缘分别与所述源极扩散和漏极扩散区域重叠。
4.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体与所述左、右侧翼栅极导体通过所述左、右金属侧壁分隔物搭接在一起。
5.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述左侧翼栅极导体和右侧翼栅极导体之下的栅极绝缘体的厚度大于所述中部栅极之下的栅极绝缘体的厚度。
6.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述左侧翼栅极导体和右侧翼栅极导体中每一个都由薄的绝缘和扩散阻挡层(50,52)与中部栅极导体分开,以防止在所述中部栅极导体与所述左侧翼栅极导体和右侧翼栅极导体之间形成整流结。
7.根据权利要求1的金属氧化物半导体场效应晶体管器件,包括N型金属氧化物半导体场效应晶体管器件,其中所述左侧翼栅极导体和右侧翼栅极导体中每个都是由N+多晶硅形成。
8.根据权利要求1的金属氧化物半导体场效应晶体管器件,包括P型金属氧化物半导体场效应晶体管器件,其中所述左侧翼栅极导体和右侧翼栅极导体中每个都是由P+多晶硅形成。
9.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体由P+多晶硅形成,以形成高阈值电压的N型金属氧化物半导体场效应晶体管。
10.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体由N+多晶硅形成,以形成低阈值电压的N型金属氧化物半导体场效应晶体管。
11.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体由N+多晶硅形成,以形成高阈值电压的P型金属氧化物半导体场效应晶体管。
12.根据权利要求1的金属氧化物半导体场效应晶体管器件,其中,所述中部栅极导体是P+多晶硅形成,以形成低阈值电压的P型金属氧化物半导体场效应晶体管。
13.一种制备低栅极感应的漏极泄漏电流的金属氧化物半导体场效应晶体管器件(90)的方法,包括:
在经构图的中部栅极导体(10)和周围衬底(12)区域的水平表面上形成偏移膜(20);
在所述中部栅极导体上沉积导电扩散阻挡层(30);
在所述中部栅极导体的侧壁上的导电扩散阻挡层之上形成金属分隔物(32);
剥离所述偏移膜(20)来在底切区域(40)上形成悬挂金属分隔物(32);
氧化在所述悬挂金属分隔物(32)之下的中部栅极导体以防止在所述中部栅极导体和随后形成的左、右侧翼栅极导体(70)之间形成整流结;
沉积多晶硅层(60)以填充所述悬挂金属分隔物下的底切区域;
通过各向同性蚀刻去除所述多晶硅层,同时在所述悬挂金属分隔物之下的底切区域(70)中保留多晶硅层以形成左、右侧翼栅极导体。
14.根据权利要求13的方法,其中,在所述去除步骤之后,形成源极和漏极延伸/晕圈和分隔物,然后在中部栅极导体上形成自对准多晶硅化物。
15.根据权利要求13的方法,其中,经构图的中部栅极导体是通过在栅极电介质覆盖的衬底上沉积多晶硅,然后通过光刻和反应离子蚀刻工艺构图中部栅极导体来形成的。
16.根据权利要求13的方法,还包括使用各向异性电介质沉积来在所述经构图的中部栅极导体和周围衬底区域的水平表面上形成偏移膜。
17.根据权利要求13的方法,还包括形成掺杂多晶硅的中部栅极导体和左、右侧翼栅极导体。
CN2004800023084A 2003-01-15 2004-01-15 低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法 Expired - Fee Related CN101410951B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/345,472 2003-01-15
US10/345,472 US6841826B2 (en) 2003-01-15 2003-01-15 Low-GIDL MOSFET structure and method for fabrication
PCT/US2004/000968 WO2004066367A2 (en) 2003-01-15 2004-01-15 Low-gidl mosfet structure and method for fabrication

Publications (2)

Publication Number Publication Date
CN101410951A CN101410951A (zh) 2009-04-15
CN101410951B true CN101410951B (zh) 2010-05-05

Family

ID=32711928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800023084A Expired - Fee Related CN101410951B (zh) 2003-01-15 2004-01-15 低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法

Country Status (8)

Country Link
US (2) US6841826B2 (zh)
EP (1) EP1588403B1 (zh)
JP (1) JP4678875B2 (zh)
KR (1) KR100754305B1 (zh)
CN (1) CN101410951B (zh)
AT (1) ATE551727T1 (zh)
TW (1) TWI270145B (zh)
WO (1) WO2004066367A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336876B4 (de) * 2003-08-11 2006-08-24 Infineon Technologies Ag Speicherzelle mit Nanokristallen oder Nanodots und Verfahren zu deren Herstellung
KR100602122B1 (ko) * 2004-12-03 2006-07-19 동부일렉트로닉스 주식회사 반도체 소자의 제조방법
US8154088B1 (en) 2006-09-29 2012-04-10 Cypress Semiconductor Corporation Semiconductor topography and method for reducing gate induced drain leakage (GIDL) in MOS transistors
JP5559567B2 (ja) * 2010-02-24 2014-07-23 パナソニック株式会社 半導体装置
CN102194870B (zh) * 2010-03-17 2012-08-29 中国科学院微电子研究所 一种半导体器件及其制造方法
US8592911B2 (en) * 2010-03-17 2013-11-26 Institute of Microelectronics, Chinese Academy of Sciences Asymmetric semiconductor device having a high-k/metal gate and method of manufacturing the same
CN102544098B (zh) * 2010-12-31 2014-10-01 中国科学院微电子研究所 Mos晶体管及其形成方法
US8743628B2 (en) 2011-08-08 2014-06-03 Micron Technology, Inc. Line driver circuits, methods, and apparatuses
CN102263133B (zh) * 2011-08-22 2012-11-07 无锡新洁能功率半导体有限公司 低栅极电荷低导通电阻深沟槽功率mosfet器件及其制造方法
CN102446771A (zh) * 2011-11-11 2012-05-09 上海华力微电子有限公司 一种减小mos io器件gidl效应的方法
US8501566B1 (en) * 2012-09-11 2013-08-06 Nanya Technology Corp. Method for fabricating a recessed channel access transistor device
US8896035B2 (en) 2012-10-22 2014-11-25 International Business Machines Corporation Field effect transistor having phase transition material incorporated into one or more components for reduced leakage current
US9685526B2 (en) * 2014-02-12 2017-06-20 International Business Machines Corporation Side gate assist in metal gate first process
CN104900504B (zh) * 2015-05-25 2018-02-06 上海华虹宏力半导体制造有限公司 降低mos晶体管gidl电流的方法
FR3090999B1 (fr) * 2018-12-20 2022-01-14 Commissariat Energie Atomique Procédé de fabrication d'un composant semiconducteur à base d'un composé III-N
CN112663541B (zh) * 2020-12-22 2022-10-21 浙江交工集团股份有限公司 中央分隔带生态预制装配式护栏安装施工方法
CN116313807B (zh) * 2023-02-28 2024-05-28 上海维安半导体有限公司 一种双层侧墙结构的超结功率mosfet器件的制备方法及超结功率mosfet器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314834A (en) * 1991-08-26 1994-05-24 Motorola, Inc. Field effect transistor having a gate dielectric with variable thickness
US6097070A (en) * 1999-02-16 2000-08-01 International Business Machines Corporation MOSFET structure and process for low gate induced drain leakage (GILD)
US6312995B1 (en) * 1999-03-08 2001-11-06 Advanced Micro Devices, Inc. MOS transistor with assisted-gates and ultra-shallow “Psuedo” source and drain extensions for ultra-large-scale integration

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714519A (en) 1987-03-30 1987-12-22 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
JPH01133366A (ja) * 1987-11-18 1989-05-25 Sanyo Electric Co Ltd Mos半導体装置の製造方法
JPH02288341A (ja) * 1989-04-28 1990-11-28 Seiko Epson Corp Mis型半導体装置
JPH036830A (ja) * 1989-06-02 1991-01-14 Sharp Corp 半導体装置
JPH043939A (ja) * 1990-04-20 1992-01-08 Mitsubishi Electric Corp 半導体装置の製造方法
US5210435A (en) * 1990-10-12 1993-05-11 Motorola, Inc. ITLDD transistor having a variable work function
US5108939A (en) * 1990-10-16 1992-04-28 National Semiconductor Corp. Method of making a non-volatile memory cell utilizing polycrystalline silicon spacer tunnel region
US5221632A (en) * 1990-10-31 1993-06-22 Matsushita Electric Industrial Co., Ltd. Method of proudcing a MIS transistor
US5091763A (en) 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication
KR940001402B1 (ko) 1991-04-10 1994-02-21 삼성전자 주식회사 골드구조를 가지는 반도체소자의 제조방법
KR940005293B1 (ko) 1991-05-23 1994-06-15 삼성전자 주식회사 게이트와 드레인이 중첩된 모오스 트랜지스터의 제조방법 및 그 구조
JPH05175492A (ja) * 1991-12-20 1993-07-13 Nippon Steel Corp 半導体装置の製造方法
JPH05226361A (ja) * 1992-02-12 1993-09-03 Oki Electric Ind Co Ltd 電界効果トランジスタ
JPH065850A (ja) * 1992-06-17 1994-01-14 Mitsubishi Electric Corp 半導体装置およびその製造方法並びにその半導体装置を用いた半導体集積回路装置
JPH0629521A (ja) * 1992-07-07 1994-02-04 Nec Corp Mos型電界効果トランジスタの製造方法
US5372960A (en) * 1994-01-04 1994-12-13 Motorola, Inc. Method of fabricating an insulated gate semiconductor device
KR960006004A (ko) * 1994-07-25 1996-02-23 김주용 반도체 소자 및 그 제조방법
US5661048A (en) * 1995-03-21 1997-08-26 Motorola, Inc. Method of making an insulated gate semiconductor device
US5599726A (en) * 1995-12-04 1997-02-04 Chartered Semiconductor Manufacturing Pte Ltd Method of making a conductive spacer lightly doped drain (LDD) for hot carrier effect (HCE) control
US5877058A (en) * 1996-08-26 1999-03-02 Advanced Micro Devices, Inc. Method of forming an insulated-gate field-effect transistor with metal spacers
US5714786A (en) 1996-10-31 1998-02-03 Micron Technology, Inc. Transistors having controlled conductive spacers, uses of such transistors and methods of making such transistors
US5953596A (en) * 1996-12-19 1999-09-14 Micron Technology, Inc. Methods of forming thin film transistors
US5793089A (en) * 1997-01-10 1998-08-11 Advanced Micro Devices, Inc. Graded MOS transistor junction formed by aligning a sequence of implants to a selectively removable polysilicon sidewall space and oxide thermally grown thereon
JP3003633B2 (ja) * 1997-07-09 2000-01-31 日本電気株式会社 電界効果型トランジスタ及びその製造方法
US6090671A (en) 1997-09-30 2000-07-18 Siemens Aktiengesellschaft Reduction of gate-induced drain leakage in semiconductor devices
KR100273273B1 (ko) * 1998-01-19 2001-02-01 김영환 반도체소자의배선,반도체소자및그제조방법
DE19812212A1 (de) * 1998-03-19 1999-09-23 Siemens Ag MOS-Transistor in einer Ein-Transistor-Speicherzelle mit einem lokal verdickten Gateoxid und Herstellverfahren
US6091101A (en) 1998-03-30 2000-07-18 Worldwide Semiconductor Manufacturing Corporation Multi-level flash memory using triple well
US6661057B1 (en) * 1998-04-07 2003-12-09 Advanced Micro Devices Inc Tri-level segmented control transistor and fabrication method
US6259142B1 (en) 1998-04-07 2001-07-10 Advanced Micro Devices, Inc. Multiple split gate semiconductor device and fabrication method
US6097069A (en) 1998-06-22 2000-08-01 International Business Machines Corporation Method and structure for increasing the threshold voltage of a corner device
US5998848A (en) 1998-09-18 1999-12-07 International Business Machines Corporation Depleted poly-silicon edged MOSFET structure and method
US6235598B1 (en) * 1998-11-13 2001-05-22 Intel Corporation Method of using thick first spacers to improve salicide resistance on polysilicon gates
US6251737B1 (en) 1999-11-04 2001-06-26 United Microelectronics Corp. Method of increasing gate surface area for depositing silicide material
US6169017B1 (en) * 1999-11-23 2001-01-02 United Silicon Incorporated Method to increase contact area
US6238988B1 (en) * 1999-12-09 2001-05-29 United Microelectronics Corp. Method of forming a MOS transistor
JP2001267562A (ja) * 2000-03-15 2001-09-28 Hitachi Ltd 半導体装置及びその製造方法
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314834A (en) * 1991-08-26 1994-05-24 Motorola, Inc. Field effect transistor having a gate dielectric with variable thickness
US6097070A (en) * 1999-02-16 2000-08-01 International Business Machines Corporation MOSFET structure and process for low gate induced drain leakage (GILD)
US6312995B1 (en) * 1999-03-08 2001-11-06 Advanced Micro Devices, Inc. MOS transistor with assisted-gates and ultra-shallow “Psuedo” source and drain extensions for ultra-large-scale integration

Also Published As

Publication number Publication date
EP1588403A4 (en) 2010-03-24
ATE551727T1 (de) 2012-04-15
EP1588403A2 (en) 2005-10-26
US20040137689A1 (en) 2004-07-15
EP1588403B1 (en) 2012-03-28
JP2007524984A (ja) 2007-08-30
US6841826B2 (en) 2005-01-11
KR100754305B1 (ko) 2007-09-03
JP4678875B2 (ja) 2011-04-27
WO2004066367A3 (en) 2009-05-28
CN101410951A (zh) 2009-04-15
TWI270145B (en) 2007-01-01
TW200504887A (en) 2005-02-01
US6878582B2 (en) 2005-04-12
WO2004066367A2 (en) 2004-08-05
KR20050091003A (ko) 2005-09-14
US20040248356A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
CN101410951B (zh) 低栅极感生的漏极泄漏的金属氧化物半导体场效应晶体管结构及其制备方法
US6097070A (en) MOSFET structure and process for low gate induced drain leakage (GILD)
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6538278B1 (en) CMOS integrated circuit having PMOS and NMOS devices with different gate dielectric layers
CN100530693C (zh) 控制金属栅极叠层中平带/阈值电压的方法及其结构
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
CN101304031B (zh) 电路结构及其制造方法
JP2002141420A (ja) 半導体装置及びその製造方法
US3943542A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
CN101079380A (zh) 半导体结构及其制造方法
US20130032881A1 (en) Asymmetric Source-Drain Field Effect Transistor and Method of Making
TW200950086A (en) Semiconductor device having transistor and method of manufacturing the same
US10672904B2 (en) Power MOSFETs and methods for manufacturing the same
JP6280747B2 (ja) 半導体集積回路装置及びその製造方法
CN103762177A (zh) 具有嵌入式硅锗源漏区域的场效应晶体管中邻近效应的减少
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
CN105845577A (zh) 半导体器件结构及其制作方法
CN102024706A (zh) 用于制造半导体器件的方法
US6188107B1 (en) High performance transistor fabricated on a dielectric film and method of making same
JP2904081B2 (ja) 半導体装置の製造方法
US11942325B2 (en) Transistor structure with gate over well boundary and related methods to form same
CN102479755B (zh) Cmos器件及其制作方法
US6740572B2 (en) Method for fabricating CMOS transistor of a semiconductor device
JP3029676B2 (ja) 半導体装置およびその製造方法
JPH07273329A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171124

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171124

Address after: American New York

Patentee after: Core USA second LLC

Address before: New York grams of Armand

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20190115

CF01 Termination of patent right due to non-payment of annual fee