CN101375398B - 纳米线隧穿晶体管 - Google Patents

纳米线隧穿晶体管 Download PDF

Info

Publication number
CN101375398B
CN101375398B CN2007800034256A CN200780003425A CN101375398B CN 101375398 B CN101375398 B CN 101375398B CN 2007800034256 A CN2007800034256 A CN 2007800034256A CN 200780003425 A CN200780003425 A CN 200780003425A CN 101375398 B CN101375398 B CN 101375398B
Authority
CN
China
Prior art keywords
barrier
nano wire
region
transistor
transistor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800034256A
Other languages
English (en)
Other versions
CN101375398A (zh
Inventor
弗雷德·胡尔克斯
普拉巴特·阿加瓦尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101375398A publication Critical patent/CN101375398A/zh
Application granted granted Critical
Publication of CN101375398B publication Critical patent/CN101375398B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种晶体管,其包括纳米线(22,22’),该纳米线(22,22’)具有被本征区或低掺杂区(26,28)分隔的源极(24)和漏极(29)。在本征区或低掺杂区(26,28)和源极(24)及漏极(29)中的一个的交界面处形成势垒。在该势垒的附近提供栅极电极(32),从而,通过将适当的电压施加至栅极电极(32)可调制该势垒的高度。

Description

纳米线隧穿晶体管
技术领域
本发明涉及一种纳米线隧穿晶体管,尤其涉及一种根据权利要求1所述的纳米线隧穿晶体管。 
背景技术
随着金属氧化物半导体场效应晶体管(MOSFET)的沟道长度进入纳米时代,短沟道效应变得越来越显著。因此,需要对纳米级的MOSFET进行有效的沟道控制以获得良好的器件性能。因此,开发了硅纳米线,硅纳米线能实现多栅极、“全环栅极”或“环绕”栅极晶体管。 
已经开发了作为可能的未来晶体管器件选择的垂直外延半导体纳米线器件。在已经检验的许多器件中,研究最广泛的是“环绕”栅极器件。“环绕”栅极器件在纳米线周围具有环形的栅极电极,以控制纳米线内部的电特性。 
通过气液固(VLS)技术,可以生长多种半导体材料(SiGe、ZnO、GaAs、InAs等)的单晶纳米线。 
VLS技术还能生长纵向异质结构纳米线(LOHN)。LOHN结构包括本质上为晶体材料的一段,其与组分不同的材料的至少另一段相邻接,在这两段之间形成了结。LOHN结构不仅仅限于两个邻接的段,而是能够包括多个组分不同的材料。术语“组分不同”包括了以下可能性: 
a)具有不同的化学成分(本征或掺杂)的材料,以及 
b)具有不同结晶方向的材料,例如相同材料,但是具有不同的晶体取向。 
当纵向观看时,纳米线异质结构可包括组分不同的材料,诸如具有不同材料的交替或周期段或其中至少两段为不同材料的多分段的纳米线的情况。
然而,具有纳米级尺寸的器件具有很多明显的缺点。尤其是: 
1,预计激活区中的杂质掺杂的波动较大且不可避免。 
2,器件的跨导取决于栅极长度。在纳米场效应晶体管器件中,只有采用相当技术难度才能制造非常小的栅极长度。 
在1992年提出了一种较少依赖掺杂浓度和沟道长度的横向MOSFET器件概念,R.Hattori、A.Nakae和J.Shirafuji在Jpn.J.Appl.Phys.,vol.31,p.L1467,1992中对这种概念进行了描述。这种器件采用金属源极和漏极区。可通过施加到栅极电极上的栅极电压来调制这些区之间的肖特基势垒。 
尽管已经取得了一些进展,但是仍然需要对晶体管进行改进。 
发明内容
本发明提出了一种晶体管,其包括纳米线,该纳米线具有被本征区或低掺杂区分隔的源极和漏极。在本征区或低掺杂区和源极及漏极中的一个的交界面处形成势垒。在势垒的附近提供栅极电极,从而通过向栅极电极施加适当的电压能够调制势垒的有效高度和/或宽度。 
在本发明晶体管的有利实施例中,所述纳米线还具有势垒区,所述势垒区位于源极和漏极之间的本征区或低掺杂区的内部,在势垒区和本征区或低掺杂区的交界面处形成肖特基势垒。 
根据本发明,势垒区可以是高掺杂的半导体材料。必须对势垒区的材料进行选择,使其对邻近的低掺杂或本征半导体区形成窄势垒。这种材料的例子是具有适当的电子亲和性以保证晶体管正确操作的各种金属和高掺杂半导体区。 
在本发明晶体管的实际实施例中,形成势垒区的半导体材料是砷化铟,而邻近的本征区或低掺杂区是由硅或砷化镓制成的。 
在另一实施例中,势垒是由金属制成的。在这种情况下,势垒区的交界面处的势垒通常被称为肖特基势垒。 
优选地,可在半导体衬底上生长纳米线。 
在本发明的有利改进中,纳米线具有形成晶体管源极和漏极的高掺杂末端部分。 
在本发明晶体管的一个实际实施例中,纳米线的外表面由绝缘层覆盖。在这种情况下,优选的是在绝缘层上沉积金属层来形成栅极电极。在特定实施例中,绝缘层是对栅极电极形成肖特基势垒的电介质层或宽带隙半导体。在一个特定的实施例中,对栅极电极形成肖特基势垒的宽带隙半导体包含δ掺杂层。 
附图说明
在阅读结合附图的以下描述后,将更好地理解本发明,以及其他特定的特性和优点将变得明显。采用相同的标号来表示相似的或相应的元素。其中: 
图1是现有技术中已知的横向肖特基源极-漏极MOSFET晶体管的示意结构; 
图2a到2c示出了图1所示的晶体管在被施加不同的偏置电压时的电子能带结构; 
图3是已知的肖特基隧穿晶体管的示意图; 
图4是根据本发明的第一实施例的纳米线晶体管的示意结构及其能带结构; 
图5a到5h是制造图4的纳米线晶体管结构的一系列工艺步骤; 
图6是根据本发明的第二实施例的纳米线晶体管的示意结构;以及 
图7a和7b是制造图6的纳米线晶体管的一系列工艺步骤。 
具体实施方式
图1示出了R.Hattori、A.Nakae和J.Shirafuji在Appl.Phys.的日本刊物,vol.31(1992),p.L1467到L1469中描述的隧穿效应晶体管。该已知的晶体管是横向晶体管结构,其采用肖特基势垒结的内部场发射。该晶体管(整体上用标号1来表示)是在传统的p型硅衬底2上制造的。通过传统的磷或砷离子注入,在衬底的顶面实现高n型掺杂沟道层3。通过掩模步骤来横向限定沟道层3。通过另外的掩模步 骤,在沟道层3上生长硅化钯(PdSi)来沉积源极4和漏极6。由氧化硅(SiO2)构成的绝缘层7将源极4和漏极6分隔,在氧化硅上沉积金属栅8。 
图2a示出了图1所示的结构在源极4和漏极6之间没有施加偏置电压并且栅极电压为零时的能带结构。通常,费米能级EF是穿过晶体管结构的整个能带图的直线。在源极4和沟道层3之间存在交界面11。在漏极6和沟道层3之间存在交界面12。在交界面11,12处形成肖特基势垒。在图2a中肖特基势垒的高度被表示为eФ。图2b示出了在源极4和漏极6之间施加偏置电压以及没有施加栅极电压时的能带结构。源极4和沟道3之间的肖特基势垒阻止了电子从源极4流向漏极6。 
最后,图2c示出了具有施加的源极-漏极偏置电压和正的栅极电压的晶体管1的能带图。可以看出,源极4和沟道3之间的肖特基势垒变得更薄,从而电子e-能从源极4,穿过肖特基势垒,流经沟道3的导带,进入漏极6。因此,图2c所示的状态被表示为ON状态,而图2b所示的状态被表示为OFF状态。以此方式,栅极电压对从源极4流到漏极6的电流进行控制。 
图3示出了在IEEE Electron Device letters,Vol.15,No.10,1994,page 412中所述的肖特基隧穿晶体管。在这种隧穿晶体管中,电子能穿过在积累层17和栅极8之间形成的非常薄的肖特基势垒。与图1所示的晶体管相反,这种隧穿晶体管仅包含单个肖特基势垒。 
图4以截面图形式示出了根据本发明的晶体管的示意结构。该晶体管整体上用标号21来表示。晶体管21包括纳米线22,该纳米线是直接生长在衬底23上的并且被实现为纵向异质结构。本发明涉及一种纳米线结构,其直径小于大约100nm,优选为在大约5nm到大约50nm的范围内,其长度在大约50nm到大约200μm的范围内。邻接衬底23的纳米线22包括高n型掺杂硅,其形成了晶体管21的源极24。在远离衬底23的轴向上,纳米线22随本征区或低掺杂区26延伸,该本征区或低掺杂区26将源极和势垒区27分隔开。势垒区27由金属材料制成。在该实施例中,这种材料是硅化钴(CoSi2)。但 是在其他实施例中,还可以采用与硅纳米线22兼容的其他金属材料或类似砷化铟的具有小带隙的高掺杂半导体。另外,在远离衬底23的轴向上,纵向纳米线22异质结构再次随第二本征区或低掺杂区28延伸,从而势垒区27被夹在第一和第二本征区或低掺杂区26、28之间。纳米线22以形成晶体管21的漏极29的高n型掺杂硅区结束。纳米线22的周边是由电绝缘的电介质层31覆盖的。在电介质层31的外表面上,沉积了金属栅极层32。栅极层32是由例如铝制成的。然而,铝仅是一个示例,还可以采用其他金属层。在漏极29上存在欧姆接触33。 
类似于结合图1所述的横向晶体管结构,在势垒区27和本征区或低掺杂层26、28之间形成肖特基势垒。在没有在源极24和漏极29之间施加偏置电压以及没有施加栅极电压的情况下,肖特基势垒阻止电子从源极24流到漏极29。施加到栅极32的栅极电压能调制肖特基势垒的高度。当施加源极-漏极偏置电压以及栅极电压降低了肖特基势垒时,则电流从源极24流到漏极29。在图4的右手侧,示意地呈现了晶体管21的电子结构。在势垒区27和本征区或低掺杂区26、28之间的交界面处形成了肖特基势垒。 
在另一实施例中,电介质层31由宽带隙半导体层(例如Al1-xGaxAs)代替,该半导体层在栅极电极的界面形成了肖特基势垒。在该实施例的可选变型中,宽带隙半导体层可以包括或可以不包括δ掺杂层(在图4中未示出)。δ掺杂层增加了纳米线22内部的载流子浓度,而不会在纳米线内部引入额外的杂质。 
该电流是由肖特基势垒上的热电子发射电流和穿过肖特基势垒的隧穿电流组成的。总电流按指数规律地取决于能被栅极电压调制的肖特基势垒的有效高度和宽度。以此方式,可以获得晶体管作用。可以清楚地看出,有效栅极长度是由势垒区的厚度限定的,因此能够非常地薄。从而,栅极电容能被制造的非常小,并且该晶体管适于在高频工作。换句话说:由于栅极的长度不是被传统的掩模技术限定的,而是被势垒区27(是外延生长的)的厚度限定的,因此根据本发明的晶体管的栅极长度能够远远小于传统晶体管结构的栅极长度。 
注意,出于完整性的目的,术语“肖特基势垒”通常用于金属-半导体交界面。因此,如果势垒区27是由高掺杂低带隙半导体(例如InAs)组成的,则通过更通用的势垒将其与本征区或低掺杂区分隔开。 
还可以从图4获得晶体管结构21的尺寸。晶体管结构在垂直于硅衬底23的表面的方向上的总长度是105nm。纳米线22的直径约为30nm,并且其周边被厚度为1nm的电绝缘电介质层31覆盖。被电介质层覆盖的纳米线的总直径因此为32nm。在纳米线的纵向上的栅极电极32的长度为45nm,而势垒区27在纵向上的厚度仅为5nm。然而,应该注意的是,这些尺寸仅仅被作为示例呈现,而不应该被理解为限制本发明的范围。 
还要注意,在本发明的另一实施例中,本征区或低掺杂区26、28是由砷化锗(GaAs)而不是由硅(Si)制成的。 
在以下描述中,以及参照图5a到5h,提出了制造图4所示的晶体管21的一个可行的工艺步骤顺序。注意,所述的工艺方法仅仅是一个示范性的方法,并且所属领域的技术人员可根据要制造的器件的规格参数而从所公开的工艺方法想出很多变化。 
制造过程以标准的n型硅衬底23开始,通过注入使该衬底成为高n型掺杂。该掺杂浓度的数量级是10+19cm-3,该掺杂浓度是通过注入砷(As)或磷(P)离子来获得的。可将商业可获得的注入机用于该步骤。 
通过标准的光刻,限定包含前驱金属层的催化剂区,该前驱金属层用作生长催化剂34。催化剂34被用于半导体纳米线的生长。众所周知,由金或铁对含硅气体进行催化分解能形成长的纳米线。这种技术通常被称为气液固(VLS)机制。包含金属和硅的液态纳米液滴位于正在生长的线的尖端。遗憾的是,金和铁在硅中具有很大的扩散系数并且产生很深的电子能级,这对最终器件的电性能是有害的。因此,每当需要金属层时,在半导体加工技术中更加优选金属硅化物。对于本发明,采用了硅化镍和硅化钴,但是,接下来,为了简单起见,在不限制本发明范围的情况下,描述了基于钴的工艺。 
根据所提出的方法,通过化学气相沉积(CVD)在商业可获得的硅衬底上沉积钴层。CoCl4气体被引入反应器中的H2氛围中。CoCl4 的分压是0.06帕斯卡,总反应器压强是670帕斯卡。在硅衬底的表面上,CoCl4与衬底硅发生反应,形成了CoSi2。衬底的沉积温度被选择在600到700℃的范围中。在接下来的退火步骤中,在大约900℃的高温,完成硅化钴的形成。为了在硅化钴上生长硅纳米线,衬底被暴露给反应器的氛围,该反应器温度大约为650℃,其中2.7千帕的氢氛围中含有分压为70帕斯卡的SiH2Cl2。在这些条件下,在硅化钴上生长硅纳米线。 
如果希望将纳米线生长成为硅/锗异质结构,则利用激光在炉子里从固态靶中蒸发锗。激光束加热放置在炉子内部的锗靶的表面,直到锗原子被蒸发出来。然后,蒸发出来的锗原子并入纳米线。根据生长条件,可将纳米线生长成为轴向Si/Ge异质结构,即纳米线的成分在其轴向上变化。只要在硅化钴和纳米线之间的交界面处优选地产生反应分解,就保持一维的生长。类似地,从Ge靶蒸发出来的Ge原子也被并入硅化钴和纳米线之间的交界面处的正在生长的纳米线中。通过交替地开启和关闭硅和锗的供应源,可以在纳米线的轴向上生长出具有Si/Ge异质结构的纳米线。 
通过将砷化三氢(AsH3)或三氢化磷(PH3)增加到进入的气流中,纳米线成为n型掺杂的。掺杂浓度是由砷化三氢或三氢化磷气体的分压确定的。 
通过适当地选择生长参数,可以生长出图5a所示的异质结构。在这种情况下的势垒区27是由高n掺杂的Ge形成的。在其他实施例中,势垒区27是由InAs或能从气相被生长成纳米线的其他小带隙半导体组成的。 
注意,术语“异质结构”在上下文中意味着纳米线具有类似硅和锗的不同材料、具有不同掺杂类型的例如硅(n型掺杂硅和p型掺杂硅)的相同材料的组分,以及最后,在纳米线的轴向上或径向上具有不同晶向的类似硅的相同材料。从高的多数载流子迁移率的意义来说,为例如纳米线的表面的调制掺杂的纳米线的径向异质结构是非常 有利的。 
当完成纳米线22的生长时,该结构被氧化硅(SiO2)层36覆盖(图5b)。然后在SiO2层36上沉积例如铝的金属层37(图5c)。在下一步骤中,除了纳米线22的顶部,金属层37被厚的高n掺杂的多晶硅层38覆盖(图5d)。通过适当的湿法刻蚀,将未被多晶硅层覆盖的金属层37刻蚀掉(图5e)。然后沉积另一SiO2层39(图5f)。在平面化步骤(图5g)之后,制造漏极29的欧姆接触33。以传统方式,通过接触多晶硅层,可以制成形成栅极电极的到金属层38的接触。通过在多晶硅层和氧化硅层38,39中开窗口,以及通过进行与高n掺杂衬底23的接触,来接触源极24。 
在另一实施例中,用金属层来代替多晶硅层。而且,可用类似宽带隙半导体的其他材料来代替形成电介质层36的氧化硅,以在栅极电极38的交界面处形成肖特基势垒。在宽带隙半导体的生长过程中,可引入δ掺杂层。 
在图6中,图示说明了包括纳米线22’的本发明晶体管21’的可选实施例。其不包括势垒区,仅仅在漏极29和本征区或低掺杂区26之间形成一个肖特基势垒。以如对图4所示的晶体管的描述的类似方式对漏极和本征区或低掺杂区26之间的肖特基势垒进行调制。图4所示的晶体管21关于源极24和漏极29是对称的,即交换源极和漏极电势仅仅使源极-漏极电流反向,而其大小保持不变。与此相反,晶体管21’是非对称的,这是因为其仅含有一个肖特基二极管。 
以与纳米线22相应的方式,通过利用生长催化剂34的VLS生长工艺来生长纳米线22’(图7a)。主要的差别是在纳米线22’中不生长势垒。因此,该结构是被电介质层36覆盖的。在电介质层36的表面上沉积多晶硅层37(图7a)。在平面化步骤(图7b)之后,进行与源极24、漏极29和栅极32的接触(图6)。可选地,可用宽带隙半导体材料来代替电介质层36,如上述已经描述的一样,宽带隙半导体材料可被提供δ掺杂层。 

Claims (8)

1.一种晶体管,其包括纳米线(22,22’),该纳米线(22,22’)具有被本征区或低掺杂区(26,28)分隔的源极(24)和漏极(29),其中在本征区或低掺杂区(26,28)和源极(24)及漏极(29)中的一个的交界面处形成势垒,其中在势垒的附近提供栅极电极(32),从而通过向栅极电极(32)施加适当的电压能够调制势垒的有效高度和/或宽度,
所述纳米线还具有势垒区(27),所述势垒区(27)位于所述源极(24)和漏极(29)之间的本征区或低掺杂区(26,28)的内部,在势垒区(27)和本征区或低掺杂区(26,28)的交界面处形成肖特基势垒。
2.根据权利要求1所述的晶体管,其中所述势垒区(27)是用金属制成的。
3.根据权利要求1所述的晶体管,其中在半导体衬底(23)上生长所述纳米线(22)。
4.根据权利要求1所述的晶体管,其中,所述所述纳米线(22)具有形成所述晶体管的源极(24)和漏极(29)的高掺杂末端部分。
5.根据权利要求2所述的晶体管,其中,所述纳米线(22)的外表面被绝缘层(31)覆盖。
6.根据权利要求1所述的晶体管,其中在所述绝缘层(31)的表面上沉积了形成栅极电极(32)的金属层(37)。
7.根据权利要求5所述的晶体管,其中所述绝缘层(31)是电介质层或对所述栅极电极(32)形成肖特基势垒的宽带隙半导体。
8.根据权利要求7所述的晶体管,其中对所述栅极电极(32)形成肖特基势垒的宽带隙半导体包含δ掺杂层。
CN2007800034256A 2006-01-25 2007-01-24 纳米线隧穿晶体管 Expired - Fee Related CN101375398B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06100816 2006-01-25
EP06100816.5 2006-01-25
PCT/IB2007/050241 WO2007086009A1 (en) 2006-01-25 2007-01-24 Nanowire tunneling transistor

Publications (2)

Publication Number Publication Date
CN101375398A CN101375398A (zh) 2009-02-25
CN101375398B true CN101375398B (zh) 2011-12-28

Family

ID=38007344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800034256A Expired - Fee Related CN101375398B (zh) 2006-01-25 2007-01-24 纳米线隧穿晶体管

Country Status (8)

Country Link
US (1) US7791108B2 (zh)
EP (1) EP1979946B1 (zh)
JP (1) JP2009524924A (zh)
KR (1) KR20080096789A (zh)
CN (1) CN101375398B (zh)
AT (1) ATE529894T1 (zh)
TW (1) TW200739905A (zh)
WO (1) WO2007086009A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375380B (zh) * 2006-01-25 2010-12-22 Nxp股份有限公司 具有势垒的隧道晶体管
US20080093693A1 (en) * 2006-10-20 2008-04-24 Kamins Theodore I Nanowire sensor with variant selectively interactive segments
US20110012090A1 (en) * 2007-12-07 2011-01-20 Agency For Science, Technology And Research Silicon-germanium nanowire structure and a method of forming the same
EP2148374A1 (en) * 2008-07-23 2010-01-27 University College Cork-National University of Ireland, Cork A tunnel nanowire transistor
US8114787B2 (en) * 2009-02-19 2012-02-14 Empire Technology Development Llc Integrated circuit nanowires
KR20120003463A (ko) * 2009-03-25 2012-01-10 글로 에이비 쇼트키 장치
US8569900B2 (en) * 2009-07-20 2013-10-29 Hewlett-Packard Development Company, L.P. Nanowire sensor with angled segments that are differently functionalized
US9159565B2 (en) * 2009-08-20 2015-10-13 Globalfoundries Singapore Pte. Ltd. Integrated circuit system with band to band tunneling and method of manufacture thereof
US20110087430A1 (en) 2009-10-14 2011-04-14 International Business Machines Corporation Determining travel routes by using auction-based location preferences
TW201236154A (en) * 2010-12-22 2012-09-01 Ibm Semiconductor device
JP2013038336A (ja) * 2011-08-10 2013-02-21 Toshiba Corp 半導体装置
US9368502B2 (en) * 2011-10-17 2016-06-14 GlogalFoundries, Inc. Replacement gate multigate transistor for embedded DRAM
CN107039515B (zh) 2011-12-19 2021-05-25 英特尔公司 高电压场效应晶体管
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
US9054215B2 (en) * 2012-12-18 2015-06-09 Intel Corporation Patterning of vertical nanowire transistor channel and gate with directed self assembly
US8890119B2 (en) * 2012-12-18 2014-11-18 Intel Corporation Vertical nanowire transistor with axially engineered semiconductor and gate metallization
US8896101B2 (en) * 2012-12-21 2014-11-25 Intel Corporation Nonplanar III-N transistors with compositionally graded semiconductor channels
US8975123B2 (en) 2013-07-09 2015-03-10 International Business Machines Corporation Tunnel field-effect transistors with a gate-swing broken-gap heterostructure
US9306063B2 (en) 2013-09-27 2016-04-05 Intel Corporation Vertical transistor devices for embedded memory and logic technologies
JP6146265B2 (ja) * 2013-11-07 2017-06-14 ソニー株式会社 顕微鏡システムおよびオートフォーカス方法
US9318447B2 (en) 2014-07-18 2016-04-19 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of forming vertical structure
CN107075043B (zh) * 2014-09-24 2019-11-15 罗姆化学有限责任公司 具有改善的性能分布的抗冲改性的成型组合物
US10121858B2 (en) * 2015-10-30 2018-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Elongated semiconductor structure planarization
US11018254B2 (en) * 2016-03-31 2021-05-25 International Business Machines Corporation Fabrication of vertical fin transistor with multiple threshold voltages
CN108369960A (zh) 2016-04-22 2018-08-03 华为技术有限公司 隧穿场效应晶体管及其制造方法
KR102519665B1 (ko) 2016-08-05 2023-04-07 삼성전자주식회사 집적회로 장치 및 그 제조 방법
KR101857873B1 (ko) 2016-09-26 2018-06-19 고려대학교 산학협력단 로직 반도체 소자
CN108695382B (zh) 2017-04-07 2021-07-06 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
JP7124059B2 (ja) * 2017-08-31 2022-08-23 マイクロン テクノロジー,インク. 半導体デバイス、トランジスタ、および金属酸化物半導体デバイスを接触させるための関連する方法
EP3676878A4 (en) 2017-08-31 2020-11-04 Micron Technology, Inc. SEMICONDUCTOR DEVICES, HYBRID TRANSISTORS AND RELATED PROCESSES
CN109326650B (zh) * 2018-10-10 2022-04-19 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备
KR20220101861A (ko) * 2021-01-12 2022-07-19 에스케이하이닉스 주식회사 수직형 트랜지스터 및 그 제조 방법
CN112968053B (zh) * 2021-02-01 2022-09-09 深圳大学 场效应晶体管及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643661A (zh) * 2002-03-28 2005-07-20 皇家飞利浦电子股份有限公司 纳米线的制造方法和电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7180107B2 (en) * 2004-05-25 2007-02-20 International Business Machines Corporation Method of fabricating a tunneling nanotube field effect transistor
GB0413310D0 (en) 2004-06-15 2004-07-14 Koninkl Philips Electronics Nv Nanowire semiconductor device
US7714386B2 (en) * 2006-06-09 2010-05-11 Northrop Grumman Systems Corporation Carbon nanotube field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643661A (zh) * 2002-03-28 2005-07-20 皇家飞利浦电子股份有限公司 纳米线的制造方法和电子装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
RAMGOPAL RAO V等.Simulation, fabrication and characterization ofhighperformance planar-doped-barrier sub 100 nmchannelMOSFETs.ELECTRON DEVICES MEETING, 1997. TECHNICAL DIGEST..1997,811-814.
RAMGOPAL RAO V等.Simulation, fabrication and characterization ofhighperformance planar-doped-barrier sub 100 nmchannelMOSFETs.ELECTRON DEVICES MEETING, 1997. TECHNICAL DIGEST..1997,811-814. *
RAO V R 等.Low Temperature-High Pressure Grown ThinGateDielectricsfor MOS Applications.MICROELECTRONIC ENGINEERING48 1-4.1999,48(1-4),223-226.
RAO V R 等.Low Temperature-High Pressure Grown ThinGateDielectricsfor MOS Applications.MICROELECTRONIC ENGINEERING48 1-4.1999,48(1-4),223-226. *
SANG-MO KOO 等.Silicon nanowires as enhancement-mode Schottkybarrierfield-effect transistors.NANOTECHNOLOGY16 9.2005,16(9),1482-1485.
SANG-MO KOO 等.Silicon nanowires as enhancement-mode Schottkybarrierfield-effect transistors.NANOTECHNOLOGY16 9.2005,16(9),1482-1485. *
Volker Schmidt 等.Realization of a Silicon Nanowire Vertical Surround-GateField-Effect Transistor.small2 1.2005,2(1),85-88.
Volker Schmidt 等.Realization of a Silicon Nanowire Vertical Surround-GateField-Effect Transistor.small2 1.2005,2(1),85-88. *

Also Published As

Publication number Publication date
ATE529894T1 (de) 2011-11-15
US7791108B2 (en) 2010-09-07
JP2009524924A (ja) 2009-07-02
US20090008631A1 (en) 2009-01-08
EP1979946B1 (en) 2011-10-19
TW200739905A (en) 2007-10-16
WO2007086009A1 (en) 2007-08-02
EP1979946A1 (en) 2008-10-15
CN101375398A (zh) 2009-02-25
KR20080096789A (ko) 2008-11-03

Similar Documents

Publication Publication Date Title
CN101375398B (zh) 纳米线隧穿晶体管
CN101375380B (zh) 具有势垒的隧道晶体管
US8754403B2 (en) Epitaxial source/drain contacts self-aligned to gates for deposited FET channels
US10622489B2 (en) Vertical tunnel FET with self-aligned heterojunction
CN103985745B (zh) 抑制输出非线性开启的隧穿场效应晶体管及制备方法
JPWO2007148653A1 (ja) 電界効果トランジスタ
US10096711B2 (en) Silicon-containing, tunneling field-effect transistor including III-N source
JP2011198938A (ja) トランジスタ
Allen et al. Scanning photocurrent microscopy analysis of Si nanowire field-effect transistors fabricated by surface etching of the channel
CN105742345A (zh) 一种隧穿场效应晶体管及其制备方法
CN107039511A (zh) 外延再生长异质结构纳米线的横向隧道场效应晶体管
KR20150089742A (ko) 튜너블 배리어를 구비한 그래핀 트랜지스터
KR100434534B1 (ko) 쇼트키 터널 장벽을 이용한 단일 전자 트랜지스터 및 그 제조방법
CN104810405B (zh) 一种隧穿场效应晶体管及制备方法
CN104425269B (zh) 鳍式场效应晶体管及其形成方法
Sørensen et al. Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy
KR101545393B1 (ko) 게르마늄 캡에 의한 SiGe 표면 패시베이션
Cutaia et al. Fabrication and analysis of vertical p-type InAs-Si nanowire Tunnel FETs
CN106898642B (zh) 超陡平均亚阈值摆幅鳍式隧穿场效应晶体管及其制备方法
US20120267700A1 (en) Tunneling current amplification transistor
Yang et al. Electrical transport of bottom-up grown single-crystal Si1− xGex nanowire
CN104241375B (zh) 一种跨骑型异质结共振隧穿场效应晶体管及其制备方法
CN104752497B (zh) 一种超陡平均亚阈摆幅隧穿场效应晶体管及制备方法
CN108369954A (zh) 隧穿场效应晶体管及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111228

Termination date: 20150124

EXPY Termination of patent right or utility model