CN101030602A - 一种可减小短沟道效应的mos晶体管及其制作方法 - Google Patents

一种可减小短沟道效应的mos晶体管及其制作方法 Download PDF

Info

Publication number
CN101030602A
CN101030602A CNA2007100391861A CN200710039186A CN101030602A CN 101030602 A CN101030602 A CN 101030602A CN A2007100391861 A CNA2007100391861 A CN A2007100391861A CN 200710039186 A CN200710039186 A CN 200710039186A CN 101030602 A CN101030602 A CN 101030602A
Authority
CN
China
Prior art keywords
mos transistor
grid
groove
short channel
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100391861A
Other languages
English (en)
Other versions
CN101030602B (zh
Inventor
康晓旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority to CN2007100391861A priority Critical patent/CN101030602B/zh
Publication of CN101030602A publication Critical patent/CN101030602A/zh
Priority to US12/062,851 priority patent/US20080246087A1/en
Priority to US12/946,162 priority patent/US8193057B2/en
Application granted granted Critical
Publication of CN101030602B publication Critical patent/CN101030602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种可减小短沟道效应的MOS晶体管及其制作方法。现有技术采用外延工艺制作抬高的源极和漏极来减小短沟道效应,存在高复杂性和高成本等问题。本发明的可减小短沟道效应的MOS晶体管制作在已制成场隔离区的硅衬底上,其包括栅极堆层、栅极侧墙、源极和漏极,其中,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。本发明的MOS晶体管的制作方法先制作凹槽;然后进行阱注入、防穿通注入和阈值电压调整注入;接着在该凹槽中制作栅极堆层;之后进行轻掺杂漏注入和晕注入,并制作栅极侧墙;然后进行源漏注入,以制成源极和漏极;最后在源极和漏极顶部制作金属硅化物层。采用本发明可有效减小短沟道效应,并可大大降低工艺难度和制作成本。

Description

一种可减小短沟道效应的MOS晶体管及其制作方法
技术领域
本发明涉及半导体制造领域,特别涉及一种可减小短沟道效应的MOS晶体管及其制作方法。
背景技术
半导体器件通过按比例缩小来实现工作速度的提升。MOS晶体管的沟道长度也在不断的按比例缩短,但当MOS晶体管的沟道长度变得非常短时,短沟道效应会使器件性能劣化,甚至无法正常工作。减小栅极绝缘层的厚度或制作浅结的源极和漏极均可有效的减小短沟道效应,但现在栅极绝缘层的厚度已达到极限,当再减小时易导致栅极的漏电流增大或栅极的击穿,故无法通过减小栅极绝缘层的厚度来减小短沟道效应;另外为确保栅、漏极的较小的接触电阻,故需确保栅、漏极表面具一定厚度的金属硅化物层,故也很难通过制作浅结的源极和漏极来减小短沟道效应。
为减小上述短沟道效应,现通常使用外延工艺制作抬高的源极和漏极。但是外延工艺是一种成本很高、难于控制的工艺技术,存在高复杂性、高成本、高缺陷密度等问题。
发明内容
本发明的目的在于提供一种可减小短沟道效应的MOS晶体管及其制作方法,通过所述MOS晶体管及其制作方法可有效的减小短沟道效应,并可降低工艺难度和制作成本。
本发明的目的是这样实现的:一种可减小短沟道效应的MOS晶体管,该MOS晶体管制作在已制成场隔离区的硅衬底上,该MOS晶体管包括栅极堆层、栅极侧墙、源极以及漏极,其中,该栅极堆层包括依次层叠的栅极绝缘层与栅极,该源极和漏极顶部具有金属硅化物层,其中,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。
在上述的可减小短沟道效应的MOS晶体管中,该凹槽的面积不小于该栅极堆层的面积。
在上述的可减小短沟道效应的MOS晶体管中,该MOS晶体管还包括轻掺杂漏结构。
在上述的可减小短沟道效应的MOS晶体管中,该MOS晶体管还包括晕注入结构。
本发明还提供一种可减小短沟道效应的MOS晶体管的制作方法,该MOS晶体管制作在已制成场隔离区的硅衬底上,该方法包括以下步骤:(1)在该硅衬底上制作凹槽;(2)进行阱注入、防穿通注入和阈值电压调整注入;(3)在该凹槽中制作栅极堆层,该栅极堆层包括依次层叠的栅极绝缘层与栅极;(4)进行轻掺杂漏注入和晕注入;(5)制作栅极侧墙;(6)进行源漏注入,以制成源极和漏极;(7)在源极和漏极顶部制作金属硅化物层。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,该步骤(1)包括以下步骤:(10)光刻出对应栅极的凹槽图形;(11)通过刻蚀制成凹槽;(12)去除光刻胶并优化硅衬底的表面。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,在步骤(11)中,通过湿法刻蚀制成该凹槽。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,在步骤(12)中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
在上述的可减小短沟道效应的MOS晶体管的制作方法中,该凹槽的面积不小于该栅极堆层的面积。
与现有技术中采用外延工艺制作抬高的源极和漏极来减小短沟道效应相比,本发明的可减小短沟道效应的MOS晶体管及其制作方法将栅极堆层制作在低于源漏极的凹槽中,以达成相对抬高源漏极的目的,从而可有效的减小短沟道效应,另外可降低工艺难度和制作成本,再者,可降低栅极堆层的高度,为后续金属前栅堆层间介质淀积工艺提供更大的工艺窗口。
附图说明
本发明的可减小短沟道效应的MOS晶体管及其制作方法由以下的实施例及附图给出。
图1为本发明的可减小短沟道效应的MOS晶体管的剖视图;
图2为本发明的可减小短沟道效应的MOS晶体管的制作方法的实施例的流程图;
图3为完成图2中步骤S20后的硅衬底的剖视图;
图4为完成图2中步骤S21后的硅衬底的剖视图。
具体实施方式
以下将对本发明的可减小短沟道效应的MOS晶体管及其制作方法作进一步的详细描述。
如图1所示,本发明的可减小短沟道效应的MOS晶体管1制作在硅衬底2上,所述硅衬底2上已制成了场隔离区(未图示),所述可减小短沟道效应的MOS晶体管1包括栅极堆层10、栅极侧墙11、源极12、漏极13、轻掺杂漏(LDD)结构14、晕注入(halo)结构15。
所述栅极堆层10包括栅极绝缘层100和栅极102。所述硅衬底2上对应栅极堆层10制作有凹槽(未图示),所述凹槽的面积不小于所述栅极堆层10的面积,所述栅极堆层10设置在所述凹槽中。
所述栅极侧墙11设置在栅极堆层10两侧,用于确保栅极堆层10与源极12和漏极13之间的绝缘。
所述源极12和漏极13设置在硅衬底2内且排布在栅极10两侧,所述源极12和漏极13顶部具有金属硅化物层120和130。
在本实施例中,通过浅沟槽隔离技术制成所述场隔离区,所述栅极绝缘层100为氧化硅层,所述栅极102为多晶硅栅极,所述栅极侧墙11由氧化硅制成。
所述轻掺杂漏结构14和晕注入结构15均可在一定程度上减小短沟道效应,但不能彻底的解决短沟道效应。通过本发明的凹槽使得MOS晶体管1的沟道低于源极12和漏极13的平面,如此可有效减小短沟道效应。
参见图2,配合参见图1,本发明的可减小短沟道效应的MOS晶体管1的制作方法首先进行步骤S20,光刻出对应栅极堆层10的凹槽图形。参见图3,显示了完成步骤S20后硅衬底2的剖视图,如图所示,光阻3覆盖在硅衬底2,且光阻3上已生成有凹槽图形。
接着继续步骤S21,通过刻蚀制成凹槽。在本实施例中,通过湿法刻蚀制成凹槽。参见图4,显示了完成步骤S21后硅衬底2的剖视图,如图所示,硅衬底2上制成了凹槽20。
接着继续步骤S22,去除光刻胶并优化硅衬底2的表面。在本实施例中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
接着继续步骤S23,进行阱注入、防穿通注入和阈值电压调整注入。
接着继续步骤S24,在所述凹槽中制作栅极堆层10,所述栅极堆层10包括栅极绝缘层100和栅极102。在本实施例中,首先先沉积栅极绝缘层100,然后再沉积栅极102,最后经光刻和刻蚀制成栅极堆层10。
接着继续步骤S25,进行轻掺杂漏注入和晕注入,以形成轻掺杂漏结构14和晕注入结构15。
接着继续步骤S26,制作栅极侧墙11。
接着继续步骤S27,进行源漏注入,以制成源极12和漏极13。
接着继续步骤S28,在源极12和漏极13顶部制作金属硅化物层120和130。
需说明的是,步骤S20和步骤S24中,一般使用两张光罩形成所需的图形,也可使用相同的光罩但使用极性不同的光刻胶进行光刻,其中,在步骤S20中使用反光刻胶,在步骤S24中使用正光刻胶,如此可大大节约成本。
综上所述,本发明的可减小短沟道效应的MOS晶体管1及其制作方法将栅极堆层制作在低于源漏极的凹槽中,以达成相对抬高源漏极的目的,从而可有效的减小短沟道效应,另外可降低工艺难度和制作成本,再者,可降低栅极堆层的高度,为后续金属前栅堆层间介质淀积工艺提供更大的工艺窗口。

Claims (9)

1、一种可减小短沟道效应的MOS晶体管,该MOS晶体管制作在已制成场隔离区的硅衬底上,该MOS晶体管包括栅极堆层、栅极侧墙、源极以及漏极,其中,该栅极堆层包括依次层叠的栅极绝缘层与栅极,该源极和漏极顶部具有金属硅化物层,其特征在于,该硅衬底上制作有凹槽,该栅极堆层设置在该凹槽中。
2、如权利要求1所述的可减小短沟道效应的MOS晶体管,其特征在于,该凹槽的面积不小于该栅极堆层的面积。
3、如权利要求1所述的可减小短沟道效应的MOS晶体管,其特征在于,该MOS晶体管还包括轻掺杂漏结构。
4、如权利要求1所述的可减小短沟道效应的MOS晶体管,其特征在于,该MOS晶体管还包括晕注入结构。
5、一种可减小短沟道效应的MOS晶体管的制作方法,该MOS晶体管制作在已制成场隔离区的硅衬底上,其特征在于,该方法包括以下步骤:(1)在该硅衬底上制作凹槽;(2)进行阱注入、防穿通注入和阈值电压调整注入;(3)在该凹槽中制作栅极堆层,该栅极堆层包括依次层叠的栅极绝缘层与栅极;(4)进行轻掺杂漏注入和晕注入;(5)制作栅极侧墙;(6)进行源漏注入,以制成源极和漏极;(7)在源极和漏极顶部制作金属硅化物层。
6、如权利要求5所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,该步骤(1)包括以下步骤:(10)光刻出对应栅极的凹槽图形;(11)通过刻蚀制成凹槽;(12)去除光刻胶并优化硅衬底的表面。
7、如权利要求6所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,在步骤(11)中,通过湿法刻蚀制成该凹槽。
8、如权利要求6所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,在步骤(12)中,通过氧化和湿法腐蚀工艺来优化硅衬底的表面。
9、如权利要求5所述的可减小短沟道效应的MOS晶体管的制作方法,其特征在于,该凹槽的面积不小于该栅极堆层的面积。
CN2007100391861A 2007-04-06 2007-04-06 一种可减小短沟道效应的mos晶体管及其制作方法 Active CN101030602B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007100391861A CN101030602B (zh) 2007-04-06 2007-04-06 一种可减小短沟道效应的mos晶体管及其制作方法
US12/062,851 US20080246087A1 (en) 2007-04-06 2008-04-04 Mos transistor for reducing short-channel effects and its production
US12/946,162 US8193057B2 (en) 2007-04-06 2010-11-15 MOS transistor for reducing short-channel effects and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100391861A CN101030602B (zh) 2007-04-06 2007-04-06 一种可减小短沟道效应的mos晶体管及其制作方法

Publications (2)

Publication Number Publication Date
CN101030602A true CN101030602A (zh) 2007-09-05
CN101030602B CN101030602B (zh) 2012-03-21

Family

ID=38715791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100391861A Active CN101030602B (zh) 2007-04-06 2007-04-06 一种可减小短沟道效应的mos晶体管及其制作方法

Country Status (2)

Country Link
US (2) US20080246087A1 (zh)
CN (1) CN101030602B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783324B (zh) * 2009-01-19 2012-03-07 中芯国际集成电路制造(上海)有限公司 Cmos晶体管及其制作方法
WO2012071769A1 (zh) * 2010-12-01 2012-06-07 中国科学院微电子研究所 半导体器件及其制造方法
CN102931067A (zh) * 2012-10-30 2013-02-13 中国电子科技集团公司第五十五研究所 一种减小碳化硅凹槽损伤提高肖特基栅可靠性的方法
CN102931235A (zh) * 2011-08-12 2013-02-13 中芯国际集成电路制造(上海)有限公司 Mos晶体管及其制造方法
CN103151292A (zh) * 2011-12-07 2013-06-12 上海华虹Nec电子有限公司 抬高源漏结构CMOS和Bipolar器件的集成方法
WO2017028546A1 (zh) * 2015-08-18 2017-02-23 格科微电子(上海)有限公司 具有三维晶体管结构的背照式图像传感器及其形成方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911098A1 (en) * 2005-06-30 2008-04-16 Freescale Semiconductor, Inc. Method of forming a semiconductor structure
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US20110079861A1 (en) * 2009-09-30 2011-04-07 Lucian Shifren Advanced Transistors with Threshold Voltage Set Dopant Structures
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
JP2016500927A (ja) 2012-10-31 2016-01-14 三重富士通セミコンダクター株式会社 低変動トランジスタ・ペリフェラル回路を備えるdram型デバイス、及び関連する方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
KR20150000546A (ko) * 2013-06-24 2015-01-05 삼성전자주식회사 반도체 소자 및 이의 제조 방법
US20150187915A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Method for fabricating fin type transistor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065783A (en) * 1976-10-18 1977-12-27 Paul Hsiung Ouyang Self-aligned double implanted short channel V-groove MOS device
FR2625044B1 (fr) * 1987-12-18 1990-08-31 Commissariat Energie Atomique Transistor mos a extremite d'interface dielectrique de grille/substrat relevee et procede de fabrication de ce transistor
DE4400842C2 (de) * 1994-01-13 1998-03-26 Gold Star Electronics MOS Transistor und Verfahren zu seiner Herstellung
US5448094A (en) * 1994-08-23 1995-09-05 United Microelectronics Corp. Concave channel MOS transistor and method of fabricating the same
JP3461277B2 (ja) * 1998-01-23 2003-10-27 株式会社東芝 半導体装置及びその製造方法
US6130454A (en) * 1998-07-07 2000-10-10 Advanced Micro Devices, Inc. Gate conductor formed within a trench bounded by slanted sidewalls
US6887762B1 (en) * 1998-11-12 2005-05-03 Intel Corporation Method of fabricating a field effect transistor structure with abrupt source/drain junctions
US6956263B1 (en) * 1999-12-28 2005-10-18 Intel Corporation Field effect transistor structure with self-aligned raised source/drain extensions
KR100433488B1 (ko) * 2001-12-26 2004-05-31 동부전자 주식회사 트랜지스터 형성 방법
JP3651802B2 (ja) * 2002-09-12 2005-05-25 株式会社東芝 半導体装置の製造方法
KR100526478B1 (ko) * 2003-12-31 2005-11-08 동부아남반도체 주식회사 반도체 소자 및 그 제조방법
US7081652B2 (en) * 2004-04-14 2006-07-25 Kabushiki Kaisha Toshiba Semiconductor device having a side wall insulating film and a manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783324B (zh) * 2009-01-19 2012-03-07 中芯国际集成电路制造(上海)有限公司 Cmos晶体管及其制作方法
WO2012071769A1 (zh) * 2010-12-01 2012-06-07 中国科学院微电子研究所 半导体器件及其制造方法
CN102931235A (zh) * 2011-08-12 2013-02-13 中芯国际集成电路制造(上海)有限公司 Mos晶体管及其制造方法
CN102931235B (zh) * 2011-08-12 2016-02-17 中芯国际集成电路制造(上海)有限公司 Mos晶体管及其制造方法
CN103151292A (zh) * 2011-12-07 2013-06-12 上海华虹Nec电子有限公司 抬高源漏结构CMOS和Bipolar器件的集成方法
CN103151292B (zh) * 2011-12-07 2015-04-08 上海华虹宏力半导体制造有限公司 抬高源漏结构CMOS和Bipolar器件的集成方法
CN102931067A (zh) * 2012-10-30 2013-02-13 中国电子科技集团公司第五十五研究所 一种减小碳化硅凹槽损伤提高肖特基栅可靠性的方法
CN102931067B (zh) * 2012-10-30 2015-01-28 中国电子科技集团公司第五十五研究所 一种减小碳化硅凹槽损伤提高肖特基栅可靠性的方法
WO2017028546A1 (zh) * 2015-08-18 2017-02-23 格科微电子(上海)有限公司 具有三维晶体管结构的背照式图像传感器及其形成方法
US10720463B2 (en) 2015-08-18 2020-07-21 Galaxycore Shanghai Limited Corporation Backside illuminated image sensor with three-dimensional transistor structure and forming method thereof

Also Published As

Publication number Publication date
US20110059588A1 (en) 2011-03-10
CN101030602B (zh) 2012-03-21
US20080246087A1 (en) 2008-10-09
US8193057B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
CN101030602A (zh) 一种可减小短沟道效应的mos晶体管及其制作方法
CN1251317C (zh) 多栅极晶体管的结构及其制造方法
CN1295796C (zh) 场效应晶体管及其制作方法
CN1295779C (zh) 集成电路晶体管与其形成方法
CN1708855A (zh) 具有u字型栅极结构的半导体器件
CN100502043C (zh) 采用非均匀栅氧化层的高压晶体管及其制造方法
CN1230881C (zh) 制造具有低温多晶硅的顶栅型薄膜晶体管的方法
CN1868069A (zh) 用于减少短沟道效应的凹陷沟道快闪架构
CN1655366A (zh) 具有轻掺杂漏极结构的薄膜晶体管
US20120091563A1 (en) Method for insulating a semiconductor material in a trench from a substrate
CN104409518A (zh) 薄膜晶体管及其制备方法
CN1812123A (zh) 应用金属氧化物半导体工艺的共振隧穿器件
CN1649173A (zh) 半导体器件及其制造方法
CN1925118A (zh) 立体多栅极元件及其制造方法
US9362391B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
US20190245064A1 (en) Semiconductor device and fabrication method thereof
CN1505120A (zh) 避免漏极/源极延伸的超浅层接面发生漏电流的方法
CN100373633C (zh) 不对称的薄膜晶体管结构
CN111969061A (zh) 一种ldmos结构及其制作方法
CN114121667B (zh) 半导体器件的制造方法
CN2692841Y (zh) 多重栅极结构
CN2710166Y (zh) 多栅极晶体管的结构
US20220209022A1 (en) Structure for a field effect transistor (fet) device and method of processing a fet device
CN103035529A (zh) Rf ldmos中改善漏电的方法
CN1263157C (zh) 半导体元件的结构及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant