WO2016148092A1 - 表面改質鉄系酸化物磁性粒子粉およびその製造方法 - Google Patents

表面改質鉄系酸化物磁性粒子粉およびその製造方法 Download PDF

Info

Publication number
WO2016148092A1
WO2016148092A1 PCT/JP2016/057878 JP2016057878W WO2016148092A1 WO 2016148092 A1 WO2016148092 A1 WO 2016148092A1 JP 2016057878 W JP2016057878 W JP 2016057878W WO 2016148092 A1 WO2016148092 A1 WO 2016148092A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
based oxide
particle powder
magnetic particle
oxide magnetic
Prior art date
Application number
PCT/JP2016/057878
Other languages
English (en)
French (fr)
Inventor
堅之 坂根
哲也 川人
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US15/552,283 priority Critical patent/US11097956B2/en
Publication of WO2016148092A1 publication Critical patent/WO2016148092A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70615Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Fe metal or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70621Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Co metal or alloys

Definitions

  • the present invention relates to a surface-modified iron-based oxide magnetic particle powder suitable for a high-density magnetic recording medium, a radio wave absorber, and the like, in particular, a particle powder having an average particle diameter of nanometer order and a method for producing the same.
  • ⁇ -Fe 2 O 3 is an extremely rare phase among iron oxides, but at room temperature, particles with a nanometer order size have a huge coercive force (Hc) of about 20 kOe (1.59 ⁇ 10 6 A / m).
  • Hc coercive force
  • the coercive force is also adjusted by substituting a part of the metal with a trivalent metal such as Al, Ga, In, etc., and the relationship between the coercive force and the radio wave absorption characteristics has been investigated (Patent Document 2). ).
  • ⁇ -Fe 2 O 3 a part of the Fe site, by substituting other metals having excellent heat resistance, the general formula ⁇ -a x B y Fe 2 -x-y O 3 or ⁇ -a x B y C z Fe 2-x -Yz O 3 (where A is a divalent metal element such as Co, Ni, Mn, Zn, B is a tetravalent metal element such as Ti, and C is a trivalent metal such as In, Ga, Al, etc.) Elemental), various partial ⁇ -Fe 2 O 3 substitutes have been developed that have a reduced particle size, variable coercive force, and excellent environmental stability and thermal stability. (Patent Document 3).
  • ⁇ -Fe 2 O 3 is not a thermodynamic stable phase, its production requires a special method.
  • ⁇ -Fe 2 O is prepared by using, as a precursor, fine crystals of iron oxyhydroxide produced by a liquid phase method, and coating the precursor with silica by a sol-gel method, followed by heat treatment. 3 is disclosed, and as a liquid phase method, a reverse micelle method using an organic solvent as a reaction medium and a method using only an aqueous solution as a reaction medium are disclosed.
  • the easy magnetization axes of magnetic particles are generally aligned in one direction for the purpose of particularly remarkably improving the magnetic characteristics against a magnetic field in a specific direction.
  • Alignment treatment is often performed during the manufacturing process.
  • a typical alignment process is magnetic field alignment. This is because magnetic powder particles are kneaded with a binder such as a resin to form a filling structure of a predetermined shape, and a magnetic field in one direction is applied to the filling structure while the binder is still fluid. This is a process in which the magnetization easy axis of the particles is aligned with the direction of the applied magnetic field.
  • Patent Document 4 discloses a magnetic material having good dispersibility of powder particles in a liquid or a polymer substrate by having an appropriate amount of Si oxide on the particle surface.
  • Patent Document 5 discloses a magnetic material in which spherical particles having an aspect ratio of 3 or less and 90% or more of particles are oriented in one direction.
  • JP 2008-174405 A International Publication No. 2008/029861 International Publication No. 2008/149785 JP 2008-063200 A JP 2008-063199 A
  • the ⁇ -type iron-based oxide partially substituted with ⁇ -Fe 2 O 3 or Fe manufactured by the conventional manufacturing methods disclosed in Patent Documents 1 to 5 described above has excellent magnetic properties.
  • the solid-liquid separability in the wet production process of the obtained iron-based oxide was not sufficient.
  • the solid-liquid separability of iron-based oxides is insufficient because of the good dispersibility in the medium used for the production of iron-based oxides obtained by conventional processes and the difficulty of aggregation. This is because it is difficult to collect by such means. Therefore, in order to produce a high-performance coating-type recording medium, a magnetic powder having good solid-liquid separation in the manufacturing process, in other words, an appropriate cohesive property in the medium in the manufacturing process is required.
  • the field of coating-type magnetic recording media from the viewpoint of a medium suitable for a recording system, it has an appropriate coercive force (2000 to 4500 Oe, 159 to 358 kA / m), and further has a magnetic field orientation direction (x
  • the square ratio (referred to as direction) (SQx) is required to be large.
  • this SQx is high, the output is improved. Therefore, in order to produce a high-performance coating type recording medium, a magnetic powder having good dispersibility and orientation so as to increase SQx is required.
  • ⁇ -Fe 2 O 3 or ⁇ -type iron-based oxide partially substituted with Fe is insufficiently oriented in the coating film because of the dispersion of these oxide particles in the paint used for coating film formation. This is thought to be due to insufficient properties.
  • these iron-based oxides need to be subjected to heat treatment after coating the precursor iron oxyhydroxide with a silanol derivative which is a hydrolyzate of a silane derivative. By this heat treatment, iron-based oxide magnetic particle powder coated with silicon oxide (silica) from which the silanol derivative has been dehydrated is obtained. When the iron-based oxide magnetic particle powder is kneaded in the paint, the silicon oxide coating is removed and used.
  • the iron-based oxide magnetic particle powder produced by the wet method contains a trace amount of water-soluble alkali metal as an impurity inevitably mixed in the production process.
  • the form of the alkali metal is unknown, but both the case where it is contained inside the iron-based oxide magnetic particle powder and the case where the alkali metal derived from the raw material solution adheres to the surface of the iron-based oxide magnetic particle powder. It is believed that there is.
  • Water-soluble alkali metals react with fatty acids in the coating to form fatty acid metal salts, which may increase the coefficient of friction when stored at high temperatures and high humidity for a long time. An iron-based oxide magnetic particle powder with a low content is desired.
  • the technical problem to be solved in the present invention is that the solid-liquid separation in the manufacturing process is good, the dispersibility in the paint for forming the coating type magnetic recording medium is good, and the orientation is also good. And it is providing the manufacturing method of surface modified iron type oxide magnetic particle powder with little content of water-soluble alkali metal, and surface modified iron type oxide magnetic particle powder.
  • the degree of aggregation in the production medium increases. Improves solid-liquid separation, reduces the tap density of the resulting surface-modified iron-based oxide magnetic particle powder, and increases the distance between the iron-based oxide magnetic particles, making it easier for liquid to penetrate between particles.
  • the dispersibility of the iron-based oxide magnetic particle powder in the paint is improved and the orientation is improved, and by using Al and Y as the metal elements that form a hydroxide or a hydrated oxide film, It has been found that such an adhesion layer can be easily formed.
  • the present invention described below was completed by finding that the surface-modified iron-based oxide magnetic particle powder coated with hydroxide as described above has a low content of water-soluble alkali. .
  • Iron-based oxide magnetic particle powder in which part of Fe sites of ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 having an average particle diameter of 5 nm to 30 nm measured with a transmission electron microscope is substituted with another metal element
  • a surface-modified iron-based oxide magnetic particle powder coated with a hydroxide or hydrated metal element S that forms a precipitate of hydroxide in an aqueous solution having a pH of 7 or more and 12 or less is provided.
  • the molar ratio of S / M is 0.02 or more and 0.10 or less, where M is the total of Fe and substitution metal elements contained therein. preferable.
  • the iron-based oxide magnetic particles powder ⁇ -A x B y C z Fe 2-x-y-z O 3 ( provided that, A is Co, Ni, Mn, of 1 or more selected from Zn 2 A valent metal element, B is one or more tetravalent metal elements selected from Ti and Sn, C is one or more trivalent metal elements selected from In, Ga and Al, and 0 ⁇ x, It is preferable that y and z ⁇ 1). Furthermore, the iron oxide magnetic particles powder is preferably a tap density of 0.30 cm 3 or more 1.60 g / cm 3 or less. These surface-modified iron-based oxide magnetic particle powders can be made into coating-type magnetic recording medium coating materials by kneading with organic solvents and other additives. Also, a coating-type magnetic recording medium can be obtained using a paint containing these surface-modified iron-based oxide magnetic particle powders.
  • Iron-based oxide magnetic particle powder in which part of Fe sites of ⁇ -Fe 2 O 3 or ⁇ -Fe 2 O 3 having an average particle diameter of 5 nm to 30 nm measured with a transmission electron microscope is substituted with another metal element Method for producing surface-modified iron-based oxide magnetic particle powder having a metal element S hydroxide or hydrated oxide deposited on the surface of the metal in a water solution having a pH of 7 or more and 12 or less Because Iron oxyhydroxide containing iron oxyhydroxide or a substituted metal element obtained by neutralizing a solution obtained by dissolving trivalent iron ions and metal ions partially replacing the Fe site in a solvent, preferably water, with an alkaline aqueous solution Obtaining a precursor comprising: Coating the precursor with silicon oxide; Heating the precursor coated with silicon oxide to iron oxide containing a substituted metal element coated with silicon oxide; Removing the silicon oxide covering the iron oxide containing the substitution metal element; and dispersing the iron oxide containing the substitution metal element from
  • the iron-based oxide magnetic particle powder to be deposited is ⁇ -A x B y C z Fe 2-xyz O 3
  • A is one or more divalent metal elements selected from Co, Ni, Mn and Zn
  • B is one or more tetravalent metal elements selected from Ti and Sn
  • C is In, Ga
  • One or more trivalent metal elements selected from Al may be 0 ⁇ x, y, z ⁇ 1).
  • the tap density of the surface modification iron oxide magnetic particles powder to be produced may also be 0.30 g / cm 3 or more 1.60 g / cm 3 or less by the present invention.
  • a coating type magnetic recording medium having good solid-liquid separation in the production process, good dispersibility in the paint, and low content of water-soluble alkali metal.
  • the surface-modified iron-based oxide magnetic particle powder suitable for increasing the recording density can be obtained.
  • the production method of the present invention produces iron-based oxide magnetic particle powder in which a part of the Fe site of ⁇ -Fe 2 O 3 coated with a nonmagnetic hydroxide or a hydrous oxide is substituted with another metal element.
  • the iron-based oxide magnetic particle powder to be deposited includes a case where a heterogeneous phase inevitable in production is mixed in addition to the ⁇ -type oxide.
  • a partially substituted product obtained by substituting a part of the Fe site of ⁇ -Fe 2 O 3 with another metal element has an ⁇ structure, X-ray diffraction (XRD), high-energy electron diffraction (HEED), etc. It is possible to confirm using
  • Examples of the partially substituted product that can be produced by the production method of the present invention include the following. Those represented by the general formula ⁇ -C z Fe 2 -z O 3 (where C is one or more trivalent metal elements selected from In, Ga and Al). General formula ⁇ -A x B y Fe 2-xy O 3 (where A is one or more divalent metal elements selected from Co, Ni, Mn and Zn, and B is selected from Ti and Sn) One or more tetravalent metal elements). General formula ⁇ -A x C z Fe 2-xz O 3 (where A is one or more divalent metal elements selected from Co, Ni, Mn, and Zn, and C is In, Ga, Al) One or more selected trivalent metal elements).
  • the type substituted only with the C element has the advantage that it is easy to obtain the same space group as ⁇ -Fe 2 O 3 in addition to being able to arbitrarily control the coercive force of the magnetic particles, but it is somewhat inferior in thermal stability. Therefore, those simultaneously substituted with the A or B element are preferable.
  • the type substituted with the two elements A and B has excellent thermal stability and can maintain high coercivity of the magnetic particles at room temperature, but a single phase in the same space group as ⁇ -Fe 2 O 3 is somewhat difficult to obtain. .
  • the three-element substitution types of A, B, and C have the best balance of the above-described characteristics, and are excellent in heat resistance, ease of obtaining a single phase, and controllability of coercive force.
  • this three-element substitution product is mainly described as an example.
  • the preferred ranges of the substitution amounts x, y and z of the three-element substitution product are as follows.
  • x and y can take arbitrary ranges of 0 ⁇ x and y ⁇ 1, but if the values of x and y are greatly different, different phases are likely to be mixed into the magnetic particles in order to balance the charge. Therefore, x ⁇ y is preferable.
  • z may be in the range of 0 ⁇ z ⁇ 1, but from the viewpoint of coercive force control and ease of obtaining a single phase, 0 ⁇ z ⁇ 0.5 may be set. preferable.
  • Magnetic particles obtained by substituting a part of the Fe site of the three-element substitution product obtained by the production method of the present invention can be controlled to a coercive force value suitable at room temperature by adjusting x, y and z. is there.
  • the magnetic particles obtained by the production method of the present invention are preferably so fine that each particle has a single domain structure.
  • the average particle size measured with the transmission electron microscope is preferably 30 nm or less, more preferably 20 nm or less.
  • the proportion of fine particles that do not contribute to the above-described improvement in magnetic properties increases, and the magnetic properties per unit weight of the magnetic particle powder deteriorate, so it is preferably 5 nm or more, Furthermore, it is more preferable that it is 8 nm or more.
  • the iron-based oxide magnetic particle powder is preferably recoverable by solid-liquid separation means used industrially. Specifically, it is preferable to have solid-liquid separability that allows the iron-based oxide magnetic particle powder to be filtered using the hard filter paper 4A (retained particle diameter: 1 ⁇ m).
  • This iron-based oxide magnetic particle powder has a process of neutralizing a raw material solution to be described later with an alkali, a process of dissolving and removing a silicon oxide coating with an alkali, and a process of neutralizing an adherend with an alkali. Since it uses, as above-mentioned, water-soluble alkali metals, such as Na and K, are contained as an unavoidable impurity. The content of the water-soluble alkali metal is preferably as low as possible.
  • the hydroxide or hydrous oxide of the metal element S that forms a precipitate of hydroxide in an aqueous solution having a pH of 7 or more and 12 or less is deposited.
  • the amount of alkali metal eluted in the dissolution test after surface modification is the content of the water-soluble alkali metal of iron-based oxide magnetic particle powder based on the mass basis, and the value is 5 ppm or less on the mass basis. preferable. In addition, although it is preferable that content of a water-soluble alkali metal is zero, it is industrially difficult to implement
  • the term “containing” does not mean only when the alkali metal is present in the iron-based oxide magnetic particle powder, but when the iron-based oxide magnetic particle powder is dried, It is a concept that includes what remains on the surface.
  • the iron oxide magnetic particles powder it tap density after the surface modification of the one or two of Al and Y was coated is less than 0.30 g / cm 3 or more 1.60 g / cm 3 Is preferred.
  • the lower limit of the tap density is preferably 0.30 g / cm 3 or more in consideration of the handleability of the surface-modified iron-based oxide magnetic particle powder. More preferably, it is 1.00 g / cm 3 .
  • Any known production method including a combination of the reverse micelle method and the sol-gel method may be used for producing the ⁇ -type iron oxide magnetic particle powder according to the present invention. That is, as a known production method, a so-called reverse micelle method, in which an iron salt as a starting material or an organic solvent in which an iron salt and a partially substituted metal salt are dissolved is micellized and reacted with an alkaline aqueous solution as a neutralizing agent, There is a method that does not use an organic solvent, in which a starting material is dissolved in water and reacted with an alkaline aqueous solution that is a neutralizing agent.
  • a surfactant may coexist in the reaction system, Any manufacturing method may be used.
  • a production method using an organic solvent increases production costs, a production method in which the starting material is dissolved in water and the entire reaction system is an aqueous solution is preferable from an industrial viewpoint.
  • the detailed content of the present invention will be described along the flow of the production method of the present invention.
  • an acidic solution in which trivalent iron ions and metal ions of a metal element that finally replaces Fe sites are dissolved in water or an organic solvent as a starting material of the iron-based oxide magnetic particle powder ( Hereinafter referred to as a raw material solution).
  • a raw material solution As a supply source of these iron ions or metal ions of substitution elements, it is preferable to use water-soluble inorganic acid salts such as nitrates, sulfates, and chlorides from the viewpoint of availability and cost. When these metal salts are dissolved, metal ions are dissociated and the solution becomes acidic.
  • the precursor preferably contains ferrihydrite structure oxyhydroxide, particularly 2L structure ferrihydrite.
  • the neutralization with the alkaline aqueous solution may be performed in one step, or may be performed in a plurality of steps. Moreover, you may also perform the method of adding hydroxycarboxylic acid between dividing
  • the total metal ion concentration in the raw material solution is not particularly defined in the present invention, but is preferably 0.01 mol / L or more and 0.5 mol / L or less. If it is less than 0.01 mol / L, the amount of the iron-based oxide magnetic particle powder obtained by one reaction is small, which is economically undesirable. If the total metal ion concentration exceeds 0.5 mol / L, it is not preferable because the reaction solution is likely to gel due to rapid hydroxide precipitation.
  • the reaction temperature during the neutralization treatment is not particularly specified, but is preferably 0 ° C. or more and 60 ° C. or less. If the reaction temperature is less than 0 ° C., the reaction time becomes longer, which is not preferable. If it exceeds 60 ° C., a heterogeneous phase ( ⁇ phase) tends to be finally formed, which is not preferable. More preferably, it is 10 degreeC or more and 40 degrees C or less.
  • the pH standard solution refers to a value measured by a pH meter calibrated using an appropriate buffer solution corresponding to the pH range to be measured.
  • the pH described in the present specification is a value obtained by directly reading a measured value indicated by a pH meter compensated by a temperature compensation electrode under reaction temperature conditions.
  • the precursor iron oxyhydroxide produced in the above step or the iron oxyhydroxide containing a substitution element is compatible with the ⁇ -type iron-based oxide even if heat treatment is performed as it is. Since it is difficult to change, a silicon oxide coating is applied to the iron oxyhydroxide crystal containing the substitution element prior to the heat treatment.
  • a silicon oxide coating method a sol-gel method is preferably applied.
  • the silicon oxide includes not only a stoichiometric composition but also a non-stoichiometric composition such as a silanol derivative described later.
  • a silicon compound having a hydrolyzable group for example, tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), or a silane such as various silane coupling agents is added to the solution in which the precursor is dispersed.
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • silane such as various silane coupling agents
  • a compound is added to cause a hydrolysis reaction under stirring, and the surface of the iron oxyhydroxide crystal is coated with the produced silanol derivative.
  • an acid catalyst or an alkali catalyst may be added. It is preferable to add it in consideration of the treatment time.
  • the acid catalyst is hydrochloric acid
  • the alkali catalyst is ammonia.
  • the precursor may be once washed with water, subjected to solid-liquid separation, and dispersed again in water, and then the silane compound may be added.
  • the specific method for coating the silicon oxide can be the same as the sol-gel method in a known process.
  • the reaction temperature of the silicon oxide coating by the sol-gel method is 20 ° C. or more and 60 ° C. or less, and the reaction time is about 1 hour or more and 20 hours or less.
  • solid-liquid separation and drying are performed to obtain a sample before the heating process.
  • a flocculant may be added to perform solid-liquid separation.
  • the silicon oxide-coated precursor iron oxyhydroxide or iron oxyhydroxide containing a substitution element is heat-treated to obtain an ⁇ -type iron-based oxide.
  • washing and drying steps may be provided.
  • the heat treatment is performed in an oxidizing atmosphere, but the oxidizing atmosphere may be an air atmosphere. Heating can be performed in the range of approximately 700 ° C. to 1300 ° C., but when the heating temperature is high, ⁇ -Fe 2 O 3 (which is an impurity from ⁇ -Fe 2 O 3 ), which is a thermodynamically stable phase, is generated. Therefore, the heat treatment is preferably performed at 900 ° C. or higher and 1200 ° C.
  • the heat treatment time can be adjusted in the range of about 0.5 hours to 10 hours, but good results are easily obtained in the range of 2 hours to 5 hours.
  • the presence of a silicon-containing substance covering the particles is considered to have an advantageous effect in causing a phase change to an ⁇ -type iron-based oxide rather than a phase change to an ⁇ -type iron-based oxide.
  • the silicon oxide coating has an effect of preventing sintering during heat treatment of iron oxyhydroxide crystals or iron oxyhydroxide crystals containing a substitution element.
  • the ⁇ -Fe 2 O 3 crystal contains trivalent iron ions and metal elements for substituting iron sites. Is obtained in a state in which a partially substituted ⁇ -Fe 2 O 3 crystal is coated with silicon oxide.
  • the powder obtained after the heat treatment may contain ⁇ -type iron-based oxide, ⁇ -type iron-based oxide, and Fe 3 O 4 crystal as impurities in addition to the ⁇ -type iron-based oxide crystal. These are called iron-based oxide magnetic particle powders.
  • Silicon oxide coating removal process In coating-type magnetic recording medium applications, it is necessary to perform magnetic field orientation treatment on the magnetic particles applied to the tape, and in the state where silicon oxide is coated, a large amount of silicon oxide, which is a nonmagnetic component, is contained. As a result, the amount of magnetization per unit area of the tape drops (the signal from the tape becomes weak), so that the silicon oxide that is covered is removed by a process described later.
  • silicon oxide is soluble in an alkaline aqueous solution, the powder after heat treatment is immersed in an aqueous solution in which a strong alkali such as NaOH or KOH is dissolved and dissolved and removed by stirring. it can.
  • the aqueous alkali solution may be heated.
  • alkali such as NaOH
  • the temperature of the aqueous solution is 60 ° C. or higher and 70 ° C. or lower and the powder is stirred, silicon oxide is dissolved well. Can do.
  • the degree of silicon oxide coating removal is appropriately adjusted according to the purpose.
  • the silicon oxide coating removal step in the manufacturing method of the present invention if the silicon oxide coating is completely removed, the cost increases. Therefore, the silicon oxide coating is hidden by the deposition of Al and Y in the next step. May remain as much as possible.
  • the nonmagnetic property of the metal S The surface is modified by depositing a hydroxide or a hydrous oxide.
  • One of the purposes of depositing the nonmagnetic hydroxide or the hydrous oxide is to suppress aggregation of the ⁇ -type iron-based oxide magnetic particle powder when it is dried.
  • Another object is to conceal the silicon oxide coating partially remaining on the surface of the ⁇ -type iron-based oxide magnetic particle powder even after the silicon oxide coating removal treatment, so that the iron-based oxide magnetic particle powder is coated in the paint. It is to improve the dispersibility in The deposition method of these substances can be performed by a dry method, but in the present invention, a wet method with excellent productivity is adopted.
  • the ⁇ -type iron-based oxide magnetic particle powder from which the silicon oxide coating has been removed is dispersed in an aqueous solution and stirred vigorously.
  • strong agitation refers to a state in which, for example, in a 5 L beaker, agitation is performed using a turbine blade or the like at a rotational speed of 300 rpm or more.
  • the reason for vigorous stirring is to perform the deposition treatment in a state in which the ⁇ -type iron-based oxide magnetic particle powder is well dispersed.
  • the pH of the aqueous solution in which the ⁇ -type iron-based oxide magnetic particle powder is dispersed is preferably adjusted to pH 9 or more and 12 or less at which the dispersibility of the magnetic particle powder is the best.
  • ions of metal S that forms a hydroxide precipitate in an area where the pH is 7 or more and 12 or less are added to an aqueous solution in which ⁇ -type iron-based oxide magnetic particle powder is dispersed with strong stirring, and ⁇ A hydroxide is deposited on the surface of a type of iron-based oxide magnetic particle powder as a seed crystal.
  • a metal ion that forms a hydroxide precipitate in a pH range of 7 to 12 does not mean that a hydroxide precipitate is formed only in this pH range, but hydroxide in a wider pH range. You may form a thing precipitation.
  • the hydroxide is a concept including a partially dehydrated hydrated oxide.
  • an alkali may be added thereafter to adjust the pH.
  • the metal S it is sufficient if the hydroxide precipitate formed in this pH region is non-magnetic, but it is one or two of Al and Y from the viewpoint of availability and price. Is preferred.
  • the deposition amount of one or two of Al and Y is S / M, where S is the deposition amount, and M is the total of Fe and substitution metal elements contained in the iron-based oxide magnetic particle powder.
  • the molar ratio is preferably 0.02 or more and 0.10 or less. An S / M molar ratio of less than 0.02 is not preferable because only part of the surface of the iron-based oxide magnetic particle powder can be coated. When the molar ratio of S / M exceeds 0.10, the volume ratio of the nonmagnetic component becomes too high, which is not preferable.
  • the iron-based oxide magnetic particle powder whose surface has been modified is separated by a known solid-liquid separation means, washed with water, and then dried.
  • a solid-liquid separation and washing may be performed using a filter press, followed by drying with a shelf dryer or the like, or washing with an ultrafiltration membrane or the like to improve the surface.
  • the slurry may be dried using a drying facility represented by a spray dryer.
  • a part of the hydroxide may be dehydrated by drying to change to a hydrous oxide.
  • the surface-modified iron-based oxide magnetic particle powder thus obtained, even if some silicon oxide remains on the surface before the metal S hydroxide is deposited, Since the hydroxide or hydrated oxide of the metal S is deposited thereon, the agglomeration due to silicon oxide is prevented even when dried, and the magnetic particle powder has a low dispersibility and good dispersibility.
  • TEM observation The TEM observation of the iron-based oxide magnetic particle powder having a modified surface obtained by the production method of the present invention was performed under the following conditions. JEM-1011 manufactured by JEOL Ltd. was used for TEM observation. For particle observation, a TEM photograph was used which was photographed at ⁇ 100,000 times and then stretched three times during development. (Use silicon oxide coating after removal) For the evaluation of the average particle diameter, digitization was used, and the distance between two points that were the most distant from one particle was measured. About 300 pieces or more were measured.
  • composition analysis Composition analysis was performed with ICP-720ES manufactured by Agilent Technologies.
  • the measurement wavelength (nm) was Fe: 259.940 nm, Ga: 294.363 nm, Co: 230.786 nm, Ti: 336.122 nm, Al: 396.152 nm, Y: 361.104 nm.
  • the tap density was measured using the method described in Example 1 of JP-A-2007-263860.
  • MR-555 (15.8 g dissolved) is taken with a micropipette and added to the pot. Immediately thereafter, 30 g of steel balls (2 mm diameter) and 10 nylon balls (8 mm diameter) are added to the pot, and the lid is closed and allowed to stand for 10 minutes. Thereafter, the pot is set on a centrifugal ball mill (FRITSCH P-6), and the number of revolutions is slowly increased, and the dispersion is performed at 600 rpm for 10 minutes or 60 minutes. After the centrifugal ball mill is stopped, the pot is taken out, and 0.70 mL of a preliminarily mixed solution in which MEK and toluene are mixed at 1: 1 is added using a micropipette. The pot is set again in the centrifugal ball mill, and the paint is prepared by dispersing the mixture at 600 rpm for 5 minutes.
  • FRITSCH P-6 centrifugal ball mill
  • Example 1 As starting materials for Fe, Ga, Co and Ti, ferric nitrate (III) 9hydrate 3296.53 g, Ga concentration 10.70 mass% Ga (III) nitrate aqueous solution 854.72 g, cobalt nitrate (II) 6 water Using 74.27 g of the Japanese product and 77.96 g of titanium sulfate (IV) n hydrate having a Ti concentration of 15.2 mass%, 20.31 kg of pure water was added to prepare a mixed aqueous solution, and then the machine temperature was 30 ° C. While stirring, 2.78 kg of an ammonia solution of 22.35 mass% was added to the raw material solution for neutralization, and stirring was continued for 0.5 hour to obtain a slurry in which the precursor was dispersed (procedure 1).
  • the dried powder was subjected to a heat treatment at 1068 ° C. for 4 hours in a furnace in an air atmosphere to obtain an iron-based oxide magnetic particle powder coated with silicon oxide.
  • the mixture is stirred in a 20 mass% NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the particle surface, and washed with an ultrafiltration membrane until the electric conductivity becomes 5 mS / m or less.
  • a slurry containing ⁇ -type iron-based oxide magnetic particle powder in which a part of was replaced with Ga, Co, and Ti was obtained (procedure 3).
  • the slurry was washed to an electric conductivity of 1 mS / m or less, filtered with a hard filter paper 4A, and then dried to obtain a surface-modified iron-based oxide magnetic particle powder (Procedure 4).
  • the surface-modified iron-based oxide magnetic particle powder obtained in step 4 is used for chemical analysis of composition, TEM observation, and measurement of magnetic properties, etc., and magnetic tape is prepared according to the above-mentioned “Creation of magnetic sheet” Then, the magnetic properties of the tape were measured according to the above-mentioned “Measurement of Magnetic Hysteresis Curve (Sheet BH Curve)”. In addition, the dispersion time at the time of tape preparation was 10 minutes, and it dried in the magnetic field with the orientation magnetic field 5.5kOe (438kA / m). Table 1 shows the physical property values, bulk magnetic properties, and tape magnetic properties of the obtained surface-modified iron-based oxide magnetic particle powder.
  • the TEM average particle diameter of the surface-modified iron-based oxide magnetic particle powder coated with Al obtained in this example is that of the iron-based oxide magnetic particle powder not coated with Al in Comparative Example 1 described later. It is the same, but it can be seen that the tap density decreases with Al deposition. This is presumed to be because the silicon oxide magnetic particle powder remained slightly concealed on the surface of the iron-based oxide magnetic particle powder, and the iron-based oxide magnetic particle powder hardly aggregated. As a result, it is considered that the SQx was improved when the surface-modified iron-based oxide magnetic particle powder was made into a paint to produce a tape.
  • Example 2 A surface-modified iron-based oxide magnetic particle powder coated with Y was obtained in the same procedure as in Example 1 except that a 2.13 mass% yttrium sulfate aqueous solution was used as the aqueous solution containing the element to be deposited.
  • Table 1 shows the physical property values, bulk magnetic properties, and tape magnetic properties of the obtained surface-modified iron-based oxide magnetic particle powder. Also in this example, as in Example 1, the tap density decreased due to the deposition of Y, and the SQx increased.
  • Table 1 shows the physical property values, bulk magnetic properties, and tape magnetic properties of the iron-based oxide magnetic particle powder obtained for Comparative Example 1.
  • the silicon oxide remaining on the particle surface during drying worked so as to aggregate the particles, so that the tap density was large and the SQx was low.
  • the dried powder After drying the cake obtained in step 2, the dried powder is subjected to a heat treatment at 1040 ° C. to 1050 ° C. for 4 hours in a furnace in an air atmosphere, and iron-based oxide magnetic particles coated with silicon oxide After making the powder, it is stirred in a 20 mass% NaOH aqueous solution at about 60 ° C. for 24 hours to remove the silicon oxide on the particle surface, and washed with an ultrafiltration membrane until the electric conductivity becomes 5 mS / m or less. A slurry containing ⁇ -type iron-based oxide magnetic particle powder in which part of the Fe site was replaced with Ga, Co, and Ti was obtained (procedure 3).
  • the slurry was washed to an electric conductivity of 1 mS / m or less, filtered with a hard filter paper 4A, and then dried to obtain a surface-modified iron-based oxide magnetic particle powder (Procedure 4).
  • the surface-modified iron-based oxide magnetic particle powder obtained in the procedure 4 is used for chemical analysis of composition, TEM observation, measurement of magnetic properties, etc., and the dispersion time at the time of tape preparation is 60 minutes, and the orientation magnetic field is 5. Except for drying in a magnetic field at 5 kOe (438 kA / m), a magnetic paint was prepared according to the above-mentioned “Preparation of magnetic paint”, and a magnetic tape was prepared according to the above-mentioned “Preparation of magnetic sheet”. According to “Measurement of Hysteresis Curve (Sheet BH Curve)”, the magnetic properties of the tape were measured.
  • the TEM average particle diameter of the surface-modified iron-based oxide magnetic particle powder coated with Al + Y obtained in this example is that of the iron-based oxide magnetic particle powder not coated with Al + Y in Comparative Example 2 described later. It is the same, but it can be seen that the tap density also decreases with Al + Y deposition. This is presumed to be because the silicon oxide magnetic particle powder remained slightly concealed on the surface of the iron-based oxide magnetic particle powder, and the iron-based oxide magnetic particle powder hardly aggregated. As a result, it is considered that SQx was improved as compared with Comparative Example 2 when the surface-modified iron-based oxide magnetic particle powder was made into a paint to produce a tape.
  • the slurry containing the iron-based oxide magnetic particle powder of the comparative example not coated with hydroxide is composed of hard filter paper 4A (retained particle diameter: 1 ⁇ m) and an omnipore membrane filter (model number: JGWP09025, pore diameter). : 0.2 ⁇ m), the iron-based oxide magnetic particles as a solid content passed through the filter paper, and solid-liquid separation by filtration could not be performed. Then, solid-liquid separation and drying were performed by evaporating all of the water by applying this slurry to a dryer.
  • the iron-based oxide magnetism is obtained by the hard filter paper 4A (retained particle diameter: 1 ⁇ m). Particulate powder could be recovered.
  • the slurry containing the iron-based oxide magnetic particle powder coated with the hydroxide according to the present invention increases the cohesiveness of the particles in the aqueous medium by depositing the hydroxide on the particle surface. It is considered that solid-liquid separation has become possible. Thus, when hydroxide is deposited on iron-based oxide magnetic particle powder, solid-liquid separation by filtration becomes possible, and energy necessary for solid-liquid separation and drying can be saved, which is suitable for industrial production. .
  • the water-soluble Na content of the iron-based oxide magnetic particle powder was higher than that of the examples. This is because in the comparative example, solid-liquid separation by filtration could not be performed, so solid-liquid separation and drying were performed by applying a slurry containing iron-based oxide magnetic particle powder to a dryer. This is probably because Na contained in a trace amount was not removed but concentrated and remained on the particle surface. Further, as described above, the reason why the amount of water-soluble Na in the comparative example is high is that the Na component adhering to the surface of the iron-based oxide magnetic particle powder is not removed by the ultrafiltration performed in the procedure 3. Another reason is that the particles remain on the surface of the particles.
  • the surface-modified iron-based oxide magnetic particle powder obtained had a low water-soluble Na content of 3 ppm or less as shown in the table. This is because the solid-liquid separation by filtration makes it possible to remove impurities contained in a trace amount in the liquid, and the surface of the iron-based oxide magnetic particle powder is coated with a hydroxide of metal S. As a result of reducing the amount of Na component on the particle surface by attaching, and further improving the surface to which the Na component hardly remains by the adherend, the surface modified iron-based oxide is washed by ultrafiltration. It is conceivable that the Na component on the surface of the magnetic particle powder has been effectively removed, and as a result, the amount of water-soluble Na is eluted.
  • the surface-modified iron-based oxide magnetic particle powder of the present invention can reduce the amount of fatty acid Na precipitate generated on the surface of the coating type magnetic recording medium. Suitable for application type magnetic recording medium.
  • Na hydroxide was used as an alkali hydroxide, the result is the same even if other alkali hydroxides, such as K hydroxide and Ca hydroxide, are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】製造プロセス中での固液分離性が良好で、塗布型磁気記録媒体を形成するための塗料中での分散性が良好、かつ、配向性も良好で、さらに水溶性アルカリ金属の溶出量が少ない表面改質鉄系酸化物磁性粒子粉およびその表面改質鉄系酸化物磁性粒子粉の製造方法を提供する。 【解決手段】3価の鉄イオンもしくは3価の鉄イオンとFeサイトを一部置換する金属のイオンを溶解した溶液をアルカリ水溶液で中和して生成した前駆体にシリコン酸化物を被覆し、それを加熱して得られたεタイプの鉄系酸化物磁性粉に、AlイオンおよびYイオンの一種または二種の水酸化物もしくは含水酸化物を被着させることにより、製造プロセス中での固液分離性が良好で、塗料中での分散性の良好、かつ水溶性アルカリ金属の溶出量が少ない表面改質鉄系酸化物磁性粒子粉が得られる。

Description

表面改質鉄系酸化物磁性粒子粉およびその製造方法
 本発明は、高密度磁気記録媒体、電波吸収体等に好適な表面改質鉄系酸化物磁性粒子粉、特に、粒子の平均粒子径がナノメートルオーダーの粒子粉およびその製造方法に関する。
 ε-Feは酸化鉄の中でも極めて稀な相であるが、室温において、ナノメートルオーダーのサイズの粒子が20kOe(1.59×10A/m)程度の巨大な保磁力(Hc)を示すため、ε-Feを単相で合成する製造方法の検討が従来よりなされてきている(特許文献1)。また、ε-Feを磁気記録媒体に用いた場合、現時点ではそれに対応する、高レベルの飽和磁束密度を有する磁気ヘッド用の材料が存在しないため、ε-FeのFeサイトの一部をAl、Ga、In等の3価の金属で置換することにより、保磁力を調整することも行われており、保磁力と電波吸収特性の関係も調べられている(特許文献2)。
 一方、磁気記録の分野では、再生信号レベルと粒子性ノイズの比(C/N比:Carrier to Noise Ratio)の高い磁気記録媒体の開発が行われており、記録の高密度化のために、磁気記録層を構成する磁性粒子の微細化が求められている。しかし、一般に、磁性粒子の微細化はその耐環境安定性、熱安定性の劣化を招き易く、使用もしくは保存環境下における磁性粒子の磁気特性低下が懸念されるので、ε-FeのFeサイトの一部を、耐熱性に優れた他の金属で置換することにより、一般式ε-AFe2-x-yまたはε-AFe2-x-y-z(ここでAはCo、Ni、Mn、Zn等の2価の金属元素、BはTi等の4価の金属元素、CはIn、Ga、Al等の3価の金属元素)で表される、粒子サイズを低下させ、保磁力を可変とするとともに、耐環境安定性、熱安定性にも優れた各種のε-Feの一部置換体が開発されている(特許文献3)。
 ε-Feは熱力学的な安定相ではないため、その製造には特殊な方法を必要とする。上述の特許文献1~3には、液相法で生成したオキシ水酸化鉄の微細結晶を前駆体として用い、その前駆体にゾル-ゲル法によりシリカを被覆した後に熱処理するε-Feの製造方法が開示されており、液相法としては反応媒体として有機溶媒を用いる逆ミセル法と、反応媒体として水溶液のみを用いる方法がそれぞれ開示されている。
 磁性粒子の充填構造によって構築される磁気記録媒体をはじめとする磁性材料では、一般に特定方向の磁場に対する磁気特性を特に顕著に向上させる目的で、磁性粒子の磁化容易軸が一方向に揃うように、製造過程において配向処理が施されることが多い。代表的な配向処理として磁場配向が挙げられる。これは、磁性粉体の粒子を樹脂等のバインダーとともに混練して、所定形状の充填構造を形成させ、バインダーがまだ流動性を有しているあいだにその充填構造に対して一方向の磁場を印加し、粒子の磁化容易軸を印加磁場の方向に揃える処理である。この配向処理を終えた後、バインダーを硬化させると、充填構造を構成する粒子は磁化容易軸が一定方向に揃った状態で固着される。特許文献4には、粒子表面に適量のSi酸化物を有することで液中や高分子基材中における粉末粒子の分散性が良好な磁性材料が開示されている。さらに特許文献5には、個数割合で90%以上の粒子がアスペクト比3以下の球状粒子が一方向に配向している磁性材料が開示されている。
特開2008-174405号公報 国際公開第2008/029861号 国際公開第2008/149785号 特開2008-063200号公報 特開2008-063199号公報
 上述の特許文献1~5に開示された従来の製造方法により製造されたε-FeもしくはFeを一部置換したεタイプの鉄系酸化物は、優れた磁気特性を有するものであるが、得られる鉄系酸化物の湿式製造プロセスにおける固液分離性が十分とは言えなかった。また、塗布型の高記録密度磁気記録媒体として使用する場合、分散性や配向性が十分ではなく、磁気テープとしての性能が十分発揮できないことがわかってきた。
 鉄系酸化物の固液分離性が不十分なのは、従来のプロセスで得られる鉄系酸化物の製造に用いられる媒体中での分散性が良好で凝集し難いため、通常工業的に用いられるろ過等の手段では捕集が困難なためである。したがって、高性能な塗布型記録媒体を作るためには、製造プロセスにおける固液分離性の良好な、言い換えると、製造プロセスにおける媒体中において適度な凝集性を有する磁性粉が求められている。
 一方、塗布型磁気記録媒体の分野では、記録するシステムに適した媒体という観点から、適度な保磁力(2000~4500Oe、159~358kA/m)を持つこと、さらにテープ特性として磁場配向方向(x方向と呼ぶ)の角形比(SQx)が大きいことが要求される。その角形比(SQx=Br/Bs)は,磁場配向方向に磁場を印加した際のテープの飽和磁束密度Bsに対するテープの残留磁束密度Brの比であり,配向性の指標として用いられる数値である。このSQxが高いと出力が向上するので、高性能な塗布型記録媒体を作るためには、SQxが高くなるような分散性、配向性の良い磁性粉が求められている。
 ε-FeもしくはFeを一部置換したεタイプの鉄系酸化物の塗膜中での配向性が不十分なのは、塗膜形成に用いられる塗料中でのこれらの酸化物粒子の分散性が不十分なためであると考えられる。これらの鉄系酸化物は、その製造過程において、シラン誘導体の加水分解物であるシラノール誘導体で前駆体であるオキシ水酸化鉄を被覆した後、熱処理を施す必要がある。この熱処理により、シラノール誘導体が脱水したシリコン酸化物(シリカ)で被覆された鉄系酸化物磁性粒子粉が得られる。鉄系酸化物磁性粒子粉を塗料中に混錬する場合には、このシリコン酸化物被覆を除去して用いる。その理由はシリコン酸化物が非磁性であるため、多く存在していると磁化が低くなってしまうからである。この除去工程によって大半のシリコン酸化物は取り除かれるが、磁性粒子粉表面には除去されずに残存するシリコン酸化物が少量ではあるが存在する。そのシリコン酸化物が残留していると、最終的に磁性粉を乾燥させる際に粒子同士をくっつけて凝集するように働き、塗料中での磁性粒子粉の分散性を悪化させ、テープの配向性も悪化させる原因になっていることがわかってきた。
 また湿式法により製造された鉄系酸化物磁性粒子粉は、製造プロセスにおいて不可避的に混入する不純物として、極微量ではあるが水可溶性のアルカリ金属を含有する。アルカリ金属の含有形態は不明であるが、鉄系酸化物磁性粒子粉の内部に含まれる場合と、原料溶液起因のアルカリ金属が鉄系酸化物磁性粒子粉の表面に付着したものの両方の形態があると考えられる。水可溶性アルカリ金属は、塗膜内の脂肪酸と反応して脂肪酸金属塩を形成し、高温高湿で長期保管した場合摩擦係数を増加させる虞があるので、不可避的不純物としての水可溶性アルカリ金属の含有量が少ない鉄系酸化物磁性粒子粉が望まれる。
 すなわち、本発明において解決すべき技術課題とは、製造プロセスにおける固液分離性が良好で、塗布型磁気記録媒体を形成するための塗料中での分散性が良好で、配向性も良好で、かつ、水可溶性アルカリ金属の含有量の少ない表面改質鉄系酸化物磁性粒子粉および表面改質鉄系酸化物磁性粒子粉の製造方法を提供することである。
 本発明者等は、シリコン酸化物被覆を除去した鉄系酸化物磁性粒子粉末に、非磁性の金属水酸化物もしくは含水酸化物を被着させると、製造媒体中での凝集度が増加して固液分離性が向上し、得られる表面改質鉄系酸化物磁性粒子粉のタップ密度が低減し、鉄系酸化物磁性粒子間の距離が増加することで粒子間に液体が浸透しやすくなり、塗料中での鉄系酸化物磁性粒子粉の分散性が改善されて配向性が改善されること、また水酸化物もしくは含水酸化物皮膜を形成する金属元素としてAlおよびYを用いることにより、その様な被着層を容易に形成できることを見出した。またその様に水酸化物を被着させた表面改質鉄系酸化物磁性粒子粉が結果として水可溶性アルカリの含有量の少ないものであることを見出して、以下に述べる本発明を完成させた。
 上記の課題を解決するために、本発明においては、
 透過電子顕微鏡で測定した平均粒子径が5nm以上30nm以下であるε-Feまたはε-FeのFeサイトの一部を他の金属元素で置換した鉄系酸化物磁性粒子粉の表面に、pHが7以上12以下の水溶液中で水酸化物の沈澱を生成する金属元素Sの水酸化物もしくは含水酸化物を被着した表面改質鉄系酸化物磁性粒子粉が提供される。
 この表面改質鉄系酸化物磁性粒子粉は、その中に含まれるFeと置換金属元素の総和をMとしたとき、S/Mのモル比が0.02以上0.10以下であることが好ましい。
 また、この鉄系酸化物磁性粒子粉はε-AFe2-x-y-z(ただし、AはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素で、0<x、y、z<1)であることが好ましい。
 さらに、この鉄系酸化物磁性粒子粉は、タップ密度が0.30cm以上1.60g/cm以下であることが好ましい。
 これらの表面改質鉄系酸化物磁性粒子粉は、有機溶媒やその他の添加材と混錬することにより、塗布型磁気記録媒体用塗料とすることができる。
 また、これらの表面改質鉄系酸化物磁性粒子粉を含有する塗料を用いて、塗布型磁気記録媒体が得られる。
 また、本発明においては、
 透過電子顕微鏡で測定した平均粒子径が5nm以上30nm以下であるε-Feまたはε-FeのFeサイトの一部を他の金属元素で置換した鉄系酸化物磁性粒子粉の表面に、pHが7以上12以下の水溶液中で水酸化物の沈澱を生成する金属元素Sの水酸化物もしくは含水酸化物を被着した表面改質鉄系酸化物磁性粒子粉の製造方法であって、
 3価の鉄イオンと前記Feサイトを一部置換する金属のイオンを溶媒、好ましくは水、に溶解した溶液をアルカリ水溶液で中和してオキシ水酸化鉄または置換金属元素を含むオキシ水酸化鉄を含む前駆体を得る工程と、
 前記の前駆体にシリコン酸化物を被覆する工程と、
 前記のシリコン酸化物を被覆した前駆体を加熱してシリコン酸化物を被覆した置換金属元素を含む酸化鉄とする工程と、
 前記の置換金属元素を含む酸化鉄を被覆しているシリコン酸化物を除去する工程と、 前記のシリコン酸化物を除去した置換金属元素を含む酸化鉄を水溶液中に分散させた後、SとしてAlイオンおよびYイオンの一種または二種を添加し、置換金属元素を含む酸化鉄にAlおよびYの一種または二種の水酸化物もしくは含水酸化物を被着させる工程、を含む表面改質鉄系酸化物磁性粒子粉の製造方法が提供される。
 本発明により製造される表面改質鉄系酸化物磁性粒子粉としては、被着される鉄系酸化物磁性粒子粉がε-AFe2-x-y-z(ただし、AはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素で、0<x、y、z<1)であっても構わない。
 また、本発明により製造される表面改質鉄系酸化物磁性粒子粉のタップ密度が0.30g/cm以上1.60g/cm以下であっても構わない。
 以上、本発明の製造方法を用いることにより、製造プロセスにおける固液分離性が良好で、塗料中での分散性が良好で、かつ、水可溶性アルカリ金属の含有量の少ない、塗布型磁気記録媒体の高記録密度化に適した表面改質鉄系酸化物磁性粒子粉を得ることができる。
[鉄系酸化物磁性粒子]
 本発明の製造方法は、非磁性の水酸化物もしくは含水酸化物を被着したε-FeのFeサイトの一部を他の金属元素で置換した鉄系酸化物磁性粒子粉を製造するためのものであり、被着される鉄系酸化物磁性粒子粉はεタイプの酸化物以外に、その製造上不可避的な異相が混在する場合を含む。
 ε-FeのFeサイトの一部を他の金属元素で置換した一部置換体がε構造を有するかどうかについては、X線回折法(XRD)、高速電子回折法(HEED)等を用いて確認することが可能である。
 本発明の製造方法において製造が可能な一部置換体については、以下が挙げられる。
 一般式ε-CFe2-z(ここでCはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
 一般式ε-AFe2-x-y(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素)で表されるもの。
 一般式ε-AFe2-x-z(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
 一般式ε-BFe2-y-z(ここでBはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
 一般式ε-AFe2-x-y-z(ここでAはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
 ここでC元素のみで置換したタイプは、磁性粒子の保磁力を任意に制御できることに加え、ε-Feと同じ空間群を得易いという利点を有するが、熱的安定性にやや劣るので、AまたはB元素で同時に置換したものが好ましい。
 AおよびBの2元素で置換したタイプは、熱的安定性に優れ、磁性粒子の常温における保磁力を高く維持できるが、ε-Feと同じ空間群の単一相がやや得にくい。
 A、BおよびCの三元素置換タイプは、上述の特性のバランスが最も良く取れたもので、耐熱性、単一相の得易さ、保磁力の制御性に優れるものである。以下、本明細書においては、主としてこの三元素置換体を一例として記述する。
 三元素置換体の置換量x、yおよびzの好適な範囲は、以下の通りである。
 xおよびyは、0<x、y<1の任意の範囲を取ることが可能であるが、xとyの値が大きく異なると、電荷バランスを取るために、磁性粒子に異相が混入しやすくなるため、x≒yが好ましい。磁気記録用途を考えると、三元素置換体の磁性粒子の保磁力を無置換のε-Feのそれとはある程度変化させる必要があるので、0.01≦x、y≦0.2とすることが好ましい。zも、x、yと同様に0<z<1の範囲であれば良いが、保磁力制御および単一相の得易さの観点から、0<z≦0.5の範囲とすることが好ましい。
 本発明の製造法により得られる三元素置換体のFeサイトの一部を置換した磁性粒子は、x、yおよびzを調整することにより常温で適した保磁力の値に制御することが可能である。
[平均粒子径]
 本発明の製造法により得られる磁性粒子は、各粒子が単磁区構造となる程度に微細であることが好ましい。その透過電子顕微鏡で測定した平均粒子径が30nm以下であることが好ましく、より好ましくは20nm以下である。しかし、平均粒子径が小さくなり過ぎると、上述した磁気特性向上に寄与しない微細粒子の存在割合が増大し、磁性粒子粉単位重量当たりの磁気特性が劣化するので、5nm以上であることが好ましく、さらに8nm以上であることがより好ましい。
[固液分離性]
 この鉄系酸化物磁性粒子粉は、工業的に用いられる固液分離手段で回収可能であることが好ましい。具体的には、硬質ろ紙4A(保留粒子径:1μm)を用いて鉄系酸化物磁性粒子粉をろ別することが可能な程度の固液分離性を有することが好ましい。
[水可溶性アルカリ金属]
 この鉄系酸化物磁性粒子粉は、製造する際に後述する原料溶液をアルカリで中和するプロセス、シリコン酸化物被覆をアルカリで溶解、除去するプロセス、被着物質をアルカリで中和するプロセスを用いるため、上述の様に、不可避的不純物として、NaやK等の水可溶性のアルカリ金属を含有する。水可溶性アルカリ金属の含有量は少ない程好ましく、本発明においては、pHが7以上12以下の水溶液中で水酸化物の沈澱を生成する金属元素Sの水酸化物もしくは含水酸化物を被着して表面改質した後の溶出試験で溶出するアルカリ金属の量を、鉄系酸化物磁性粒子粉の水可溶性アルカリ金属の質量基準の含有量とし、その値が質量基準で5ppm以下であることが好ましい。なお、水可溶性アルカリ金属の含有量はゼロであることが好ましいが、それを実現するのは工業的には困難である。
 なお、ここで含有するとは、アルカリ金属が鉄系酸化物磁性粒子粉の内部に存在する場合のみを指すのではなく、鉄系酸化物磁性粒子粉を乾燥する際に原料溶液起因のアルカリ金属がその表面に残存したものを含めた概念である。
[タップ密度]
 この鉄系酸化物磁性粒子粉は、AlおよびYの1種または2種を被着して表面改質した後のタップ密度が0.30g/cm以上1.60g/cm以下であることが好ましい。
 タップ密度を1.60g/cm以下とすることで、鉄系酸化物磁性粒子間の距離が増加し、その結果粒子間に液が浸透しやすくなることで、塗料中での粒子の分散性が向上し、テープ配向性を向上させることができる。
 なお、タップ密度の下限については、表面改質鉄系酸化物磁性粒子粉のハンドリング性を考慮し、0.30g/cm以上とする事が好ましい。より好ましくは、1.00g/cmである。
[磁性粒子粉の製造方法]
 本発明に係るεタイプの鉄酸化物系磁性粒子粉の製造には、逆ミセル法とゾル-ゲル法との組み合わせを始めとする公知のいかなる製造方法を用いても構わない。すなわち、公知の製造方法としては、出発物質である鉄塩または鉄塩と一部置換金属塩を溶解した有機溶媒をミセル化し、中和剤であるアルカリ性の水溶液と反応させる、いわゆる逆ミセル法や、出発物質を水に溶解し、中和剤であるアルカリ性の水溶液と反応させる、有機溶媒を用いない方法があり、これらの製造方法において、反応系に界面活性剤を共存させる場合もあるが、いかなる製造方法を用いても構わない。
 ただし、有機溶媒を用いる製造方法は製造コストが高くなるので、工業的な観点からは、出発物質を水に溶解し、反応系全体を水溶液とする製造方法が好ましい。
 以下、本発明の製造方法の流れに沿って、本発明の詳細な内容を説明する。
[出発物質、中和処理工程および前駆体]
 本発明の製造方法においては、鉄系酸化物磁性粒子粉の出発物質として3価の鉄イオンと最終的にFeサイトを置換する金属元素の金属イオンを水または有機溶剤に溶解した酸性の溶液(以下、原料溶液と言う。)を用いる。これらの鉄イオンもしくは置換元素の金属イオンの供給源としては、入手の容易さおよび価格の面から、硝酸塩、硫酸塩、塩化物の様な水溶性の無機酸塩を用いることが好ましい。これらの金属塩を溶解すると、金属イオンが解離し、溶液は酸性を呈する。
 この金属イオンを含む酸性の原料溶液にアルカリ性の水溶液を添加し、pHが8以上9以下まで中和すると、オキシ水酸化鉄と置換元素の水酸化物の混合物、もしくは、Feサイトの一部を他の金属元素で置換されたオキシ水酸化鉄が得られる。本発明の製造方法においては、これらのオキシ水酸化鉄と置換元素の水酸化物の混合物を鉄系酸化物磁性粒子粉の前駆体として用いる。なお、本発明では特に規定するものではないが、前駆体としてはフェリハイドライト構造のオキシ水酸化物、特に2L構造のフェリハイドライトを含むものが好ましい。
 前記のアルカリ性水溶液による中和は一段階で行っても良いし、複数のステップに分割して行っても良い。また分割して添加する間にヒドロキシカルボン酸を添加する方法なども行って構わない。
 原料溶液中の全金属イオン濃度は、本発明では特に規定するものではないが、0.01mol/L以上0.5mol/L以下が好ましい。0.01mol/L未満では1回の反応で得られる鉄系酸化物磁性粒子粉の量が少なく、経済的に好ましくない。全金属イオン濃度が0.5mol/Lを超えると、急速な水酸化物の沈澱発生により、反応溶液がゲル化しやすくなるので好ましくない。
 本発明の製造方法においては、中和処理時の反応温度は特に規定するものではないが、0℃以上60℃以下とすることが好ましい。反応温度が0℃未満では反応時間が長くなるので好ましくない。60℃を超えると最終的に異相(α相)が生成し易くなるので好ましくない。より好ましくは、10℃以上40℃以下である。
 なお、本明細書に記載のpHの値は、JIS Z8802に基づき、ガラス電極を用いて測定した。pH標準液は、測定するpH領域に応じた適切な緩衝液を用いて校正したpH計により測定した値をいう。また、本明細書に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。
[シリコン酸化物による被覆工程]
 本発明の製造方法においては、前記の工程で生成した前駆体のオキシ水酸化鉄または置換元素を含むオキシ水酸化鉄は、そのままの状態で熱処理を施してもεタイプの鉄系酸化物に相変化しにくいので、熱処理に先立って置換元素を含むオキシ水酸化鉄結晶にシリコン酸化物被覆を施す。シリコン酸化物の被覆法としては、ゾル-ゲル法を適用することが好ましい。なおここでシリコン酸化物とは、化学量論組成のものだけではなく、後述するシラノール誘導体等の非量論組成のものも含む。
 ゾル-ゲル法の場合、前記の前駆体が分散した溶液に、加水分解基を持つシリコン化合物、例えばテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)や、各種のシランカップリング剤等のシラン化合物を添加して撹拌下で加水分解反応を生起させ、生成したシラノール誘導体によりオキシ水酸化鉄結晶表面を被覆する。また、酸触媒、アルカリ触媒を添加しても構わない。処理時間を考慮すると添加することが好ましい。代表的な例として酸触媒では塩酸、アルカリ触媒ではアンモニアとなる。酸触媒を使用する場合は、置換元素を含むオキシ水酸化鉄粒子が溶解しない量の添加に留める必要がある。その他、無機のシリコン化合物、珪酸ソーダ(水ガラス)を使用することも可能である。この場合、前駆体を一度水洗し、固液分離を経て、水中に再度分散させた後にシラン化合物を添加しても構わない。
 なお、シリコン酸化物の被覆についての具体的手法は、公知プロセスにおけるゾル-ゲル法と同様とすることができる。例えば、ゾル-ゲル法によるシリコン酸化物被覆の反応温度としては20℃以上60℃以下、反応時間としては1時間以上20時間以下程度である。シリコン酸化物による被覆処理された後、固液分離、乾燥処理を行い、加熱工程前試料となる。ここで、固液分離時には、凝集剤を添加し固液分離しても構わない。
[加熱工程]
 本発明の製造方法においては、前記のシリコン酸化物被覆した前駆体のオキシ水酸化鉄または置換元素を含むオキシ水酸化鉄を加熱処理してεタイプの鉄系酸化物を得る。加熱処理前に、洗浄、乾燥の工程を設けても良い。加熱処理は酸化雰囲気中で行われるが、酸化雰囲気としては大気雰囲気で構わない。加熱は概ね700℃以上1300℃以下の範囲で行うことができるが、加熱温度が高いと熱力学安定相であるα-Fe(ε-Feからすると不純物である)が生成し易くなるので、好ましくは900℃以上1200℃以下、より好ましくは950℃以上1150℃以下で加熱処理を行う。熱処理時間は0.5時間以上10時間以下程度の範囲で調整可能であるが、2時間以上5時間以下の範囲で良好な結果が得られやすい。なお、粒子を覆うシリコン含有物質の存在がαタイプの鉄系酸化物への相変化ではなくεタイプの鉄系酸化物への相変化を引き起こす上で有利に作用するものと考えられる。またシリコン酸化物被覆は、オキシ水酸化鉄または置換元素を含むオキシ水酸化鉄結晶同士の加熱処理時の焼結を防止する作用を有する。
 以上の工程により、原料溶液が金属イオンとして3価の鉄イオンのみを含む場合にはε-Fe結晶が、3価の鉄イオンと鉄サイトを置換するための金属元素を含む場合には一部置換型のε-Fe結晶がシリコン酸化物を被覆した状態で得られる。加熱処理後に得られる粉末には、εタイプの鉄系酸化物結晶以外に、不純物としてαタイプの鉄系酸化物、γタイプの鉄系酸化物、Fe結晶が存在する場合もあるが、それらを含めて鉄系酸化物磁性粒子粉と呼ぶ。
[シリコン酸化物被覆除去工程]
 塗布型磁気記録媒体用途においては、テープに塗布された磁性粒子に磁場配向処理を行う必要があること、また、シリコン酸化物を被覆した状態では、非磁性成分であるシリコン酸化物が多く含まれてしまいテープ単位面積当たりの磁化量が落ちてしまうため(テープからの信号が弱くなってしまう。)、被覆しているシリコン酸化物を後述の工程により除去した状態にする。具体的な方法としては、シリコン酸化物は、アルカリ性の水溶液に可溶なので、加熱処理後の粉末をNaOHやKOHなどの強アルカリを溶解させた水溶液中に浸漬し、撹拌することにより溶解・除去できる。溶解速度を上げる場合は、アルカリ水溶液を加温するとよい。代表的には、NaOHなどのアルカリをシリコン酸化物に対して3倍モル以上添加し、水溶液温度が60℃以上70℃以下の状態で、粉末を撹拌すると、シリコン酸化物を良好に溶解することができる。シリコン酸化物被覆除去の程度は、目的に応じて適宜調整する。
 除去後は、次工程における良好な分散性を確保するため、濾液の電気伝導率が≦50mS/mになるまで不要イオンを水洗する必要がある。
 なお、本発明の製造方法におけるシリコン酸化物被覆除去工程においては、シリコン酸化物被覆を完全に除去しようとするとコストが増大するので、次工程におけるAl、Yの被着によりシリコン酸化物被覆が隠蔽される程度に残存していても構わない。
[分散工程および被着工程]
 前記のシリコン酸化物被覆を除去したεタイプの鉄系酸化物磁性粒子粉は、そのままでは塗布型磁気記録媒体作を形成するための塗料中での分散性が不十分なので、金属Sの非磁性の水酸化物もしくは含水酸化物を被着させることにより、その表面を改質する。非磁性の水酸化物もしくは含水酸化物を被着させる目的の一つは、εタイプの鉄系酸化物磁性粒子粉が乾燥する際に凝集するのを抑制することである。もう一つの目的は、シリコン酸化物被覆除去処理後もεタイプの鉄系酸化物磁性粒子粉の表面に一部残存するシリコン酸化物被覆を隠蔽して、鉄系酸化物磁性粒子粉の塗料中での分散性を向上することである。
 これらの物質の被着方法については、乾式法で行うことも可能であるが、本発明においては、生産性に優れた湿式法を採用する。
 本発明の製造方法においては、前記のシリコン酸化物被覆を除去したεタイプの鉄系酸化物磁性粒子粉を水溶液中に分散させ、強撹拌する。ここで強撹拌とは、例えば5Lビーカーで行う場合はタービン羽根などを用いて回転数300rpm以上撹拌させた状態を指す。強撹拌する理由は、εタイプの鉄系酸化物磁性粒子粉を、よく分散性させた状態で被着処理を行うためである。また、εタイプの鉄系酸化物磁性粒子粉を分散させる水溶液のpHは、当該磁性粒子粉の分散性が最も良好になるpH9以上12以下に調整することが好ましい。
 引き続き、εタイプの鉄系酸化物磁性粒子粉を強撹拌下で分散している水溶液中に、pHが7以上12以下の領域で水酸化物沈澱を形成する金属Sのイオンを添加し、εタイプの鉄系酸化物磁性粒子粉を種結晶としてその表面に水酸化物を被着させる。ここで、pHが7以上12以下のpH領域で水酸化物沈澱を形成する金属イオンとは、このpH領域のみで水酸化物沈澱を形成するという意味ではなく、より広いpHの範囲で水酸化物沈澱を形成するものであっても構わない。また水酸化物とは、一部脱水した含水酸化物を含む概念である。金属Sのイオンを添加したことによって、pHが7未満になってしまった場合は、アルカリをその後添加してpHを調整しても構わない。金属Sとしては、このpH領域で形成される水酸化物沈澱が非磁性であるものであれば良いが、入手の容易さおよび価格の面から、AlおよびYの1種または2種であることが好ましい。
 AlおよびYの1種または2種の被着量は、これらの被着量をS、鉄系酸化物磁性粒子粉に含まれるFeと置換金属元素の総和をMとした時、S/Mのモル比が0.02以上0.10以下であることが好ましい。S/Mのモル比が0.02未満であると、鉄系酸化物磁性粒子粉の表面の一部しか被覆できないので好ましくない。S/Mのモル比が0.10を超えると、非磁性成分の体積比率が高くなり過ぎるため好ましくない。
 本発明では特に規定しないが、表面を改質した鉄系酸化物磁性粒子粉は、公知の固液分離手段により分離し、水洗した後、乾燥する。固液分離と洗浄、乾燥については、例えばフィルタープレスを用いて固液分離、洗浄を行った後に棚式乾燥機などで乾燥しても良く、また限外ろ過膜などで洗浄して表面を改質した鉄系酸化物磁性粒子粉を含むスラリーの導電率を下げた後にスプレードライヤーに代表される乾燥設備を用いて乾燥しても良い。また、乾燥により水酸化物が一部脱水して、含水酸化物に変化しても構わない。
 このようにして得られた表面を改質した鉄系酸化物磁性粒子粉は、金属Sの水酸化物が被着される前に、いくらかのシリコン酸化物が表面に残留していたとしても、その上から金属Sの水酸化物もしくは含水酸化物が被着されているため、乾燥してもシリコン酸化物による凝集が防止され、タップ密度の低い分散性の良好な磁性粒子粉となる。
[透過電子顕微鏡(TEM)観察]
 本発明の製造法により得られた表面を改質した鉄系酸化物磁性粒子粉のTEM観察は、以下の条件で行った。
 TEM観察には日本電子株式会社製JEM-1011を使用した。粒子観察については、×100,000倍で撮影した後、現像時に3倍引き伸ばしたTEM写真を用いた。(シリコン酸化物被覆は除去後のものを使用)
 平均粒子径の評価にはデジタイズを使用し、一つの粒子の最も距離の離れた2点間の距離を計測した。個数については300個以上を測定した。
[組成分析]
 アジレントテクノロジー製ICP-720ESにより組成分析を行った。測定波長(nm)についてはFe;259.940nm、Ga;294.363nm、Co;230.786nm、Ti;336.122nm、Al;396.152nm、Y;361.104nmにて行った。
[水可溶性成分の評価方法]
 50mLの遠沈管に超純水を50mL分取し、その中に試料として表面を改質した鉄系酸化物磁性粒子粉を5g入れて液温25℃の条件で10分間振とうした後、20分間遠心分離を行い、上澄みと沈殿物を分離した。得られた上澄みを分取後, 日立ハイテクサイエンス社製ZA3300を用い、原子吸光分析法によりNa、Kを始めとする水可溶性成分の濃度を測定して溶出量を算出し、その溶出量の値を試料の質量で除することにより、鉄系酸化物磁性粒子粉に含有される水可溶性成分の質量基準の含有量を算出した。
[タップ密度の測定]
 タップ密度の測定は、特開2007-263860号公報の実施例1に記載の方法を用いて行った。
[磁気ヒステリシス曲線(バルクB-H曲線)の測定]
 表面を改質した鉄系酸化物磁性粒子粉をφ6mmのプラスチック製容器に詰め、東英工業株式会社製のVSM装置(VSM-P7-15)を使用して、外部磁場795.8kA/m(10kOe)で、保磁力Hc(Oe、kA/m)、飽和磁化σs(Am/kg)、角形SQを測定した。
[磁性塗料の調製]
 試料粉末(表面改質鉄系酸化物磁性粒子粉)0.31gを秤量し、これをステンレスポット(内径45mm、深さ13mm)に入れる。フタを開けた状態で10分間放置する。次にビヒクル[アセチルアセトン0.25gと、ステアリン酸n-ブチル0.25g、シクロヘキサン97.9mLとの混合溶媒へ、ウレタン樹脂(東洋紡社製UR-8200)34.9gと、塩化ビニル樹脂(日本ゼオン社製MR-555)15.8gとを溶解したもの]をマイクロピペットで1.11mL採取し、これを前記のポットに添加する。その後直ちにスチールボール(2mm径)30g、ナイロンボール(8mm径)10個をポットに加え、蓋を閉じ10分間静置する。その後、このポットを遠心式ボールミル(FRITSCH P-6)にセットし、ゆっくりと回転数を上げ、600rpmに合わせ、10分間、もしくは60分間分散処理を行う。遠心式ボールミルが停止した後、ポットを取り出し、マイクロピペットを使用し、あらかじめ、MEKとトルエンを1:1で混合しておいた調整液を0.70mL添加する。再度遠心式ボールミルにこのポットをセットし、600rpmで5分間分散処理することにより、塗料を調製する。
[磁気シートの作成]
 前記の分散を終了した後に、ポットの蓋を開け、ナイロンボールを取り除き、調製された塗料をスチールボールごとアプリケーター(隙間250μm)に入れ、支持フィルム(東レ株式会社製ポリエチレンフィルム:商品名ルミラー)対して塗布を行う。塗布後素早く、磁束密度0.55Tの配向器のコイルの中心に置き、磁場配向させ、そのまま放置し乾燥させる。
[磁気ヒステリシス曲線(シートB-H曲線)の測定]
 フィルムの磁場配向方向がわかるようにプラスチック板を貼り付けて、ポンチなどで打ち抜いた10mm角の測定ピースを、配向方向と印加磁場方向を合わせてセットし、東英工業株式会社製のVSM装置(VSM-P7-15)を使用して、外部磁場795.8kA/m(10kOe)で、飽和磁束密度Bs(Gauss)、残留磁束密度Br(Gauss)を測定し、磁場配向方向のSQx(=Br/Bs)を求めた。
 なお、本発明の製造方法においては、SQxが0.01以上増加した場合に被着の効果があったと判断した。
[実施例1]
 Fe、Ga、CoおよびTiの出発物質として硝酸第二鉄(III)9水和物3296.53g、Ga濃度10.70mass%の硝酸Ga(III)水溶液854.72g、硝酸コバルト(II)6水和物74.27gおよびTi濃度15.2mass%の硫酸チタン(IV)n水和物77.96gをそれぞれ用い、純水20.31kgを加えて混合水溶液を調製した後、液温30℃で機械撹拌しながら、この原料溶液に22.35mass%のアンモニア溶液を2.78kg添加して中和した後0.5時間撹拌を続けて前駆体が分散したスラリーを得た(手順1)。
 手順1で得られたスラリーを機械撹拌しながら97.1mass%のテトラエトキシシラン5.65kgを35分間かけて滴下させ、大気中、30℃で20時間撹拌を続けて、加水分解により生成したシラノール誘導体により被覆された前駆体を含むスラリー得た。そのスラリーを洗浄・固液分離し、シラノール誘導体により被覆された前駆体をケーキとして回収した(手順2)。
 手順2で得られたケーキを乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で1068℃、4時間の熱処理を施し、シリコン酸化物で被覆された鉄系酸化物磁性粒子粉とした後、20mass%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物を除去し、限外ろ過膜を用いて電気伝導率5mS/m以下になるまで洗浄して、Feサイトの一部をGa、CoおよびTiで置換したεタイプの鉄系酸化物磁性粒子粉を含むスラリーを得た(手順3)。
 手順3で得られた鉄系酸化物磁性粒子粉を1.37mass%含むスラリー2802gを液温40℃で回転数391rpmで機械撹拌しながらNaOH水溶液を添加してpH11.7に調整した後、1.72mass%の硫酸アルミニウム水溶液を添加した後、pH8.5になるまでNaOH水溶液を滴下し、10分間撹拌を続けて鉄系酸化物磁性粒子粉にAlの水酸化物を被着させた。 引き続き、スラリーを電気伝導率1mS/m以下まで洗浄し、硬質ろ紙4Aでろ過した後に乾燥し、表面改質鉄系酸化物磁性粒子粉を得た(手順4)。
 手順4で得られた表面改質鉄系酸化物磁性粒子粉を、組成の化学分析、TEM観察、および磁気特性の測定等に供するとともに、上掲の「磁気シートの作成」に従い磁気テープを作成し、上掲の「磁気ヒステリシス曲線(シートB-H曲線)の測定」に従いテープの磁気特性を測定した。なお、テープ作成時の分散時間は10分で、配向磁場5.5kOe(438kA/m)で磁場中乾燥した。
 得られた表面改質鉄系酸化物磁性粒子粉の物性値、バルクの磁気特性、およびテープの磁気特性を表1に示す。
 本実施例により得られたAlを被着した表面改質鉄系酸化物磁性粒子粉のTEM平均粒子径は、後述する比較例1のAlを被着していない鉄系酸化物磁性粒子粉のそれと同一であるが、タップ密度はAlの被着により減少することが判る。これは、鉄系酸化物磁性粒子粉表面に極僅かに残存したシリコン酸化物が隠蔽され、鉄系酸化物磁性粒子粉が凝集し難くなったためと推定される。その結果として、表面改質鉄系酸化物磁性粒子粉を塗料化してテープを作成するとSQxが向上したものと考えられる。
[実施例2]
 被着する元素を含む水溶液として2.13mass%の硫酸イットリウム水溶液を用いた以外は実施例1と同じ手順で、Yを被着した表面改質鉄系酸化物磁性粒子粉を得た。
 得られた表面改質鉄系酸化物磁性粒子粉の物性値、バルクの磁気特性、およびテープの磁気特性を表1に示す。
 本実施例においても実施例1と同様、Yの被着によりタップ密度が減少し、SQxが増加した。
[比較例1]
 実施例1の手順3までと同じ手順で、その後スラリーを硬質ろ紙4A(保留粒子径:1μm)を用いてろ過処理を行ったところ、固形分である鉄系酸化物磁性粒子がろ紙を通過してしまい、ろ過による固液分離を行うことができなかった。また、ろ紙をオムニポアメンブレンフィルター(型番:JGWP09025、孔径:0.2μm)を用いた場合も、同様の結果で固液分離を行う事ができなかった。そこで、このスラリーを乾燥機にかけて水分を全て蒸発させることで固液分離ならびに乾燥を行い、鉄系酸化物磁性粒子粉を得た。比較例1について得られた鉄系酸化物磁性粒子粉の物性値、バルクの磁気特性、およびテープの磁気特性を表1に示す。比較例では乾燥時に粒子表面に残留したシリコン酸化物が粒子を凝集させるように働いたことにより、タップ密度が大きく、SQxは低い結果であった。
[実施例3]
 反応槽にて、純水23.64gに、純度99.7%硝酸第二鉄(III)9水和物4659.28g、Ga濃度12.9%の硝酸Ga(III)溶液1421.39g、純度97%硝酸コバルト(II)6水和物157.83g、Ti濃度15.1%の硫酸チタン(IV)119.13gを大気雰囲気中、40℃の条件下で、撹拌羽根により機械的に撹拌しながら溶解した。この仕込み溶液中の金属イオンのモル比は、Fe:Ga:Co:Ti=1.530:0.350:0.070:0.050である。なお、試薬名の後の括弧内の数字は、金属元素の価数を表している。
 大気雰囲気中、40℃で、撹拌羽根により機械的に撹拌しながら、23.31%のアンモニア溶液を2698.88gを一挙添加し、2時間撹拌した。
 次にクエン酸濃度20mass%のクエン酸溶液2887.51gを、40℃の条件下で、1時間かけて連続添加した後、23.31%のアンモニア溶液を1470.86g一挙添加し、温度40℃の条件下、1時間撹拌しながら保持し、中間生成物である前駆体の置換元素を含むオキシ水酸化鉄の結晶を生成した。(手順1)
 その後、大気雰囲気中、40℃で、撹拌しながら、手順1で得られた前駆体スラリーにテトラエトキシシランをε-Feに対して約700重量%添加、当該スラリー液にテトラエトキシシラン8553.94gを35分で添加する。約1日そのまま撹拌し続け、加水分解により生成したシラノール誘導体で被覆した。その後、得られた溶液を洗浄・固液分離し、ケーキとして回収した(手順2)。
 手順2で得られたケーキを乾燥した後、その乾燥粉に対し、大気雰囲気の炉内で1040℃から1050℃、4時間の熱処理を施し、シリコン酸化物で被覆された鉄系酸化物磁性粒子粉とした後、20mass%NaOH水溶液中で約60℃、24時間撹拌し、粒子表面のシリコン酸化物を除去し、限外ろ過膜を用いて電気伝導率5mS/m以下になるまで洗浄して、Feサイトの一部をGa、CoおよびTiで置換したεタイプの鉄系酸化物磁性粒子粉を含むスラリーを得た(手順3)。
 手順3で得られた鉄系酸化物磁性粒子粉を1.50mass%含むスラリー4000gを液温40℃で回転数391rpmで機械撹拌しながらNaOH水溶液を添加してpH11.9に調整した後、1.77mass%の硫酸アルミニウム水溶液19.07gと1.98mass%の硫酸イットリウム水溶液55.14gを混合した溶液を添加した後、pH8.5になるまでNaOH水溶液を滴下し、10分間撹拌を続けて鉄系酸化物磁性粒子粉にAl+Yの水酸化物を被着させた。引き続き、スラリーを電気伝導率1mS/m以下まで洗浄し、硬質ろ紙4Aでろ過した後に乾燥し、表面改質鉄系酸化物磁性粒子粉を得た(手順4)。
 手順4で得られた表面改質鉄系酸化物磁性粒子粉を、組成の化学分析、TEM観察、および磁気特性の測定等に供するとともに、テープ作成時の分散時間を60分、配向磁場5.5kOe(438kA/m)で磁場中乾燥した以外は上掲の「磁性塗料の調製」に従い磁性塗料を調製し、上掲の「磁気シートの作成」に従い磁気テープを作成し、上掲の「磁気ヒステリシス曲線(シートB-H曲線)の測定」に従いテープの磁気特性を測定した。本実施例により得られたAl+Yを被着した表面改質鉄系酸化物磁性粒子粉のTEM平均粒子径は、後述する比較例2のAl+Yを被着していない鉄系酸化物磁性粒子粉のそれと同一であるが、タップ密度はAl+Y被着でも減少することが判る。これは、鉄系酸化物磁性粒子粉表面に極僅かに残存したシリコン酸化物が隠蔽され、鉄系酸化物磁性粒子粉が凝集し難くなったためと推定される。その結果として、表面改質鉄系酸化物磁性粒子粉を塗料化してテープを作成すると、比較例2と比べてSQxが向上したものと考えられる。
[比較例2]
 限外ろ過膜を用いて電気伝導率1mS/m以下になるまで洗浄した以外は、実施例3に記載の手順3までと同じ方法により、Feサイトの一部をGa、CoおよびTiで置換したεタイプの鉄系酸化物磁性粒子粉を含むスラリーを得た。その後このスラリーを硬質ろ紙4A(保留粒子径:1μm)を用いてろ過処理を行ったところ、固形分である鉄系酸化物磁性粒子がろ紙を通過してしまい、ろ過による固液分離を行うことができなかった。また、ろ紙をオムニポアメンブレンフィルター(型番:JGWP09025、孔径:0.2μm)を用いた場合も、同様の結果で固液分離を行う事ができなかった。そこで、このスラリーを乾燥機にかけて水分を全て蒸発させることで固液分離ならびに乾燥を行って、鉄系酸化物磁性粒子粉を得た。比較例2について得られた鉄系酸化物磁性粒子粉の物性値、バルクの磁気特性、およびテープの磁気特性を表に併せて示す。比較例では乾燥時に粒子表面に残留したシリコン酸化物が粒子を凝集させるように働いたことにより、タップ密度が大きく、SQxは低い結果であった。
[ろ過性について]
 上述の様に、水酸化物を被着させていない比較例の鉄系酸化物磁性粒子粉を含むスラリーは、硬質ろ紙4A(保留粒子径:1μm)ならびにオムニポアメンブレンフィルター(型番:JGWP09025、孔径:0.2μm)を用いた場合のいずれも、固形分である鉄系酸化物磁性粒子がろ紙を通過してしまい、ろ過による固液分離を行うことができなかった。そこで、このスラリーを乾燥機にかけて水分を全て蒸発させることで固液分離ならびに乾燥を行った。
 一方、実施例の場合、AlおよびYの1種または2種を被着させた鉄系酸化物磁性粒子粉を含むスラリーについては、硬質ろ紙4A(保留粒子径:1μm)により鉄系酸化物磁性粒子粉を回収することができた。
 本発明に関わる水酸化物を被着させた鉄系酸化物磁性粒子粉を含むスラリーは、粒子表面に水酸化物を被着させる事で水媒体中での粒子の凝集性が増し、ろ過による固液分離が可能になったものと考えられる。
 このように、鉄系酸化物磁性粒子粉に水酸化物を被着させると、ろ過による固液分離が可能となり、固液分離ならびに乾燥に必要なエネルギーを節約できるため、工業生産において好適である。
[塗料中での分散性について]
 前記の通り粒子表面に水酸化物を被着させる事で水媒体中での粒子の凝集性が増したと考えられるが、本発明で得られた表面改質鉄系酸化物磁性粒子粉を塗料化して得られた磁気テープは優れた磁気特性を示していた。これは、塗料化時に使用される有機溶剤の媒体中においては、粒子が凝集する問題が生じず、逆に塗料中での分散性が改善されたためと考えられる。
[水溶性アルカリ金属について]
 また、前記のようにろ過による固液分離が可能となる事で、水酸化物を被着させた鉄系酸化物磁性粒子粉を含むスラリーの液中に微量含まれているアルカリ金属などの不純物を除去することも可能となる。
 比較例においては、得られた鉄系酸化物磁性粒子粉から溶出する水可溶性Na量は、表1に示す通り92ppmならびに10ppmと高い結果であった。特に、比較例2については、限外ろ過膜を用いて電気伝導率1mS/m以下になるまで洗浄した後にスラリーを乾燥させて鉄系酸化物磁性粒子粉を得ており、実施例と同じ1mS/m以下まで電気電導度を低減させているが、実施例よりも鉄系酸化物磁性粒子粉の水溶性Na量が高い結果となった。
 これは、比較例においては、ろ過による固液分離を行う事ができなかったので、鉄系酸化物磁性粒子粉を含むスラリーを乾燥機にかける事で固液分離ならびに乾燥を行ったため、液中に微量含まれているNaが除去されず、濃縮され、粒子表面に残存してしたためと考えられる。
 また、前記の通り比較例における水溶性Na量が高い原因としては、手順3で実施した限外濾過による洗浄では、鉄系酸化物磁性粒子粉の粒子の表面に付着したNa成分が除去されずに粒子表面に残存してしまっていることも一因と考えられる。
 それに対し、実施例1~3において、得られた表面改質鉄系酸化物磁性粒子粉の水溶性Na量は、表に示す通り3ppm以下と低い結果であった。これは、ろ過による固液分離を行う事で液中に微量含まれる不純物を除去することが可能となったこと、並びに、鉄系酸化物磁性粒子粉の表面に金属Sの水酸化物を被着する事で粒子表面のNa成分量が少ない状態になり、さらに、上記被着物によりNa成分が残存しにくい表面に改質された結果として、限外濾過による洗浄で表面改質鉄系酸化物磁性粒子粉の表面のNa成分が効果的に除去される様になったこと等が考えられ、結果として水溶性Na量の溶出量が低減したものと考えられる。
 溶出Na量が少ないため、本発明の表面改質鉄系酸化物磁性粒子粉は、塗布型磁気記録媒体の表面上で生成してしまう脂肪酸Na析出物の発生量を低減することができるため、塗布型磁気記録媒体用途に好適である。
 なお本発明の実施例の製造プロセスにおいては、水酸化アルカリとして水酸化Naを用いたが、水酸化Kや水酸化Ca等の他の水酸化アルカリを用いても結果は同じである。
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  透過電子顕微鏡で測定した平均粒子径が5nm以上30nm以下であるε-Feまたはε-FeのFeサイトの一部を他の金属元素で置換した鉄系酸化物磁性粒子粉の表面に、pHが7以上12以下の水溶液中で水酸化物の沈澱を生成する金属元素Sの水酸化物もしくは含水酸化物を被着した表面改質鉄系酸化物磁性粒子粉。
  2.  金属元素SがAlおよびYの1種または2種である、請求項1に記載の表面改質鉄系酸化物磁性粒子粉。
  3.  鉄系酸化物磁性粒子粉に含まれるFeと置換金属元素の総和をMとしたとき、S/Mのモル比が0.02以上0.10以下である、請求項1に記載の表面改質鉄系酸化物磁性粒子粉。
  4.  鉄系酸化物がε-AFe2-x-y-z(ただし、AはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素で、0<x、y、z<1)である、請求項1に記載の表面改質鉄系酸化物磁性粒子粉。
  5.  タップ密度が0.30g/cm以上1.60g/cm以下である請求項1に記載の表面改質鉄系酸化物磁性粒子粉。
  6.  請求項1~5のいずれか1項に記載の表面改質鉄系酸化物磁性粒子粉を含有する塗布型磁気記録媒体用塗料。
  7.  請求項1~5のいずれか1項に記載の表面改質鉄系酸化物磁性粒子粉を用いた磁気記録媒体。
  8.  透過電子顕微鏡で測定した平均粒子径が5nm以上30nm以下であるε-Feまたはε-FeのFeサイトの一部を他の金属元素で置換した鉄系酸化物磁性粒子粉の表面に、pHが7以上12以下の水溶液中で水酸化物の沈澱を生成する金属元素Sの水酸化物もしくは含水酸化物を被着した表面改質鉄系酸化物磁性粒子粉の製造方法であって、
     3価の鉄イオンと前記Feサイトを一部置換する金属のイオンを溶媒に溶解した溶液をアルカリ水溶液で中和してオキシ水酸化鉄または置換金属元素を含むオキシ水酸化鉄を含む前駆体を得る工程と、
     前記の前駆体にシリコン酸化物を被覆する工程と、
     前記のシリコン酸化物を被覆した前駆体を加熱してシリコン酸化物を被覆した置換金属元素を含む酸化鉄とする工程と、
     前記の置換金属元素を含む酸化鉄を被覆しているシリコン酸化物を除去する工程と、 前記のシリコン酸化物を除去した置換金属元素を含む酸化鉄を水溶液中に分散させた後、SとしてAlイオンおよびYイオンの1種または2種を添加し、置換金属元素を含む酸化鉄にAlおよびYの1種または2種の水酸化物もしくは含水酸化物を被着させる工程、を含む表面改質鉄系酸化物磁性粒子粉の製造方法。
  9.  前記の溶媒が水である、請求項8に記載の表面改質鉄系酸化物磁性粒子粉の製造方法。
  10.  鉄系酸化物磁性粒子粉がε-AFe2-x-y-z(ただし、AはCo、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素、CはIn、Ga、Alから選択される1種以上の3価の金属元素で、0<x、y、z<1)である、請求項8に記載の表面改質鉄系酸化物磁性粒子粉の製造方法。
  11.  表面改質鉄系酸化物磁性粒子粉のタップ密度が0.30g/cm以上1.60g/cm以下である、請求項8に記載の表面改質鉄系酸化物磁性粒子粉の製造方法。
PCT/JP2016/057878 2015-03-13 2016-03-11 表面改質鉄系酸化物磁性粒子粉およびその製造方法 WO2016148092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/552,283 US11097956B2 (en) 2015-03-13 2016-03-11 Surface-modified iron-based oxide magnetic particle powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015051498 2015-03-13
JP2015-051498 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016148092A1 true WO2016148092A1 (ja) 2016-09-22

Family

ID=56919796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057878 WO2016148092A1 (ja) 2015-03-13 2016-03-11 表面改質鉄系酸化物磁性粒子粉およびその製造方法

Country Status (3)

Country Link
US (1) US11097956B2 (ja)
JP (2) JP6106303B2 (ja)
WO (1) WO2016148092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175532A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄系化合物の粒子の製造方法、及び磁気記録媒体の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649234B2 (ja) * 2016-11-30 2020-02-19 富士フイルム株式会社 ε−酸化鉄型強磁性粉末および磁気記録媒体
US11031034B2 (en) * 2016-12-20 2021-06-08 Sony Corporation Magnetic recording medium having a recording layer including epsilon-iron oxide
JP6632592B2 (ja) * 2017-01-05 2020-01-22 富士フイルム株式会社 ε−酸化鉄型強磁性粉末
JP6963950B2 (ja) * 2017-09-22 2021-11-10 Dowaエレクトロニクス株式会社 鉄粉およびその製造方法並びにインダクタ用成形体およびインダクタ
CN111902869B (zh) * 2018-03-30 2022-06-24 索尼公司 磁性粉末的制造方法和磁记录介质的制造方法
JP6968045B2 (ja) * 2018-08-28 2021-11-17 富士フイルム株式会社 β−オキシ水酸化鉄系化合物の粉体、β−オキシ水酸化鉄系化合物ゾル、ε−酸化鉄系化合物の粉体の製造方法、及び磁気記録媒体の製造方法
JP2020088134A (ja) * 2018-11-22 2020-06-04 キヤノン株式会社 磁性粒子、磁性粒子を含む磁石、磁性粒子の製造方法
JP7111636B2 (ja) * 2019-02-05 2022-08-02 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
JP7023250B2 (ja) * 2019-02-28 2022-02-21 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄粒子の製造方法、及び磁気記録媒体の製造方法
JP7106484B2 (ja) 2019-03-28 2022-07-26 富士フイルム株式会社 ε-酸化鉄粉末およびこれを含む組成物、磁気記録媒体ならびに磁気記録再生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114455A1 (ja) * 2006-03-31 2007-10-11 The University Of Tokyo 磁性材料
JP2008063200A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 分散性の良いε酸化鉄粉末
WO2012101752A1 (ja) * 2011-01-25 2012-08-02 Tdk株式会社 磁性材料及び磁石、並びに磁性材料の製造方法
WO2014148502A1 (ja) * 2013-03-18 2014-09-25 日立化成株式会社 磁性材料及びその製造方法及びその製造に用いるコーティング液
JP2014216034A (ja) * 2013-04-23 2014-11-17 富士フイルム株式会社 磁気記録用磁性粒子およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645917A (en) * 1991-04-25 1997-07-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP3670395B2 (ja) * 1996-06-10 2005-07-13 日鉄鉱業株式会社 多層膜被覆粉体およびその製造方法
JP4859791B2 (ja) 2006-09-01 2012-01-25 国立大学法人 東京大学 電波吸収材料用の磁性結晶および電波吸収体
JP5124825B2 (ja) 2006-09-08 2013-01-23 国立大学法人 東京大学 ε酸化鉄系の磁性材料
JP4797145B2 (ja) 2006-12-14 2011-10-19 マツダ株式会社 車両用エアバッグ装置
JP5142354B2 (ja) 2007-01-16 2013-02-13 国立大学法人 東京大学 ε−Fe2O3結晶の製法
WO2014189165A1 (ko) * 2013-05-23 2014-11-27 Chang Hyong-Ku 가공조제를 포함하는 자계색변환 잉크용 슬러리 또는 페이스트 또는 겔 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114455A1 (ja) * 2006-03-31 2007-10-11 The University Of Tokyo 磁性材料
JP2008063200A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 分散性の良いε酸化鉄粉末
WO2012101752A1 (ja) * 2011-01-25 2012-08-02 Tdk株式会社 磁性材料及び磁石、並びに磁性材料の製造方法
WO2014148502A1 (ja) * 2013-03-18 2014-09-25 日立化成株式会社 磁性材料及びその製造方法及びその製造に用いるコーティング液
JP2014216034A (ja) * 2013-04-23 2014-11-17 富士フイルム株式会社 磁気記録用磁性粒子およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175532A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 磁気記録媒体、イプシロン型酸化鉄系化合物の粒子の製造方法、及び磁気記録媒体の製造方法
CN110322902A (zh) * 2018-03-29 2019-10-11 富士胶片株式会社 磁记录介质、ε-型氧化铁类化合物的粒子的制造方法及磁记录介质的制造方法
US11508406B2 (en) 2018-03-29 2022-11-22 Fujifilm Corporation Magnetic recording medium, manufacturing method of particles of epsilon type iron oxide-based compound, and manufacturing method of magnetic recording medium

Also Published As

Publication number Publication date
US11097956B2 (en) 2021-08-24
JP2017122044A (ja) 2017-07-13
US20180033528A1 (en) 2018-02-01
JP6106303B2 (ja) 2017-03-29
JP2016169148A (ja) 2016-09-23
JP6714524B2 (ja) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6106303B2 (ja) 表面改質鉄系酸化物磁性粒子粉およびその製造方法
JP6010181B2 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP5966064B1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
JP7033071B2 (ja) イプシロン型鉄酸化物磁性粒子及びその製造方法、磁性粒子から構成される磁性粉ならびに磁性塗料および磁気記録媒体
JP5105503B2 (ja) ε酸化鉄の製法
WO2016047559A1 (ja) 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
WO2016111224A1 (ja) 鉄系酸化物磁性粒子粉およびその製造方法並びに塗料および磁気記録媒体
JP6480715B2 (ja) 鉄系酸化物磁性粒子粉の前駆体およびそれを用いた鉄系酸化物磁性粒子粉の製造方法
JP2017201672A (ja) 磁性粉末の製造方法
WO2020162443A1 (ja) 鉄系酸化物磁性粉およびその製造方法
WO2021187329A1 (ja) 鉄系酸化物磁性粉の製造方法
JP3897347B2 (ja) Fe−Co−Niから成るスピネル型フェリ磁性微粒子粉及びその生成方法
WO2021200482A1 (ja) 鉄系酸化物磁性粉、並びにそれを用いた圧粉体および電波吸収体
WO2021200481A1 (ja) 鉄系酸化物磁性粉およびその製造方法
US20220089456A1 (en) Substitution-type epsilon-iron oxide magnetic particle powder, method for producing substitution-type epsilon-iron oxide magnetic particle powder, green compact, method for producing green compact, and electromagnetic wave
EP3950598A1 (en) Substituted ?-iron oxide magnetic particle powder, production method for substituted ?-iron oxide magnetic particle powder, green compact, production method for green compact, and electromagnetic wave absorber
JP2022135542A (ja) 鉄系酸化物磁性粉の製造方法
JP2022045068A (ja) 置換型ε酸化鉄磁性粒子粉および置換型ε酸化鉄磁性粒子粉の製造方法
JPH03265524A (ja) 六角板状バリウムフェライトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764922

Country of ref document: EP

Kind code of ref document: A1