CN101410331A - 磁性材料 - Google Patents

磁性材料 Download PDF

Info

Publication number
CN101410331A
CN101410331A CNA2007800112594A CN200780011259A CN101410331A CN 101410331 A CN101410331 A CN 101410331A CN A2007800112594 A CNA2007800112594 A CN A2007800112594A CN 200780011259 A CN200780011259 A CN 200780011259A CN 101410331 A CN101410331 A CN 101410331A
Authority
CN
China
Prior art keywords
magnetic
particle
magneticsubstance
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800112594A
Other languages
English (en)
Other versions
CN101410331B (zh
Inventor
大越慎一
桥本和仁
樱井俊介
黑木施老
佐藤王高
佐佐木信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Original Assignee
Dowa Electronics Materials Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, University of Tokyo NUC filed Critical Dowa Electronics Materials Co Ltd
Publication of CN101410331A publication Critical patent/CN101410331A/zh
Application granted granted Critical
Publication of CN101410331B publication Critical patent/CN101410331B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明为一种磁性材料,其具有对应于ε-Fe2O3的结晶结构的X射线衍射峰,包含用Ga3+离子取代ε-Fe2O3结晶的部分Ga3+离子位而成的ε-GaxFe2-xO3(其中, 0<X<1)的结晶。该磁性材料的矫顽力随着Ga含量而降低,饱和磁化强度显示出极大值。

Description

磁性材料
技术领域
本发明涉及ε-Fe2O3系的磁性材料。
背景技术
在磁记录领域中,一直要求在实现低噪音化的同时提高记录密度。因此,在磁记录介质的一侧,重要的是尽可能增大介质的矫顽力Hc,而且在实现构成介质的磁性粒子微细化的同时促进磁的分离化。而且,即使磁性粒子微细化也能稳定地保持记录状态也被认为是重要的。
例如,可列举构成记录位的磁性结合的磁集合体的最小单位的磁能量(Ku×V)大大超出干扰记录的热能量(kB×T)(其中,在此Ku=磁各向异性能量常数,V=磁簇(magnetic cluster)体积,kB=波尔兹曼常数,T=绝对温度)。使用(Ku×V)/(kB×T)作为稳定地保持记录状态的指标,通常的目标是该比值大致为60以上(耐用约10年)。可以说目前的状况是,为进一步开发高记录密度,必须降低磁簇体积V、提高磁各向异性常数Ku。就Ku而言,由于存在Ku∝Hc(矫顽力)的关系,因此,换句话说,为了开发高记录密度的磁记录介质,需要具有高Hc的磁性材料。
另外,还报道有即使在(Ku×V)/(kB×T)的值在100以下的场合,记录磁化也时效性减少的实例,这就意味着,从低噪音的观点出发,强烈要求降低磁簇体积V,则必须具有高的磁各向异性常数Ku,为了获得高记录密度的磁记录介质,需要具有高Hc的磁性材料。
如非专利文献1、非专利文献2、非专利文献3及非专利文献4等所述,最近,可确认以纳米级的粒子尺寸在室温下显示出20kOe这样巨大的Hc的ε-Fe2O3的存在。在虽然具有Fe2O3的组成但结晶结构却不同的多种晶型中,作为最普遍的晶型是α-Fe2O3及γ-Fe2O3,ε-Fe2O3也为其中之一。但是,如非专利文献1~4所述,最近才成功地合成了ε-Fe2O3单相,搞清了ε-Fe2O3的结晶结构和磁性质。由于该ε-Fe2O3显示出巨大的Hc,因此,有希望应用于如上所述的高记录密度的磁记录介质。
非专利文献1:Jian Jin,Shinichi Ohkoshi and KazuhitoHashimoto,ADVANCED MATERIALS 2004,16,No.1,January 5,pp.48-51
非专利文献2:Jian Jin,Kazuhito Hashimoto and ShinichiOhkoshi,JOURNAL OF MATERIALS CHIMISTRY 2005,15,pp.1067-1071
非专利文献3:Shunsuke Sakurai,Jian Jin,Kazuhito Hashimotoand Shinichi Ohkoshi,JOURNAL OF THE PHYSICAL SOCIETY OF JAPANVol.74,No.7,July,2005,pp.1946-1949
非专利文献4:第29届日本应用磁学会学术讲演摘要集社团法人日本应用磁学会2005年9月19日发行,21pPs-17,372页
发明内容
为了将具有非常高的Hc的磁性材料作为记录介质实用化,需要产生在该记录介质上实际写入信息的记录磁场的磁头。一般情况下,可以说磁头产生的磁场与用于此的软磁性膜的饱和磁通密度成比例。目前报道有具有1.5~4.5kOe左右的Hc的硬盘,但这些硬盘的记录输入用的磁头可使用具有饱和磁通密度为2.4T那样高的饱和磁通密度的材料。
如上述非专利文献1~3所述,具有20kOe水平的巨大的Hc的ε-Fe2O3的场合,即使将其用于磁记录介质的磁记录材料,在不存在具有比目前更高的饱和磁通密度的材料时,实际上不能记录。即,用目前水平的磁头材料不能进行磁记录。
作为可以规避该问题的磁记录方式,例如有热辅助磁记录。其概念是在对具有大的Hc的介质进行激光加热而使Hc下降的状态下写入记录,写入的位在室温下可稳定地保持,有希望作为今后的超高密度磁记录技术。但是,该技术还处于基础研究阶段,实用化还需要时间,也不清楚上述ε-Fe2O3是否适于该热辅助磁记录。
非专利文献4记载的是,用In3+取代ε-Fe2O3的部分Fe3+离子时,磁相转变温度(居里点)及自旋再取向温度发生变化。但是,对如何做可以控制在使用ε-Fe2O3构成磁记录介质的磁性层时所要求的磁特性、例如常温下的磁滞行为或矫顽力等还未可知。
因此,本发明的目的在于,通过进一步改善非专利文献1~4等记载的ε-Fe2O3,得到适于磁记录介质的磁性层的磁性材料。
本发明人等发现,在非专利文献1~3记载的ε-Fe2O3中,用Ga3+离子取代部分该Fe3+离子位时,根据其取代量,可以在结晶结构实质上不发生变化的情况下控制矫顽力。即,根据本发明,提供一种磁性材料,所述磁性材料具有对应于ε-Fe2O3的结晶结构的X射线衍射峰,包含用Ga3+离子取代了ε-Fe2O3结晶的部分Fe3+离子位而成的ε-GaxFe2-xO3(其中,0<X<1)的结晶。
该含Ga的ε-Fe2O3的矫顽力随着X值而降低。而且,对依照本发明的含Ga的ε-Fe2O3而言,优选为由TEM照相测量的平均粒子体积为20000nm3以下的微粒子,进一步优选可以构成包含单磁畴结构的微粒子的磁性层。由此,可以将该磁性材料应用于构成磁记录介质的磁性层的材料。即,根据本发明,提供一种磁记录介质的磁性层,其包含含有由TEM照相测量的平均粒子体积为20000nm3以下的微细粒子的上述含Ga的ε-Fe2O3结晶粒子粉末,其中,各粒子结晶的易磁化轴在规定的方向取向,将各粒子的位置固定。构成该磁性层的含Ga的ε-Fe2O3粉末具有1000~10000(Oe)的矫顽力。粉末的粒子表面有时用非磁性化合物的薄膜覆盖。
附图说明
图1是表示将依照本发明的含Ga的ε-Fe2O3结晶的XRD图谱与ε-Fe2O3的图谱进行对比的图。
图2是表示将对依照本发明的含Ga的ε-Fe2O3粒子粉末在1000Oe的外部磁场中、在各温度下测定的各试样的磁化曲线与ε-Fe2O3的磁化曲线进行对比的图。
图3是表示将依照本发明的含Ga的ε-Fe2O3的试样的磁滞回线与ε-Fe2O3的磁滞回线进行对比的图。
图4是表示以Ga的取代量(X值)排列依照本发明的含Ga的ε-Fe2O3粒子粉末的矫顽力的图。
图5是表示以Ga的取代量(X值)排列依照本发明的含Ga的ε-Fe2O3粒子粉末的饱和磁化强度的图。
图6是由实施例1得到的依照本发明的含Ga的ε-Fe2O3粒子粉末的TEM照片。
图7是由实施例2得到的依照本发明的含Ga的ε-Fe2O3粒子粉末的TEM照片。
图8是由实施例3得到的依照本发明的含Ga的ε-Fe2O3粒子粉末的TEM照片。
图9是由实施例4得到的依照本发明的含Ga的ε-Fe2O3粒子粉末的TEM照片。
图10是由实施例5得到的依照本发明的含Ga的ε-Fe2O3粒子粉末的TEM照片。
图11是ε-Fe2O3结晶粒子的TEM照片。
具体实施方式
如非专利文献1~3中所记载的那样,通过反胶束法和溶胶-凝胶法的组合和热处理,可以以单相得到ε-Fe2O3纳米微粒子。反胶束法的要点是,通过混合包含表面活性剂的两种胶束溶液I(原料胶束)和胶束溶液II(中和剂胶束),在胶束内进行氢氧化铁的沉淀反应。溶胶-凝胶法的要点是,在胶束内生成的氢氧化铁微粒子的表面施行二氧化硅涂层。具有二氧化硅涂层的氢氧化铁微粒子从液体中分离后,供给在规定的温度(700~1300℃的范围内)下、空气气氛下的热处理。通过该热处理,可得到ε-Fe2O3单相的微粒子。更具体的情况如下所述。
代表性的情况为,在以正辛烷为油相的胶束溶液I的水相中溶解硝酸铁(III)和表面活性剂(例如十六烷基三甲基溴化铵),在以相同的正辛烷为油相的胶束溶液II的水相中使用氨水溶液。此时,优选在胶束溶液I的水相中溶解适量的碱土类金属(Ba、Sr、Ca等)的硝酸盐作为形状控制剂。存在该形状控制剂时,最终可以得到棒状的ε-Fe2O3单相的结晶。在使两胶束溶液I和II混合后,并用溶胶-凝胶法。即,一边在混合液中滴加硅烷(例如四乙氧基硅烷(tetraethyl-orthosilane)),一边继续搅拌,在胶束内进行氢氧化铁的生成反应。由此,可以用通过硅烷水解生成的二氧化硅涂覆胶束内生成的微细的氢氧化铁沉淀的粒子表面。然后,将二氧化硅涂覆过的氢氧化铁粒子从液体中分离、洗涤、干燥,将由此得到的粒子粉体装入炉内,在空气中、在700~1300℃、优选900~1200℃、进一步优选950~1100℃的温度范围内进行热处理(焙烧)。通过该热处理,氢氧化铁粒子在二氧化硅涂层内进行氧化反应,生成微细的ε-Fe2O3粒子。在进行该氧化反应时,二氧化硅涂层的存在有助于生成ε-Fe2O3单相而不是α-Fe2O3及γ-Fe2O3,同时具有防止粒子之间烧结的作用。另外,当适量的碱土类金属共存时,容易成长为棒状的ε-Fe2O3单相粒子。
本发明人等发现,在如上所述的ε-Fe2O3的合成法中,将溶解于胶束溶液I的水相中的部分硝酸铁(III)的一部分取代为硝酸镓(III),实施同样的反胶束法和溶胶-凝胶法的组合以及热处理时,如后述的实施例所示,可以合成具有与ε-Fe2O3相同的结晶结构的含Ga的ε-Fe2O3单相,矫顽力随着该Ga取代量而发生变化。
图1是表示用上述方法合成ε-GaxFe2-xO3的X的值为0.22、0.43、0.62、0.80及0.97的含Ga的ε-Fe2O3(用于焙烧的热处理条件设定为1000℃×4小时)、将得到的试样的XRD图谱与ε-Fe2O3(X=0)的XRD图谱进行对比的图。如图1所示,任一种含Ga的ε-Fe2O3都只显示出与ε-Fe2O3的结晶结构(斜方晶、空间群Pna21)对应的峰值。
图2表示对与图1相同的试样在1000 Oe的外部磁场中、在各温度下测定的各试样的磁化曲线的图。使用超导量子干涉仪(SQUID)进行测定。此时,以2K/分钟的升温速度将试样一次加热至磁相转变温度以上,一边以2K/分钟的降温速度进行冷却,一边进行磁化测定。该含Ga的ε-Fe2O3的磁化曲线与非专利文献4中记载的含In的ε-Fe2O3的磁化曲线进行对比,可看出其自旋再取向行为不同。即,在非专利文献4的ε-In0.12Fe1.88O3及ε-In0.18Fe1.82O3中,自旋再取向温度为170K及192K,与ε-Fe2O3的154K相比,自旋再取向温度随In的取代量上升,另外,自旋再取向温度前后的磁化急剧变化。如图2的结果所示,对含Ga的ε-Fe2O3而言,随着Ga的增量在表示的Ga取代量范围内没有看出自旋再取向温度的上升倾向,更恰当地讲,低温侧看不出自旋再取向,表明在低温下也保持高磁化。
而且,就磁相转变温度而言,非专利文献4的In取代的情况,ε-InxFe2-xO3的X为0.18的ε-In0.18Fe1.82O3的磁相转变温度比ε-Fe2O3的磁相转变温度495K降低约70K,与此相对,Ga取代的情况,如图2所示,大致同量的取代量的ε-Ga0.22Fe1.78O3的磁相转变温度显示出与ε-Fe2O3的磁相转变温度495K几乎没有变化的值(严格来讲,降低约5K),在这一点上可看出很大的不同。
而且得知,In取代的情况,X=0.3左右时,不能形成均匀的固溶体,但Ga取代的情况,可以确认即使X=1.0,也可以形成均匀的固溶体,在这一点上,Ga和In也显示出因其取代而造成的不同的行为。
图3是表示将与图1相同的试样在常温(300K)下测定的磁滞回线与ε-Fe2O3的磁滞回线进行对比的图。使用Quantum Design公司制造的MPMS7的超导量子干涉仪(SQUID),在外加磁场50kOe的条件下进行测定。被测定的磁距的值用氧化铁的质量进行标准化。此时,假设试样中的Si、Fe、M(M为作为形状控制剂添加的元素)的各元素全部以SiO2、Fe2O3、MO存在,用荧光X射线分析法求出各元素的含有比例。如图3所示结果可知,显示出20kOe水平的巨大的矫顽力的ε-Fe2O3的磁滞回线,直至X为1左右的ε-Ga0.97Fe1.03O3达到大致为0Oe,随着Ga的增加,回线平滑地变化。
图4是表示以X的值排列图3的各矫顽力的图,由图4可知,随着X的值增加至1左右,矫顽力是同样降低的。图5是表示以X的值排列图3的饱和磁化(бs)的图。如图5的结果所示,存在如下倾向:X的值增加时,直至达到0.5左右饱和磁化上升,在其以上X的值增加时,饱和磁化降低。即,显示出增加Ga的取代量时饱和磁化具有极大值的变化。
图6~图10为由后述的实施例1~5得到的含Ga的ε-Fe2O3的TEM照片,图11为由后述的对照例得到的ε-Fe2O3的TEM照片。由此可以看出,任何情况都包含具有平坦面的棒状的微细粒子,为单结晶。
由具有这种磁特性的含Ga的ε-Fe2O3结晶构成的粒子粉末,在常温下具有高的矫顽力且为微细的粉末,因此,适于高密度磁记录用的磁性材料。特别是可以根据Ga取代量(X的值)将矫顽力控制为所希望的值,另外,根据情况,也可以通过采用适量的Ga取代量来提高饱和磁化以使其比ε-Fe2O3更高,因此,可以构成适于磁记录介质侧所要求的磁特性的磁性层。
如上所述,依照本发明的磁性材料包含用Ga3+离子取代了ε-Fe2O3结晶的部分Fe3+离子位而成的以通式ε-GaxFe2-xO3表示的含Ga的ε-Fe2O3的结晶,对于X的值,为0<X<1的范围即可,如上所述,通过在该范围内选定X的值,可以制成适于磁记录的矫顽力(HC)的材料。在X为0的情况下,HC最大,高达20kOe左右,在将本材料应用于磁记录用的情况下,目前还没有可以写入记录磁化的磁头。另一方面,X超过1时,HC为0Oe左右,在室温下无法稳定地保持记录,因此,不适于磁记录。
需要说明的是,本发明的磁性材料理想地包含由通式ε-GaxFe2-xO3(0<X<1)表示的组成,除此之外,允许含有制造上的杂质等成分或化合物。
在用反胶束法和溶胶-凝胶法的组合合成依照本发明的含Ga的ε-Fe2O3结晶时,在胶束内使适量的碱土类金属离子共存时,最终容易得到棒状的结晶。作为形状控制剂添加的碱土类金属(Ba、Sr、Ca等)有时残存在生成的结晶的表层部,因此,依照本发明的磁性材料有时含有这种形状控制剂。从这种理由出发,本发明的磁性材料除了含有通式ε-GaxFe2-xO3表示的组成之外,有时还含有至少1种碱土类金属元素(以下将碱土类金属元素表述为M)。其残存的含量最多达到M/(Fe+Ga)=20质量%,在作为形状控制剂发挥作用方面,碱土类金属的含量一般不需要超过20质量%,优选为10质量%以下。
而且,用溶胶·凝胶法在氢氧化铁微粒子的表面生成的二氧化硅涂层,有时残存在热处理后的含Ga的ε-Fe2O3结晶粒子的表面。当含Ga的ε-Fe2O3结晶粒子的表面用二氧化硅之类的非磁性化合物的薄膜覆盖时,在该粒子粉末的使用上或将该粒子粉末供给各种用途的磁性材料时,基于如下的理由,具有改善耐久性、耐候性或可靠性的优点。
由于含Ga的ε-Fe2O3粒子为氧化物,因此,与金属磁性粒子比较,具有高的耐氧化性,但由于Fe元素本身为容易发生化学反应的元素,因此难以完全防止络合物化或与酸的反应。长时间或在高温高湿的条件下使用磁带时,往往发生磁性粒子与磁带中的树脂或分散剂发生反应而形成金属络合物的现象。生成的金属络合物附着在磁头表面并发生反应时,磁带和磁头间的间隔扩大而导致记录信号强度降低,在最差的情况下不能读取记录。另外,由空气中所含的H2S、Cl2、NO2等气体成分和水分生成的酸性腐蚀性气体也会引起磁性粒子的腐蚀。但是,当含Ga的ε-Fe2O3的各粒子表面用化学上稳定的二氧化硅之类的非磁性化合物的薄膜覆盖时,对络合物化或酸也具有大的阻力,可形成耐久性、耐候性或可靠性优异的磁性材料。
因此,本发明的磁性材料除了含有通式ε-GaxFe2-xO3表示的含Ga的ε-Fe2O3的组成之外,有时还含有Si/(Fe+Ga)=100质量%以下的二氧化硅。超过100质量%的二氧化硅引起粒子之间发生剧烈地凝聚,因此不优选。即,根据本发明,可提供一种耐久性、耐候性、可靠性优异的磁性材料,所述磁性材料包含用二氧化硅之类的非磁性化合物的薄膜覆盖的通式ε-GaxFe2-xO3(0<X<1)表示的粒子粉末。作为形成薄膜的非磁性化合物,除二氧化硅之外,也可以是氧化铝或二氧化锆等耐热性化合物。
对本发明的磁性材料而言,根据用途,也可以作为在含Ga的ε-Fe2O3粒子中掺杂有ε-Fe2O3粒子的混合粉体供使用。
由本发明的含Ga的ε-Fe2O3粒子的TEM照片测量的平均粒子体积优选为20000nm3以下、优选为15000nm3以下、进一步优选为10000nm3、更进一步优选为5000nm3以下。
由TEM照片测量的平均粒子体积是如下计算的:对于从放大60万倍的TEM(透射电子显微镜)观察图像随机选择的300个粒子,求出平均直径,同时观察它们的形状,将长宽比(长轴/短轴)为1.5以上的粒子近似为圆柱形,算出体积,将长宽比低于1.5的粒子近似为球形,使用长轴径算出体积。近似圆柱的情况,将短轴设定为圆的直径,将长轴设定为圆柱的高。在目前市售的数据备份用磁记录带中,大部分为其磁性粒子的TEM平均粒子体积为20000nm3以上的磁记录带,因此要求更微细的磁性粒子的磁记录带。本发明的磁性材料可以满足该要求。使用本发明的磁性材料构成磁记录用的磁性层的情况下,各粒子微细至可形成单磁畴结构,因此,可以构成高磁记录密度的磁性层。
为了使用包含本发明的含Ga的ε-Fe2O3粒子的磁性材料构成涂布型磁记录介质的磁性层,使由TEM照相测量的平均粒子体积为20000nm3以下的该粒子粉末的各粒子结晶的易磁化轴在规定的方向取向,将各粒子的位置固定在支撑体上即可。即,使具有对应于ε-Fe2O3的结晶结构的X射线衍射峰、包含用Ga3+离子取代ε-Fe2O3结晶的部分Fe3+离子位而成的ε-GaxFe2-xO3[0<X<1]的结晶的磁性粉末的各粒子结晶的易磁化轴在规定的方向取向,将各粒子的位置固定在支撑体上,由此可得到适于高密度记录的磁记录介质的磁性层。
另一方面,也可以得到适于热辅助记录或下一代光磁记录的磁性层。热辅助磁记录的概念是,通过对具有大的Hc的介质进行激光加热而降低Hc来写入记录,写入的位在室温下稳定地保持其状态,有希望作为今后的超高密度磁记录技术。另一方面,在光磁盘中,用激光照射介质,当因局部温度上升而导致Hc降低时利用磁场进行记录的写入,读取利用的是因磁化方向而导致入射光的偏振面旋转角不同的现象、即磁光学效果的磁记录方式。这些超高记录密度所期待的热辅助记录或光磁记录,由于记录介质反复受到加热和冷却,因此,要求该磁性材料具有对于氧化腐蚀的化学稳定性、相对结晶转变、结晶化等的热稳定性、适当的光吸收系数和反射率等特性,由于包含ε-Fe2O3或含Ga的ε-Fe2O3的磁性材料为氧化物的关系,故可以充分满足该要求。而且,由于本发明的磁性材料矫顽力本来就高,如上所述,矫顽力及饱和磁化强度可以通过Ga的取代量来控制,因此可以成为适于这些用途的材料。
尤其是在应用于硬盘的热辅助记录中,头盘界面(Head DiskInterface)及磁头的温度上升成为问题。磁头与盘只有数十纳米以下的间隔,在盘上涂覆有用于防止盘和磁头磨损的润滑剂,因此也产生问题。尤其是由于润滑剂为有机物,因此,可推测即使在短时间内也会显著降低对高温的耐久性。作为润滑剂,氟系液体润滑剂为通用的润滑剂,但氟系的液体润滑剂虽然在有机物中耐热性比较高,但是,300℃(573K:以K=273℃计)为耐热性的界限,考虑反复加热时,可认为即使假定每1次的加热时间为短时间的情况,也希望为200℃(473K)以下。由于该最高加热温度与记录介质的磁相转变温度有关,因此,从头盘界面的观点出发,可以说优选介质的磁相转变温度低。依照本发明的磁性材料可以满足该要求。
如上所述,本发明的磁性材料对高密度磁记录介质用途是有用的,此外,从作为氧化物这样的物质的稳定性及优异的磁特性方面考虑,也可以用于电波吸收材料、纳米级电子材料、永久磁铁材料、生物体分子标识剂、药剂载体等。
需要说明的是,如上所述,关于本发明的含Ga的ε-Fe2O3粒子的合成,列举了用反胶束法制作成为其前体的氢氧化铁和氢氧化镓的超微粒子的实例,但只要可以制作数百纳米以下的同样的前体,其前体制作并不特别限定于反胶束法。另外,列举了应用溶胶-凝胶法将该前体超微粒子进行二氧化硅涂覆的实例,但只要可以在该前体上涂覆二氧化硅等耐热性被膜,其被膜制作方法并不特别限定于溶胶-凝胶法。使该前体超微粒子表面形成例如氧化铝或二氧化锆等耐热性被膜时,如果将其加热到规定的热处理温度,则可以合成含Ga的ε-Fe2O3粒子。
实施例
实施例1
本例为合成ε-Ga0.22Fe1.78O3的实例。
[步骤1]:制备胶束溶液I和胶束溶液II两种胶束溶液。
·胶束溶液I的制作
在特富龙(注册商标)制的烧瓶中加入纯水6mL、正辛烷18.3mL及1-丁醇3.6mL,向其中添加硝酸铁(III)9水合物0.0180摩尔/L,硝酸镓(III)n水合物(使用和光纯药工业株式会社制的纯度为99.9%、n=7~9的硝酸镓(III)n水合物,在使用时预先进行定量分析,确定n后,计算投料量)0.0020摩尔/L。此时的投料组成为ε-Ga0.20Fe1.80O3。进一步添加作为形状控制剂的硝酸钡0.002摩尔/L,一边在室温下充分搅拌,一边使其溶解。进一步以纯水/表面活性剂的摩尔比为30的量添加作为表面活性剂的十六烷基三甲基溴化铵,通过搅拌使其溶解,得到胶束溶液I。
·胶束溶液II的制作
将25%氨水2mL与纯水4mL混合、搅拌,在该液体中进一步加入正辛烷18.3mL和1-丁醇3.6mL并充分搅拌。在该溶液中以(纯水+氨水中的水分)/表面活性剂的摩尔比为30的量添加作为表面活性剂的十六烷基三甲基溴化铵,使其溶解,得到胶束溶液II。
[步骤2]:在胶束溶液I中滴加胶束溶液II。滴加结束后,将混合液持续搅拌30分钟。
[步骤3]:
一边搅拌由步骤2得到的混合液,一边在该混合液中加入四乙氧基硅烷1.5mL。持续搅拌约1天。
[步骤4]:
将由步骤3得到的溶液放置在离心分离机上进行离心分离处理。回收由该处理得到的沉淀物。使用氯仿和甲醇的混合溶液对回收的沉淀物进行多次洗涤。
[步骤5]:
将由步骤4得到的沉淀物进行干燥后,在空气气氛的炉内、在1000℃下施行4小时热处理。
[步骤6]:
在2摩尔/L的NaOH水溶液中将由步骤5得到的热处理粉搅拌24小时,对可能存在于粒子表面的二氧化硅进行除去处理。然后,进行过滤、水洗、干燥。
通过经过以上的步骤1至6,得到目的试样。将得到的试样供给粉末X射线衍射(XRD:リガク制RINT2000、射线源CuKα线、电压40kV、电流30mA),结果可得到图1的第2段所示的衍射图谱。该衍射图谱和第1段的ε-Fe2O3的结晶结构(斜方晶系、空间群Pna21)的衍射图谱具有对应的峰。
另外,将得到的试样供给荧光X射线分析(日本电子制JSX-3220),结果相对于投料组成为ε-Ga0.20Fe1.80O3,分析组成为ε-Ga0.22Fe1.78O3。根据TEM(日本电子制JEM-2000EX II)照片的测定结果,可观察到粒子的平均长度为54.3nm、宽度为15.9nm、利用圆柱近似算出的平均粒子体积约为10776nm3的棒状粒子。图6表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。自旋再取向温度为154K,磁相转变温度为490K,常温(300K)下的矫顽力(Hc)=15.3kOe,饱和磁化强度=17.9emu/g。
[实施例2]
本例为合成ε-Ga0.43Fe1.57O3的实例。
将用于制备胶束溶液I的硝酸铁(III)9水合物的添加量由0.0180摩尔/L变更为0.0160摩尔/L,另外,将硝酸镓(III)n水合物的添加量由0.0020摩尔/L变更为0.0040摩尔/L,除此之外,重复与实施例1相同的步骤。投料组成为ε-Ga0.40Fe1.60O3
将得到的试样供给粉末X射线衍射,结果可得到图1的第3段所示的衍射图谱。该衍射图谱和第1段的ε-Fe2O3的结晶结构(斜方晶系、空间群Pna21)的衍射图谱具有对应的峰。
另外,将得到的试样供给荧光X射线分析,结果相对于投料组成为ε-Ga0.40Fe1.60O3,由分析结果可确认为ε-Ga0.43Fe1.57O3的组成。由TEM照片可观察到平均长度为37.5nm、宽度为12.0nm、平均粒子体积约为4239nm3的棒状粒子。图7表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。自旋再取向温度为72K,磁相转变温度为476K,常温下的矫顽力(Hc)=10.7kOe,饱和磁化强度=19.7emu/g。
[实施例3]
本例为合成ε-Ga0.62Fe1.38O3的实例。
将用于制备胶束溶液I的硝酸铁(III)9水合物的添加量由0.0180摩尔/L变更为0.0140摩尔/L,另外,将硝酸镓(III)n水合物的添加量由0.0020摩尔/L变更为0.0060摩尔/L,除此之外,重复与实施例1相同的步骤。投料组成为ε-Ga0.60Fe1.40O3
将得到的试样供给粉末X射线衍射,结果可得到图1的第4段所示的衍射图谱。该衍射图谱和第1段的ε-Fe2O3的结晶结构(斜方晶系、空间群Pna21)的衍射图谱具有对应的峰。
另外,将得到的试样供给荧光X射线分析,结果相对于投料组成为ε-Ga0.60Fe1.40O3,由分析结果可确认为ε-Ga0.62Fe1.38O3的组成。由TEM照片可观察到平均长度为25.8nm、宽度为10.7nm、平均粒子体积约为2319nm3的棒状粒子。图8表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。没有观察到自旋再取向温度。磁相转变温度为437K,常温下的矫顽力(Hc)=6.5kOe,饱和磁化强度=20.4emu/g。
[实施例4]
本例为合成ε-Ga0.80Fe1.20O3的实例。
将用于制备胶束溶液I的硝酸铁(III)9水合物的添加量由0.0180摩尔/L变更为0.0120摩尔/L,另外,将硝酸镓(III)n水合物的添加量由0.0020摩尔/L变更为0.008摩尔/L,除此之外,重复与实施例1相同的步骤。将得到的试样供给粉末X射线衍射,结果可得到图1的第5段所示的衍射图谱。该衍射图谱和第1段的ε-Fe2O3的结晶结构(斜方晶系、空间群Pna21)的衍射图谱具有对应的峰。另外,将得到的试样供给荧光X射线分析,结果相对于投料组成为ε-Ga0.80Fe1.20O3,由分析结果也可确认ε-Ga0.80Fe1.20O3的组成。由TEM照片可观察到平均长度为30.9nm、宽度为10.7nm、平均粒子体积约为2777nm3的棒状粒子。图9表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。磁相转变温度为360K,常温下的矫顽力(Hc)=1.3kOe,饱和磁化强度=14.5emu/g。
[实施例5]
本例为合成ε-Ga0.97Fe1.03O3的实例。
将用于制备胶束溶液I的硝酸铁(III)9水合物的添加量由0.0180摩尔/L变更为0.0100摩尔/L,另外,将硝酸镓(III)n水合物的添加量由0.0020摩尔/L变更为0.0100摩尔/L,除此之外,重复与实施例1相同的步骤。
将得到的试样供给粉末X射线衍射,结果可得到图1的第6段所示的衍射图谱。该衍射图谱和第1段的ε-Fe2O3的结晶结构(斜方晶系、空间群Pna21)的衍射图谱具有对应的峰。另外,将得到的试样供给荧光X射线分析,结果可确认ε-Ga0.97Fe1.03O3的组成。由TEM照片可观察到平均长度为57.9nm、宽度为20.8nm、平均粒子体积约为19664nm3的棒状粒子。图10表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。磁相转变温度为280K,常温下的矫顽力(Hc)=0kOe,饱和磁化强度=4.7emu/g。
[对照例]
本例为合成ε-Fe2O3的实例。
将用于制备胶束溶液I的硝酸铁(III)9水合物的添加量设定为0.02摩尔/L,不添加硝酸镓(III)n水合物,除此之外,重复与实施例1相同的步骤。
将得到的试样供给粉末X射线衍射,结果可得到图1的第1段所示的衍射图谱。计算晶格常数的结果,a轴=5.10
Figure A20078001125900171
b轴=8.81
Figure A20078001125900172
c轴=9.47
Figure A20078001125900173
另外,将得到的试样供给荧光X射线分析,结果可以确认ε-Fe2O3的组成,由TEM照片可观察到平均长度为98.5nm、宽度为31.4nm、平均粒子体积约为76237nm3的棒状粒子。图11表示其TEM照片。将由本例得到的试样的磁场中冷却测定结果记于图2、将磁滞回线记于图3。自旋再取向温度为495K,磁相转变温度为154K,常温下的矫顽力(Hc)=19.0kOe,饱和磁化强度=15.4emu/g。
图4为表示以Ga取代量的X值排列由这些实例得到的各试样的矫顽力的图。由图4可知,随着Ga的取代量变多,矫顽力同样降低。图5为表示以Ga取代量的X值排列由这些实例得到的各试样的饱和磁化强度的图。由图5可知,存在如下倾向,即,X的值增加直至达到0.5左右时,饱和磁化上升,在其以上X的值增加时,饱和磁化降低,显示出增加Ga的取代量时饱和磁化具有极大值的变化。
表1表示由上述各例得到的含Ga的ε-Fe2O3的Ga取代量和自旋再取向温度及磁相转变温度。在此,自旋再取向温度如图2的上段最左边的图所示,表示在温度下降时饱和磁化下降的最初的拐点。另外,如图2的下段正中的图所示,作为磁相转变温度,外推温度下降时的直线部分,采用该外推直线和0emu/g相交点的温度。
表1
  生成物  磁相转变温度(K)  自旋再取向温度(K)
  ε-Fe2O3   495   154
  ε-Ga0.22Fe1.78O3   490   72
  ε-Ga0.43Fe1.57O3   465   -
  ε-Ga0.62Fe1.38O3   410   -
  ε-Ga0.80Fe1.20O3   360   -
  ε-Ga0.97Fe1.03O3   280   -

Claims (8)

1、磁性材料,其具有对应于ε-Fe2O3的结晶结构的X射线衍射峰,包含用Ga3+离子取代ε-Fe2O3结晶的部分Fe3+离子位而成的ε-GaxFe2-xO3的结晶,其中,0<X<1。
2、如权利要求1所述的磁性材料,其具有X的值越大矫顽力越低的关系。
3、如权利要求1所述的磁性材料,其包含单磁畴结构的微细粒子。
4、如权利要求1所述的磁性材料,其包含通过TEM照相测定的平均粒子体积为20000nm3以下的微细粒子。
5、磁记录介质的磁性层,其包含含有通过TEM照相测定的平均粒子体积为20000nm3以下的微细粒子的权利要求1所述的磁性材料的粉末,其中,各粒子结晶的易磁化轴在规定的方向取向,将各粒子的位置固定在支撑体上。
6、如权利要求5所述的磁性层,其中,粉末的粒子表面用非磁性化合物的薄膜覆盖。
7、如权利要求5所述的磁性层,其中,粉末包含具有单磁畴结构的磁性粒子。
8、如权利要求5所述的磁性层,其中,粉末具有1000~10000Oe的矫顽力。
CN2007800112594A 2006-03-31 2007-03-28 磁性材料 Expired - Fee Related CN101410331B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006096907A JP5013505B2 (ja) 2006-03-31 2006-03-31 磁性材料
JP096907/2006 2006-03-31
PCT/JP2007/057509 WO2007114455A1 (ja) 2006-03-31 2007-03-28 磁性材料

Publications (2)

Publication Number Publication Date
CN101410331A true CN101410331A (zh) 2009-04-15
CN101410331B CN101410331B (zh) 2011-05-04

Family

ID=38563717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800112594A Expired - Fee Related CN101410331B (zh) 2006-03-31 2007-03-28 磁性材料

Country Status (5)

Country Link
US (1) US8097180B2 (zh)
EP (1) EP2003094B1 (zh)
JP (1) JP5013505B2 (zh)
CN (1) CN101410331B (zh)
WO (1) WO2007114455A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548903A (zh) * 2009-09-30 2012-07-04 国立大学法人东京大学 ε-型氧化铁的矫顽力提高方法和ε-型氧化铁
CN107210107A (zh) * 2015-01-19 2017-09-26 国立大学法人东京大学 包含ε氧化铁的取向体和其的制造方法以及制造装置
CN107364898A (zh) * 2017-09-15 2017-11-21 扬州大学 一种铅离子诱导生长ε‑氧化铁纳米棒的方法
CN108698852A (zh) * 2016-01-20 2018-10-23 国立大学法人东京大学 磁性材料、磁性调色剂、和磁性粉末
CN111733483A (zh) * 2019-12-03 2020-10-02 中国科学院深圳先进技术研究院 铁酸镓纳米纤维、铁酸镓纳米纤维的制造方法和用途
CN112638562A (zh) * 2018-10-30 2021-04-09 同和电子科技有限公司 软磁性粉末、软磁性粉末的热处理方法、软磁性材料、压粉磁芯和压粉磁芯的制造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728916B2 (ja) * 2006-08-31 2011-07-20 国立大学法人 東京大学 磁性材料
JP4859791B2 (ja) * 2006-09-01 2012-01-25 国立大学法人 東京大学 電波吸収材料用の磁性結晶および電波吸収体
JP5036443B2 (ja) * 2007-07-31 2012-09-26 国立大学法人 東京大学 光触媒材料
JP5361324B2 (ja) * 2007-10-24 2013-12-04 国立大学法人 東京大学 ミリ波帯非可逆素子
JP5102154B2 (ja) * 2008-01-31 2012-12-19 国立大学法人 東京大学 磁性材スラリー、その磁性材スラリーの製造方法、磁性薄膜及び磁性体
JP5071902B2 (ja) * 2008-02-20 2012-11-14 国立大学法人 東京大学 電波吸収材料および当該電波吸収材料を用いた電波吸収体
JP4813507B2 (ja) * 2008-02-28 2011-11-09 国立大学法人 東京大学 磁性材料並びにそれを用いた磁気メモリ、及び温度センサ
JP2010135701A (ja) * 2008-12-08 2010-06-17 Sony Corp 電磁波抑制シート、デバイス、電子機器
JP5906214B2 (ja) * 2013-04-23 2016-04-20 富士フイルム株式会社 磁気記録用磁性粒子の製造方法
WO2015194647A1 (ja) 2014-06-18 2015-12-23 国立大学法人 東京大学 酸化鉄ナノ磁性粉およびその製造方法
US10204651B2 (en) 2014-06-24 2019-02-12 Sony Corporation Magnetic recording medium having cubic ferrite or e-phase iron oxide magnetic particles
WO2016111224A1 (ja) * 2015-01-09 2016-07-14 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP6010181B2 (ja) * 2015-01-09 2016-10-19 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
WO2016148092A1 (ja) * 2015-03-13 2016-09-22 Dowaエレクトロニクス株式会社 表面改質鉄系酸化物磁性粒子粉およびその製造方法
CN107635924B (zh) 2015-06-12 2019-11-15 国立大学法人东京大学 ε氧化铁及其制造方法、磁性涂料和磁记录介质
US10919778B2 (en) 2015-07-27 2021-02-16 Dowa Electronics Materials Co., Ltd. Method for producing iron-based oxide magnetic particle powder
WO2018131507A1 (ja) 2017-01-13 2018-07-19 ソニー株式会社 磁気記録媒体
JP6966160B2 (ja) * 2017-02-14 2021-11-10 マクセル株式会社 磁気記録媒体及びその記録再生機構
US11798588B2 (en) 2017-04-28 2023-10-24 Sony Corporation Magnetic recording medium
WO2018203468A1 (ja) 2017-05-01 2018-11-08 ソニー株式会社 磁気記録媒体
JP6745759B2 (ja) * 2017-06-09 2020-08-26 富士フイルム株式会社 磁気記録媒体
JP6900286B2 (ja) * 2017-09-27 2021-07-07 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の焼成物、コアシェル粒子の製造方法、イプシロン型酸化鉄系化合物粒子、イプシロン型酸化鉄系化合物粒子の製造方法、磁気記録媒体、及び磁気記録媒体の製造方法
JP7029319B2 (ja) 2018-03-13 2022-03-03 マクセル株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いた熱アシスト磁気記録装置と熱アシスト磁気記録方法
JP6843793B2 (ja) 2018-03-29 2021-03-17 富士フイルム株式会社 β−オキシ水酸化鉄系化合物の粒子及びその製造方法、ε−酸化鉄系化合物の粒子の製造方法、並びに磁気記録媒体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2269506B1 (zh) * 1974-05-03 1977-06-24 Thomson Csf
JP3551863B2 (ja) * 1999-10-27 2004-08-11 株式会社村田製作所 複合磁性材料およびインダクタ素子
JP2003006833A (ja) * 2001-06-26 2003-01-10 Fuji Photo Film Co Ltd 磁気テープ
JP2004134795A (ja) * 2003-10-02 2004-04-30 Tokyo Inst Of Technol 磁気光学効果材料とその製造方法、および磁気光学効果材料分散体
JP4044030B2 (ja) * 2003-11-27 2008-02-06 独立行政法人産業技術総合研究所 磁気センサー装置
JPWO2005056493A1 (ja) * 2003-12-09 2007-12-06 Tdk株式会社 フェライト磁性材料、フェライト焼結磁石
JP4728916B2 (ja) * 2006-08-31 2011-07-20 国立大学法人 東京大学 磁性材料
JP4859791B2 (ja) * 2006-09-01 2012-01-25 国立大学法人 東京大学 電波吸収材料用の磁性結晶および電波吸収体
WO2008149785A1 (ja) * 2007-05-31 2008-12-11 The University Of Tokyo 磁性酸化鉄粒子、磁性体、および電波吸収体

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548903A (zh) * 2009-09-30 2012-07-04 国立大学法人东京大学 ε-型氧化铁的矫顽力提高方法和ε-型氧化铁
CN102548903B (zh) * 2009-09-30 2014-10-22 国立大学法人东京大学 ε-型氧化铁的矫顽力提高方法和ε-型氧化铁
CN107210107A (zh) * 2015-01-19 2017-09-26 国立大学法人东京大学 包含ε氧化铁的取向体和其的制造方法以及制造装置
CN107210107B (zh) * 2015-01-19 2019-10-11 国立大学法人东京大学 包含ε氧化铁的取向体和其的制造方法以及制造装置
CN108698852A (zh) * 2016-01-20 2018-10-23 国立大学法人东京大学 磁性材料、磁性调色剂、和磁性粉末
CN107364898A (zh) * 2017-09-15 2017-11-21 扬州大学 一种铅离子诱导生长ε‑氧化铁纳米棒的方法
CN112638562A (zh) * 2018-10-30 2021-04-09 同和电子科技有限公司 软磁性粉末、软磁性粉末的热处理方法、软磁性材料、压粉磁芯和压粉磁芯的制造方法
CN112638562B (zh) * 2018-10-30 2023-09-08 同和电子科技有限公司 软磁性粉末、软磁性粉末的热处理方法、软磁性材料、压粉磁芯和压粉磁芯的制造方法
TWI815988B (zh) * 2018-10-30 2023-09-21 日商同和電子科技股份有限公司 軟磁性粉末、軟磁性粉末之熱處理方法、軟磁性材料、壓粉磁心及壓粉磁心之製造方法
CN111733483A (zh) * 2019-12-03 2020-10-02 中国科学院深圳先进技术研究院 铁酸镓纳米纤维、铁酸镓纳米纤维的制造方法和用途
WO2021109858A1 (zh) * 2019-12-03 2021-06-10 中国科学院深圳先进技术研究院 铁酸镓纳米纤维、铁酸镓纳米纤维的制造方法和用途
CN111733483B (zh) * 2019-12-03 2021-09-21 中国科学院深圳先进技术研究院 铁酸镓纳米纤维、铁酸镓纳米纤维的制造方法和用途

Also Published As

Publication number Publication date
EP2003094A2 (en) 2008-12-17
JP5013505B2 (ja) 2012-08-29
EP2003094A9 (en) 2009-05-06
US20100062283A1 (en) 2010-03-11
US8097180B2 (en) 2012-01-17
CN101410331B (zh) 2011-05-04
WO2007114455A1 (ja) 2007-10-11
EP2003094B1 (en) 2011-08-17
EP2003094A4 (en) 2009-05-13
JP2007269548A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
CN101410331B (zh) 磁性材料
JP4728916B2 (ja) 磁性材料
US7708902B2 (en) Magnetic material, and memory and sensor using same
CN101687665B (zh) 磁性氧化铁颗粒、磁性材料及电波吸收材料
JP5124825B2 (ja) ε酸化鉄系の磁性材料
JP5130534B2 (ja) 磁気特性を改善したε酸化鉄粉末
JP5124826B2 (ja) 分散性の良いε酸化鉄粉末
Yasmin et al. Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method
Sagayaraj et al. Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles
Huang et al. Dynamic properties of cluster glass in La0. 25Ca0. 75MnO3 nanoparticles
Kanagesan et al. Preparation and magnetic properties of Ni–Zr doped barium strontium hexaferrite
Pham et al. Structural, optical and magnetic properties of Sr and Ni co-doped YFeO3 nanoparticles prepared by simple co-precipitation method
Angadi et al. Role of superparamagnetic nanoparticles in humidity sensing behavior of holmium doped manganese-bismuth ferrites for relative humidity sensor applications
An et al. Easy synthesis and characterization of γ‐Fe2O3 nanoparticles for biomedical applications
Singh et al. Giant magnetization and ultra-low loss in non-magnetic ion-substituted barium nanohexaferrite matrix
WO2003102975A1 (en) Ultrafine hexagonal fertrite particles
Sultana et al. Structural, magnetic, and magnetocaloric properties of chromium doped Gd3Fe5-xCrxO12 garnet compound
Kaiser Effect of lanthanide and transition metal on the structure, magnetic, and electric properties of nickel ferrites
Kim et al. Magnetic properties of Co-Bi ferrite powders and thin films by a sol-gel method
JP2002050508A (ja) 磁性粉末の製造方法
Tolani et al. Synthesis and magnetic characterization of nickel and zinc substituted calcium W-type hexagonal ferrite
KR900005686B1 (ko) 탄화철을 함유하는 침상입자물질
JPH0580729B2 (zh)
Bose et al. A comparative study of V sub 6 O sub 13. 27 and V sub 6 O sub 13
Zhigalov et al. Magnetic and magnetooptical properties of polycrystalline films of cobalt ferrite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110504