CN101120437A - 电介质膜及其形成方法 - Google Patents

电介质膜及其形成方法 Download PDF

Info

Publication number
CN101120437A
CN101120437A CNA2006800031840A CN200680003184A CN101120437A CN 101120437 A CN101120437 A CN 101120437A CN A2006800031840 A CNA2006800031840 A CN A2006800031840A CN 200680003184 A CN200680003184 A CN 200680003184A CN 101120437 A CN101120437 A CN 101120437A
Authority
CN
China
Prior art keywords
nitriability
free radical
mist
dielectric film
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800031840A
Other languages
English (en)
Other versions
CN101120437B (zh
Inventor
大见忠弘
寺本章伸
后藤哲也
河濑和雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of CN101120437A publication Critical patent/CN101120437A/zh
Application granted granted Critical
Publication of CN101120437B publication Critical patent/CN101120437B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种电介质膜,通过使处于Si3≡N结合状态的N以3原子%以上的浓度存在于氧化膜的表面侧上,并以0.1原子%以下的浓度存在于界面侧上,可以同时达到防止B扩散和NBTI耐性劣化的目的。在使用Ar/N2游离基氮化的情况下,难以使处于上述结合状态的N浓度同时满足在表面侧达到3原子%以上,在界面侧达到0.1原子%以下,但通过对Xe/N2、Kr/N2、Ar/NH3、Xe/NH3、Kr/NH3、Ar/N2/H2、Xe/N2/H2、Kr/N2/H2的任意一种气体进行组合使用,可以实现上述的N浓度分布。

Description

电介质膜及其形成方法
技术领域
本发明涉及形成于硅基板上的氧化膜、氮化膜或氮氧化膜的电介质膜及其制造方法,和使用它们的半导体装置及其制造方法。
背景技术
在作为MOS(金属膜电极/硅氧化物电介质膜/硅基板)晶体管的栅绝缘膜的硅氧化物电介质膜(以下称为“硅氧化膜”)中,要求其具有低漏电流特性,低界面能级密度、低阈值电压偏移、低阈值偏差特性等各种高绝缘性和高可靠性。
另外,在p型MOS晶体管的金属膜电极中,一般采用掺杂B(硼)的聚硅(poly-Si),该硼在硅氧化物电介质膜中扩散到达形成通道的硅基板。
当B在硅氧化膜中扩散或扩散到通道中时,会发生导致阈值电压偏移和阈值电压偏差的问题。
元件的微细化使半导体元器件的高性能化得以实现,但随之必须使硅氧化膜的厚度极薄化,B的扩散变得不可忽视。因此,提出了对硅氧化膜进行氮化,防止B的扩散的方法(参考非专利文献1:G.Lucovsky,D.R.Lee,S.V.Hattangady,H.Niimi,Z.Jing,C.Parker and J.R.Hauser,Jpn.J.Appl.Phys.34(1995)6827.)。
在采用NO或N2O气体,在800℃左右进行氮化的方法中,硅氧化膜不被氮化,而硅基板得到氮化,N分布于硅氧化膜/硅基板的界面(参考非专利文献2:K.Kawase,J.Tanimura,H.Kurokawa,K.Kobayashi,A.Teramoto,T.Ogata and M.Inoue,Materials Science in Semiconductor Processing 2(1999)225.)
在该方法中,虽然能够防止B向硅基板的扩散,但不能避免B向硅氧化膜中的扩散,另外,界面上的N引起NBTI(施加负偏压时的阈值电压偏移)特性的劣化(参考非专利文献3:N.Kimizuka,K.Yamaguchi,K.Imai,T.Iisuka,C.T.Liu,R.C.Keller and T.Horiuchi,Symp.VLSI Tech.2000,p.92.)。因此,能够将N仅导入到硅氧化膜表面一侧的游离基氧化膜受到注目。
游离基氧化是指向用Ar气体稀释的N2气体照射微波,生成等离子体,通过具有高反应性的自由基,对硅氧化膜进行氮化的方法。
由该方法制成的硅氧化膜,N被导入到表面侧上,因此可以防止B向硅氧化膜中的扩散,并具有抑制NBTI特性劣化的效果。
但是,随着元件的微细化,逐渐要求一种硅氧化膜的厚度达到1.5nm以下的超极薄膜。因此,要使N完全不被导入到硅氧化膜/硅基板的界面变得非常困难,NBTI特性劣化成为问题。
如图1(a)所示,在Ar/N2游离基氮氧化膜的XPS N1s核心电平光电谱中,除了表示Si3≡N结合(N的3个结合键全部与Si结合)的峰值之外,在高结合能一侧可以观测到另一个结合(以下称为“Nhigh”)的峰值。在对Si基板进行了Ar/N2游离基氮化的SiN膜中也能够检测出(图1(b))该峰值,因此并非与O的结合,而是Si与N的结合,但该结合是不能形成Si3≡N的不稳定结合。另外,该结合是游离基氮化中特有的结合,根本不能从现有的用NO气体进行了热氮化的硅氧化膜(图1(c))和用CVD法成膜的Si3N4膜(图1(d))中观测到该结合。
处于这两种结合状态的N在硅氧化膜中的深度分布如图2(a)所示,由于显示出完全不同的分布,因此可知至少有两种的氮化种在参与氮化。
另外,一般情况下,当晶体管的栅绝缘膜暴露在等离子体中时,会对具有高能量的电子造成损害。因此需要通过O2后退火(post anneal)进行修复。然而,进行后退火时,如图2(b)或图2的Si3≡N分布的下摆的放大图即图3所示,Si3≡N的分布向界面侧扩展,因此成为引起NBTI特性劣化的原因。这是因为O2切断Si-N结合,使游离的N的一部分移动到界面侧。
另一方面,可以通过O2后退火,如图2(b)、图3所示,完全去除Nhigh。此外,如图4所示,通过在真空中进行500℃以上的退火处理,也可以对其完全去除。
可是,因为形成Nhigh的氮化种比形成Si3≡N的氮化种浸入更深,当基础的硅氧化膜变薄时,Nhigh会到达界面。
但是,如图5(b)所示,从深度分布的基础膜厚依存性可知,Nhigh不能存在于硅氧化膜/硅基板的界面。
另外,如图5(a)所示,当Si3≡N的基础膜厚变薄时,分布的下摆引出尾部,反而容易被导入到界面中。
即,如图6所示,可知形成Nhigh的氮化种(以下称为“Nβ”)比在表面形成Si3≡N的氮化种(以下称为“Nα”)先到达界面,在界面附近形成Si3≡N。该界面附近的N引起NBTI特性的劣化。
即使通过退火处理可以去除Nhigh,形成Nhigh的氮化种Nβ的存在也会成为问题。
当把成膜温度定在500℃以上时,膜中虽不存在Nhigh但却存在Nβ,由于Nβ扩散到硅氧化膜中,因此在界面附近不可避免Si3≡N的形成。
不如解释为当成膜温度高时,Nβ的扩散得到促进,界面附近的Si3≡N形成量增加。
另外,Nhigh不能形成稳定的Si3≡N,处于不稳定的结合状态,但通过退火进行脱离的话,其后生成由硅悬空键引起的固定电荷。因此成为漏电流增加等使绝缘特性劣化的要因。所以,强烈要求在等离子体中不存在形成Nhigh的氮化种的条件下进行成膜。
发明内容
本发明正是为了解决上述问题而设计的,其目的在于提供一种能够抑制在等离子体中形成Nhigh的氮化种,防止在硅氧化膜中形成Nhigh和在界面附近形成Si3≡N的电介质膜及其形成方法,
为了达成上述目的,在本发明中,关于被形成在硅表面上的电介质膜,其特征在于,所述电介质膜的N浓度在3原子%以上,且存在于所述硅表面和电介质膜界面上的N浓度在0.1原子%以下,且膜厚在2nm以下。
另外,在本发明中,涉及一种半导体装置,其具备硅基板、和形成于硅基板表面上的电介质膜、以及形成在电介质膜上的电极,其特征在于,所述电介质膜的N浓度在3原子%以上,且存在于所述硅表面和电介质膜界面上的N浓度在0.1原子%以下,且膜厚在2nm以下。
另外,在本发明中,涉及一种电介质膜的形成方法,其特征在于,包括:在硅基板表面上形成硅氧化膜的工序;将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等的氮化种中进行改变的工序。
另外,在本发明中,涉及一种半导体装置的制造方法,其特征在于,包括:在硅基板表面上形成硅氧化膜的工序;将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等的氮化种中进行改变的工序;在所述被改变的硅氧化膜的表面上形成栅电极的工序。
在此,所述氮化性游离基种优选为从N游离基、N+离子游离基、N2游离基、N2+离子游离基、NH游离基及NH+离子游离基组成的集团中选出的至少一种游离基。
另外,所述氮化性游离基可以通过微波等离子体形成,该微波等离子体可以在Ar和NH3的混合气体、Xe和N2的混合气体、Kr和N2的混合气体、Xe和NH3的混合气体、Kr和NH3的混合气体、Ar和N2以及H2的混合气体、Xe和N2以及H2的混合气体、或者Kr和N2以及H2的混合气体中形成。
另外,将所述硅氧化膜的表面暴露在氮化性游离基中进行改变的工序,优选为不伴随600℃以上的后退火。
如此,在本发明中,为了降低形成Nhigh的氮化种在等离子体中的生成效率,用NH3气体代替N2,通过Ar/NH3气体进行游离基氮化。
或者,为了降低形成Nhigh的氮化种在等离子体中的生成效率,用Xe或Kr气体代替Ar,通过Xe/N2气体或Kr//N2气体进行游离基氮化。
或者,为了降低形成Nhigh的氮化种在等离子体中的生成效率,使用NH3气体代替N2,用Xe气体或Kr气体代替Ar,通过Xe/NH3气体或Kr/NH3气体进行游离基氮化。
或者,为了降低形成Nhigh的氮化种在等离子体中的生成效率,向Ar/N2、Xe/N2或者Kr//N2中添加H2,通过Ar/N2/H2、Xe/N2/H2或者Kr//N2/H2气体进行游离基氮化。
如图7(a)~(e)所示,通过这些方法可以使Nhigh的形成骤减。在此,(a)表示使用N2/Ar等离子体的情况;(b)表示使用NH3/Ar等离子体的情况;(c)表示使用N2/Xe等离子体的情况;(d)表示使用NH3/Xe等离子体的情况;(e)表示使用Kr/N2等离子体的情况。
图8是表示使用各种气体使氮化时间变化时,横轴表示Si3≡N的形成量、纵轴表示Nhigh的形成量的图。从该图可知,在形成防止B扩散所需的Si3≡N时,使用NH3/Ar、N2/Xe、NH3/Xe、Kr/N2等气体时,相对于Ar/N2,Nhigh的形成量减少。由此,如图9(a)及(b)所示,降低(Si3≡N分布的下摆没有形成)界面附近的Si3≡N的形成量成为可能。
另外,通过O2退火可以防止Si3≡N分布向界面一侧扩展,且可以完全去除Nhigh,退火条件的最低限度是在真空中或惰性气体中进行,温度为500~600℃。
这是由于下述情况决定的。如图4所示,Nhigh在500℃以上时会完全消失;如图10所示,在600℃以下的真空退火中,Si3≡N分布根本不向界面一侧扩展。
另外,后续工序的poly-Si的CVD成膜温度一般为500~600℃左右,所以通过用poly-Si成膜的预退火兼此工序,可以省略后退火工序。
但,采用这样的退火条件,必须不对栅绝缘膜造成损害。所以,有必要使用电子温度在1eV以下的等离子体。
使用RLSA(radial line slot antenna(径向线缝隙天线))生成的等离子体时,在Ar、Xe、Kr中能够分别生成1eV以下、0.5eV以下、0.7eV以下的极低电子温度的等离子体。如图11所示,平行板电极生成的等离子体对栅绝缘膜造成的损害大,但通过RLSA生成的等离子体却对栅绝缘膜没有损害,根本没有出现C-V曲线的磁滞、阈值的偏移及泄漏电流等问题。
所以,使用RLSA,通过Xe/N2、Kr/N2、Ar/NH3、Xe/NH3、Kr/NH3、Ar/N2/H2、Xe/N2/H2、Kr/N2/H2气体,使等离子体产生而进行游离基氮化,在500~600℃以下的真空或惰性气体中进行后退火时,与Ar/N2气体的情况相比,形成Nhigh的氮化种Nβ变少,因此可以抑制界面上形成Si3≡N。另外,因为也可以不进行O2后退火,所以也能够防止Si3≡N向界面侧扩散,且使完全去除Nhigh成为可能。
此外,并不局限于通过RLSA产生的等离子体,即使是其它方法产生的等离子体,只要电子温度在1eV以下即可。
根据本发明,通过降低形成Nhigh的氮化种在等离子体中的生成效率,可以减少界面附近的Si3≡N的形成量,并能够抑制NBTI特性的劣化。
另外,由于降低了Nhigh的形成量,也可以抑制因退火在Nhigh脱离后的痕迹上固定电荷的生成,从而提高绝缘特性,达到减少泄漏电流和绝缘破坏寿命等目的。
由此,硅氧化膜的薄膜化成为可能,从而使超LSI实现高性能化。
附图说明
图1是表示通过Ar/N2等离子体进行了如下处理的图:(a)游离基氮化的硅氧化膜表面;(b)表示对硅基板进行游离基氮化形成的SiN膜表面;(c)表示通过NO气体进行了热氮化的硅氧化膜表面;(d)表示通过热CVD形成的Si3N4膜表面的XPS N1s核心电平光电谱。
图2是表示在通过Ar/N2等离子体进行了游离基氮化的硅氧化膜表面上,通过使用HF蚀刻进行XPS深度分析获得的、因O2后退火造成Si3≡N及Nhigh的深度分布曲线的变化图。
图3是表示通过XPS深度分析获得的、对Si3≡N及Nhigh的深度分布曲线的峰值的下摆进行放大表示,由O2后退火造成的变化图。
图4是表示Nhigh形成量的退火温度依存性的曲线图。
图5是表示在通过Ar/N2等离子体进行了游离基氮化的硅氧化膜表面上,通过使用HF蚀刻进行XPS深度分析获得的、(a)Si3≡N及(b)Nhigh的深度曲线分布的基础氧化膜的膜后依存性的图。
图6是表示通过Ar/N2等离子体对硅氧化膜进行游离基氮化时,存在形成Si3≡N的氮化种和形成Nhigh的氮化种,当膜厚变薄时,形成Nhigh的氮化种首先到达界面附近,形成Si3≡N的样子的反应模型图。
图7是表示通过Ar/N2、Ar/NH3、Xe/N2、Xe/NH3、Kr/N2等离子体进行了游离基氮化的硅氧化膜表面的XPS N1s核心电平光电谱图。
图8是定量表示图7的Nhigh变小的图。
图9是表示在Ar/N2及Xe/N2等离子体进行了游离基氮化的硅氧化膜表面上,通过使用HF蚀刻的XPS深度分析获得的、(a)Si3≡N及(b)Nhigh的深度曲线分布的比较图。
图10是表示放大显示通过XPS深度分析获得的、Si3≡N及Nhigh的深度曲线分布的峰值的下摆,由真空600℃退火产生的变化图。
图11是表示通过平行板产生的等离子体对栅绝缘膜造成损害,但通过电子温度低的RLSA产生的等离子体不会对栅绝缘膜造成损害的图。
图12是表示在实施方式1中,通过采用RLSA的等离子体进行游离基氮化的装置的图。
具体实施方式
(实施方式1)
表示本发明的实施方式1的电介质膜形成工序及使用该电介质膜的半导体装置的制造工序。
如图12所示,在处理室10内,将处理基板1设置在样品台2上。通过加热机构3将基板温度设在400℃。处理室10通过排气泵11进行排气,连接有稀有气体回收装置12。
由微波发生器20产生的微波通过导波管21,被导引到RLSA22。在RLSA下面设置有电介质板23,另外,在其垂直下方导入生产气体,在微波的作用下,产生电子温度为1eV以下的等离子体。由该等离子体生成的游离基,通过淋浴板(shower plate)24向基板1的方向扩散,对基板1进行面内均匀的氮化。即使不使用淋浴板24,将气体从生产气体导入口14导入,也不会影响Nhigh的降低效果。生产气体可以采用Xe/N2、Kr/N2、Ar/NH3、Xe/NH3、Kr/NH3、Ar/N2/H2、Xe/N2/H2、Kr/N2/H2的任何一种的组合。
在400℃以下对基板1进行加热。虽然不进行后退火,但在后续工序的poly-Si CVD炉中,在真空或惰性气体中在500~600℃进行退火,接着进行poly-Si的成膜。为了完全去除Nhigh,该500~600℃的退火工序是必需的,但通过用poly-Si成膜的预退火兼此工序,可以削减工序数量。如果使用poly-Si以外的电极时,另外需要在500~600℃进行退火。
根据本发明,通过降低形成Nhigh的氮化种在等离子体中的生成效率,使减少界面附近的Si3≡N形成量,从而能够抑制NBTI特性的劣化。另外,因为Nhigh形成量降低,也可以抑制因退火造成Nhigh脱离后的痕迹上形成的固定电荷的生成,从而提高绝缘特性,达到减少漏电流和绝缘破坏寿命等目的。由此,本发明可以使硅氧化膜实现薄膜化,可以适用于能够实现高性能化的超LSI。

Claims (18)

1.一种电介质膜,其形成于硅表面上,其特征在于,所述电介质膜表面的N浓度为3原子%以上,且存在于所述硅表面和电介质膜界面的N浓度为0.1原子%以下,且膜厚为2nm以下。
2.一种半导体装置,其具备:硅基板、和形成在硅基板表面上的电介质膜、以及形成在电介质膜上的电极,其特征在于,所述电介质膜表面的N浓度为3原子%以上,且存在于所述硅表面和电介质膜界面的N浓度为0.1原子%以下,且膜厚为2nm以下。
3.一种电介质膜的形成方法,其特征在于,包括:
在硅基板表面上形成硅氧化膜的工序;
将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等的氮化种中进行改变的工序。
4.根据权利要求3所述的电介质膜的形成方法,其特征在于,所述氮化性游离基种是从N游离基、N+离子游离基、N2游离基、N2+离子游离基、NH游离基及NH+离子游离基组成的集团中选出的至少一种游离基。
5.根据权利要求3或4所述的电介质膜的形成方法,其特征在于,所述氮化性游离基可以通过微波等离子体形成,该微波等离子体在Ar和NH3的混合气体、Xe和N2的混合气体、Xe和NH3的混合气体、Kr和N2的混合气体、Kr和NH3的混合气体、Ar和N2以及H2的混合气体、Xe和N2以及H2的混合气体、或者Kr和N2以及H2的混合气体中形成。
6.根据权利要求3~5中任一项所述的电介质膜的形成方法,其特征在于,将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等氮化种中进行改变的工序,不伴随600℃以上的后退火。
7.根据权利要求3~6中任一项所述的电介质膜的形成方法,其特征在于,将所述硅氧化膜表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等中进行改变的工序,在600℃以下的温度进行,且在500~600℃的真空中或N2、Ar、Xe、Kr等惰性气体中进行后退火。
8.根据权利要求3~7中任一项所述的电介质膜的形成方法,其特征在于,将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等中进行改变的工序,在600℃以下的温度进行,且在500~600℃的真空中或N2、Ar、Xe、Kr等的惰性气体中进行的后退火兼作后续工序的poly-Si成膜的预退火,从而削减后退火1工序。
9.一种半导体装置的制造方法,其特征在于,包括:
在硅基板表面上形成硅氧化膜的工序;
将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等的氮化种中进行改变的工序;和
在所述被改变的硅氧化膜的表面上形成栅电极的工序。
10.根据权利要求9所述的半导体装置的形成方法,其特征在于,所述氮化性游离基种为从N游离基、N+离子游离基、N2游离基、N2+离子游离基、NH游离基及NH+离子游离基组成的集团中选出的至少一种游离基。
11.根据权利要求9或10所述的半导体装置的形成方法,其特征在于,所述氮化性游离基可以通过微波等离子体形成,该微波等离子体在Ar和NH3的混合气体、Xe和N2的混合气体、Xe和NH3的混合气体、Kr和N2的混合气体、Kr和NH3的混合气体、Ar和N2以及H2的混合气体、Xe和N2以及H2的混合气体、或者Kr和N2以及H2的混合气体中形成。
12.根据权利要求9~11中任一项所述的半导体装置的形成方法,其特征在于,将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等中进行改变的工序,在600℃以下的温度进行,不伴随600℃以上的后退火。
13.根据权利要求9~12中任一项所述的半导体装置的形成方法,其特征在于,将所述硅氧化膜表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等中进行改变的工序,在600℃以下的温度进行,且在500~600℃的真空中或N2、Ar、Xe、Kr等惰性气体中进行后退火。
14.根据权利要求9~13中任一项所述的半导体装置的形成方法,其特征在于,将所述硅氧化膜的表面暴露在氮化性游离基种、氮化性激发活性种、氮化性离子种等中进行改变的工序,在600℃以下的温度进行,且在500~600℃的真空中或N2、Ar、Xe、Kr等的惰性气体中进行的后退火兼作后续工序的poly-Si成膜的预退火,从而削减后退火1工序。
15.根据权利要求1所述的电介质膜,其特征在于,所述等离子体的产生方法是通过从径向线缝隙天线发射出的微波生成等离子体。
16.根据权利要求2所述的半导体装置,其特征在于,所述等离子体的产生方法是通过从径向线缝隙天线发射出的微波生成等离子体。
17.根据权利要求3~8中任一项所述的电介质膜的形成方法,其特征在于,所述等离子体的产生方法是通过从径向线缝隙天线发射出的微波生成等离子体。
18.根据权利要求9~14中任一项所述的半导体装置,其特征在于,所述等离子体的产生方法是通过从径向线缝隙天线发射出的微波生成等离子体。
CN2006800031840A 2005-02-01 2006-01-20 电介质膜及其形成方法 Expired - Fee Related CN101120437B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005025648 2005-02-01
JP025648/2005 2005-02-01
JP2005257946A JP2006245528A (ja) 2005-02-01 2005-09-06 誘電体膜及びその形成方法
JP257946/2005 2005-09-06
PCT/JP2006/300838 WO2006082718A1 (ja) 2005-02-01 2006-01-20 誘電体膜及びその形成方法

Publications (2)

Publication Number Publication Date
CN101120437A true CN101120437A (zh) 2008-02-06
CN101120437B CN101120437B (zh) 2010-05-19

Family

ID=36777107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800031840A Expired - Fee Related CN101120437B (zh) 2005-02-01 2006-01-20 电介质膜及其形成方法

Country Status (7)

Country Link
US (1) US20080187747A1 (zh)
EP (1) EP1852904A4 (zh)
JP (1) JP2006245528A (zh)
KR (1) KR20070101268A (zh)
CN (1) CN101120437B (zh)
TW (1) TWI411009B (zh)
WO (1) WO2006082718A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067291B (zh) * 2008-06-24 2013-05-08 东芝三菱电机产业系统株式会社 氮游离基产生器、氮化处理装置、氮游离基的产生方法、以及氮化处理方法
CN104602436A (zh) * 2013-10-31 2015-05-06 细美事有限公司 基板处理装置以及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156978B2 (ja) * 2007-12-17 2013-03-06 ルネサスエレクトロニクス株式会社 半導体装置の製造装置および半導体装置の製造方法
CN105140123B (zh) * 2014-05-30 2018-03-06 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管的形成方法
JP2023504743A (ja) * 2019-12-09 2023-02-06 インテグリス・インコーポレーテッド 複数の障壁材料から作製される拡散障壁、並びに関連する物品及び方法
JP2022130124A (ja) * 2021-02-25 2022-09-06 キオクシア株式会社 半導体製造装置および半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399445B1 (en) * 1997-12-18 2002-06-04 Texas Instruments Incorporated Fabrication technique for controlled incorporation of nitrogen in gate dielectric
US6087229A (en) * 1998-03-09 2000-07-11 Lsi Logic Corporation Composite semiconductor gate dielectrics
US6342437B1 (en) * 2000-06-01 2002-01-29 Micron Technology, Inc. Transistor and method of making the same
JP2002151684A (ja) * 2000-11-09 2002-05-24 Nec Corp 半導体装置及びその製造方法
TW557514B (en) * 2001-08-02 2003-10-11 Tokyo Electron Ltd Method for processing a substrate and material for electronic devices
JP4048048B2 (ja) * 2001-12-18 2008-02-13 東京エレクトロン株式会社 基板処理方法
US7018879B2 (en) * 2002-03-20 2006-03-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making an ultrathin silicon dioxide gate with improved dielectric properties using NH3 nitridation and post-deposition rapid thermal annealing
US7560396B2 (en) * 2002-03-29 2009-07-14 Tokyo Electron Limited Material for electronic device and process for producing the same
JP4256340B2 (ja) * 2002-05-16 2009-04-22 東京エレクトロン株式会社 基板処理方法
JP2004087865A (ja) * 2002-08-28 2004-03-18 Hitachi Ltd 半導体装置の製造方法
JP2005150285A (ja) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd 半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067291B (zh) * 2008-06-24 2013-05-08 东芝三菱电机产业系统株式会社 氮游离基产生器、氮化处理装置、氮游离基的产生方法、以及氮化处理方法
CN104602436A (zh) * 2013-10-31 2015-05-06 细美事有限公司 基板处理装置以及方法
CN104602436B (zh) * 2013-10-31 2017-09-22 细美事有限公司 基板处理装置以及方法

Also Published As

Publication number Publication date
EP1852904A4 (en) 2009-11-18
US20080187747A1 (en) 2008-08-07
TWI411009B (zh) 2013-10-01
KR20070101268A (ko) 2007-10-16
WO2006082718A1 (ja) 2006-08-10
EP1852904A1 (en) 2007-11-07
TW200636813A (en) 2006-10-16
JP2006245528A (ja) 2006-09-14
CN101120437B (zh) 2010-05-19

Similar Documents

Publication Publication Date Title
JP5706946B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
US7217659B2 (en) Process for producing materials for electronic device
KR100645306B1 (ko) 기판 처리 방법
TWI450338B (zh) 場效電晶體之閘極介電質的製造方法
CN1604278B (zh) 处理栅极结构的方法
CN101290886B (zh) 栅极介质层及栅极的制造方法
CN101120437B (zh) 电介质膜及其形成方法
JP2007524994A (ja) 低eotプラズマ窒化ゲート誘電体用の2ステップポスト窒化アニ−リング
CN101454480A (zh) 等离子体cvd方法、氮化硅膜的形成方法和半导体装置的制造方法
JP2009177161A (ja) 絶縁膜の形成方法
TW200540979A (en) Semiconductor device and manufacturing method therefor
CN105047539B (zh) 提高SiC MOSFET沟道迁移率的方法
TW201030172A (en) Method for depositing silicon nitride film, computer-readable storage medium, and plasma cvd device
US7944004B2 (en) Multiple thickness and/or composition high-K gate dielectrics and methods of making thereof
JP2001085427A (ja) 酸窒化膜およびその形成方法
JP2004253777A (ja) 半導体装置及び半導体装置の製造方法
CN105280503B (zh) 提高横向导电结构 SiC MOSFET 沟道迁移率的方法
US8163626B2 (en) Enhancing NAND flash floating gate performance
CN105161526B (zh) 提高垂直导电结构SiC MOSFET沟道迁移率的方法
CN105097937B (zh) 一种横向导电结构 SiC MOSFET 功率器件
KR20080110119A (ko) 반도체 소자 및 그의 제조 방법
KR20120089147A (ko) 반도체 소자의 제조 방법
Murakawa et al. Nitrogen profile study for SiON gate dielectrics of advanced dynamic random access memory
TW478104B (en) Nitrogen oxide in-situ steam generation process
JP2003282473A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100519

Termination date: 20140120