CN1006666B - 电超导体的组合物 - Google Patents

电超导体的组合物

Info

Publication number
CN1006666B
CN1006666B CN88100571A CN88100571A CN1006666B CN 1006666 B CN1006666 B CN 1006666B CN 88100571 A CN88100571 A CN 88100571A CN 88100571 A CN88100571 A CN 88100571A CN 1006666 B CN1006666 B CN 1006666B
Authority
CN
China
Prior art keywords
temperature
composition
bond
perovskite
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88100571A
Other languages
English (en)
Other versions
CN88100571A (zh
Inventor
罗伯特·布鲁斯·拜尔斯
爱德华·马丁·恩格勒
保罗·迈克尔·格兰特
格雷斯·萨·利姆
斯图尔特·斯蒂芬帕普沃思·帕金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN88100571A publication Critical patent/CN88100571A/zh
Publication of CN1006666B publication Critical patent/CN1006666B/zh
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

在77K以上被发现为体内电超导体的组合物,具有公式A1±XM2±XCU3Oy,其中A是Y或Y,La,Lu,Sc或Yb的结合物;M是Ba,或Ba,Sr或Ca的结合物而y是充分满足价键的要求。组合物是单相类钙钛矿结晶结构。它们被制成是包括以适当的克分子浓度比密切混合金属氧化物或它们的原粒,在有氧存在时把混合物加热到温度约为800℃和1100℃之间并将混合物在有氧存在时,其时同超过周期至少为4小时的情况下缓慢冷却到室温。

Description

本发明涉及在77°K以上所使用的电超导体的组合物及该组合物的制备方法。
Bednorz和Muller.Z.Phys.B,64189(1986)的技术上的突破是过去十年内在超导转变温度方面的首次主要的提高,材料名义上的组合物是La2-XMX CuOy,这里M=Ca,Ba或Sr,X是典型值为0.3>X>0而y取决于制备条件是可变化的。被发现的超导电性掺M的量仅仅是在这种狭的范围内。CaVa等人,Phys.Rev.Letters.58,408(1987),用Sr掺杂及X约等于0.15~0.20时得到了最高的超导转变温度(Tc),其Tc为45K的范围。紧接着,在1987年3月Chu等人在Phys.Rev Letters,58,405(1987)报导了Y1.2Ba0.8CuOy显示出超导性的起始点是在95K的范围。与早些的La2-xMxCuOy的工作相对比,这个更高温的超导体被制备出来只是几个未知相以及仅仅是百分之几的材料的一种混合物导致了超导。通过我们自己以及其他几个研究组的实验揭示出:超导性并不是在这一类材料中的一般现象。甚至少量的组分的变化或等电子原子的替换将不再显示超导性。例如,用Sr或Ca替代在Y1.2Ba0.8CuOy中的Ba就不产生超导体。
现在已经发现,具有公式为A1±XM2±XCu3Oy,这里X典型值是在0.5≥X≥0之间,y是充分满足价键的要求的组分,在温度高于液氮温度即77°K时是单相体电超导体。该组分具有钙钛矿结晶结构。它们是从金属氧化物粉末或金属氧化物的原粒例如碳酸盐或氢氧化物的形成密切相混合而制成。混合物是在温度约800℃和1100℃之间在有氧的情况下进行加热。最佳的温度是约为900到1000℃。加热进行的每一时间周期约从10到40小时。一般温度越低,加热所需要的时间越长,本发明还有一个重要在特点在于加热之后随即将组合物在有氧存在时,在超过至少4小时的一个周期内缓慢冷却到室温。最佳的组合物所具有的公式很接近于A1M2Cu3Oy其中A是Y或Y,La,Lu,Sc或Yb的结合物及M是Ba或Ba,Sr或Ca的结合物,而y是能充分满足价键要求。最佳组合物其中A是Y及M是Ba。最佳组合物在温度高于77K时显示出单相体电超导性。它有一个类钙钛矿结晶结构以及实际上是由一个原子的钇的两个原子的钡,三个原子的铜的金属成分和一个非金属的氧化合组成的。
作为最佳组合物的最佳制备方法的一个举例,提供如下工艺。
Y,Ba和Cu的氧化物或碳酸盐澈底混合,或者用它们可溶解的硝酸盐或氯化物共同沉积代替它们的氢氧化物或碳酸盐。混合粉末在炉内在氧中或空气中,在800-1100℃的温度下加热,时间周期范围为10-40小时。氧能提供更好的效果。加热时间越长保证得到初始的化合物反应得更均匀。在较低的温度情况下要求更长的反应时间。为制备坚硬的样品,起始加热工艺时混合粉末要压制成丸粒或以聚合物粘结在一起并在类似的条件下再加热。当加热时,使用 氧气氛及把炉子缓慢冷却到室温,这对于实现最尖锐和最高的超导转变以及更大的体超导性是重要的。典型地,把炉子从900-1000℃冷却到室温要超过5小时。
由以上工艺过程所得到的组合物具有类钙钛矿结构,它们的氧含量,这要取决于最后的退火和冷却步骤。例如通过在惰性气体或降压大气氛中加热,来去除氧,抑制了超导性。较高的氧含量导致了重要的和更高的超导电性。如上所述,其实质在于加热步骤之后,组合物被缓慢冷却。要相信,这种缓慢冷却是需要的,因为当材料缓慢冷却下来比当快速冷却时能保留住稍稍高的氧。
下面的材料在高于77°K时已全部显示出体超导性。它们全是单相类钙钛矿结晶结构,其中一般公式为
A1±XM2±XCu3Oy
这些材料是:
(Y0.8Lu0.21.0Ba2.0Cu3Oy
(Y0.5Lu0.51.0Ba2.0Cu3Oy
(Y0.5Lu0.51.0Ba2.0Cu3Oy
(Y0.5Sc0.51.0Ba2.0Cu3Oy
(La0.5Sc0.51.0Ba2.0Cu3Oy
Y10(Ba0.5Ca0.52.0Cu3Oy
Y0.8Ba2.0Cu2Oy
Y1.2Ba2.0Cu3Oy
Y1.0Ba1.8Cu3Oy
Y1.0Ba1.5Cu3Oy
Y1.2Ba1.8Cu3Oy
通过交流磁化率试验法及由电阻率测量确认以上全部样品具有超导性。
目前当用以上所说明的工艺形成和试验时,以下的材料没有发现是77°K以上体单相超导体。
Lu0.1Ba2.0Cu3Oy
Lu1.0Ca2.0Cu3Oy
La1.0Ba2.0Cu3Oy
La1.0Ca2.0Cu3Oy
Sc1.0Ba2.0Cu3Oy
Y1.0Ca2.0Cu3Oy
Y1.0Ba1.0Cu2Oy
Y2.0Ba1.0Cu10Oy
或许A组分必须首先是钇,或者是A组分所述的二个或多个元素的结合物其平均原子尺寸与钇相近。
就整个的A和M的原子数比说来,组合物的范围不是精确确定,这似乎是因为结晶结构要适应这些材料的价键,并仍然保持着必要的结构地才使其具有高温超导性。在这些情况下,象在所有其他情况下一样,氧以一定量存在以满足价键要求。
在液氦温度下的超导性在目前的使用上有广泛的变化,在液氮温度下使用将会更加便宜和更加方便。采用薄膜和陶瓷工艺技术将能使这些材料在微电子学,高强磁场,能量传输和电机设备方面找到应用。特别是,在计算机的逻辑器件(例如约瑟夫逊 Josephson逻辑器件)以及作为提高速度和封装密度的手段而用在片子上或片子间的中间连结金属。

Claims (3)

1、一个在高于77°K时为单相体的电超导体组合物,其特征在于所述组合物具有类钙钛矿结晶结构并有公式A1±XM2±XCu3Oy其中A是Y,或Y,La,Lu,Sc或Yb的结合物;M是Ba,或Ba,Sr或Ca的结合物;X是在0.5≥X≥0之间,而y是充分满足价键的要求。
2、一个组分在高于77°K时为单相体的电超导体,其特征在于所述组分具有类钙钛矿结晶并有公式A1M2Cu3Oy,其中A是Y或Y,La,Lu,Sc或Yb的结合物;M是Ba,或Ba,Sr或Ca的结合物,而Y是充分满足价键的要求。
3、一个组分在高于77°K时为单相体的电超导体其特征在于所述组合物具有类钙钛矿结晶结构并基本上是由一个原子钇,两个原子钡和三个铜原子的金属成分以及一氧的非金属成分组成。
CN88100571A 1987-03-11 1988-02-10 电超导体的组合物 Expired CN1006666B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2465387A 1987-03-11 1987-03-11
US024653 1987-03-11

Publications (2)

Publication Number Publication Date
CN88100571A CN88100571A (zh) 1988-09-21
CN1006666B true CN1006666B (zh) 1990-01-31

Family

ID=21821710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88100571A Expired CN1006666B (zh) 1987-03-11 1988-02-10 电超导体的组合物

Country Status (14)

Country Link
EP (1) EP0281753B1 (zh)
JP (2) JPH07115919B2 (zh)
KR (1) KR910002312B1 (zh)
CN (1) CN1006666B (zh)
AU (1) AU601553B2 (zh)
BR (1) BR8801120A (zh)
CA (1) CA1341623C (zh)
DE (1) DE3888217T2 (zh)
GB (1) GB2201955B (zh)
HK (2) HK34092A (zh)
IN (1) IN175115B (zh)
MX (1) MX167372B (zh)
PH (1) PH24342A (zh)
SG (1) SG5192G (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638894B1 (en) * 1987-01-09 2003-10-28 Lucent Technologies Inc. Devices and systems based on novel superconducting material
US6630425B1 (en) * 1987-01-09 2003-10-07 Lucent Technologies Inc. Devices and systems based on novel superconducting material
JPS63225530A (ja) * 1987-03-13 1988-09-20 Tokyo Univ 超伝導性素材物質
JP2828631B2 (ja) * 1987-03-13 1998-11-25 三洋電機株式会社 超電導物質の製造方法
EP0283197B1 (en) * 1987-03-16 1993-10-27 AT&T Corp. Apparatus comprising a superconductive body, and method for producing such a body
JPS63230521A (ja) * 1987-03-17 1988-09-27 Natl Inst For Res In Inorg Mater バリウム・イツトリウム・銅化合物(Ba↓4Y↓2Cu↓7O↓1↓4)超伝導体及びその製造法
JPS643061A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS63239115A (ja) * 1987-03-27 1988-10-05 Sanyo Electric Co Ltd 超伝導物質並びにその製造方法
JPS63239113A (ja) * 1987-03-27 1988-10-05 Sanyo Electric Co Ltd 超伝導物質の製造方法
JPS63242922A (ja) * 1987-03-30 1988-10-07 Sumitomo Electric Ind Ltd 超電導材料
US4880770A (en) * 1987-05-04 1989-11-14 Eastman Kodak Company Metalorganic deposition process for preparing superconducting oxide films
JP2752969B2 (ja) * 1987-05-25 1998-05-18 株式会社東芝 酸化物超電導体
US5157017A (en) * 1987-06-12 1992-10-20 At&T Bell Laboratories Method of fabricating a superconductive body
US4861753A (en) * 1987-06-22 1989-08-29 E. I. Du Pont De Nemours And Company Process for making superconductors using barium nitrate
JPS6461322A (en) * 1987-09-02 1989-03-08 Nippon Telegraph & Telephone Oxide superconducting material
BR8804615A (pt) * 1987-09-11 1989-04-18 Grace W R & Co Processo de producao de um solido ceramico supercondutor constituido por oxidos metalicos;composicao oxido metalica; e particulas esferoidais
JP2707499B2 (ja) * 1987-11-26 1998-01-28 住友電気工業株式会社 酸化物超電導体の製造方法
GB8815102D0 (en) * 1988-06-24 1988-08-03 Plessey Co Plc Mixed phase ceramic compounds
JPH02120224A (ja) * 1988-10-28 1990-05-08 Mitsubishi Metal Corp 超電導セラミックス被膜または薄板の製造方法
EP0431170A4 (en) * 1989-05-27 1992-03-11 Foundational Juridical Person International Superconductivity Technology Center Oxide superconductor
DE69423082T2 (de) * 1993-12-27 2000-06-08 Int Superconductivity Tech Supraleiter und Verfahren zu dessen Herstellung
US6522217B1 (en) 1999-12-01 2003-02-18 E. I. Du Pont De Nemours And Company Tunable high temperature superconducting filter
US6688127B2 (en) 2000-09-07 2004-02-10 E. I. Du Pont De Nemours And Company Cryogenic devices
US6711912B2 (en) 2000-09-07 2004-03-30 E. I. Du Pont De Nemours And Company Cryogenic devices
JP4744266B2 (ja) * 2005-10-21 2011-08-10 財団法人国際超電導産業技術研究センター Gd―Ba―Cu系酸化物超電導長尺体とその製造方法
CN100456392C (zh) * 2005-11-04 2009-01-28 中国科学院上海硅酸盐研究所 一种p型透明导体材料及制备方法
CN1328214C (zh) * 2005-12-28 2007-07-25 西北有色金属研究院 一种制备单畴镝钡铜氧超导块材的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3781328D1 (de) * 1986-06-06 1992-10-01 Mitsubishi Chem Ind Verfahren zur herstellung eines faserartigen oder duennen gruenen keramikkoerpers.
US6638894B1 (en) * 1987-01-09 2003-10-28 Lucent Technologies Inc. Devices and systems based on novel superconducting material
DE3790872T1 (de) * 1987-01-12 1990-02-01 Univ Houston Supraleitung in viereckig-planaren mischsystemen
EP0275343A1 (en) * 1987-01-23 1988-07-27 International Business Machines Corporation New superconductive compounds of the K2NiF4 structural type having a high transition temperature, and method for fabricating same
EP0299081A1 (en) * 1987-01-27 1989-01-18 Japan as represented by Director-General, Agency of Industrial Science and Technology Superconductors and method for manufacturing thereof
CA1330702C (en) * 1987-02-26 1994-07-19 Kengo Ohkura Method of producing long functional oxide objects

Also Published As

Publication number Publication date
JPH07115919B2 (ja) 1995-12-13
EP0281753B1 (en) 1994-03-09
SG5192G (en) 1992-03-20
DE3888217D1 (de) 1994-04-14
CA1341623C (en) 2011-10-11
GB2201955A (en) 1988-09-14
HK34092A (en) 1992-05-15
JP3009133B2 (ja) 2000-02-14
BR8801120A (pt) 1988-10-18
DE3888217T2 (de) 1994-09-22
GB8801770D0 (en) 1988-02-24
JPH107456A (ja) 1998-01-13
GB2201955B (en) 1991-09-18
JPS63230565A (ja) 1988-09-27
AU601553B2 (en) 1990-09-13
CN88100571A (zh) 1988-09-21
KR890013674A (ko) 1989-09-25
AU1278388A (en) 1988-09-15
KR910002312B1 (ko) 1991-04-11
EP0281753A2 (en) 1988-09-14
EP0281753A3 (en) 1990-01-17
PH24342A (en) 1990-06-13
HK1004302A1 (en) 1998-11-20
IN175115B (zh) 1995-04-29
MX167372B (es) 1993-03-19

Similar Documents

Publication Publication Date Title
CN1006666B (zh) 电超导体的组合物
Cava et al. Superconductivity near 70 K in a new family of layered copper oxides
Martin et al. Thallium cuprates: The critical temperature is mainly governed by the oxygen nonstoichiometry
EP0330305B1 (en) High-temperature oxide superconductor
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
Tarascon et al. Preparation, structure and properties of the high Tc Bi-based and Y-based cuprates
US5413986A (en) Method for production of thin oxide superconducting film and substrate for production of the film
US5270292A (en) Method for the formation of high temperature semiconductors
RU2056068C1 (ru) Сверхпроводящая композиция и способ ее получения
CA1341621C (en) Superconductivity in an oxide compound system without rare earth
JP3219563B2 (ja) 金属酸化物とその製造方法
Yadava et al. Structural ordering and chemical stability of a complex perovskite oxide DyBa2ZrO5. 5 with YBa2Cu3O7-δ superconductors
Tarascon et al. Chemical doping and physical properties of the new high temperature superconducting perovskites
JPS63225572A (ja) 超伝導性素材
US5169830A (en) Superconducting material
CN88101419A (zh) 新型层状含铜氧化物超导体
JPH0238359A (ja) 超電導体の製造方法
CA1339720C (en) High temperature processing of cuprate oxide superconducting
Uskenbaev et al. Effects of conditions on thе synthesis and properties of Bi-2234 HTSC ceramic produced from the melt
Maqsood et al. Role of Pb substitution and a study of synthesizing procedure for Bi-based superconductors
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
JP3284010B2 (ja) 金属酸化物材料及びそれを用いた超伝導デバイス
JPH0745357B2 (ja) 超電導繊維状単結晶およびその製造方法
Easterling et al. The microstructure and properties of high T c superconducting oxides

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term