CN101030602B - 一种可减小短沟道效应的mos晶体管及其制作方法 - Google Patents
一种可减小短沟道效应的mos晶体管及其制作方法 Download PDFInfo
- Publication number
- CN101030602B CN101030602B CN2007100391861A CN200710039186A CN101030602B CN 101030602 B CN101030602 B CN 101030602B CN 2007100391861 A CN2007100391861 A CN 2007100391861A CN 200710039186 A CN200710039186 A CN 200710039186A CN 101030602 B CN101030602 B CN 101030602B
- Authority
- CN
- China
- Prior art keywords
- mos transistor
- grid
- groove
- short channel
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 230000003247 decreasing effect Effects 0.000 title claims description 32
- 238000000034 method Methods 0.000 claims abstract description 33
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- 239000010703 silicon Substances 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 8
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 239000012212 insulator Substances 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 9
- 208000002173 dizziness Diseases 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 150000003376 silicon Chemical class 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 14
- 238000002955 isolation Methods 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66621—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7834—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供一种可减小短沟道效应的MOS晶体管及其制作方法。现有技术采用外延工艺制作抬高的源极和漏极来减小短沟道效应,存在高复杂性和高成本等问题。本发明的可减小短沟道效应的MOS晶体管制作在已制成场隔离区的硅衬底上,其包括栅极堆层、栅极侧墙、源极和漏极,其中,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。本发明的MOS晶体管的制作方法先制作凹槽;然后进行阱注入、防穿通注入和阈值电压调整注入;接着在该凹槽中制作栅极堆层;之后进行轻掺杂漏注入和晕注入,并制作栅极侧墙;然后进行源漏注入,以制成源极和漏极;最后在源极和漏极顶部制作金属硅化物层。采用本发明可有效减小短沟道效应,并可大大降低工艺难度和制作成本。
Description
技术领域
本发明涉及半导体制造领域,特别涉及一种可减小短沟道效应的MOS晶体管及其制作方法。
背景技术
半导体器件通过按比例缩小来实现工作速度的提升。MOS晶体管的沟道长度也在不断的按比例缩短,但当MOS晶体管的沟道长度变得非常短时,短沟道效应会使器件性能劣化,甚至无法正常工作。减小栅极绝缘层的厚度或制作浅结的源极和漏极均可有效的减小短沟道效应,但现在栅极绝缘层的厚度已达到极限,当再减小时易导致栅极的漏电流增大或栅极的击穿,故无法通过减小栅极绝缘层的厚度来减小短沟道效应;另外为确保栅、漏极的较小的接触电阻,故需确保栅、漏极表面具一定厚度的金属硅化物层,故也很难通过制作浅结的源极和漏极来减小短沟道效应。
为减小上述短沟道效应,现通常使用外延工艺制作抬高的源极和漏极。但是外延工艺是一种成本很高、难于控制的工艺技术,存在高复杂性、高成本、高缺陷密度等问题。
发明内容
本发明的目的在于提供一种可减小短沟道效应的MOS晶体管及其制作方法,通过所述MOS晶体管及其制作方法可有效的减小短沟道效应,并可降低工艺难度和制作成本。
本发明的目的是这样实现的:一种可减小短沟道效应的MOS晶体管,该MOS晶体管制作在已制成场隔离区的硅衬底上,该MOS晶体管包括栅极堆层、栅极侧墙、源极以及漏极,其中,该栅极堆层包括依次层叠的栅极绝缘层与栅极,该源极和漏极顶部具有金属硅化物层,其中,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。
在上述的可减小短沟道效应的MOS晶体管中,该凹槽的面积不小于该栅极堆层的面积。
在上述的可减小短沟道效应的MOS晶体管中,该MOS晶体管还包括轻掺杂漏结构。
在上述的可减小短沟道效应的MOS晶体管中,该MOS晶体管还包括晕注入结构。
本发明还提供一种可减小短沟道效应的MOS晶体管的制作方法,该MOS晶体管制作在已制成场隔离区的硅衬底上,该方法包括以下步骤:(1)在该硅衬底上制作凹槽;(2)进行阱注入、防穿通注入和阈值电压调整注入;(3)在该凹槽中制作栅极堆层,该栅极堆层包括依次层叠的栅极绝缘层与栅极;(4)进行轻掺杂漏注入和晕注入;(5)制作栅极侧墙;(6)进行源漏注入,以制成源极和漏极;(7)在源极和漏极顶部制作金属硅化物层。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,该步骤(1)包括以下步骤:(10)光刻出对应栅极的凹槽图形;(11)通过刻蚀制成凹槽;(12)去除光刻胶并优化硅衬底的表面。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,在步骤(11)中,通过湿法刻蚀制成该凹槽。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,在步骤(12)中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,该凹槽的面积不小于该栅极堆层的面积。
与现有技术中采用外延工艺制作抬高的源极和漏极来减小短沟道效应相比,本发明的可减小短沟道效应的MOS晶体管及其制作方法将栅极堆层制作在低于源漏极的凹槽中,以达成相对抬高源漏极的目的,从而可有效的减小短沟道效应,另外可降低工艺难度和制作成本,再者,可降低栅极堆层的高度,为后续金属前栅堆层间介质淀积工艺提供更大的工艺窗口。
附图说明
本发明的可减小短沟道效应的MOS晶体管及其制作方法由以下的实施例及附图给出。
图1为本发明的可减小短沟道效应的MOS晶体管的剖视图;
图2为本发明的可减小短沟道效应的MOS晶体管的制作方法的实施例的流程图;
图3为完成图2中步骤S20后的硅衬底的剖视图;
图4为完成图2中步骤S21后的硅衬底的剖视图。
具体实施方式
以下将对本发明的可减小短沟道效应的MOS晶体管及其制作方法作进一步的详细描述。
如图1所示,本发明的可减小短沟道效应的MOS晶体管1制作在硅衬底2上,所述硅衬底2上已制成了场隔离区(未图示),所述可减小短沟道效应的MOS晶体管1包括栅极堆层10、栅极侧墙11、源极12、漏极13、轻掺杂漏(LDD)结构14、晕注入(halo)结构15。
所述栅极堆层10包括栅极绝缘层100和栅极102。所述硅衬底2上对应栅极堆层10制作有凹槽(未图示),所述凹槽的面积不小于所述栅极堆层10的面积,所述栅极堆层10设置在所述凹槽中。
所述栅极侧墙11设置在栅极堆层10两侧,用于确保栅极堆层10与源极12和漏极13之间的绝缘。
所述源极12和漏极13设置在硅衬底2内且排布在栅极10两侧,所述源极12和漏极13顶部具有金属硅化物层120和130。
在本实施例中,通过浅沟槽隔离技术制成所述场隔离区,所述栅极绝缘层100为氧化硅层,所述栅极102为多晶硅栅极,所述栅极侧墙11由氧化硅制成。
所述轻掺杂漏结构14和晕注入结构15均可在一定程度上减小短沟道效应,但不能彻底的解决短沟道效应。通过本发明的凹槽使得MOS晶体管1的沟道低于源极12和漏极13的平面,如此可有效减小短沟道效应。
参见图2,配合参见图1,本发明的可减小短沟道效应的MOS晶体管1的制作方法首先进行步骤S20,光刻出对应栅极堆层10的凹槽图形。参见图3,显示了完成步骤S20后硅衬底2的剖视图,如图所示,光阻3覆盖在硅衬底2,且光阻3上已生成有凹槽图形。
接着继续步骤S21,通过刻蚀制成凹槽。在本实施例中,通过湿法刻蚀制成凹槽。参见图4,显示了完成步骤S21后硅衬底2的剖视图,如图所示,硅衬底2上制成了凹槽20。
接着继续步骤S22,去除光刻胶并优化硅衬底2的表面。在本实施例中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
接着继续步骤S23,进行阱注入、防穿通注入和阈值电压调整注入。
接着继续步骤S24,在所述凹槽中制作栅极堆层10,所述栅极堆层10包括栅极绝缘层100和栅极102。在本实施例中,首先先沉积栅极绝缘层100,然后再沉积栅极102,最后经光刻和刻蚀制成栅极堆层10。
接着继续步骤S25,进行轻掺杂漏注入和晕注入,以形成轻掺杂漏结构14和晕注入结构15。
接着继续步骤S26,制作栅极侧墙11。
接着继续步骤S27,进行源漏注入,以制成源极12和漏极13。
接着继续步骤S28,在源极12和漏极13顶部制作金属硅化物层120和130。
需说明的是,步骤S20和步骤S24中,一般使用两张光罩形成所需的图形,也可使用相同的光罩但使用极性不同的光刻胶进行光刻,其中,在步骤S20中使用反光刻胶,在步骤S24中使用正光刻胶,如此可大大节约成本。
综上所述,本发明的可减小短沟道效应的MOS晶体管1及其制作方法将栅极堆层制作在低于源漏极的凹槽中,以达成相对抬高源漏极的目的,从而可有效的减小短沟道效应,另外可降低工艺难度和制作成本,再者,可降低栅极堆层的高度,为后续金属前栅堆层间介质淀积工艺提供更大的工艺窗口。
Claims (9)
1.一种可减小短沟道效应的MOS晶体管的制作方法,该MOS晶体管制作在已制成场隔离区的硅衬底上,其特征在于,该方法包括以下步骤:(1)在该硅衬底上制作凹槽;(2)进行阱注入、防穿通注入和阈值电压调整注入;(3)在该凹槽中制作栅极堆层,该栅极堆层包括依次层叠的栅极绝缘层与栅极;(4)进行轻掺杂漏注入和晕注入;(5)制作栅极侧墙;(6)进行源漏注入,以制成源极和漏极;(7)在源极和漏极顶部制作金属硅化物层。
2.如权利要求1所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,该步骤(1)包括以下步骤:(10)光刻出对应栅极的凹槽图形;(11)通过刻蚀制成凹槽;(12)去除光刻胶并优化硅衬底的表面。
3.如权利要求2所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,在步骤(11)中,通过湿法刻蚀制成该凹槽。
4.如权利要求2所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,在步骤(12)中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
5.如权利要求1所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,该凹槽的面积不小于该栅极堆层的面积。
6.如权利要求1所述的可减小短沟道效应的MOS晶体管的制作方法制得的一种可减小短沟道效应的MOS晶体管,该MOS晶体管制作在已制成场隔离区的硅衬底上,该MOS晶体管包括栅极堆层、栅极侧墙、源极以及漏极,其中,该栅极堆层包括依次层叠的栅极绝缘层与栅极,该源极和漏极顶部具有金属硅化物层,其特征在于,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。
7.如权利要求6所述的可减小短沟道效应的MOS晶体管,其特征在于,该凹槽的面积不小于该栅极堆层的面积。
8.如权利要求6所述的可减小短沟道效应的MOS晶体管,其特征在于,该MOS晶体管还包括轻掺杂漏结构。
9.如权利要求6所述的可减小短沟道效应的MOS晶体管,其特征在于,该MOS晶体管还包括晕注入结构。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100391861A CN101030602B (zh) | 2007-04-06 | 2007-04-06 | 一种可减小短沟道效应的mos晶体管及其制作方法 |
US12/062,851 US20080246087A1 (en) | 2007-04-06 | 2008-04-04 | Mos transistor for reducing short-channel effects and its production |
US12/946,162 US8193057B2 (en) | 2007-04-06 | 2010-11-15 | MOS transistor for reducing short-channel effects and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007100391861A CN101030602B (zh) | 2007-04-06 | 2007-04-06 | 一种可减小短沟道效应的mos晶体管及其制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101030602A CN101030602A (zh) | 2007-09-05 |
CN101030602B true CN101030602B (zh) | 2012-03-21 |
Family
ID=38715791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007100391861A Active CN101030602B (zh) | 2007-04-06 | 2007-04-06 | 一种可减小短沟道效应的mos晶体管及其制作方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US20080246087A1 (zh) |
CN (1) | CN101030602B (zh) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007003220A1 (en) * | 2005-06-30 | 2007-01-11 | Freescale Semiconductor, Inc | Method of forming a semiconductor structure |
CN101783324B (zh) * | 2009-01-19 | 2012-03-07 | 中芯国际集成电路制造(上海)有限公司 | Cmos晶体管及其制作方法 |
US8421162B2 (en) | 2009-09-30 | 2013-04-16 | Suvolta, Inc. | Advanced transistors with punch through suppression |
US20110079861A1 (en) * | 2009-09-30 | 2011-04-07 | Lucian Shifren | Advanced Transistors with Threshold Voltage Set Dopant Structures |
US8273617B2 (en) | 2009-09-30 | 2012-09-25 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
US8530286B2 (en) | 2010-04-12 | 2013-09-10 | Suvolta, Inc. | Low power semiconductor transistor structure and method of fabrication thereof |
US8569128B2 (en) | 2010-06-21 | 2013-10-29 | Suvolta, Inc. | Semiconductor structure and method of fabrication thereof with mixed metal types |
US8759872B2 (en) | 2010-06-22 | 2014-06-24 | Suvolta, Inc. | Transistor with threshold voltage set notch and method of fabrication thereof |
US8377783B2 (en) | 2010-09-30 | 2013-02-19 | Suvolta, Inc. | Method for reducing punch-through in a transistor device |
CN102487085B (zh) * | 2010-12-01 | 2014-04-23 | 中国科学院微电子研究所 | 半导体器件及其制造方法 |
US8404551B2 (en) | 2010-12-03 | 2013-03-26 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
US8461875B1 (en) | 2011-02-18 | 2013-06-11 | Suvolta, Inc. | Digital circuits having improved transistors, and methods therefor |
US8525271B2 (en) | 2011-03-03 | 2013-09-03 | Suvolta, Inc. | Semiconductor structure with improved channel stack and method for fabrication thereof |
US8400219B2 (en) | 2011-03-24 | 2013-03-19 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
US8748270B1 (en) | 2011-03-30 | 2014-06-10 | Suvolta, Inc. | Process for manufacturing an improved analog transistor |
US8999861B1 (en) | 2011-05-11 | 2015-04-07 | Suvolta, Inc. | Semiconductor structure with substitutional boron and method for fabrication thereof |
US8796048B1 (en) | 2011-05-11 | 2014-08-05 | Suvolta, Inc. | Monitoring and measurement of thin film layers |
US8811068B1 (en) | 2011-05-13 | 2014-08-19 | Suvolta, Inc. | Integrated circuit devices and methods |
US8569156B1 (en) | 2011-05-16 | 2013-10-29 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
US8735987B1 (en) | 2011-06-06 | 2014-05-27 | Suvolta, Inc. | CMOS gate stack structures and processes |
US8995204B2 (en) | 2011-06-23 | 2015-03-31 | Suvolta, Inc. | Circuit devices and methods having adjustable transistor body bias |
US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
WO2013022753A2 (en) | 2011-08-05 | 2013-02-14 | Suvolta, Inc. | Semiconductor devices having fin structures and fabrication methods thereof |
US8748986B1 (en) | 2011-08-05 | 2014-06-10 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
CN102931235B (zh) * | 2011-08-12 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Mos晶体管及其制造方法 |
US8614128B1 (en) | 2011-08-23 | 2013-12-24 | Suvolta, Inc. | CMOS structures and processes based on selective thinning |
US8645878B1 (en) | 2011-08-23 | 2014-02-04 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
US8713511B1 (en) | 2011-09-16 | 2014-04-29 | Suvolta, Inc. | Tools and methods for yield-aware semiconductor manufacturing process target generation |
US9236466B1 (en) | 2011-10-07 | 2016-01-12 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved insulated gate transistors, and methods therefor |
CN103151292B (zh) * | 2011-12-07 | 2015-04-08 | 上海华虹宏力半导体制造有限公司 | 抬高源漏结构CMOS和Bipolar器件的集成方法 |
US8895327B1 (en) | 2011-12-09 | 2014-11-25 | Suvolta, Inc. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
US8819603B1 (en) | 2011-12-15 | 2014-08-26 | Suvolta, Inc. | Memory circuits and methods of making and designing the same |
US8883600B1 (en) | 2011-12-22 | 2014-11-11 | Suvolta, Inc. | Transistor having reduced junction leakage and methods of forming thereof |
US8599623B1 (en) | 2011-12-23 | 2013-12-03 | Suvolta, Inc. | Circuits and methods for measuring circuit elements in an integrated circuit device |
US8970289B1 (en) | 2012-01-23 | 2015-03-03 | Suvolta, Inc. | Circuits and devices for generating bi-directional body bias voltages, and methods therefor |
US8877619B1 (en) | 2012-01-23 | 2014-11-04 | Suvolta, Inc. | Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom |
US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
US9406567B1 (en) | 2012-02-28 | 2016-08-02 | Mie Fujitsu Semiconductor Limited | Method for fabricating multiple transistor devices on a substrate with varying threshold voltages |
US8863064B1 (en) | 2012-03-23 | 2014-10-14 | Suvolta, Inc. | SRAM cell layout structure and devices therefrom |
US9299698B2 (en) | 2012-06-27 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
US8637955B1 (en) | 2012-08-31 | 2014-01-28 | Suvolta, Inc. | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
US9112057B1 (en) | 2012-09-18 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor devices with dopant migration suppression and method of fabrication thereof |
US9041126B2 (en) | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
CN102931067B (zh) * | 2012-10-30 | 2015-01-28 | 中国电子科技集团公司第五十五研究所 | 一种减小碳化硅凹槽损伤提高肖特基栅可靠性的方法 |
US9431068B2 (en) | 2012-10-31 | 2016-08-30 | Mie Fujitsu Semiconductor Limited | Dynamic random access memory (DRAM) with low variation transistor peripheral circuits |
US8816754B1 (en) | 2012-11-02 | 2014-08-26 | Suvolta, Inc. | Body bias circuits and methods |
US9093997B1 (en) | 2012-11-15 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
US9112484B1 (en) | 2012-12-20 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
US9268885B1 (en) | 2013-02-28 | 2016-02-23 | Mie Fujitsu Semiconductor Limited | Integrated circuit device methods and models with predicted device metric variations |
US9299801B1 (en) | 2013-03-14 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
US9478571B1 (en) | 2013-05-24 | 2016-10-25 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
KR20150000546A (ko) * | 2013-06-24 | 2015-01-05 | 삼성전자주식회사 | 반도체 소자 및 이의 제조 방법 |
US20150187915A1 (en) * | 2013-12-26 | 2015-07-02 | Samsung Electronics Co., Ltd. | Method for fabricating fin type transistor |
US9710006B2 (en) | 2014-07-25 | 2017-07-18 | Mie Fujitsu Semiconductor Limited | Power up body bias circuits and methods |
US9319013B2 (en) | 2014-08-19 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Operational amplifier input offset correction with transistor threshold voltage adjustment |
CN105185799A (zh) * | 2015-08-18 | 2015-12-23 | 格科微电子(上海)有限公司 | 具有三维晶体管结构的背照式图像传感器及其形成方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1428845A (zh) * | 2001-12-26 | 2003-07-09 | 东部电子株式会社 | 晶体管形成方法 |
US7081652B2 (en) * | 2004-04-14 | 2006-07-25 | Kabushiki Kaisha Toshiba | Semiconductor device having a side wall insulating film and a manufacturing method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065783A (en) * | 1976-10-18 | 1977-12-27 | Paul Hsiung Ouyang | Self-aligned double implanted short channel V-groove MOS device |
FR2625044B1 (fr) * | 1987-12-18 | 1990-08-31 | Commissariat Energie Atomique | Transistor mos a extremite d'interface dielectrique de grille/substrat relevee et procede de fabrication de ce transistor |
DE4400842C2 (de) * | 1994-01-13 | 1998-03-26 | Gold Star Electronics | MOS Transistor und Verfahren zu seiner Herstellung |
US5448094A (en) * | 1994-08-23 | 1995-09-05 | United Microelectronics Corp. | Concave channel MOS transistor and method of fabricating the same |
JP3461277B2 (ja) * | 1998-01-23 | 2003-10-27 | 株式会社東芝 | 半導体装置及びその製造方法 |
US6130454A (en) * | 1998-07-07 | 2000-10-10 | Advanced Micro Devices, Inc. | Gate conductor formed within a trench bounded by slanted sidewalls |
US6887762B1 (en) * | 1998-11-12 | 2005-05-03 | Intel Corporation | Method of fabricating a field effect transistor structure with abrupt source/drain junctions |
US6956263B1 (en) * | 1999-12-28 | 2005-10-18 | Intel Corporation | Field effect transistor structure with self-aligned raised source/drain extensions |
JP3651802B2 (ja) * | 2002-09-12 | 2005-05-25 | 株式会社東芝 | 半導体装置の製造方法 |
KR100526478B1 (ko) * | 2003-12-31 | 2005-11-08 | 동부아남반도체 주식회사 | 반도체 소자 및 그 제조방법 |
-
2007
- 2007-04-06 CN CN2007100391861A patent/CN101030602B/zh active Active
-
2008
- 2008-04-04 US US12/062,851 patent/US20080246087A1/en not_active Abandoned
-
2010
- 2010-11-15 US US12/946,162 patent/US8193057B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1428845A (zh) * | 2001-12-26 | 2003-07-09 | 东部电子株式会社 | 晶体管形成方法 |
US7081652B2 (en) * | 2004-04-14 | 2006-07-25 | Kabushiki Kaisha Toshiba | Semiconductor device having a side wall insulating film and a manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20110059588A1 (en) | 2011-03-10 |
CN101030602A (zh) | 2007-09-05 |
US20080246087A1 (en) | 2008-10-09 |
US8193057B2 (en) | 2012-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101030602B (zh) | 一种可减小短沟道效应的mos晶体管及其制作方法 | |
US9929264B2 (en) | Field-effect transistor and method of making the same | |
US10784337B2 (en) | MOSFET and a method for manufacturing the same | |
US7824985B2 (en) | Method for manufacturing a recessed gate transistor | |
CN104701168A (zh) | 鳍式场效应晶体管的形成方法 | |
CN104409518A (zh) | 薄膜晶体管及其制备方法 | |
CN103295899A (zh) | FinFET器件制造方法 | |
US20030008515A1 (en) | Method of fabricating a vertical MOS transistor | |
US8039330B2 (en) | Method for manufacturing semiconductor device | |
CN104733536A (zh) | 薄膜晶体管及其制造方法 | |
US10950712B2 (en) | Semiconductor device and method for fabricating the same | |
CN111969061A (zh) | 一种ldmos结构及其制作方法 | |
CN112309853A (zh) | 屏蔽栅极沟槽结构的制备方法 | |
CN108630543B (zh) | 半导体结构及其形成方法 | |
CN103456632B (zh) | Mos管及其形成方法 | |
CN104425271A (zh) | Mos晶体管及其形成方法 | |
CN103456630B (zh) | Mos管及其形成方法 | |
CN103456633B (zh) | Mos管及其形成方法 | |
CN110867412B (zh) | Mos器件的制造方法 | |
CN102931235B (zh) | Mos晶体管及其制造方法 | |
KR100504193B1 (ko) | 반도체소자의 게이트 스페이서 형성방법 | |
KR20070100028A (ko) | 반도체 소자의 제조방법 | |
US20110156171A1 (en) | Semiconductor device and method for fabricating the same | |
CN103208512A (zh) | 低源漏结电容的nmos开关器件及其制造方法 | |
KR100791713B1 (ko) | 낮은 문턱 전압의 모스 트랜지스터를 갖는 반도체 소자의제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |