CN101371383B - 锂离子二次电池用负极材料及其制造方法 - Google Patents

锂离子二次电池用负极材料及其制造方法 Download PDF

Info

Publication number
CN101371383B
CN101371383B CN2007800024305A CN200780002430A CN101371383B CN 101371383 B CN101371383 B CN 101371383B CN 2007800024305 A CN2007800024305 A CN 2007800024305A CN 200780002430 A CN200780002430 A CN 200780002430A CN 101371383 B CN101371383 B CN 101371383B
Authority
CN
China
Prior art keywords
carbon black
pitch
powdered graphite
graphite particle
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800024305A
Other languages
English (en)
Other versions
CN101371383A (zh
Inventor
山本优威
堂园充昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Publication of CN101371383A publication Critical patent/CN101371383A/zh
Application granted granted Critical
Publication of CN101371383B publication Critical patent/CN101371383B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种锂离子二次电池用负极材料,其有效地利用炭黑优异的倍率特性确保高可逆容量和高初始效率;本发明还公开了制造该锂离子二次电池用负极材料的方法。该负极材料由包括石墨粉末颗粒、炭黑和沥青碳化物的复合颗粒组成;复合颗粒的平均粒径(D50)为8~15μm且比表面积为15m2/g或以下。制造该负极材料的方法包括将100重量份混合粉末和30~120重量份沥青混合,混练该混合物后,在非氧化气氛中1000℃或更高的温度下锻烧该混练物将其碳化,或进一步将该混练物石墨化;所述混合粉末是通过以1∶1.5~3.0的重量比将石墨粉末颗粒与炭黑混合而制得,该石墨粉末颗粒的平均粒径(D50)为3~10μm,标准偏差值为0.2μm或以下;所述沥青除去了游离碳或含有小于1%的喹啉不溶物。

Description

锂离子二次电池用负极材料及其制造方法
技术领域
本发明涉及允许大电流充/放电的锂离子二次电池用负极材料及其制造方法。
背景技术
采用有机锂盐电解质的锂离子二次电池(即非水性电解质二次电池)轻质且能量密度高。因此,人们期待锂离子二次电池成为小型的便携式仪器用电源和蓄电池等。锂金属被用作锂离子二次电池用负极材料。放电时,锂金属在电解质中溶解生成锂离子,充电时,锂离子在负极表面沉积成锂金属。使锂离子平滑地沉积以恢复其原始状态是很困难的(锂离子倾向于沉积成枝状晶体)。由于枝状晶体的活性非常高,电解质会分解,电池性能下降,由此使电池的充/放电循环寿命缩短。另外,枝状晶体的生长可能会触及正极,导致电极短路。
为了克服上述困难,提出使用碳材料代替锂金属。由于碳材料不会使锂离子在存贮或释放期间沉积成枝状晶体,碳材料适于作为负极材料。特别是,石墨材料具有高锂离子存贮/释放能力,使存贮/释放反应得以迅速地发生。因此,石墨材料能够确保高充电/放电效率,理论容量高达372mAh/g,且由于充/放电期间电位几乎与锂相等,因而能够生产高压电池。
高度石墨化且六边形碳构造发达的石墨材料的容量大,具有90%或以上的高初始效率。另一方面,放电时石墨材料具有平坦的电压曲线,因此难以测定放电终点。而且,由于使用石墨材料时难以在短时间内放出大量电流,倍率特性(rate profile)等会变差。
为了解决上述问题,尝试了各种方法,例如改善碳材料如石墨材料(例如用石墨化程度低的碳质物质覆盖高度石墨化的石墨材料的表面获得的两层结构碳材料)的特性,或使高度石墨化的石墨材料与石墨化程度低的碳质物质组合。
例如,JP-A-4-368778公开了一种二次电池用碳负极,其通过用无定形碳覆盖与电解质接触的碳(活性材料)的表面制得,其中无定形碳具有湍层(tobrostratic)石墨结构,其C-轴方向的平均层间距为0.337~0.360nm,氩激光拉曼光谱中1360cm-1∶1580cm-1的峰强度比为0.4∶1.0。
JP-A-6-267531公开了一种具有多层结构的电极材料,其通过以下工序制得:将满足下述条件(1)的碳质物质(A)的颗粒和满足下述条件(2)的有机化合物(B)的颗粒混合,锻烧该混合物使该有机化合物(B)碳化,由此使满足下述条件(3)的碳质物质(C)覆盖碳质物质(A)的颗粒。
(1)用广角X-射线衍射测定d002为3.37埃或以下,真密度为2.10g/cm3或以上,且体积平均粒径为5μm或以上。
(2)体积平均粒径小于碳质物质(A)的体积平均粒径。
(3)用广角X-射线衍射测定d002为3.38埃或以上,通过拉曼光谱分析使用氩离子激光灯测定峰PA存在于1580~1620cm-1,峰PB存在于1350~1370cm-1,峰PB的强度IB与峰PA的强度IA的比率R(IB/IA)为0.2或以上。
JP-A-9-073903公开了一种锂二次电池用负极材料,其中锂载体由复合碳质粉末构成,所述复合碳质粉末通过将重量为高结晶性石墨粉末5~30wt%的树脂质煤颗粒与高结晶性石墨粉末混合而制得,树脂质煤颗粒中分散有DBP吸收率为100ml/100g或以上的炭黑。由于此负极材料组合使用了非石墨化碳物质和高度石墨化的物质,在六边形石墨层间形成了锂簇(lithium cluster),使锂不可逆地消耗,因而增加了损失,所述非石墨化碳物质通过将树脂碳化物与炭黑复合制得。结果,初始放电效率下降。
JP-A-2001-332263公开了一种锂离子二次电池,其中负极含有表面增强拉曼光谱中比率Gs(Hsg/Hsd)为10或以下的石墨。JP-A-2001-332263还公开了制造碳负极材料的方法,其包括以下步骤:混合碳基材料,以将该混合物石墨化;该碳基材料由至少中间相碳微球或具有覆盖材料的碳材料构成,所述中间相碳微球在大于等于成形温度且小于等于2000℃下生长,所述覆盖材料由至少一种不含碳的沥青、喹啉不溶物含量为2%或以上的沥青和聚合物构成。然而,JP-A-2001-332263没有利用炭黑的高倍率特性,这是由于该碳基材料是在高温下制造的。
发明内容
随着普遍使用锂离子二次电池的便携式电话和笔记本型个人电脑等性能上的改进,需要更优异的倍率特性。对于混合动力车和电动车所用的锂离子二次电池,改善充电方面(charging-side)的倍率特性是很重要的。
本发明的目的在于解决上述涉及锂离子二次电池用负极材料的问题。本发明的一个目的在于提供一种锂离子二次电池用负极材料,其有效地利用炭黑优异的倍率特性使具有高可逆容量和高初始效率,本发明的目的还在于提供制造该负极材料的方法。
实现上述目的的本发明的锂离子二次电池用负极材料包括含有石墨粉末颗粒、炭黑和沥青碳化物的复合颗粒,该复合颗粒的平均粒径(D50)为8~15μm且比表面积为15m2/g或以下。
本发明的锂离子二次电池用负极材料的制造方法包括将100重量份混合粉末和30~120重量份沥青混合,混练该混合物后,在非氧化气氛中1000℃或更高的温度下锻烧该混练物将其碳化,或进一步将该混练物石墨化;所述混合粉末是通过以1∶1.5~3.0的重量比将石墨粉末颗粒和炭黑混合而制得,该石墨粉末颗粒的平均粒径(D50)为3~10μm,平均粒径的标准偏差值为0.2μm或以下;所述沥青除去了游离碳或含有小于1%的喹啉不溶物。
优选所述石墨粉末颗粒C-轴方向的微晶大小Lc(004)为100nm或以上,(002)层间距d(002)小于0.336nm。优选所述炭黑的算术平均粒径为50~200nm,DBP吸收率为40~155ml/100g。
本发明的锂离子二次电池用负极材料能够提供可逆容量为250mAh/g或以上、初始效率为80%或以上,具有足够的倍率特性,以及能够大电流充/放电的锂离子二次电池。
锂离子二次电池用负极材料能够通过以下工序制造:按特定比例将混合粉末与沥青混合,混练该混合物后,锻烧该混练物将其碳化,或进一步将该混练物石墨化;所述混合粉末通过以特定重量比混合具有特定颗粒特性的石墨粉末颗粒和炭黑而制得。
术语“可逆容量”意指能够可逆地充/放的电量。术语“初始效率”意指恒定电流下充/放电期间,放电容量与初始充电容量的比率。初始效率(%)定义为“(初始放电容量)/(初始充电容量)×100”。术语“倍率特性”意指表明大电流放电的持久性的指标。该倍率特性由一个数值表示,该数值通过将大电流放电的电量除以小电流放电的电量而获得。当倍率特性不足时,负极材料不能用于要求大电流的用途。
附图说明
图1为显示复合颗粒结构的示意图。
具体实施方式
本发明的锂离子二次电池用负极材料包括复合颗粒,其通过用炭黑和沥青碳化物覆盖石墨粉末颗粒(芯材)制得。图1示出复合颗粒的结构。在图1中,数字1表示石墨粉末颗粒(芯材)。石墨粉末颗粒1用炭黑粉末颗粒2和沥青碳化物(或石墨化沥青)3覆盖,形成具有复合结构的颗粒。
本发明的特征在于复合颗粒的平均粒径(D50)为8~15μm且比表面积为15m2/g或以下。如果复合颗粒的平均粒径(D50)小于8μm,难以增加负极材料的密度。因此,可提供到具有特定体积的电池容器的复合颗粒的量会减少。如果复合颗粒的平均粒径(D50)大于15μm,复合颗粒与电解质之间的界面(即锂离子进入或离开复合颗粒的区域)会减少,倍率特性会因此而下降。如果复合颗粒的比表面积大于15m2/g,复合颗粒与电解质的反应性会增加,初始效率会因此而下降。
通过形成采用上述复合颗粒的锂离子二次电池用的负极材料提供有效地利用炭黑优异的倍率特性使具有高逆容量(大于250mAh/g)、优异的初始效率(80%或更大)的锂离子二次电池。
采用上述复合颗粒的锂离子二次电池用的负极材料可通过以下工序制造:按特定比例将混合粉末与沥青混合,充分混练该混合物后,锻烧该混练物将其碳化,或进一步将该混练物石墨化;所述混合粉末通过以特定重量比混合具有特定颗粒特性的石墨粉末颗粒和炭黑而制得。
作为石墨粉末颗粒,使用平均粒径(D50)为3~10μm,平均粒径(D50)的标准偏差值为0.2μm或以下的人造或天然石墨粉末颗粒。通过使用合适的研磨器(如振动球磨、喷射研磨机、轧辊磨床或冲击式粉碎机)研磨石墨,以及调节研磨产品的晶体大小调节石墨粉末颗粒的颗粒特性。
石墨粉末颗粒用作形成本发明的负极材料的复合颗粒的芯。如果石墨粉末颗粒的平均粒径(D50)小于3μm,复合颗粒的平均粒径会减少。结果,由于比表面积增加,导致损失增加。如果石墨粉末颗粒的平均粒径(D50)大于10μm,复合颗粒的平均粒径会增加。结果,得不到足够的倍率特性。石墨粉末颗粒的最大粒径优选为20μm或以下,石墨粉末颗粒的最小粒径优选为1μm或更大。如果平均粒径的标准偏差值为0.2μm,算术粒度分布中微粉末的百分比会增加。结果,比表面积和损失增加。
优选石墨粉末颗粒C-轴方向的微晶大小Lc(004)为100nm或以上,(002)层间距d(002)小于0.336nm。结果,获得可逆容量大于250mAh/g的锂二次电池。
优选炭黑具有的算术平均粒径为50~200nm,DBP吸收率为40~155ml/100g。如果炭黑的算术平均粒径小于50nm,复合颗粒的比表面积会增加。结果,复合颗粒与电解质的反应性会增加,初始效率会因此而增加。如果炭黑的算术平均粒径大于200nm倍率特性会变差。如果炭黑的DBP吸收率小于40ml/100g,倍率特性的改进会不足。如果炭黑的DBP吸收率大于155ml/100g,所需用于制造复合颗粒的沥青的量会增加。这样使难以采用本发明定义的沥青量制造复合颗粒。
以重量比1∶1.5~3.0混合石墨粉末颗粒和炭黑以制备混合粉末。如果炭黑的重量比小于1.5,制造如图1所示的复合颗粒时覆盖石墨粉末颗粒(芯材)的炭黑量变得不足。结果,石墨粉末颗粒的表面会不足分地覆盖,倍率特性的改进会因此而变得不足。
如果炭黑的重量比大于3.0,覆盖石墨粉末颗粒的炭黑量会增加,石墨颗粒的可逆容量会因此而变差。结果,锂离子二次电池用负极材料的可逆容量会减少。而且,由于炭黑使比表面积增加,充/放电期间的损失会增加,初始效率会因此而减少。
100重量份混合粉末与30~120重量份沥青混合,所述沥青除去了游离碳或其含有小于1%的喹啉不溶物。混练该混合物后,在非氧化气氛中1000℃或更高的温度下锻烧该混练物将其碳化,或进一步将其石墨化制得复合颗粒。
沥青的实例包括通过对煤焦油、乙烯焦油或原油等进行高温分解获得的焦油;通过对柏油(asphalt)等进行蒸馏、热缩聚、萃取和化学缩聚等获得的沥青;以及通过对木材等进行干蒸馏获得的沥青。采用自上述沥青中除去游离碳而获得的沥青,或选用上述沥青中喹啉不溶物含量小于1%的沥青。如果沥青仍然残存游离碳或沥青中喹啉不溶物含量大于1%,由于石墨化时沥青的结晶度低,从而不能获得可逆量为250mAh/g或更高的锂二次电池。
基于100wt%混合粉末,混合30~120wt%除去了游离碳的沥青或喹啉不溶物含量小于1%的沥青。如果沥青含量小于30wt%,石墨粉末颗粒表面可能没有被沥青充分覆盖。结果,由于没有充分减少复合颗粒的比表面积,充/放电期间的损失会增加,初始效率因此而减少。
如果沥青含量大于120wt%,石墨粉末颗粒可能被沥青过度覆盖。结果,由于石墨颗粒的可逆容量变差,锂离子二次电池用负极材料的可逆容量会减少。而且,由于沥青使比表面积增加,充/放电期间的损失会增加,使初始效率因此而减少。
使用合适的混合器如捏和器将混合粉末和沥青充分混练。直接地或在石墨化后将混练物置于容器中,在非氧化气氛中1000℃或更高的温度下锻烧该混练物将其碳化,或在2500℃或更高的温度下加热将其进一步石墨化制得如图1所示的复合颗粒,其中混合了石墨粉末颗粒、炭黑和沥青石碳化物。
使用研磨器(如振动球磨、喷射研磨机、轧辊磨床或冲击式粉碎机)研磨由此制得的复合颗粒。使用分级器将研磨产品分级,使平均粒径(D50)的晶体粒度调节为8~15μm。
使用以下方法测量上述特性:
(1)平均粒径
使用激光衍射粒度分布测量仪(“SALD 2000”,Shimadzu公司出品)测量平均粒径。基于体积,用中间直径(μm)表示平均粒径。
(2)比表面积
通过BET方法(吸附气体:氮气)使用测量仪“GEMINI 2375”(Shimadzu公司出品)测量比表面积。
(3)算术平均粒径
使用超声波分散器,在28kHz频率下将样品分散在氯仿中30秒。使分散样品固定在碳基板上。使用直接放大倍率(direct magnification)为10,000,总放大倍率(total magnification)为100,000的电子显微镜拍摄样品。测量照片中任意的千个颗粒的直径。从间距为14nm的柱状图计算出算术平均粒径。
(4)DBP吸收率
根据JIS K 6217(“橡胶炭黑的基本特性的测试方法,Testing methods forfundamental properties of carbon black for rubber”)测量DBP吸收率。
(5)(002)层间距d(002)和C-轴方向的微晶大小Lc(004)
利用石墨单色器单色化的CuKα射线,通过反射式衍射仪方法(reflectingdiffractometer method)得到广角X-射线衍射曲线。通过Gakushin方法测定(002)层间距d(002)和C-轴方向的微晶大小Lc(004)。
由此制得如图1所示的复合颗粒,其中石墨粉末颗粒(芯)用炭黑和沥青碳化物覆盖;还制得锂离子二次电池用负极材料,其含有该复合颗粒,其中复合颗粒的平均粒径(D50)为8~15μm且比表面积为15m2/g或以下。
实施例
以下将通过实施例和比较例详细说明本发明。以下实施例用于显示本发明的一个具体实施方式,其不应被视为对本发明的限制。
实施例1~12和比较例1~8
使用人造石墨粉末、天然石墨粉末或石墨化嵌镶状焦炭(比较例8)作为石墨颗粒原料。使用气流研磨器(air-stream grinder,“Counter Jet Mill 200AFG”,Hosokawa Micron公司出品)研磨石墨颗粒原料。利用气流分级器(“200TTSP”,Hosokawa Micron公司出品)进行分级除去直径小于1μm的颗粒,制得具有不同平均粒径D50和不同标准偏差值的石墨粉末颗粒。使用具有不同算术平均粒径和不同DBP吸收率的炉黑作为炭黑。使用喹啉不溶物含量小于1%的沥青作为沥青。表1示出原料的特性。
表1
*1标准偏差值
*2算术平均粒径
*3喹啉不溶物含量,检出限:0.1
*4石墨化嵌镶状焦炭
*5没有使用炭黑
石墨粉末颗粒、炭黑和沥青按表2所示的重量比混合,使用捏合器将其充分混练。在非氧化气氛中1000℃或1600℃下锻烧该混练物将其碳化,利用旋风磨碎机(cyclone mill)将其粉碎,利用分级器将其分级,调节晶体的粒度以获得具有不同平均粒径和比表面积的复合颗粒。
表2
Figure S2007800024305D00091
*1炭黑/石墨粉末颗粒重量比
使用由此制得的复合颗粒作为负极材料组装电池。使用以下方法评价电池特性。结果示于表3。
可逆容量和初始效率
使用锂金属作为负电极和参比电极,使用每种石墨颗粒作为正电极,形成三电极测试电池。恒定地将锂参比电极充电(将锂离子嵌入石墨中)直到0.002V后,锂参比电极恒定地放电(将锂离子自石墨中取出)直到1.2V。放电量与初始充电量的比测定为初始效率。然后在相同条件下重复放电/充电过程。从5次循环中的放电(将锂离子自石墨中取出)量计算出每1g石墨的可逆容量。
快速放电效率(倍率)
制得纽扣电池。恒定电流(放电电流:2.0C)下,5小时内电池从满充电状态完全放电时的放电容量测定为100%。电池30分钟内完全放电(放电电流:2.0C)时的放电容量以与电池5小时内完全放电时的放电容量的比率来计算。
表3
在本发明实施例1~12中,获得了高可逆容量、高初始效率和高倍率特性。在比较例1~5中,没有使用炭黑,尽管获得了高可逆容量但倍率特性变差。在比较例2中,由于炭黑的重量比高,比表面积因此而增加。结果,初始效率减少。而且,由于炭黑的重量比高,使可逆容量减少。
在比较例3和7中,由于沥青量小,复合颗粒表面没有被充分覆盖。结果,由于比表面积增加导致初始效率减少。在比较例7中,石墨颗粒的粒径小,标准偏差值大,由于微粉末的影响增加,导致初始效率大幅度减少。在比较例4中,由于石墨化程度低的沥青基组分占复合颗粒的比率增加,可逆容量因此而减少。
在比较例6中,由于沥青量小,复合颗粒表面没有被充分覆盖。结果,由于比表面积增加导致初始效率减少。而且,由于沥青中含有来自QI组分的石墨化程度低的组分的比率增加,可逆容量因此而减少。
在比较例8中,由于使用了石墨化程度低(即层间距和微晶大小都小)的石墨化嵌镶状焦炭,可逆容量因此而减少。

Claims (4)

1.锂离子二次电池用负极材料,其包括含有石墨粉末颗粒、炭黑和沥青碳化物的复合颗粒,所述复合颗粒的平均粒径D50为8~15μm,比表面积为15m2/g或以下;石墨粉末颗粒与炭黑的重量比为1∶1.5~3.0,石墨粉末颗粒的平均粒径D50为3~10μm,其标准偏差值为0.2μm或以下,同时石墨粉末颗粒用炭黑和沥青碳化物覆盖。
2.锂离子二次电池用负极材料的制造方法,其包括将100重量份混合粉末和30~120重量份沥青混合,混练该混合物后,在非氧化气氛中于1000℃或更高的温度下锻烧该混练物将其碳化,或进一步将该混练物石墨化;所述混合粉末是通过以1∶1.5~3.0的重量比将石墨粉末颗粒与炭黑混合而制得,该石墨粉末颗粒的平均粒径D50为3~10μm,其标准偏差值为0.2μm或以下;所述沥青除去了游离碳或含有小于1%的喹啉不溶物。
3.根据权利要求2所述的方法,其中所述石墨粉末颗粒C-轴方向的微晶大小Lc(004)为100nm或以上,(002)层间距d(002)小于0.336nm。
4.根据权利要求2或3所述的方法,其中所述炭黑的算术平均粒径为50~200nm,DBP吸收率为40~155ml/100g。
CN2007800024305A 2006-01-30 2007-01-26 锂离子二次电池用负极材料及其制造方法 Expired - Fee Related CN101371383B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006019973 2006-01-30
JP019973/2006 2006-01-30
PCT/JP2007/051742 WO2007086603A1 (ja) 2006-01-30 2007-01-26 リチウムイオン二次電池用負極材とその製造方法

Publications (2)

Publication Number Publication Date
CN101371383A CN101371383A (zh) 2009-02-18
CN101371383B true CN101371383B (zh) 2010-11-17

Family

ID=38309376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800024305A Expired - Fee Related CN101371383B (zh) 2006-01-30 2007-01-26 锂离子二次电池用负极材料及其制造方法

Country Status (7)

Country Link
US (1) US20090004569A1 (zh)
EP (1) EP1981104B1 (zh)
JP (1) JP4844943B2 (zh)
KR (1) KR101298306B1 (zh)
CN (1) CN101371383B (zh)
TW (1) TW200746523A (zh)
WO (1) WO2007086603A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816586B1 (ko) * 2006-01-27 2008-03-24 엘에스전선 주식회사 2차 전지용 음극재, 이를 이용한 2차 전지, 2차 전지용음극재 제조방법 및 이를 이용한 2차 전지
US8153303B2 (en) * 2006-11-10 2012-04-10 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and method for producing the same
JP5924801B2 (ja) * 2007-08-22 2016-05-25 日本カーボン株式会社 リチウムイオン二次電池用負極活物質の製造方法
EP2430685B1 (en) * 2009-04-27 2017-07-26 Bathium Canada Inc. Electrodes and electrode material for lithium electrochemical cells
JP2011060467A (ja) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd リチウムイオン二次電池用負極材料およびその製造方法
CN102208601B (zh) * 2010-03-31 2013-08-28 比亚迪股份有限公司 一种负极材料及其制备方法
JP2012216545A (ja) * 2011-03-30 2012-11-08 Mitsubishi Chemicals Corp 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
WO2012133700A1 (ja) * 2011-03-30 2012-10-04 三菱化学株式会社 非水系二次電池用炭素材、及び負極、並びに、非水系二次電池
US8951673B2 (en) 2011-06-22 2015-02-10 The Board Of Trustees Of The Leland Stanford Junior University High rate, long cycle life battery electrode materials with an open framework structure
US9029015B2 (en) 2011-08-31 2015-05-12 The Board Of Trustees Of The Leland Stanford Junior University High rate, long cycle life electrochemical energy storage devices
US9577245B2 (en) 2011-06-30 2017-02-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell containing negative active material including scaly graphite particles and graphite particles coated with amorphous carbon particles and amorphous carbon layer and method of manufacturing the same
JP2013219023A (ja) * 2012-03-16 2013-10-24 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
CN104335398B (zh) * 2012-06-04 2017-07-25 Nec能源元器件株式会社 锂离子二次电池的负电极、锂离子二次电池的负电极浆料和锂离子二次电池
CN102779988B (zh) * 2012-08-06 2016-04-27 常州大学 一种锂离子电池复合负极材料镀膜的改性方法
JP6252034B2 (ja) 2012-08-23 2017-12-27 三菱ケミカル株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
CN105765680B (zh) 2013-11-29 2019-03-01 旭化成株式会社 锂离子电容器
JP6394987B2 (ja) * 2015-08-06 2018-09-26 トヨタ自動車株式会社 非水電解液二次電池
JP6655352B2 (ja) * 2015-10-29 2020-02-26 イビデン株式会社 蓄電デバイスの負極用炭素材料の製造方法及び蓄電デバイスの負極用炭素材料
CN106025220A (zh) * 2016-06-24 2016-10-12 中天储能科技有限公司 一种基于氧化硅的硅氧碳复合材料及其制备方法和用途
CN106025219A (zh) * 2016-06-24 2016-10-12 中天储能科技有限公司 一种球形硅氧碳负极复合材料及其制备方法和用途
KR102632403B1 (ko) * 2016-12-29 2024-02-05 오씨아이 주식회사 리튬 이차전지용 인조흑연 및 이의 제조방법
JP7113248B2 (ja) 2017-03-22 2022-08-05 パナソニックIpマネジメント株式会社 二次電池用負極およびその製造方法並びに二次電池
EP3579325B1 (en) * 2018-06-07 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN114097118A (zh) * 2019-07-17 2022-02-25 菲利浦66公司 适用于电池的电极颗粒
US20220085634A1 (en) * 2020-09-15 2022-03-17 Panasonic Intellectual Property Management Co., Ltd. Method of controlling secondary battery and battery system
JP7439743B2 (ja) 2020-12-16 2024-02-28 株式会社豊田自動織機 フォークリフトのフォーク
KR20230099193A (ko) 2021-12-27 2023-07-04 주식회사 피앤비소재 양쪽성 고밀도 알칼리금속이온 2차 전지
KR20230127051A (ko) 2022-02-24 2023-08-31 주식회사 피앤비소재 알칼리금속-저결정성 탄소 복합체를 포함하는 알칼리금속 이차전지
CN114744178A (zh) * 2022-04-29 2022-07-12 中国有色桂林矿产地质研究院有限公司 表面具有碳包覆和偏磷酸铝复合修饰层的纳米硅-石墨复合负极材料及其制备方法
KR20230160614A (ko) 2022-05-17 2023-11-24 주식회사 피앤비소재 소프트 전해질을 포함하는 이차전지
KR20230169728A (ko) 2022-06-09 2023-12-18 주식회사 피앤비소재 박리흑연-리튬 복합체를 포함하는 이차전지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662728B1 (en) * 1993-12-29 1998-04-29 TDK Corporation Lithium secondary cell
CA2238286C (en) * 1995-11-14 2004-02-17 Osaka Gas Company Limited Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JPH09147839A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極の製造法
WO1998005083A1 (fr) * 1996-07-30 1998-02-05 Sony Corporation Cellule electrolytique secondaire non aqueuse
AU3850199A (en) * 1998-05-20 1999-12-06 Osaka Gas Co., Ltd. Nonaqueous secondary cell and method for controlling the same
JP2000294283A (ja) * 1999-04-02 2000-10-20 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP2001076723A (ja) * 1999-09-02 2001-03-23 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP4818498B2 (ja) * 2000-07-25 2011-11-16 シャープ株式会社 非水電解質二次電池
US20030008195A1 (en) * 2001-06-28 2003-01-09 Chiem Bien Hung Fluid diffusion layers for fuel cells
JP4666876B2 (ja) * 2001-09-26 2011-04-06 Jfeケミカル株式会社 複合黒鉛質材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP4064351B2 (ja) * 2002-01-25 2008-03-19 東洋炭素株式会社 リチウムイオン二次電池用負極材
JP2003346804A (ja) * 2002-05-28 2003-12-05 Sony Corp 負極材料、非水電解質電池及び負極材料の製造方法
JP4191456B2 (ja) * 2002-11-19 2008-12-03 日立マクセル株式会社 非水二次電池用負極、非水二次電池、非水二次電池用負極の製造方法および非水二次電池を用いた電子機器
JP4252847B2 (ja) * 2003-06-09 2009-04-08 パナソニック株式会社 リチウムイオン二次電池
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
CN100547830C (zh) * 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
JP4552475B2 (ja) * 2004-03-24 2010-09-29 Tdk株式会社 電極用複合粒子、電極及び電気化学素子、並びに、電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特开2000-294283A 2000.10.20
JP特开2001-76723A 2001.03.23
JP特开2002-42786A 2002.02.08
JP特开2003-173778A 2003.06.20
JP特开平9-147839A 1997.06.06

Also Published As

Publication number Publication date
EP1981104A4 (en) 2009-11-11
EP1981104A1 (en) 2008-10-15
WO2007086603A1 (ja) 2007-08-02
JPWO2007086603A1 (ja) 2009-06-25
TWI380497B (zh) 2012-12-21
EP1981104B1 (en) 2011-10-12
CN101371383A (zh) 2009-02-18
JP4844943B2 (ja) 2011-12-28
TW200746523A (en) 2007-12-16
US20090004569A1 (en) 2009-01-01
KR101298306B1 (ko) 2013-08-20
KR20080087823A (ko) 2008-10-01

Similar Documents

Publication Publication Date Title
CN101371383B (zh) 锂离子二次电池用负极材料及其制造方法
US11276858B2 (en) Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
CN101529624B (zh) 用于锂离子二次电池的负极材料及其制造方法
KR101347638B1 (ko) 흑연 재료, 전지 전극용 탄소 재료, 및 전지
KR101441712B1 (ko) 비수계 2차전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2차전지
EP2650955B1 (en) Negative electrode material for lithium ion secondary batteries, and method for producing same
EP3319154A1 (en) Negative electrode material for lithium-ion batteries and use therefor
KR20110033134A (ko) 비수계 2 차 전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2 차 전지
KR102240777B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
KR20090104129A (ko) 탄소 재료 및 그 제조 방법
KR102176343B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
JP2011060467A (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP5212682B2 (ja) リチウムイオン二次電池用負極材の製造方法
JP2011029197A (ja) リチウム二次電池用負極炭素材料、その製造法、リチウム二次電池用負極及びリチウム二次電池
US20230084916A1 (en) Negative electrode material for lithium-ion secondary battery and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2021166359A1 (ja) リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
JP4721038B2 (ja) リチウム二次電池用負極炭素材料、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP6924917B1 (ja) リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
WO2022219836A1 (ja) リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
TW202341552A (zh) 粒子、粒子之製造方法、負極之製造方法及二次電池之製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101117

Termination date: 20180126

CF01 Termination of patent right due to non-payment of annual fee