WO2018203468A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2018203468A1
WO2018203468A1 PCT/JP2018/015510 JP2018015510W WO2018203468A1 WO 2018203468 A1 WO2018203468 A1 WO 2018203468A1 JP 2018015510 W JP2018015510 W JP 2018015510W WO 2018203468 A1 WO2018203468 A1 WO 2018203468A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
layer
magnetic recording
magnetic
powder
Prior art date
Application number
PCT/JP2018/015510
Other languages
English (en)
French (fr)
Inventor
潤 寺川
印牧 洋一
山鹿 実
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/609,993 priority Critical patent/US11217277B2/en
Priority to DE112018002308.7T priority patent/DE112018002308T5/de
Priority to JP2019515691A priority patent/JP7207298B2/ja
Publication of WO2018203468A1 publication Critical patent/WO2018203468A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

磁気記録媒体は、ε酸化鉄を含む粒子の粉末を含む記録層を備え、50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が、95%以上であり、保磁力Hc(25)が、200kA/m以上であり、磁気記録媒体の走行方向に測定した角形比が、30%以下である。

Description

磁気記録媒体
 本技術は、磁気記録媒体に関する。
 LTO(Linear Tape Open)6対応の高密度記録の磁気テープでは、針状磁性粉に代えて六方晶バリウムフェライト磁性粉が用いられている。高密度記録化を実現するための磁性粉としては、バリウムフェライト磁性粉以外にも、立方晶のCoMn系スピネルフェライト磁性粉(例えば特許文献1参照)、ε-Fe23磁性粉(例えば特許文献2参照)などが報告されている。
特許第4687136号公報 特許第5013505号公報
 ところで、近年では、アーカイブ用途として磁気テープを用いたライブラリ装置が期待され始めている。ライブラリ装置内では、磁気テープに対して50℃程度の温度が定常的にかかるため、熱による磁化消失により、高温環境下におけるSNR(Signal-Noise Ratio)の低下が懸念される。より高記録密度となる次世代の磁気テープでは、記録層に含まれる磁性粒子が更に微粒子化されるため、高温環境下におけるSNRの低下がより顕著になると考えられる。
 本技術の目的は、高温環境下におけるSNRの劣化を抑制できる磁気記録媒体を提供することにある。
 上述の課題を解決するために、本技術は、ε酸化鉄を含む粒子の粉末を含む記録層を備え、50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が、95%以上であり、保磁力Hc(25)が、200kA/m以上であり、磁気記録媒体の走行方向に測定した角形比が、30%以下である磁気記録媒体である。
 本技術によれば、高温環境下におけるSNRの劣化を抑制できる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらと異質な効果であってもよい。
本技術の一実施形態に係る磁気記録媒体の構成を示す断面図である。 磁性粒子の構成を示す断面図である。 磁性粒子の構成を示す断面図である。 磁気記録媒体の構成を示す断面図である。 磁気記録媒体の構成を示す断面図である。 磁気記録媒体の構成を示す断面図である。
 本技術の実施形態について以下の順序で説明する。
 磁気記録媒体の構成
 磁気記録媒体の製造方法
 効果
 変形例
[磁気記録媒体の構成]
 本技術の一実施形態に係る磁気記録媒体は、図1に示すように、長尺状の基体11と、基体11の一方の主面上に設けられた下地層(非磁性層)12と、下地層12上に設けられた記録層(磁性層)13とを備える。磁気記録媒体が、必要に応じて、記録層13上に設けられた保護層(図示せず)および潤滑剤層(図示せず)などをさらに備えるようにしてもよい。また、必要に応じて、基体11の他方の主面上に設けられたバックコート層14をさらに備えるようにしてもよい。磁気記録媒体は長尺状を有し、記録再生の際には長手方向に走行される。
 一実施形態に係る磁気記録媒体は、好ましくは大規模磁気テープデータアーカイブ装置であるライブラリ装置に用いられる。また、一実施形態に係る磁気記録媒体は、例えば75nm以下の最短記録波長で信号を記録可能に構成されており、最短記録波長が75nm以下である記録再生装置に用いられる。上記記録再生装置は、記録用ヘッドとしてリング型ヘッドを備え、リング型ヘッドにより最短記録波長75nm以下で信号を磁気記録媒体に記録する。
(保磁力Hc)
 50℃にて磁気記録媒体の厚み方向(垂直方向)に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率R(=(Hc(50)/Hc(25))×100)が、95%以上、好ましくは96%以上、より好ましくは97%以上、更により好ましくは98%以上である。上記比率Rが95%未満であると、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。
 25℃にて磁気記録媒体の厚み方向(垂直方向)に測定した保磁力Hc(25)が、好ましくは200kA/m以上、より好ましくは200kA/m以上340kA/m以下、更により好ましくは220kA/m以上320kA/m以下、特に好ましくは230kA/m以上300kA/m以下である。保磁力Hc(25)が200kA/m未満であると、上記比率Rが95%未満となる虞がある。したがって、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。一方、保磁力Hc(25)が340kA/m以下であると、25℃において良好なSNRを得ることができる。
 50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)が、好ましくは190kA/m以上、より好ましくは190kA/m以上310kA/m以下、更により好ましくは200kA/m以上300kA/m以下、特に好ましくは210kA/m以上280kA/m以下である。保磁力Hc(50)が190kA/m以上であると、上記比率Rが95%未満となる虞がある。したがって、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。一方、保磁力Hcが310kA/m以下であると、25℃において良好なSNRを得ることができる。
 上記の保磁力Hc(25)は以下のようにして求められる。まず、長尺状の磁気記録媒体から測定サンプルを切り出し、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)を用いて測定サンプルの厚み方向(磁気記録媒体の厚み方向)に測定サンプル全体のM-Hループを測定する。次に、アセトンまたはエタノールなどを用いて塗膜(下地層12、記録層13など)を払拭し、基体11のみを残してバックグラウンド補正用とし、VSMを用いて基体11の厚み方向(磁気記録媒体の厚み方向)に基体11のM-Hループを測定する。その後、測定サンプル全体のM-Hループから基体11のM-Hループを引き算して、バックグラウンド補正後のM-Hループを得る。得られたM-Hループから保磁力Hcを求める。なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。また、M-Hループを磁気記録媒体の厚み方向(垂直方向)に測定する際の“反磁界補正”は行わないものとする。
 上記の保磁力Hc(50)は、測定サンプおよび基体11のM-Hループの測定をいずれも50℃にて行うこと以外は上記の保磁力Hc(25)の測定方法と同様にして求められる。
(角形比S1、S2)
 磁気記録媒体の走行方向(長手方向)に測定した角形比S1が、好ましくは30%以下、より好ましくは25%以下、更により好ましくは20%以下である。角形比S1が30%を超えると、記録層13の垂直配向性が低くなり、上記比率Rが95%未満となる虞がある。したがって、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。
 磁気記録媒体の幅方向に測定した角形比S2が、好ましくは30%以下、より好ましくは25%以下、更により好ましくは20%以下である。角形比S2が30%を超えると、記録層13の垂直配向性が低くなり、上記比率Rが95%未満となる虞がある。したがって、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。
 磁気記録媒体の任意の面内方向に測定した角形比Sが、好ましくは30%以下、より好ましくは25%以下、更により好ましくは20%以下である。角形比Sが30%を超えると、記録層13の垂直配向性が低くなり、上記比率Rが95%未満となる虞がある。したがって、保磁力Hcの温度依存性が大きくなり、高温環境下におけるSNRの劣化を抑制することが困難となる虞がある。
 上記の角形比S1は以下のようにして求められる。まず、長尺状の磁気記録媒体から測定サンプルを切り出し、VSMを用いて磁気記録媒体の走行方向(長手方向)に対応する測定サンプル全体のM-Hループを測定する。次に、アセトンまたはエタノールなどを用いて塗膜(下地層12、記録層13など)を払拭し、基体11のみを残して、バックグラウンド補正用とし、VSMを用いて基体11の走行方向(磁気記録媒体の走行方向)に対応する基体11のM-Hループを測定する。その後、測定サンプル全体のM-Hループから基体11のM-Hループを引き算して、バックグラウンド補正後のM-Hループを得る。得られたM-Hループの飽和磁化Ms(emu)および残留磁化Mr(emu)を以下の式に代入して、角形比S1(%)を計算する。なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。
 角形比S1(%)=(Mr/Ms)×100
 上記の角形比S2は、磁気記録媒体の幅方向に対応する測定サンプル全体および基体11のM-Hループを測定する以外のことは上記の角形比S1の測定方法と同様にして求められる。
 上記の角形比Sは、磁気記録媒体の任意の面内方向に対応する測定サンプル全体および基体11のM-Hループを測定する以外のことは上記の角形比S1の測定方法と同様にして求められる。
(活性化体積Vact
 活性化体積Vactが、好ましくは5000nm3以下、より好ましくは4000nm3以下、更により好ましくは3000nm3以下である。活性化体積Vactが5000nm3以下であると、ビット反転領域を急峻にすることができ、良好なSNRを得ることができる。
 上記の活性化体積Vactは、Street&Woolleyにより導出された下記の式により求められる。
 Vact(nm3)=kB×T×Χirr/(μ0×Ms×S)
(但し、kB:ボルツマン定数(1.38×10-23J/K)、T:温度(K)、Χirr:非可逆磁化率、μ0:真空の透磁率、S:磁気粘性係数、Ms:飽和磁化(emu/cm3))
 上記式に代入される非可逆磁化率Χirr、飽和磁化Msおよび磁気粘性係数Sは、VSMを用いて以下のようにして求められる。なお、VSMによる測定方向は、磁気記録媒体の厚み方向(垂直方向)とする。また、VSMによる測定は、長尺状の磁気記録媒体から切り出された測定サンプルに対して25℃にて行われるものとする。また、M-Hループを磁気記録媒体の厚み方向(垂直方向)に測定する際の“反磁界補正”は行わないものとする。
(非可逆磁化率Χirr
 非可逆磁化率Χirrは、残留磁化曲線(DCD曲線)の傾きにおいて、残留保磁力Hr付近における傾きと定義される。まず、磁気記録媒体全体に-1193kA/m(15kOe)の磁界を印加し、磁界をゼロに戻し残留磁化状態とする。その後、反対方向に約15.9kA/m(200Oe)の磁界を印加し再びゼロに戻し残留磁化量を測定する。その後も同様に、先ほどの印加磁界よりもさらに15.9kA/m大きい磁界を印加しゼロに戻す測定を繰り返し行い、印加磁界に対して残留磁化量をプロットしDCD曲線を測定する。得られたDCD曲線から、磁化量ゼロとなる点を残留保磁力Hrとし、さらにDCD曲線を微分し、各磁界におけるDCD曲線の傾きを求める。このDCD曲線の傾きにおいて、残留保磁力Hr付近の傾きがΧirrとなる。
(飽和磁化Ms)
 まず、磁気記録媒体の厚み方向に磁気記録媒体(測定サンプル)全体のM-Hループを測定する。次に、アセトンおよびエタノールなどを用いて塗膜(下地層12、記録層13など)を払拭し、基体11のみを残して、バックグラウンド補正用として、基体11のM-Hループを同様に厚み方向に測定する。その後、磁気記録媒体全体のM-Hループから基体11のM-Hループを引き算して、バックグラウンド補正後のM-Hループを得る。得られたM-Hループの飽和磁化Ms(emu)の値と、測定サンプル中の記録層13の体積(cm3)から、Ms(emu/cm3)を算出する。なお、記録層13の体積は測定サンプルの面積に記録層13の平均厚みを乗ずることにより求められる。記録層13の体積の算出に必要な記録層13の平均厚みの算出方法については後述する。
(磁気粘性係数S)
 まず、磁気記録媒体(測定サンプル)全体に-1193kA/m(15kOe)の磁界を印加し、磁界をゼロに戻し残留磁化状態とする。その後、反対方向に、DCD曲線より得られた残留保磁力Hrの値と同等の磁界を印加する。磁界を印加した状態で1000秒間、磁化量を一定の時間間隔で継続的に測定する。このようにして得られた、時間tと磁化量M(t)の関係を以下の式に照らし合わせて、磁気粘性係数Sを算出する。
 M(t)=M0+S×ln(t)
(但し、M(t):時間tの磁化量、M0:初期の磁化量、S:磁気粘性係数、ln(t):時間の自然対数)
(基体)
 支持体となる基体11は、可撓性を有する長尺状の非磁性基体である。非磁性基体はフィルムであり、フィルムの厚みは、例えば3μm以上8μm以下である。基体11の材料としては、例えば、ポリエチレンテレフタレートなどのポリエステル類、ポリエチレン、ポリプロピレンなどのポリオレフィン類、セルローストリアセテート、セルロースダイアセテート、セルロースブチレートなどのセルロース誘導体、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリカーボネート、ポリイミド、ポリアミドイミドなどのプラスチック、アルミニウム合金、チタン合金などの軽金属、アルミナガラスなどのセラミックなどを用いることができる。
(記録層)
 記録層13は、いわゆる垂直記録層であり、例えば、磁性粉、結着剤および導電性粒子を含んでいる。記録層13が、必要に応じて、潤滑剤、研磨剤、防錆剤などの添加剤をさらに含んでいてもよい。
(磁性粉)
 磁性粉は、ε酸化鉄を含むナノ粒子(以下「ε酸化鉄粒子」という。)の粉末を含んでいる。ε酸化鉄粒子は微粒子でも高保持力を得ることができる。ε酸化鉄粒子は、球状もしくはほぼ球状を有しているか、または立方体状もしくはほぼ立方体状を有している。ε酸化鉄粒子が上記のような形状を有しているため、磁性粒子としてε酸化鉄粒子を用いた場合、磁性粒子として六角板状のバリウムフェライト粒子を用いた場合に比べて、媒体の厚み方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制できる。したがって、磁性粉の分散性を高め、より良好なSNRを得ることができる。
 ε酸化鉄粒子は、コアシェル型構造を有する。具体的には、ε酸化鉄粒子は、図2に示すように、コア部21と、このコア部21の周囲に設けられた2層構造のシェル部22とを備える。2層構造のシェル部22は、コア部21上に設けられた第1シェル部22aと、第1シェル部22a上に設けられた第2シェル部22bとを備える。
 コア部21は、ε酸化鉄を含んでいる。コア部21に含まれるε酸化鉄は、ε-Fe23結晶を主相とするものが好ましく、単相のε-Fe23からなるものがより好ましい。
 軟磁性層である第1シェル部22aは、コア部21の周囲のうちの少なくとも一部を覆っている。具体的には、第1シェル部22aは、コア部21の周囲を部分的に覆っていてもよいし、コア部21の周囲全体を覆っていてもよい。コア部21と第1シェル部22aの交換結合を十分なものとし、磁気特性を向上する観点からすると、コア部21の表面全体を覆っていることが好ましい。
 第1シェル部22aは、いわゆる軟磁性層であり、例えば、α-Fe、Ni-Fe合金またはFe-Si-Al合金などの軟磁性体を含んでいる。α-Feは、コア部21に含まれるε酸化鉄を還元することにより得られるものであってもよい。
 第2シェル部22bは、酸化防止層としての酸化被膜である。第2シェル部22bは、α酸化鉄、酸化アルミニウムまたは酸化ケイ素を含んでいる。α酸化鉄は、例えばFe34、Fe23およびFeOのうちの少なくとも1種の酸化鉄を含んでいる。第1シェル部22aがα-Fe(軟磁性体)を含む場合には、α酸化鉄は、第1シェル部22aに含まれるα-Feを酸化することにより得られるものであってもよい。
 ε酸化鉄粒子が、上述のように第1シェル部22aを有することで、熱安定性を確保するためにコア部21単体の保磁力Hcを大きな値に保ちつつ、ε酸化鉄粒子(コアシェル粒子)全体としての保磁力Hcを記録に適した保磁力Hcに調整できる。また、ε酸化鉄粒子が、上述のように第2シェル部22bを有することで、磁気記録媒体の製造工程およびその工程前において、ε酸化鉄粒子が空気中に暴露されて、粒子表面に錆びなどが発生することにより、ε酸化鉄粒子の特性が低下することを抑制することができる。したがって、磁気記録媒体の特性劣化を抑制することができる。
 磁性粉の平均粒子サイズ(平均最大粒子サイズ)Dは、好ましくは22nm以下、より好ましくは8nm以上22nm以下、更により好ましくは12nm以上22nm以下である。
 上記の磁性粉の平均粒子サイズDは、以下のようにして求められる。まず、測定対象となる磁気記録媒体をFIB(Focused Ion Beam)法などにより加工して薄片を作製し、TEM(Transmission Electron Microscope)により薄片の断面観察を行う。次に、撮影したTEM写真から500個のε酸化鉄粒子を無作為に選び出し、それぞれの粒子の最大粒子サイズdmaxを測定して、磁性粉の最大粒子サイズdmaxの粒度分布を求める。ここで、“最大粒子サイズdmax”とは、いわゆる最大フェレ径を意味し、具体的には、ε酸化鉄粒子の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のものをいう。その後、求めた最大粒子サイズdmaxの粒度分布から最大粒子サイズdmaxのメジアン径(50%径、D50)を求めて、これを粒子の平均粒子サイズ(平均最大粒子サイズ)Dとする。
 記録層13の平均厚みが、好ましくは30nm以上120nm以下、より好ましくは40nm以上100nm以下、更により好ましくは40nm以上80nm以下、最も好ましくは40nm以上70nm以下である。
 記録層13の平均厚み[nm]は以下のようにして求められる。まず、測定対象となる磁気記録媒体をFIB法などにより加工して、磁気記録媒体の幅方向に平行な主面を有する薄片を作製し、TEMにより薄片の断面観察を行う。観察倍率としては、記録層13の厚みが明瞭に観察できるよう、少なくとも10万倍以上で行うのが好ましい。断面TEMの観察は、磁気記録媒体の長手方向(走行方向)に100mごとに合計5か所の位置で行われる。一視野あたり均等に50ポイントにおいて記録層13の厚みを観察し、5視野全ての厚みを単純に平均(算術平均)して記録層13の平均厚み[nm]を求める。
(結着剤)
 結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂などに架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体に対して要求される物性などに応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体において一般的に用いられる樹脂であれば、特に限定されない。
 例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴムなどが挙げられる。
 また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂などが挙げられる。
 また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SO3M、-OSO3M、-COOM、P=O(OM)2などの極性官能基が導入されていてもよい。ここで、式中Mは、水素原子、あるいはリチウム、カリウム、ナトリウムなどのアルカリ金属である。
 更に、極性官能基としては、-NR1R2、-NR1R2R3+-の末端基を有する側鎖型のもの、>NR1R2+-の主鎖型のものが挙げられる。ここで、式中R1、R2、R3は、水素原子、または炭化水素基であり、X-は弗素、塩素、臭素、ヨウ素などのハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基なども挙げられる。
(添加剤)
 記録層13は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)などをさらに含有していてもよい。
(下地層)
 下地層12は、非磁性粉および結着剤を主成分として含む非磁性層である。下地層12が、必要に応じて、導電性粒子、潤滑剤、硬化剤および防錆剤などのうちの少なくとも1種の添加剤をさらに含んでいてもよい。
(下地層の平均厚み)
 下地層12の平均厚みは、好ましくは0.6μm以上2.0μm以下、より好ましくは0.8μm以上1.4μm以下である。なお、上記の下地層12の平均厚みの算出方法は、記録層13の平均厚みの算出方法と同様である。
(非磁性粉)
 非磁性粉は、無機物質でも有機物質でもよい。また、非磁性粉は、カーボンブラックなどでもよい。無機物質としては、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状などの各種形状が挙げられるが、これに限定されるものではない。
(結着剤)
 結着剤は、上述の記録層13と同様である。
[磁気記録媒体の製造方法]
 次に、上述の構成を有する磁気記録媒体の製造方法の一例について説明する。まず、非磁性粉および結着剤などを溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉および結着剤などを溶剤に混練、分散させることにより、記録層形成用塗料を調製する。記録層形成用塗料および下地層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。
 上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、メタノール、エタノール、プロパノールなどのアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテートなどのエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素系溶媒などが挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダーなどの混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」など)、ホモジナイザー、超音波分散機などの分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
 次に、下地層形成用塗料を基体11の一方の主面に塗布して乾燥させることにより、下地層12を形成する。続いて、この下地層12上に記録層形成用塗料を塗布して乾燥させることにより、記録層13を下地層12上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体11の厚み方向に磁場配向させる。記録層13の形成後、必要に応じて、記録層13上に保護層および潤滑剤層を形成してもよいし、基体11の他方の主面にバックコート層14を形成してもよい。
 その後、下地層12および記録層13が形成された基体11を大径コアに巻き直し、硬化処理を行う。最後に、下地層12および記録層13が形成された基体11に対してカレンダー処理を行った後、所定の幅に裁断する。以上により、目的とする磁気記録媒体が得られる。
[効果]
 本技術の一実施形態に係る磁気記録媒体は、ε酸化鉄を含む粒子の粉末を含む記録層13を備える。また、50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が95%以上であり、保磁力Hc(25)が200kA/m以上であり、磁気記録媒体の走行方向に測定した角形比S1が30%以下である。これにより、保磁力Hcの温度依存性を低減し、高温環境下におけるSNRの劣化を抑制できる。
 また、50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が95%以上であり、磁気記録媒体の走行方向に測定した角形比S1が30%以下であり、保磁力Hc(25)が200kA/m以上340kA/m以下であり、活性化体積が5000nm3以下である場合には、高温環境下におけるSNRの劣化を抑制し、かつ、良好なSNRを得ることができる。
[変形例]
(変形例1)
 上述の一実施形態では、ε酸化鉄粒子が2層構造のシェル部22を有している場合について説明したが、図3に示すように、ε酸化鉄粒子が単層構造のシェル部23を有していてもよい。この場合、シェル部23は、第1シェル部22aと同様の構成を有する。但し、ε酸化鉄粒子の特性劣化を抑制する観点からすると、上述した一実施形態におけるように、ε酸化鉄粒子が2層構造のシェル部22を有していることが好ましい。
(変形例2)
 磁気記録媒体が、図4に示すように、基体11の両主面のうち、バックコート層14側となる他方の主面(以下「裏面」という。)に設けられた強化層15をさらに備えていてもよい。この場合、強化層15上にバックコート層14が設けられる。
 なお、強化層15は、基体11の両主面のうちのいずれに設けられていてもよく、基体11の両主面のうち、記録層13側となる一方の主面(以下「表面」という。)に強化層15が設けられていてもよい。この場合、強化層15上に下地層12が設けられる。
 強化層15は、磁気記録媒体の機械的強度を高めて、優れた寸法安定性を得るためのものである。強化層15は、例えば、金属および金属化合物のうちの少なくとも1種を含んでいる。ここで、金属には、半金属が含まれるものと定義する。金属は、例えば、アルミニウムおよび銅のうちの少なくとも1種であり、好ましくは銅である。銅は、安価で蒸気圧が比較的低いため、安価に強化層15を成膜が可能であるからである。金属化合物は、例えば、金属酸化物である。金属酸化物は、例えば、酸化アルミニウム、酸化銅および酸化シリコンのうちの少なくとも1種であり、好ましくは酸化銅である。蒸着法などにより安価に強化層15を成膜が可能であるからである。強化層15は、例えば、真空斜方蒸着法により形成される蒸着膜であってもよいし、スパッタ法により形成されるスパッタ膜であってもよい。
 強化層15は、2層以上の積層構造を有していることが好ましい。強化層15の厚みを厚くしていくと、外力に対する基体11の伸縮をより抑えることができる。しかしながら、蒸着法やスパッタリングなどの真空薄膜の作製技術を用いて強化層15を形成する場合、上記のように強化層15の厚みを厚くしていくと、強化層15中に空隙が生じやすくなる虞がある。上記のように強化層15を2層以上の積層構造とすることで、真空薄膜の作製技術を用いて強化層15を形成する際に強化層15中に生じる空隙を抑制し、強化層15の緻密性を向上できる。したがって、強化層15の水蒸気透過率を低減できるので、基体11の膨張をさらに抑制し、磁気記録媒体の寸法安定性をさらに向上できる。強化層15が2層以上の積層構造を有する場合、各層の材料は同一であってもよいし、異なっていてもよい。
 強化層15の平均厚みは、好ましくは150nm以上500nm以下である。強化層15の平均厚みが150nm以上であると、強化層15として良好な機能(すなわち磁気記録媒体の良好な寸法安定性)が得られる。一方、強化層15の平均厚みを500nmを超えて厚くしなくとも、強化層15として十分な機能が得られる。なお、上記の強化層15の平均厚みは、上述の記録層13の平均厚みの算出方法と同様にして求められる。
 磁気記録媒体が強化層15を有する場合、長尺状の磁気記録媒体の長手方向のヤング率が、好ましくは7GPa以上14GPa以下である。ヤング率が7GPa以上であると、良好な磁気ヘッド当たりを得ることができ、かつ、エッジダメージを抑制することができる。一方、ヤング率が14GPa以下であると、良好な磁気ヘッド当たりを得ることができる。
 また、磁気記録媒体の湿度膨張係数が、好ましくは0.5ppm/%RH以上、4ppm/%RH以下である。湿度膨張係数が上記範囲であると、磁気記録媒体の寸法安定性をさらに向上できる。
(変形例3)
 磁気記録媒体が、図5に示すように、強化層15上に設けられたカッピング抑制層16をさらに備えていてもよい。なお、下地層12およびカッピング抑制層16が基体11の裏面側に設けられた場合、バックコート層14はカッピング抑制層16上に設けられる。一方、下地層12およびカッピング抑制層16が基体11の表面側に設けられた場合、下地層12はカッピング抑制層16上に設けられる。
 カッピング抑制層16は、基体11上に強化層15を形成したことにより発生するカッピングを抑制するためのものである。ここで、カッピングとは、長尺状の基体11の幅方向に発生する湾曲を意味する。強化層15には内部応力として引っ張り応力、すなわち基体11の両主面のうち強化層15が設けられた主面側を幅方向に且つ凹形状に湾曲させる応力が働く。これに対して、カッピング抑制層16には、内部応力として圧縮応力、すなわち基体11の両主面のうちカッピング抑制層16が設けられた主面側を幅方向に且つ凸形状に湾曲させる応力が働く。このため、強化層15とカッピング抑制層16との内部応力が相殺し合って、磁気記録媒体にカッピングが発生することを抑制できる。したがって、磁気ヘッドと磁気記録媒体との接触状態を良好な状態に保持でき、かつトラック幅方向における高い寸法安定性を有する、オフトラック特性に優れた磁気記録媒体を提供できる。
 カッピング抑制層16は、例えば、炭素薄膜である。炭素薄膜は、ダイヤモンドライクカーボン(以下「DLC」という。)を含む硬質炭素薄膜であることが好ましい。カッピング抑制層16は、例えば、化学気相成長(Chemical Vapor Deposition:CVD)法により形成されるCVD膜であってもよいし、スパッタ法により形成されるスパッタ膜であってもよい。
 カッピング抑制層16は、2層以上の積層構造を有していることが好ましい。磁気記録媒体の寸法安定性をさらに向上できるからである。なお、その原理は、強化層15を2層以上の積層構造とする場合と同様である。カッピング抑制層16が2層以上の積層構造を有する場合、各層の材料は同一であってもよいし、異なっていてもよい。
 カッピング抑制層16の平均厚みは、好ましくは10nm以上200nm以下である。カッピング抑制層16の平均厚みが10nm未満であると、カッピング抑制層16の圧縮応力が小さくなりすぎる虞がある。一方、カッピング抑制層16の平均厚みが200nmを超えると、カッピング抑制層16の圧縮応力が大きくなりすぎる虞がある。なお、カッピング抑制層16の平均厚みは、上述の記録層13の平均厚みの算出方法と同様にして求められる。
(変形例4)
 磁気記録媒体は、図6に示すように、基体11の表面上に設けられた第1強化層17と、基体11の裏面上に設けられた第2強化層18と、第2強化層18上に設けられた凝着抑制層19とをさらに備えていてもよい。この場合、バックコート層14は、凝着抑制層19上に設けられる。基体11、第1強化層17、第2強化層18および凝着抑制層19により積層体10が構成される。
 なお、凝着抑制層19は、第1、第2強化層17、18のうちいずれかの層上に設けられていればよく、第1強化層17上に凝着抑制層19が設けられていてもよい。この場合、下地層12は、凝着抑制層19上に設けられる。この場合、凝着抑制層19が炭素薄膜である場合には、表面改質処理により凝着抑制層19の表面の濡れ性を改善することが好ましい。炭素薄膜に対する下地層形成用塗料の塗布性を改善できるからである。
 第1、第2強化層17、18は、磁気記録媒体の機械的強度を高めて、優れた寸法安定性を得るためのものである。第1、第2強化層17、18の材料としては、変形例2の強化層15と同様の材料を例示することができる。なお、第1、第2強化層17、18の材料は同一の材料であってもよいし、異なる材料であってもよい。第1、第2強化層17、18はそれぞれ、2層以上の積層構造を有していることが好ましい。磁気記録媒体の寸法安定性をさらに向上できるからである。なお、その原理は、変形例2において強化層15を2層以上の積層構造とする場合と同様である。
 第1、第2強化層17、18の平均厚みは、好ましくは75nm以上300nm以下である。第1、第2強化層17、18の平均厚みが75nm以上であると、第1、第2強化層17、18として良好な機能(すなわち磁気記録媒体の良好な寸法安定性)が得られる。一方、第1、第2強化層17、18の平均厚みを300nmを超えて厚くすると、磁気記録媒体の厚みが厚くなってしまう虞がある。また、第1、第2強化層17、18の平均厚みを300nmを超えて厚くしなくとも、第1、第2強化層17、18として十分な機能が得られる。なお、第1、第2強化層17、18の平均厚みは、上述の記録層13の平均厚みの算出方法と同様にして求められる。
 第1、第2強化層17、18は、内部応力として引っ張り応力が働くものである。具体的には、第1強化層17は、基体11の表面側を幅方向に且つ凹形状に湾曲させる応力が働くものであり、第2強化層18は、基体11の裏面側を幅方向に且つ凹形状に湾曲させる応力が働くものである。したがって、第1、第2強化層17、18の内部応力が相殺し合って、磁気記録媒体にカッピングが発生することを抑制できる。ここで、カッピングとは、長尺状の基体11の幅方向に発生する湾曲を意味する。
 第1、第2強化層17、18の平均厚みは、同一であってもよいし、異なっていてもよいが、同一またはほぼ同一であることが好ましい。基体11の両面に設けられた第1、第2強化層17、18の内部応力(引っ張り応力)が同一またはほぼ同一となり、カッピングの発生をより抑制できるからである。ここで、第1、第2強化層17、18の平均厚みがほぼ同一とは、第1、第2強化層17、18の平均厚み差が5nm以内であることを意味する。
 凝着抑制層19は、積層体10をロール状に巻き取った場合に、第1、第2強化層17、18が金属凝着して貼り付くことを抑制するためのものである。凝着抑制層19は、導電性を有していてもよいし、絶縁性を有していてもよい。凝着抑制層19は、内部応力として圧縮応力(すなわち基体11の両主面のうち、凝着抑制層19が設けられた面側を幅方向に且つ凸形状に湾曲させる応力)が働くものであってもよいし、内部応力として引っ張り応力(すなわち基体11のうち、凝着抑制層19が設けられた面側を幅方向に且つ凹形状に湾曲させる応力)が働くものであってもよい。
 第1、第2強化層17、18の引っ張り応力(内部応力)が異なる場合には、第1、第2強化層17、18のうち、より引っ張り応力が大きい強化層上に、内部応力として圧縮応力が働く凝着抑制層19を設けるようにしてもよい。第1、第2強化層17、18の引っ張り応力の違いにより相殺仕切れなかった引っ張り応力を、凝着抑制層19の圧縮応力により相殺することができるからである。また、第1、第2強化層17、18のうち、より引っ張り応力が小さい強化層上に、内部応力として引っ張り応力が働く凝着抑制層19を設けるようにしてもよい。第1、第2強化層17、18の引っ張り応力の違いにより発生した圧縮応力を、凝着抑制層19の引っ張り応力により相殺することができるからである。
 凝着抑制層19の平均厚みは、好ましくは1nm以上100nm以下、より好ましくは2nm以上25nm以下、更により好ましくは2nm以上20nm以下である。凝着抑制層19の平均厚みが1nm以上であると、凝着抑制層19の平均厚みが薄くなりすぎ、凝着抑制層19としての機能が低下することを抑制できる。一方、凝着抑制層19の平均厚みが100nm以下であると、凝着抑制層19の平均厚みが厚くなりすぎる、すなわち凝着抑制層19の内部応力が大きくなりすぎることを抑制できる。凝着抑制層19の平均厚みは、上述の記録層13の平均厚みの算出方法と同様にして求められる。
 第2強化層18の平均厚みD2が75nm以上300nm以下である場合、第2強化層18の平均厚みD2に対する凝着抑制層19の平均厚みD4の比率(D4/D2)が、0.005以上0.35以下であることが好ましい。比率(D4/D2)が0.005以上であると、第2強化層18の平均厚みD2に対して凝着抑制層19の平均厚みD4が薄くなりすぎ、凝着抑制層19としての機能が低下することを抑制できる。一方、比率(D4/D2)が0.35以下であると、第2強化層18の平均厚みD2に対して凝着抑制層19の平均厚みD4が厚くなりすぎる、すなわち第2強化層18の引っ張り応力に対して凝着抑制層19の圧縮応力が大きくなりすぎることを抑制できる。したがって、カッピングの発生をより抑制できる。
 凝着抑制層19は、例えば、炭素および金属酸化物のうちの少なくとも1種を含んでいる。凝着抑制層19は、炭素を主成分とする炭素薄膜または金属酸化物を主成分とする金属酸化物膜であることが好ましい。炭素は、ダイヤモンドライクカーボン(以下「DLC」という。)であることが好ましい。金属酸化物は、酸化アルミニウム、酸化銅および酸化コバルトのうちの少なくとも1種を含むことが好ましい。凝着抑制層19は、例えば、化学気相成長(Chemical Vapor Deposition:CVD)法により形成されるCVD膜であってもよいし、スパッタ法により形成されるスパッタ膜であってもよい。
 凝着抑制層19は、2層以上の積層構造を有していることが好ましい。磁気記録媒体の寸法安定性をさらに向上できるからである。なお、その原理は、変形例3において強化層15を2層以上の積層構造とする場合と同様である。凝着抑制層19が2層以上の積層構造を有する場合、各層の材料は同一であってもよいし、異なっていてもよい。
 上述の構成を有する磁気記録媒体では、第1、第2強化層17、18の内部応力(引っ張り応力)が相殺し合って、磁気記録媒体にカッピングが発生することを抑制できる。したがって、磁気ヘッドと磁気記録媒体との接触状態を良好な状態に保持でき、かつトラック幅方向における高い寸法安定性を有する、オフトラック特性に優れた磁気記録媒体を提供できる。また、磁気記録媒体の製造工程において、積層体10をロール状に巻き取った際に、凝着抑制層19が第1、第2強化層17、18の間に介在するため、第1、第2強化層17、18の金属凝着を抑制することができる。
(変形例5)
 磁気記録媒体が、リング型ヘッド以外の記録ヘッド(例えばSingle Pole Type(SPT)の記録ヘッドなど)を備える記録再生装置を用いて、75nm以下の最短記録波長で信号を記録可能に構成されていてもよい。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
 以下の実施例1~12、比較例1~8において、平均粒子サイズ、保磁力Hc(25)、Hc(50)、角形比S1、S2、活性化体積Vact、記録層の平均厚みおよび下地層の平均厚みは、上述の一実施形態にて説明した方法により求められたものである。
 記録層用の磁性粉として、以下の粒子A1~A5、粒子B~Fの粉末を準備した。
[粒子A1~A5の粉末]
 粒子A1~A5の粉末を次のようにして作製した。まず、ほぼ球形を有するε酸化鉄ナノ粒子(ε-Fe23結晶粒子)の粉末を準備した。次に、以下のようにしてε酸化鉄ナノ粒子の粉末に対して還元処理および徐酸化処理を施すことにより、2層構造のシェル部を有するコアシェル型のε酸化鉄ナノ粒子の粉末を得た。
(還元処理)
 まず、ε酸化鉄ナノ粒子の粉末を石英ボートに載せ、管状炉へ投入した。投入後、管状炉を一度N2雰囲気に置換した後、所定の温度まで昇温させた。昇温後、100%H2を流量100ml/minでフローさせながら、350℃で加熱処理を行った。これにより、ε酸化鉄ナノ粒子の表面が還元されα-Feに変態し、ε酸化鉄ナノ粒子の表面にα-Fe層が形成された。この際、350℃での加熱処理(還元処理)の時間を、表1に示すように0.04h~0.45hの範囲で調整することにより、α-Fe層の厚みを0.3nm~3.5nmの範囲で変化させた。その後、再びN2雰囲気に置換して、室温まで冷却した。これにより、α-Fe層を表面に有するコアシェル型のε酸化鉄ナノ粒子の粉末が得られた。
(徐酸化処理)
 続いて、所定の温度まで加熱し、微量酸素を含むN2ガスを流量100ml/minでフローさせながら、300℃で5分間加熱処理を行った。これにより、α-Fe層の表面が酸化され、α-Fe層の表面にα-Fe23層が形成された。その後、再びN2雰囲気に置換して、室温まで冷却した。以上により、α-Fe23層(酸化被膜)およびα-Fe層(軟磁性層)を表面に有する、平均粒子サイズ20nmのコアシェル型のε酸化鉄ナノ粒子の粉末(粒子A1~A5の粉末)が得られた。
[粒子Bの粉末]
 粒子Bの粉末を次のようにして作製した。まず、ほぼ球形を有するε酸化鉄ナノ粒子(ε-Fe23結晶粒子)の粉末を準備した。次に、以下のようにしてε酸化鉄ナノ粒子の粉末に対して還元処理およびスパッタリング処理を施すことにより、2層構造のシェル部を有するコアシェル型のε酸化鉄ナノ粒子の粉末を得た。
(還元処理)
 まず、粒子A2の粉末と同様の還元処理を行うことにより、厚み2nmのα-Fe層を表面に有するコアシェル型のε酸化鉄ナノ粒子の粉末を得た。
(スパッタリング処理)
 続いて、還元処理後の粒子が大気中に暴露されないように、スパッタリング処理を行うチャンバー内に搬送した。そして、粒子を振動させながら、Al23ターゲットを用いたスパッタリング処理を施すことにより、Al23層(酸化被膜)およびα-Fe層(軟磁性層)を表面に有する、平均粒子サイズ20nmのコアシェル型のε酸化鉄ナノ粒子の粉末(粒子Bの粉末)を得た。
[粒子Cの粉末]
 粒子Cの粉末を次のようにして作製した。まず、ほぼ球形を有するε酸化鉄ナノ粒子(ε-Fe23結晶粒子)の粉末を準備した。次に、以下のようにしてε酸化鉄ナノ粒子の粉末に対してスパッタリング処理を施すことにより、2層構造のシェル部を有するコアシェル型のε酸化鉄ナノ粒子の粉末を得た。
(スパッタリング処理(軟磁性Ni-Fe膜被着))
 まず、ε酸化鉄ナノ粒子をスパッタリング処理を行うチャンバー内に搬送した。そして、粒子を振動させながら、Ni-Feターゲットを用いたスパッタリング処理を施すことにより、Ni-Fe合金層を表面に有するコアシェル型のε酸化鉄ナノ粒子の粉末を得た。
(スパッタリング処理(Al23層))
 次に、粒子Bの粉末と同様のスパッタリング処理を行うことにより、Al23層(酸化被膜)およびNi-Fe合金層(軟磁性層)を表面に有する、平均粒子サイズ20nmのコアシェル型のε酸化鉄ナノ粒子の粉末(粒子Cの粉末)を得た。
[粒子Dの粉末]
 ほぼ球形を有する、平均粒子サイズ20nmのε酸化鉄ナノ粒子(ε-Fe23結晶粒子)の粉末を準備し、還元処理および徐酸化処理を施さずにそのままの状態で粒子Dの粉末とした。
[粒子Eの粉末]
 粒子Eの粉末として、Alが添加された、ほぼ球形を有する、平均粒子サイズ17nmのε酸化鉄ナノ粒子の粉末を準備した。
[粒子Fの粉末]
 粒子Fの粉末として、Gaが添加された、ほぼ球形を有する、平均粒子サイズ17nmのε酸化鉄ナノ粒子の粉末を準備した。
 上記の粒子A1~A5、粒子B~Fの粉末、バリウムフェライト(BaFe)粒子の粉末およびメタル粒子の粉末を用いて、実施例1~12、比較例1~8の磁気テープを以下のようにして作製した。
[実施例1~5、8~10、比較例1、2]
(記録層形成用塗料の調製工程)
 記録層形成用塗料を以下のようにして調製した。まず、下記配合の第1組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第1組成物と、下記配合の第2組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、記録層形成用塗料を調製した。
(第1組成物)
粒子A1~A5の粉末(表1、2参照):100質量部
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):10質量部
(重合度300、Mn=10000、極性基としてOSO3K=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
酸化アルミニウム粉末:5質量部
(α-Al23、平均粒径0.2μm)
カーボンブラック:2質量部
(東海カーボン社製、商品名:シーストTA)
(第2組成物)
塩化ビニル系樹脂:1.1質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
n-ブチルステアレート:2質量部
メチルエチルケトン:121.3質量部
トルエン:121.3質量部
シクロヘキサノン:60.7質量部
 最後に、上述のようにして調製した記録層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、ミリスチン酸:2質量部とを添加した。
(下地層形成用塗料の調製工程)
 下地層形成用塗料を以下のようにして調製した。まず、下記配合の第3組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第3組成物と、下記配合の第4組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、下地層形成用塗料を調製した。
(第3組成物)
針状酸化鉄粉末:100質量部
(α-Fe23、平均長軸長0.15μm)
塩化ビニル系樹脂:55.6質量部
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
カーボンブラック:10質量部
(平均粒径20nm)
(第4組成物)
ポリウレタン系樹脂UR8200(東洋紡績製):18.5質量部
n-ブチルステアレート:2質量部
メチルエチルケトン:108.2質量部
トルエン:108.2質量部
シクロヘキサノン:18.5質量部
 最後に、上述のようにして調製した下地層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、ミリスチン酸:2質量部とを添加した。
(バックコート層形成用塗料の調製工程)
 バックコート層形成用塗料を以下のようにして調製した。下記原料を、ディスパーを備えた攪拌タンクで混合を行い、フィルター処理を行うことで、バックコート層形成用塗料を調製した。
カーボンブラック(旭社製、商品名:#80):100質量部
ポリエステルポリウレタン:100質量部
(日本ポリウレタン社製、商品名:N-2304)
メチルエチルケトン:500質量部
トルエン:400質量部
シクロヘキサノン:100質量部
(成膜工程)
 上述のようにして作製した塗料を用いて、非磁性支持体である厚み6.2μmのポリエチレンナフタレートフィルム(PENフィルム)上に平均厚み1.2μmの下地層、および平均厚み75nmの記録層を以下のようにして形成した。まず、PENフィルム上に、下地層形成用塗料を塗布し、乾燥させることにより、PENフィルム上に下地層を形成した。次に、下地層上に、記録層形成用塗料を塗布し、乾燥させることにより、下地層上に記録層を形成した。なお、記録層形成用塗料の乾燥の際に、ソレノイドコイルにより、磁性粉をPENフィルムの厚み方向に磁場配向させた。続いて、下地層、および記録層が形成されたPENフィルムに対してカレンダー処理を行い、記録層表面を平滑化した。その後、記録層とは反対側の面に、バックコート層形成用塗料を膜厚0.6μmに塗布し乾燥することにより、バックコート層を形成した。
(裁断の工程)
 上述のようにして下地層、記録層およびバックコート層が形成されたPENフィルムを1/2インチ(12.65mm)幅に裁断した。これにより、表2に示す保磁力Hc(25)、Hc(50)、角形比S1、S2および活性化体積Vactを有する磁気テープを得た。
 なお、保磁力Hc(25)、Hc(50)は、上記の粒子A1~A5の還元処理の工程において、α-Fe層の厚みを調整すると共に、上記の記録層の成膜工程において、記録層の成膜時の配向磁場中、乾燥風の風量を調整することで、表2に示す値に設定された。また、角形比S1、S2は、上記の記録層の成膜工程において、記録層の成膜時の配向磁場中、乾燥風の風量を調整し、表2に示す値に設定された。さらに、活性化体積Vactは、上記の記録層形成用塗料の調製工程において、磁性粉(粒子A1~A5)の分散状態を調整することで、表2に示す値に設定された。
[実施例6]
 上記の記録層の成膜工程において、ソレノイドコイルにより、磁性粉をPENフィルムの長手方向(磁気テープの走行方向)に磁場配向させたのちに、磁性粉をPENフィルムの厚み方向(垂直方向)に磁場配向させた。また、記録層の成膜工程において、磁場配向の際の磁場の強度、および乾燥風の風量を調整することにより、角形比S1、S2を表2に示す値に設定した。上記以外のことは実施例2と同様にして磁気テープを得た。
[実施例7、比較例3]
 上記の記録層の成膜工程において、ソレノイドコイルにより、磁性粉をPENフィルムの幅方向に磁場配向させたのちに、磁性粉をPENフィルムの厚み方向(垂直方向)に磁場配向させた。また、記録層の成膜工程において、磁場配向の際の磁場の強度、および乾燥風の風量を調整することにより、角形比S1、S2を表2に示す値に設定した。上記以外のことは実施例2と同様にして磁気テープを得た。
[実施例11、12、比較例4、7、8]
 表2に示すように、粒子A1の粉末に代えて、粒子B、C、D、E、Fの粉末を用いたこと以外は実施例1と同様にして磁気テープを得た。
[比較例5]
 表2に示すように、粒子A1の粉末に代えて、六角板状を有するバリウムフェライト(BaFe)粒子の粉末を用いたこと以外は実施例1と同様にして磁気テープを得た。
[比較例6]
 表2に示すように、粒子A1の粉末に代えて、針状を有するFe-Co合金系のメタル粒子の粉末を用いたこと以外は実施例1と同様にして磁気テープを得た。
[磁気テープの評価]
 上述のようにして得られた実施例1~12、比較例1~8の磁気テープに以下の評価を行った。
(25℃環境におけるSNR)
 記録/再生ヘッドおよび記録/再生アンプを取り付けた1/2インチテープ走行装置(Mountain Engineering II社製MTS Transport)を用いて、25℃環境における磁気テープのSNR(電磁変換特性)を測定した。記録ヘッドにはギャップ長0.2μmのリングヘッドを用い、再生ヘッドにはシールド間距離0.1μmのGMRヘッドを用いた。相対速度は6m/s、記録クロック周波数は160MHzとした。また、SNRは、下記の文献に記載の方法に基づき算出した。その結果を、実施例4のSNRを0dBとする相対値で表2に示した。
 Y.Okazaki: ”An Error Rate Emulation System.”,IEEE Trans. Man., 31,pp.3093-3095(1995)
(SNR劣化量)
 まず、記録/再生ヘッドおよび記録/再生アンプを取り付けた1/2インチテープ走行装置(Mountain Engineering II社製MTS Transport)を用いて、25℃、50℃環境におけるSNRを測定した。なお、測定条件およびSNRの算出方法は、上記の“25℃環境におけるSNR”の測定方法と同様とした。次に、下記の式にてSNR劣化量を算出した。その結果を表2に示した。
 (SNR劣化量)[dB]=(環境温度50℃にて測定されたSNR)-(環境温度25℃にて測定されたSNR)
 表1は、実施例1~12、比較例1~4、7、8の磁気テープの作製に用いた磁性粉の構成を示す。
Figure JPOXMLDOC01-appb-T000001
 表2は、実施例1~12、比較例1~8の磁気テープの構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Hc(25):環境温度25℃にて磁気テープの厚み方向(垂直方向)に測定された保磁力
Hc(50):環境温度50℃にて磁気テープの厚み方向(垂直方向)に測定された保磁力
S1:環境温度25℃にて磁気テープの長手方向に測定された角形比
S2:環境温度25℃にて磁気テープの幅方向に測定された角形比
act:磁性粉の活性化体積
 上記の評価により以下のことがわかった。
 実施例1~12では、(a)記録層がε酸化鉄粒子の粉末を含み、(b)保磁力Hc(50)と保磁力Hc(25)との比率R(=Hc(50)/Hc(25)×100)が95%以上であり、(c)保磁力Hc(25)が200kA/m以上であり、(d)磁気記録媒体の走行方向に測定した角形比S1が30%以下であるため、温度変化に対するSNRの劣化量を抑制できる。
 実施例1~8、11、12では、(a)記録層がε酸化鉄粒子の粉末を含み、(b)保磁力Hc(50)と保磁力Hc(25)との比率Rが95%以上であり、(c)保磁力Hc(25)が200kA/m以上340kA/m以下であり、(d)磁気記録媒体の走行方向に測定した角形比S1が30%以下であり、(e)活性化体積Vactが5000nm3以下であるため、温度変化に対するSNRの劣化量を抑制でき、かつ、環境温度25℃において良好なSNRを得ることができる。
 比較例1では、保磁力Hc(25)が200kA/m未満であるため、保磁力Hcの温度依存性が大きく、保磁力Hc(50)と保磁力Hc(25)との比率Rが95%未満であり、温度変化に対するSNRの劣化量が大きくなる。
 比較例2では、長手方向、幅方向の角形比S1、S2がいずれも30%を超えるため、垂直配向性が低く、保磁力Hc(50)と保磁力Hc(25)との比率Rが95%未満であり、温度変化に対するSNRの劣化量が大きくなる。
 比較例3では、幅方向の角形比S2が30%を大きく超えるため、垂直配向性が低く、保磁力Hc(50)と保磁力Hc(25)との比率Rが95%未満であり、温度変化に対するSNRの劣化量が大きくなる。また、環境温度25℃におけるSNRが悪化する。
 比較例4では、シェル層を形成していないため、保磁力Hc(25)が高すぎ、信号の記録が困難である。
 比較例5、6では、磁性粉としてバリウムフェライト(BaFe)粒子の粉末、Fe-Co合金系のメタル粒子の粉末を用いているため、保磁力Hc(25)が200kA/m未満である。したがって、保磁力Hcの温度依存性が大きく、保磁力Hc(50)と保磁力Hc(25)との比率Rが95%未満となり、温度変化に対するSNRの劣化量が大きくなる。また、比較例6では、粒子が針状を有するため、長手方向、幅方向の角形比S1、S2がいずれも30%を大きく超える。したがって、垂直配向性が非常に低く、環境温度25℃におけるSNRが大きく悪化する。
 比較例7、8では、Al、Gaを添加して保磁力Hcを調整しているが、保磁力Hcの温度依存性が大きく、保磁力Hc(50)と保磁力Hc(25)との比率Rが95%未満であり、温度変化に対するSNRの劣化量が大きくなる。
 以上、本技術の実施形態および実施例について具体的に説明したが、本技術は、上述の実施形態および実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
 また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 ε酸化鉄を含む粒子の粉末を含む記録層を備え、
 50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が、95%以上であり、
 前記保磁力Hc(25)が、200kA/m以上であり、
 磁気記録媒体の走行方向に測定した角形比が、30%以下である磁気記録媒体。
(2)
 前記保磁力Hc(25)が、200kA/m以上340kA/m以下である(1)に記載の磁気記録媒体。
(3)
 前記粒子は、コアシェル構造を有している(1)または(2)に記載の磁気記録媒体。
(4)
 前記粒子は、
 ε酸化鉄を含むコア部と、
 軟磁性体を含むシェル部と
 を備える(1)から(3)のいずれかに記載の磁気記録媒体。
(5)
 前記シェル部は、
 前記コア部上に設けられた第1シェル部と、
 前記第1シェル部上に設けられた第2シェル部と
 を備え、
 前記第1シェル部は、α-Fe、NiFe合金またはFeSiAl合金を含み、
 前記第2シェル部は、α酸化鉄、酸化アルミニウムまたは酸化ケイ素を含む(4)に記載の磁気記録媒体。
(6)
 活性化体積が、5000nm3以下である(1)から(5)のいずれかに記載の磁気記録媒体。
(7)
 磁気記録媒体の幅方向に測定した角形比が、30%以下である(1)から(6)のいずれかに記載の磁気記録媒体。
(8)
 ライブラリ装置に用いられる(1)から(7)のいずれかに記載の磁気記録媒体。
(9)
 最短記録波長が75nm以下である記録再生装置に用いられる(1)から(8)のいずれかに記載の磁気記録媒体。
(10)
 前記記録再生装置は、記録用ヘッドとしてリング型ヘッドを備える(9)に記載の磁気記録媒体。
 11  基体
 12  下地層
 13  記録層
 14  バックコート層
 15  強化層
 16  カッピング抑制層
 17  第1強化層
 18  第2強化層
 19  凝着抑制層
 21  コア部
 22、23  シェル部
 22a  第1シェル部
 22b  第2シェル部

Claims (10)

  1.  ε酸化鉄を含む粒子の粉末を含む記録層を備え、
     50℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(50)と25℃にて磁気記録媒体の厚み方向に測定した保磁力Hc(25)との比率((Hc(50)/Hc(25))×100)が、95%以上であり、
     前記保磁力Hc(25)が、200kA/m以上であり、
     磁気記録媒体の走行方向に測定した角形比が、30%以下である磁気記録媒体。
  2.  前記保磁力Hc(25)が、200kA/m以上340kA/m以下である請求項1に記載の磁気記録媒体。
  3.  前記粒子は、コアシェル構造を有している請求項1に記載の磁気記録媒体。
  4.  前記粒子は、
     ε酸化鉄を含むコア部と、
     軟磁性体を含むシェル部と
     を備える請求項1に記載の磁気記録媒体。
  5.  前記シェル部は、
     前記コア部上に設けられた第1シェル部と、
     前記第1シェル部上に設けられた第2シェル部と
     を備え、
     前記第1シェル部は、α-Fe、NiFe合金またはFeSiAl合金を含み、
     前記第2シェル部は、α酸化鉄、酸化アルミニウムまたは酸化ケイ素を含む請求項4に記載の磁気記録媒体。
  6.  活性化体積が、5000nm3以下である請求項1に記載の磁気記録媒体。
  7.  磁気記録媒体の幅方向に測定した角形比が、30%以下である請求項1に記載の磁気記録媒体。
  8.  ライブラリ装置に用いられる請求項1に記載の磁気記録媒体。
  9.  最短記録波長が75nm以下である記録再生装置に用いられる請求項1に記載の磁気記録媒体。
  10.  前記記録再生装置は、記録用ヘッドとしてリング型ヘッドを備える請求項9に記載の磁気記録媒体。
PCT/JP2018/015510 2017-05-01 2018-04-13 磁気記録媒体 WO2018203468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/609,993 US11217277B2 (en) 2017-05-01 2018-04-13 Magnetic recording medium having controlled coercive force ratio
DE112018002308.7T DE112018002308T5 (de) 2017-05-01 2018-04-13 Magnetisches aufzeichnungsmedium
JP2019515691A JP7207298B2 (ja) 2017-05-01 2018-04-13 磁気記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091269 2017-05-01
JP2017-091269 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203468A1 true WO2018203468A1 (ja) 2018-11-08

Family

ID=64016056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015510 WO2018203468A1 (ja) 2017-05-01 2018-04-13 磁気記録媒体

Country Status (4)

Country Link
US (1) US11217277B2 (ja)
JP (1) JP7207298B2 (ja)
DE (1) DE112018002308T5 (ja)
WO (1) WO2018203468A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087497A (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
WO2022070966A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070965A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070963A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070964A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
DE112021000640T5 (de) 2020-01-21 2022-11-17 Sony Group Corporation Magnetisches aufzeichnungsmedium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199105A1 (ja) * 2017-04-28 2018-11-01 ソニー株式会社 磁気記録媒体
JP6750740B2 (ja) * 2018-03-30 2020-09-02 ソニー株式会社 磁気記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311418A (ja) * 1988-01-14 1989-12-15 Showa Denko Kk 垂直磁気記録用磁性粒子およびその製造方法
JPH05314457A (ja) * 1992-05-13 1993-11-26 Tdk Corp 磁気記録媒体およびその製造方法
JP2014154178A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
WO2016092744A1 (ja) * 2014-12-12 2016-06-16 ソニー株式会社 磁性粉末およびその製造方法、ならびに磁気記録媒体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543921B2 (ja) 1973-06-12 1979-02-28
US5358660A (en) * 1988-01-14 1994-10-25 Showa Denko Kabushiki Kaisha Magnetic particles for perpendicular magnetic recording
JPH0827886B2 (ja) * 1989-08-14 1996-03-21 富士通株式会社 磁気テープ装置
JP4687136B2 (ja) 2005-02-18 2011-05-25 戸田工業株式会社 スピネル型フェリ磁性粒子の製造方法
JP4673735B2 (ja) * 2005-12-09 2011-04-20 日立マクセル株式会社 磁気記録媒体及びその製造方法
JP5013505B2 (ja) 2006-03-31 2012-08-29 国立大学法人 東京大学 磁性材料
JP5637362B2 (ja) * 2009-07-30 2014-12-10 富士フイルム株式会社 磁性粉末の製造方法
JP6318540B2 (ja) * 2013-10-22 2018-05-09 ソニー株式会社 磁気記録媒体
JP5966064B1 (ja) 2014-09-24 2016-08-10 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
CN110383379A (zh) * 2017-11-08 2019-10-25 索尼公司 磁记录介质
JP7029319B2 (ja) * 2018-03-13 2022-03-03 マクセル株式会社 熱アシスト記録用塗布型磁気記録媒体及びそれを用いた熱アシスト磁気記録装置と熱アシスト磁気記録方法
JP6610822B1 (ja) * 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610821B1 (ja) * 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610823B1 (ja) * 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610824B1 (ja) * 2019-04-05 2019-11-27 ソニー株式会社 カートリッジおよびカートリッジメモリ
JP6590104B1 (ja) * 2019-04-26 2019-10-16 ソニー株式会社 磁気記録媒体
JP6590103B1 (ja) * 2019-04-26 2019-10-16 ソニー株式会社 磁気記録媒体
JP6590102B1 (ja) * 2019-04-26 2019-10-16 ソニー株式会社 磁気記録カートリッジ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311418A (ja) * 1988-01-14 1989-12-15 Showa Denko Kk 垂直磁気記録用磁性粒子およびその製造方法
JPH05314457A (ja) * 1992-05-13 1993-11-26 Tdk Corp 磁気記録媒体およびその製造方法
JP2014154178A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
WO2016092744A1 (ja) * 2014-12-12 2016-06-16 ソニー株式会社 磁性粉末およびその製造方法、ならびに磁気記録媒体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087497A (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
WO2020110768A1 (ja) * 2018-11-30 2020-06-04 キヤノン株式会社 磁気記録媒体とその製造方法
DE112021000640T5 (de) 2020-01-21 2022-11-17 Sony Group Corporation Magnetisches aufzeichnungsmedium
WO2022070965A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070963A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070964A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022070966A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
US11842756B2 (en) 2020-09-30 2023-12-12 Fujifilm Corporation Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device
JP7406648B2 (ja) 2020-09-30 2023-12-27 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7406647B2 (ja) 2020-09-30 2023-12-27 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
US11894032B2 (en) 2020-09-30 2024-02-06 Fujifilm Corporation Magnetic recording medium having characterized vertical SFD, magnetic tape cartridge, and magnetic recording reproducing device
JP7441963B2 (ja) 2020-09-30 2024-03-01 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7441964B2 (ja) 2020-09-30 2024-03-01 富士フイルム株式会社 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Also Published As

Publication number Publication date
JP7207298B2 (ja) 2023-01-18
US11217277B2 (en) 2022-01-04
DE112018002308T5 (de) 2020-01-16
US20200066302A1 (en) 2020-02-27
JPWO2018203468A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7147751B2 (ja) 磁気記録媒体
US11031034B2 (en) Magnetic recording medium having a recording layer including epsilon-iron oxide
JP6725074B2 (ja) 磁気記録媒体およびカートリッジ
WO2018203468A1 (ja) 磁気記録媒体
JP6604412B2 (ja) 磁気記録媒体
WO2019159466A1 (ja) 磁気記録媒体
JP6565933B2 (ja) 磁性粉末およびその製造方法、ならびに磁気記録媒体
US20200126588A1 (en) Magnetic recording medium
JP7135866B2 (ja) 磁気記録媒体
JP2023171786A (ja) 磁気記録媒体
JP7247858B2 (ja) 磁気記録媒体
JP2021103607A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515691

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18793852

Country of ref document: EP

Kind code of ref document: A1