CN101305116B - 晶体生长的系统和方法 - Google Patents

晶体生长的系统和方法 Download PDF

Info

Publication number
CN101305116B
CN101305116B CN200680039620XA CN200680039620A CN101305116B CN 101305116 B CN101305116 B CN 101305116B CN 200680039620X A CN200680039620X A CN 200680039620XA CN 200680039620 A CN200680039620 A CN 200680039620A CN 101305116 B CN101305116 B CN 101305116B
Authority
CN
China
Prior art keywords
crucible
crystal
heating unit
supporting structure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680039620XA
Other languages
English (en)
Other versions
CN101305116A (zh
Inventor
F·施米德
C·P·哈塔克
D·B·乔伊斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gtat Co
GT Crystal Systems LLC
Original Assignee
Crystal Systems Inc USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Systems Inc USA filed Critical Crystal Systems Inc USA
Publication of CN101305116A publication Critical patent/CN101305116A/zh
Application granted granted Critical
Publication of CN101305116B publication Critical patent/CN101305116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/90Apparatus characterized by composition or treatment thereof, e.g. surface finish, surface coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1016Apparatus with means for treating single-crystal [e.g., heat treating]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1028Crucibleless apparatus having means providing movement of discrete droplets or solid particles to thin-film precursor [e.g., Verneuil method]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1072Seed pulling including details of means providing product movement [e.g., shaft guides, servo means]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

为了减少向坩埚底部的热量输入和独立于热量输入来控制热量吸取,当晶体生长时可以在加热元件和坩埚之间以受控制的速度升高护罩。其它的步骤可以包括移动坩埚,但是该过程可以避免必须移动坩埚。温度梯度通过仅仅屏蔽加热元件的一部分而产生;例如,圆柱形的元件底部可以被屏蔽以使传递到坩埚底部的热量比到顶部的少,从而导致坩埚内的稳定的温度梯度。

Description

晶体生长的系统和方法
技术领域
这里描述的系统和方法涉及用于生产晶体的系统和方法。
背景技术
在生长状态下以单晶体形式生长的材料典型地被称为晶块,而多晶体形式的材料被称为多晶体结晶块。有时,晶块和结晶块共同被称为晶体。在这篇文件中,术语“晶体”至少共同包括晶块和结晶块,并且在某些情况下,晶块和结晶块可以用于分别表示单晶体材料和多晶体材料之间的区别。
对于某些系统中的晶体的生长,使例如蓝宝石或硅的晶体从保持熔化材料的坩锅的底部向顶部生长是所期望的。因此,熔炉的底部应当比顶部冷,优选地具有使对流最小化和避免组分过冷的稳定的温度梯度。坩锅中的材料由于竖直梯度而可以从底部向顶部固化。该过程有助于获得定向固化,从而获得偏析系数小于1(偏析系数大于1的杂质很少出现这样的情况)的杂质向熔化物的排斥。因此该过程产生更纯净的固体。在硅的情况下,铁的偏析系数是10-6,耐火的金属甚至小于10-9;因此,定向固化可以是有效的净化过程。对于与产生挥发性产品的熔化物的反应,气体可以通过熔化物向上排斥,所以气体可以逸出。
发明内容
为了减少向坩埚底部的热量输入和控制独立于热量输入的热量吸取,当晶体生长时可以在加热元件和坩埚之间以受控速度升高护罩,优选地不需移动坩埚,但是该过程可以用可移动的坩埚进行。温度梯度通过仅仅屏蔽加热元件的一部分而产生;例如,圆柱形元件的底部可以被屏蔽以使从加热元件传递到坩埚底部的热量比传递到顶部的少,从而促进坩埚内的装料从底部向上受控制的固化并在坩埚内产生稳定的温度梯度。其它的特征和优点通过下面的描述、附图和权利要求书将变得清楚。
附图说明
图1(a)-1(c)是用于生产多晶体结晶块的熔炉的剖视图。
图2(a)-2(b)是用于生产单晶体晶块的熔炉的剖视图。
具体实施方式
晶体在坩埚内的生长由热量流动驱动。在这里描述的系统和方法中,热量输入和热量吸取都被控制。热量输入通过热量从加热元件到坩埚内的内含物的传递而得到控制,这取决于加热元件和坩埚的外侧的温度差别。从熔炉的热区的热量吸取可以通过增加熔炉底部的热量吸取而控制,例如通过降低隔热以增加热量损失来降低温度,或通过采用热交换器以吸取热量来在热区内产生温度梯度。
降低坩埚底部内的温度的一个以前已知的方法是将坩埚移动到热区外,并移动到冷却器区域内,例如通过使坩埚降低到热区外。在高温时和对于重的坩埚,移动坩埚可能是困难的,并且在固体/液体界面处会导致振动和扰动。
为了减少向坩埚底部的热量输入和独立于热量输入控制热量吸取,当晶体生长时可以在加热元件和坩埚之间以受控制的速度升高护罩。其它的步骤可以包括移动坩埚,但是该过程可以避免必须移动坩埚。对装料的热量输入通过仅仅屏蔽加热元件的一部分而减少;例如,圆柱形元件的底部可以被屏蔽以使从加热元件传递的热量比向坩埚的底部传递的少,从而促进熔化的装料底部附近的固化,并通过以受控制的速度使热护罩向上移动而以受控制的方式(定向固化)促进固化。
热量吸取可以通过降低隔热或通过采用热交换器而独立于热量输入进行控制,该热交换器目前在Crystal Systems,Inc.的热交换器方法(HEM)中使用。采用HEM方法,不需移动坩埚就减少热量输入,并且独立控制热量吸取。
晶体生长的HEM方法在以下专利中进行了描述:美国专利号3898051,用于例如蓝宝石、锗和第IIII/V族化合物的单晶体;美国专利号4256530,用于硅晶体生长;美国专利号4840699,用于砷化镓晶体生长;和美国专利号3653432。这些方法包括不需移动热区、晶体或坩埚而在晶体生长期间对液体和固体内温度梯度进行独立控制。虽然本说明书主要地集中在HEM方法,但是也可以应用于其中生长从熔化物的底部向顶部发生的其它技术中,例如竖直Bridgman、修正Bridgman、热梯度冷冻(TGF)和热梯度技术(TGT)。
在HEM方法中,设计几乎等温的热区,其中高温热交换器从腔室的底部插入。当装料被熔化时,通过热交换器的最小流量的氦气防止晶种熔化。装料被熔化,晶种通过使熔化物在其熔化温度以上过热而回熔。增加流动通过热交换器的氦气,从而降低了热交换器的温度和/或通过降低熔炉的温度而使晶体生长。在晶体生长循环的大部分时间中,液体内的温度梯度主要地由熔炉温度控制,固体内的温度梯度由热交换器的温度控制。这些温度独立地进行控制;因此,该方法无需移动热区、晶体或坩埚就独立地控制液体和固体内的温度梯度。固体-液体界面被淹没,从而任意机械或热扰动在到达固体-液体界面之前被周围的液体所减弱。使坩埚旋转以使热区内热/冷点效应最小化不是必需的,虽然它可以这样旋转。在晶体生长之后,晶体仍然在热区内,所以熔炉温度可以被降低到材料的熔点以下,并且由氦气流动通过热交换器施加的温度梯度可以通过减少热量流动而减少。在这些情况下,晶体可以在晶体的受控制冷却之前,在原位退火以释放固化应力并减少缺陷密度。
该过程被用于生产大到直径15英寸(38厘米)的大蓝宝石晶体、大到直径8英寸(20厘米)的掺钛的蓝宝石晶体、和大到直径4英寸(10厘米)的砷化镓晶体。当正方形截面的坩埚被用于容纳装料时,即使热区是圆柱形的,正方形截面的晶体也被生产。这已经用硅证明了。
对于各向同性的材料,例如硅,单晶体生长可能不是必需的,并且在某些应用中,具有受控制的粒度和方向性的多晶体结晶块在性能上是相当的。例如,高质量的单晶体硅被期望用于微电子工业的大多数半导体器件,但是对于光电(PV)应用,高质量的多晶体硅可以用于大多数的应用。对于该应用,成本和大量生产是重要的,质量上的微小的妥协是可以忍受的。因此,用于地上应用的PV装置倾向于使用大的多晶体硅结晶块。
参照图1(a),熔炉10包括熔炉隔热件26、和容纳熔化的液体14的坩埚12。坩埚12位于以支撑杆的形式与热交换器18接触的支撑块16(例如,由石墨制成的)上。在坩埚12的周围是一个或多个加热元件20。如这里所示的,常规的管状热交换器用可相对于块16移动的可移动隔热包22代替。该过程可以促进快速的生长。所有的装料可以被熔化,并且坩埚12下面的隔热包22被降低(图1(b)),这样热量从石墨块向腔室的冷却器部件辐射。在这些情况下,可以产生平面的固体-液体界面,并且晶界的方向可以几乎是竖直的。
采用该方法,会产生具有厘米级晶粒、竖直方向晶界且没有碰撞界面的大的多晶体硅结晶块,这些特定会导致产生与采用单晶体硅产生的相当的高效太阳能电池。在该过程中,热量吸取通过坩埚的整个底部发生。当坩埚尺寸增加时,热量吸取区域也增加。
在另一个过程中,在生长循环期间,坩埚也在热区内降低以帮助生长更高的多晶体硅结晶块。在生长完成后,熔炉温度被降低到硅的熔点以下,坩埚和隔热包被移动回到其初始的位置,以在冷却之前实现结晶块的原位退火。这导致以低成本生产出大到69厘米见方的截面、重达300千克的结晶块。该系统可以用于生产300千克或更重的结晶块或晶块。
在热区降低坩埚会促进热量吸取,但是,晶块不会被降低到超过使得固体上的梯度增加而在晶块上施加应力的范围。处于被降低的状态的晶块仍然受到从加热元件传递到晶块的顶部的热量的影响,该热量必须通过热量吸取系统移除。因此,大的温度梯度可以通过高热量输入和热量吸取产生。
图2(a)-(b)中的过程与图1(a)-(c)中的相似。
在图1(a)-1(c)和2(a)-2(b)的两种方法中存在相似之处,主要的区别是生长过程中固体-液体界面的形状、以及图2(a)-(b)可以不包括隔热包或可以是和晶种的尺寸一致的更小的尺寸。对于单晶体生长,实现半球形的外形以允许成核和生长为小晶种。对于多晶体生长,覆盖坩埚的底部的大部分的轻微凸出的几乎平面的生长界面允许大晶粒以几乎竖直的晶界方向形成。
当装料在期望用于多晶体结晶块生长的材料的受控制环境下被熔化后,可移动的隔热包被降低以促进从块和熔化物进行的热量吸取。在单晶体晶块的情况下,通过降低更小的隔热包和/或在没有隔热包时增加通过热交换器的氦气流动来促进热量吸取。
参照图1(c)和2(b),为了在两种情况下维持生长,位于加热元件和坩埚之间的可移动热护罩24可以被向上移动,这样当热护罩在热区中被向上移动时,对装料的热量输入被减少。当升高屏蔽时,热量输入减少了,从而不需显著地更多的热量吸取就可保持合理的生长速度。
坩埚底部的热量吸取可以在屏蔽进行之前、之后或进行中通过降低热交换器温度或通过降低坩埚下面的隔热而增加。热护罩的移动速度可以独立地控制以控制热量输入和从坩埚底部的热量吸取,以获得最有利的晶体生长情况。在这些情况下,可以保持凸出的界面。
因此,液体和固体内的温度梯度被减小,并且更高质量的晶体可以更快的生长速度生产。附加的优点是不需引入附加的应力和导致假成核就可以生长更大直径和更高的结晶块/晶块。
在固化完成后,熔炉温度可以被降低到材料的熔点以下,热护罩可以被降低到其初始的位置,热交换器被关闭或坩埚下面的隔热被升高以移除温度梯度,从而使晶体在原位退火。然后晶体以不会在晶块或结晶块中引入应力的速度被冷却到室温。
除了在图1(a)-1(c)和2(a)-2(b)中所示的部件,该系统还典型地包括多个传感器,并典型地包括控制器,例如基于微处理器的计算机或某种用于控制护罩或隔热包的移动的其它方法。
对某些实施例进行描述之后,应当清楚的是,可以在不背离由所附的权利要求书限定的本发明的范围内作出修改。

Claims (10)

1.一种用于从坩埚内的液体生长晶体的系统,所述系统包括:
从下方支撑坩埚的支撑结构;
相对于支撑结构可移动的热交换器,用于从支撑结构吸取热量;
加热坩埚的至少一个加热元件;
在所述至少一个加热元件和坩埚之间的位置范围上相对于所述至少一个加热元件和坩埚可移动的可移动护罩;
其中,热交换器包括隔热件,所述隔热件可移动离开支撑结构,以便离开支撑结构的移动导致热量从支撑结构损失。
2.如权利要求1所述的系统,还包括用于封闭坩埚和支撑结构的外壳,所述外壳具有位于坩埚下方的地板,并且其中所述坩埚在晶体的生长过程中处于静止位置,所述至少一个加热元件相对于坩埚横向布置,并且所述护罩延伸通过外壳的地板。
3.如权利要求1或2所述的系统,还包括控制器,用于独立地控制热交换器的运动、加热元件的输出、以及可移动护罩的位置。
4.如权利要求3所述的系统,其中,所述控制器使热交换器移动离开支撑结构,并在此之后使可移动护罩移动到所述至少一个加热元件和坩埚之间的位置。
5.如权利要求1或2所述的系统,其中,坩埚保持至少300kg的晶体。
6.一种从坩埚内的液体生长晶体的方法,所述方法包括:
用加热元件加热坩埚;
使用与坩埚热接触的热交换器从坩埚吸取热量;以及
在至少一个加热元件和坩埚之间的位置范围上相对于加热元件和坩埚移动可移动护罩以减少向坩埚的部分提供的热量,所述移动和吸取的步骤导致晶体沿着所期望的方向固化;
其中,从坩埚吸取热量的步骤包括使隔热件移动离开用以从下方支撑坩埚的支撑结构。
7.如权利要求6所述的方法,还包括将坩埚定位在支撑结构上,以使得坩埚在晶体生长过程中不移动。
8.如权利要求6或7所述的方法,还包括独立地控制热交换器的移动、加热元件的输出、以及可移动护罩的位置。
9.如权利要求6或7所述的方法,其中,坩埚被封闭在外壳内,所述外壳具有位于坩埚下方的地板,所述移动的步骤包括使护罩移动通过地板中的一个或多个开口。
10.如权利要求6或7所述的方法,其中,所得到的晶体为至少300kg。
CN200680039620XA 2005-08-25 2006-08-25 晶体生长的系统和方法 Active CN101305116B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/212,027 US7344596B2 (en) 2005-08-25 2005-08-25 System and method for crystal growing
US11/212,027 2005-08-25
PCT/US2006/033203 WO2007025118A2 (en) 2005-08-25 2006-08-25 System and method for crystal growing

Publications (2)

Publication Number Publication Date
CN101305116A CN101305116A (zh) 2008-11-12
CN101305116B true CN101305116B (zh) 2013-05-22

Family

ID=37772427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680039620XA Active CN101305116B (zh) 2005-08-25 2006-08-25 晶体生长的系统和方法

Country Status (7)

Country Link
US (3) US7344596B2 (zh)
EP (1) EP1937876B1 (zh)
JP (1) JP5344919B2 (zh)
CN (1) CN101305116B (zh)
AU (1) AU2006282917B2 (zh)
CA (1) CA2620293C (zh)
WO (1) WO2007025118A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344596B2 (en) * 2005-08-25 2008-03-18 Crystal Systems, Inc. System and method for crystal growing
US20080257254A1 (en) * 2007-04-17 2008-10-23 Dieter Linke Large grain, multi-crystalline semiconductor ingot formation method and system
TW200914371A (en) * 2007-06-01 2009-04-01 Gt Solar Inc Processing of fine silicon powder to produce bulk silicon
TW200928018A (en) * 2007-12-21 2009-07-01 Green Energy Technology Inc Crystal-growing furnace with convectional cooling structure
US20110259262A1 (en) * 2008-06-16 2011-10-27 Gt Solar, Inc. Systems and methods for growing monocrystalline silicon ingots by directional solidification
US20110253033A1 (en) * 2008-10-24 2011-10-20 Advanced Renewableenergy Co. Llc Crystal growing system and method thereof
US20100101387A1 (en) * 2008-10-24 2010-04-29 Kedar Prasad Gupta Crystal growing system and method thereof
US8329133B2 (en) * 2008-11-03 2012-12-11 Gt Crystal Systems, Llc Method and apparatus for refining metallurgical grade silicon to produce solar grade silicon
FR2940327B1 (fr) * 2008-12-19 2011-02-11 Commissariat Energie Atomique Four de fusion-solidification comportant une modulation des echanges thermiques par les parois laterales
KR100902859B1 (ko) * 2009-02-17 2009-06-16 (주) 썸백엔지니어링 태양전지용 실리콘 제조용 캐스팅 장치
DE102009015113A1 (de) * 2009-03-31 2010-10-14 Schott Ag Vorrichtung und Verfahren zur Züchtung von Kristallen
KR101136143B1 (ko) * 2009-09-05 2012-04-17 주식회사 크리스텍 사파이어 단결정 성장방법과 그 장치
US8647433B2 (en) * 2009-12-13 2014-02-11 Axt, Inc. Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
CN101949056B (zh) * 2010-09-25 2013-01-30 王敬 在坩埚侧壁底端设置有保温部件的定向凝固炉
CN101967675B (zh) * 2010-11-01 2014-05-07 王楚雯 制造单晶锭的装置
CN102534805B (zh) * 2010-12-14 2014-08-06 北京天科合达蓝光半导体有限公司 一种碳化硅晶体退火工艺
CN102031556B (zh) * 2010-12-31 2012-05-02 常州天合光能有限公司 一种多晶铸锭晶体的生长工艺
CN102021646A (zh) * 2011-01-07 2011-04-20 管文礼 一种多晶硅晶体生长炉热场结构
JP2014508710A (ja) * 2011-03-15 2014-04-10 ジーティーエイティー・コーポレーション 結晶成長装置のための自動化視覚システム
US9139931B2 (en) * 2011-05-11 2015-09-22 Memc Singapore Pte. Ltd. Directional solidification furnace heat exchanger
CN102644104A (zh) * 2011-06-15 2012-08-22 安阳市凤凰光伏科技有限公司 铸造法生产类似单晶硅锭热场梯度改进装置
CN102286774A (zh) * 2011-06-15 2011-12-21 安阳市凤凰光伏科技有限公司 铸造法生产类似单晶硅锭热场梯度改进装置
TWI432617B (zh) * 2011-07-12 2014-04-01 Sino American Silicon Prod Inc 長晶裝置
CN102304768B (zh) * 2011-07-22 2014-01-22 福建鑫晶精密刚玉科技有限公司 一种晶体生长热场用保温桶
CN102925957B (zh) * 2011-08-12 2015-06-17 昆山中辰矽晶有限公司 长晶装置
KR101345747B1 (ko) * 2011-08-18 2013-12-30 한국화학연구원 반도체 또는 금속산화물 잉곳 제조장치
KR20140059803A (ko) * 2011-09-14 2014-05-16 엠이엠씨 싱가포르 피티이. 엘티디. 이동식 열교환기를 구비한 방향성 응고로
FR2980489B1 (fr) * 2011-09-28 2014-09-19 Ecm Technologies Four de solidification dirigee de cristaux
EP2589687A1 (en) 2011-11-04 2013-05-08 Vesuvius France (S.A.) Crucible and method for the production of a (near ) monocrystalline semiconductor ingot
EP2604728A1 (en) 2011-12-12 2013-06-19 Vesuvius France S.A. Crucible for the production of crystalline semiconductor ingots and process for manufacturing the same
US20130152851A1 (en) * 2011-12-15 2013-06-20 Spx Corporation Bulk Growth Grain Controlled Directional Solidification Device and Method
FR2992976B1 (fr) * 2012-07-04 2014-07-18 Riber Dispositif d'evaporation pour appareil de depot sous vide et appareil de depot sous vide comprenant un tel dispositif d'evaporation
US9273411B2 (en) * 2012-11-02 2016-03-01 Gtat Corporation Growth determination in the solidification of a crystalline material
CN103014858A (zh) * 2013-01-11 2013-04-03 焦作市光源晶电科技有限公司 一种蓝宝石化料工艺
ES2499140B1 (es) * 2013-03-26 2015-08-05 Universidad Autónoma de Madrid Aparato y método para la producción de lingotes de silicio porsolidificación direccional
CN103334154A (zh) * 2013-05-29 2013-10-02 浙江晟辉科技有限公司 一种应用热交换生产多晶硅铸锭的方法
US20150090181A1 (en) * 2013-09-30 2015-04-02 Gt Crystal Systems, Llc Automated heat exchanger alignment
GB201319671D0 (en) * 2013-11-07 2013-12-25 Ebner Ind Ofenbau Controlling a temperature of a crucible inside an oven
CN103741214B (zh) * 2014-01-28 2015-12-30 西安华晶电子技术股份有限公司 一种多晶硅铸锭工艺
CN104195640A (zh) * 2014-08-28 2014-12-10 杭州铸泰科技有限公司 一种用于蓝宝石单晶生长的热场系统
US10658222B2 (en) 2015-01-16 2020-05-19 Lam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
CN107042298B (zh) * 2017-04-17 2019-03-29 涿州新卓立航空精密科技有限公司 静磁致深过冷高充型能力细晶铸造炉及使用方法
US10724796B2 (en) 2018-05-24 2020-07-28 Silfex, Inc Furnace for casting near-net shape (NNS) silicon
US11127572B2 (en) 2018-08-07 2021-09-21 Silfex, Inc. L-shaped plasma confinement ring for plasma chambers
CN109023534B (zh) * 2018-09-25 2019-09-27 天通银厦新材料有限公司 一种蓝宝石晶体生长炉可拆卸式加热装置
CN109252220A (zh) * 2018-12-04 2019-01-22 中国电子科技集团公司第四十六研究所 一种vgf/vb砷化镓单晶炉结构及生长方法
CN111455454A (zh) * 2020-04-28 2020-07-28 天通银厦新材料有限公司 一种600kg蓝宝石晶体泡生法生长工艺
CN111455463A (zh) * 2020-04-28 2020-07-28 天通银厦新材料有限公司 一种大尺寸掺杂蓝宝石晶体的制造方法
CN113061975A (zh) * 2020-06-05 2021-07-02 眉山博雅新材料有限公司 一种用于生长晶体的设备
CN112176401B (zh) * 2020-10-16 2022-05-20 哈尔滨科友半导体产业装备与技术研究院有限公司 一种适用于多尺寸晶体生长的热场设备及方法
CN112831185B (zh) * 2021-02-23 2022-09-20 中北大学 梯度导电-均匀导热双功能网络低反射高吸收电磁屏蔽聚合物复合材料
CN114045553B (zh) * 2021-02-23 2024-08-27 赛维Ldk太阳能高科技(新余)有限公司 铸锭炉、铸锭晶体硅及其制备方法
CN113584586B (zh) * 2021-08-06 2024-04-26 宁夏红日东升新能源材料有限公司 一种多晶硅离心定向凝固提纯方法与装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653432A (en) * 1970-09-01 1972-04-04 Us Army Apparatus and method for unidirectionally solidifying high temperature material
US3898051A (en) * 1973-12-28 1975-08-05 Crystal Syst Crystal growing
FR2352587A1 (fr) 1976-05-25 1977-12-23 Commissariat Energie Atomique Four de fabrication de cristaux et procede de mise en oeuvre
US4108236A (en) * 1977-04-21 1978-08-22 United Technologies Corporation Floating heat insulating baffle for directional solidification apparatus utilizing liquid coolant bath
US4178986A (en) * 1978-03-31 1979-12-18 General Electric Company Furnace for directional solidification casting
US4202400A (en) * 1978-09-22 1980-05-13 General Electric Company Directional solidification furnace
US4190094A (en) * 1978-10-25 1980-02-26 United Technologies Corporation Rate controlled directional solidification method
US4256530A (en) * 1978-12-07 1981-03-17 Crystal Systems Inc. Crystal growing
GB2041236A (en) * 1979-01-18 1980-09-10 Crystal Syst Method and apparatus for growing crystals
DE3107596A1 (de) * 1981-02-27 1982-10-21 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen "verfahren zur herstellung von halbleiterscheiben"
US4409451A (en) * 1981-08-31 1983-10-11 United Technologies Corporation Induction furnace having improved thermal profile
US4770704A (en) * 1987-03-13 1988-09-13 Iowa State University Research Foundation, Inc. Continuous method for manufacturing grain-oriented magnetostrictive bodies
US4840699A (en) * 1987-06-12 1989-06-20 Ghemini Technologies Gallium arsenide crystal growth
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form
US5134261A (en) * 1990-03-30 1992-07-28 The United States Of America As Represented By The Secretary Of The Air Force Apparatus and method for controlling gradients in radio frequency heating
FR2741633B1 (fr) * 1995-11-23 1997-12-19 Commissariat Energie Atomique Four de cristallisation pour materiau a faible conductivite thermique et/ou faible durete
US5863326A (en) * 1996-07-03 1999-01-26 Cermet, Inc. Pressurized skull crucible for crystal growth using the Czochralski technique
DE19730637A1 (de) * 1997-07-17 1999-01-21 Ald Vacuum Techn Gmbh Verfahren zum gerichteten Erstarren einer Metallschmelze und Gießvorrichtung zu seiner Durchführung
JP2000034193A (ja) * 1998-07-16 2000-02-02 Nikon Corp フッ化物単結晶の熱処理方法及び製造方法
JP3964070B2 (ja) 1999-04-08 2007-08-22 三菱マテリアルテクノ株式会社 結晶シリコン製造装置
US6309461B1 (en) * 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
US6276432B1 (en) * 1999-06-10 2001-08-21 Howmet Research Corporation Directional solidification method and apparatus
JP4255578B2 (ja) * 1999-09-01 2009-04-15 コバレントマテリアル株式会社 単結晶引上装置
US20020166503A1 (en) * 2001-03-08 2002-11-14 Hitco Carbon Composites, Inc. Hybrid crucible susceptor
JP2002293527A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 多結晶シリコンの製造方法
US6624390B1 (en) * 2001-07-20 2003-09-23 Cape Simulations, Inc. Substantially-uniform-temperature annealing
US20030234092A1 (en) * 2002-06-20 2003-12-25 Brinegar John R. Directional solidification method and apparatus
JP4272449B2 (ja) * 2003-03-03 2009-06-03 Dowaホールディングス株式会社 単結晶引上方法
KR100588425B1 (ko) * 2003-03-27 2006-06-12 실트로닉 아게 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및 실리콘 반도체 웨이퍼의 제조방법
JP4670224B2 (ja) * 2003-04-01 2011-04-13 株式会社Sumco シリコンウェーハの製造方法
US7344596B2 (en) * 2005-08-25 2008-03-18 Crystal Systems, Inc. System and method for crystal growing

Also Published As

Publication number Publication date
JP2009505935A (ja) 2009-02-12
US7918936B2 (en) 2011-04-05
EP1937876A2 (en) 2008-07-02
WO2007025118A3 (en) 2008-02-14
AU2006282917B2 (en) 2011-11-03
US7344596B2 (en) 2008-03-18
US20110146566A1 (en) 2011-06-23
US20070044707A1 (en) 2007-03-01
EP1937876A4 (en) 2010-07-07
CN101305116A (zh) 2008-11-12
EP1937876B1 (en) 2016-12-28
JP5344919B2 (ja) 2013-11-20
CA2620293A1 (en) 2007-03-01
WO2007025118A2 (en) 2007-03-01
US20080035051A1 (en) 2008-02-14
CA2620293C (en) 2013-11-05
US8177910B2 (en) 2012-05-15
AU2006282917A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
CN101305116B (zh) 晶体生长的系统和方法
US20110259262A1 (en) Systems and methods for growing monocrystalline silicon ingots by directional solidification
US20090280050A1 (en) Apparatus and Methods for Casting Multi-Crystalline Silicon Ingots
US5394825A (en) Method and apparatus for growing shaped crystals
JP4830312B2 (ja) 化合物半導体単結晶とその製造方法
KR20100024675A (ko) 잉곳 제조 장치 및 제조 방법
CN101851782A (zh) 一种次单晶硅铸锭炉的双腔体隔热笼
CN104903496A (zh) 用于改善的连续直拉法的热屏障
CN202054920U (zh) 用于定向凝固法生长单晶硅的装置
JP5728385B2 (ja) 溶融物からのシート製造方法及びシート製造装置
CN102534748B (zh) 制备铸造单晶硅的装置及方法
CN102877125B (zh) 一种多晶铸锭炉及用其生长类单晶硅锭的方法
JP5370394B2 (ja) 化合物半導体単結晶基板
CN104695014A (zh) 一种铸造多晶硅的退火工艺
CN202465942U (zh) 制备铸造单晶硅的装置
CN201695105U (zh) 一种次单晶硅铸锭炉的双腔体隔热笼
Sundaramahalingam et al. Simulation and experimental approach to investigate the annealing effect on mc-Si ingot grown by directional solidification process for PV application
CN201162064Y (zh) 多晶硅制造装置
CN102747412B (zh) 用于定向凝固法生长单晶硅的装置及其使用方法
CN202054926U (zh) 一种多晶硅铸锭炉
US11866848B1 (en) Method and system for liquid encapsulated growth of cadmium zinc telluride crystals
RU2791643C1 (ru) Способ выращивания монокристаллов германия или кремния и устройство для его реализации
Sanmugavel et al. Effect of heater design on the melt crystal interface
CN117166038A (zh) 一种铸锭炉热场结构及提高铸造单晶硅铸锭成品率的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1125141

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1125141

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: GTAT CORPORATION

Free format text: FORMER OWNER: GT CRYSTAL SYSTEMS LLC

Effective date: 20150724

Owner name: GT CRYSTAL SYSTEMS LLC

Free format text: FORMER OWNER: CRYSTAL SYST

Effective date: 20150724

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150724

Address after: New Hampshire

Patentee after: GTAT Co.

Address before: Massachusetts USA

Patentee before: GT CRYSTAL SYSTEMS, LLC

Effective date of registration: 20150724

Address after: Massachusetts USA

Patentee after: GT CRYSTAL SYSTEMS, LLC

Address before: Massachusetts USA

Patentee before: GT Crystal Systems, LLC