CN100585031C - <110>无位错硅单晶的制造方法 - Google Patents

<110>无位错硅单晶的制造方法 Download PDF

Info

Publication number
CN100585031C
CN100585031C CN200610129891A CN200610129891A CN100585031C CN 100585031 C CN100585031 C CN 100585031C CN 200610129891 A CN200610129891 A CN 200610129891A CN 200610129891 A CN200610129891 A CN 200610129891A CN 100585031 C CN100585031 C CN 100585031C
Authority
CN
China
Prior art keywords
crystal
dislocation
monocrystalline
seeding
shouldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200610129891A
Other languages
English (en)
Other versions
CN1995485A (zh
Inventor
沈浩平
汪雨田
胡元庆
尚伟泽
周建华
李翔
李海静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central leading semiconductor materials Co., Ltd
Inner Mongolia Central Leading Semiconductor Materials Co.,Ltd.
Original Assignee
Tianjin Huanou Semiconductor Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Huanou Semiconductor Material Technology Co Ltd filed Critical Tianjin Huanou Semiconductor Material Technology Co Ltd
Priority to CN200610129891A priority Critical patent/CN100585031C/zh
Priority to US12/377,681 priority patent/US20100307403A1/en
Priority to PCT/CN2007/001287 priority patent/WO2008067700A1/zh
Publication of CN1995485A publication Critical patent/CN1995485A/zh
Application granted granted Critical
Publication of CN100585031C publication Critical patent/CN100585031C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及硅单晶的拉晶工艺,特别涉及一种适用于半导体和太阳能光电器件的<110>无位错单晶的制造方法以及对在制造方法过程中使用的石墨热系统的改进。该方法包括如下步骤:(1).在引晶工艺中,引晶直径应≥5mm,其收放比例为100%,引晶拉速应≥5mm/min,引晶长度为150-300mm;(2).在放肩工艺中,放肩速度为0.2~1.5mm/min;(3).在等径工艺中,单晶头部拉速应为1.0-3.0mm/min,尾部拉速应为0.5-2.0mm/min;(4).在收尾工艺中,单晶收尾长度应大于晶体的直径,收尾最小直径应≤10mm。制造<110>无位错硅单晶的石墨热系统的上保温筒的保温层厚度为20~30mm,下保温筒的保温层厚度为60~70mm,炉底护盘的保温层厚度为70~80mm。本发明成功实现了生产<110>无位错单晶,从而满足了国内外市场对<110>无位错单晶的需求。

Description

<110>无位错硅单晶的制造方法
技术领域
本发明涉及硅单晶的拉晶工艺,特别涉及一种适用于半导体和太阳能光电器件的<110>无位错单晶的制造方法以及对在制造方法过程中使用的石墨热系统的改进。
技术背景
众所周知在硅晶体的晶格中,由于(110)晶面与(111)晶面的夹角为90°和35°16′,夹角为90°(111)晶面上的位错与<110>晶向一致,利用传统的拉晶工艺生产<110>单晶,同样存在着位错缺陷,因此,要想生产<110>无位错单晶,必须排除位错,而克服位错缺陷一直是拉晶工艺中的技术难题。
发明内容
为了有效地避免<110>单晶的位错产生,成功拉制出<110>无位错单晶,经技术人员的无数次拉晶试验,终于摸索出适用于生产<110>无位错单晶的方法。该方法主要应用在拉晶工艺中的引晶、放肩、等径及收尾工艺。通过多次试验、总结、分析后得出:采取大幅度提高拉速、控制引晶直径和长度,采取控制放肩速度、增加单晶收尾长度及控制收尾单晶直径等技术手段,是成功拉制<110>无位错单晶的关键,同时,适应拉制<110>无位错单晶的工艺条件更不可忽视。
<100>、<110>和<111>是硅单晶常用的晶面,它们生长所需的温度梯度也不尽相同,这是由于不同晶向的硅单晶面间距不同,生长时各晶面法向生长速度也就不同。面间距大的,原子间的吸引力小,生长较为困难,因而生长速度慢;面间距小的,原子间的吸引力大,生长较为容易,因而生长速度相对较快,所以,{100}晶面族的法向生长速度最快;{110}晶面族次之;{111}晶面族最慢。腐蚀时与此类似,{100}晶面族的腐蚀速率最快;{110}晶面族次之;{111}晶面族最慢。这就使得不同晶向的单晶生长所需温度梯度也不同。
<111>所需温度梯度最大,<100>所需温度梯度最最小,而<110>晶向的硅单晶的生长在热场梯度的要求上界于<111>晶向<100>晶向之间。
利用原有的热系统拉制<110>无位错单晶,经多次试验发现成晶方面基本无影响,但是单晶基本缺陷存有较大问题如下:
A、原热场梯度偏小<110>单晶生长速度提高会出现单晶外型成椭圆状,(籽晶晶向偏离度也会有影响)不利于单晶后道工序的加工,或根本不成晶。
B、热场梯度偏大单晶经常中途断棱,影响无位错单晶的有效长度。
C、由于<110>晶向单晶的位错增生具有它的特殊性,如果热场梯度太大单晶前部和后部温度差被有效拉开,一旦位错生成将有可能在热应力的冲击下位错会贯穿整棵单晶。
综上所述,为了达到适应拉制<110>无位错单晶的热场温度梯度,必须重新设计上保温筒、下保温筒及炉底护盘的保温层厚度。
本发明为了成功拉制<110>无位错单晶所采取的技术方案是:一种<110>无位错单晶的制造方法,包括如下步骤:
(1).在引晶工艺中,引晶直径应≥5mm,其收放比例为100%,引晶拉速应≥5mm/min,引晶长度为150-300mm;
(2).在放肩工艺中,放肩速度为0.2~1.5mm/min;
(3).在等径工艺中,单晶头部拉速应为1.0-3.0mm/min,尾部拉速应为0.5-2.0mm/min;
(4).在收尾工艺中,单晶收尾长度应大于晶体的直径,收尾最小直径应≤10mm。
一种制造<110>无位错单晶的石墨热系统包括上保温筒,下保温筒及炉底护盘,其特征在于,上保温筒的保温层厚度为20~30mm,下保温筒的保温层厚度为60~70mm,炉底护盘的保温层厚度为70~80mm。
本发明产生的有益效果是:成功实现了生产<110>无位错单晶,从而满足了国内外市场对<110>无位错单晶的需求。
附图说明
图1是本发明使用的石墨热系统结构剖视图并作为摘要附图。
具体实施方式
本发明中所采用的单晶炉是JRDL-800、CG6000型单晶炉,炉内压力:1.3-1.6×103Pa(15-20Torr);热系统是Φ16~18″石墨热系统;石英埚是Φ16~18″石英坩埚,埚升比例:1.0∶0.128;籽晶类型是P型<110>;减压保护气体是高纯氩气;氩气流量:40-60L/min。
具体操作要求
引晶
由于<110>晶向的单晶排除位错较难,因此要求操作工引晶要有明显的收放趋势,引晶直径不小于5mm收放比例约100%,引晶拉速不得低于5mm/min,引晶长度要大于<100>晶向的要求,具体长度一般为200mm左右。
放肩
由于<110>晶向的单晶为对称双棱,因此放肩操作时要控制好放肩速度,避免放肩速度过快成椭圆,因此要求放肩速度0.2~1.5mm/min。
等径
单晶在保持过程中避免较大的温度起伏和机械振动,单晶头部拉速控制在1.0-3.0mm/min尾部0.5-2.0mm/min。
收尾
单晶收尾长度应大于晶体的直径,例如如果晶体的直径为4时,那么单晶收尾长度应大于4时,收尾最小直径要小于10mm。
参照附图,在本发明中,为了调整石墨热系统的温度梯度,而重新设计了石墨热系统中的上保温筒1、下保温筒2和炉底护盘3的保温层厚度,其中:上保温筒1的保温层厚度设为26mm,下保温筒2的保温层厚度设为64mm,炉底护盘3的保温层厚度设为78mm,可采用碳毡(或硬毡)作为保温材料。
<110>无位错单晶在本发明中未涉及的其它生产工艺均可参照普通<110>硅单晶工艺操作,在此不再描述。

Claims (1)

1.一种<110>无位错硅单晶的制造方法,包括如下步骤:
(1).在引晶工艺中,引晶直径应≥5mm,其收放比例为100%,引晶拉速应≥5mm/min,引晶长度为150-300mm;
(2).在放肩工艺中,放肩速度为0.2~1.5mm/min;
(3).在等径工艺中,单晶头部拉速应为1.0-3.0mm/min,尾部拉速应为0.5-2.0mm/min;
(4).在收尾工艺中,单晶收尾长度应大于晶体的直径,收尾最小直径应≤10mm。
CN200610129891A 2006-12-06 2006-12-06 <110>无位错硅单晶的制造方法 Active CN100585031C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200610129891A CN100585031C (zh) 2006-12-06 2006-12-06 <110>无位错硅单晶的制造方法
US12/377,681 US20100307403A1 (en) 2006-12-06 2007-04-19 (110) dislocation-free monocrystalline silicon and its preparation and the graphite heat system used
PCT/CN2007/001287 WO2008067700A1 (fr) 2006-12-06 2007-04-19 Monocristal de silicium exempt de dislocation, son procédé de fabrication et un dispositif de chauffage en graphite utilisé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610129891A CN100585031C (zh) 2006-12-06 2006-12-06 <110>无位错硅单晶的制造方法

Publications (2)

Publication Number Publication Date
CN1995485A CN1995485A (zh) 2007-07-11
CN100585031C true CN100585031C (zh) 2010-01-27

Family

ID=38250686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610129891A Active CN100585031C (zh) 2006-12-06 2006-12-06 <110>无位错硅单晶的制造方法

Country Status (3)

Country Link
US (1) US20100307403A1 (zh)
CN (1) CN100585031C (zh)
WO (1) WO2008067700A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974779B (zh) * 2010-11-03 2011-07-13 天津市环欧半导体材料技术有限公司 一种制备<110>区熔硅单晶的方法
CN102002753B (zh) * 2010-12-13 2011-11-16 天津市环欧半导体材料技术有限公司 一种ф8英寸<110>直拉硅单晶的制造方法及其热系统
CN102011180A (zh) * 2010-12-22 2011-04-13 浙江昱辉阳光能源有限公司 一种单晶炉热场结构
CN102168300A (zh) * 2011-04-06 2011-08-31 天津市环欧半导体材料技术有限公司 一种用于重掺硅单晶制造的热系统
CN102220634B (zh) * 2011-07-15 2012-12-05 西安华晶电子技术股份有限公司 一种提高直拉硅单晶生产效率的方法
CN102220629B (zh) * 2011-07-25 2013-02-13 天津市环欧半导体材料技术有限公司 一种采用直径法控制区熔晶体自动生长方法及系统
CN102321913B (zh) * 2011-10-11 2014-03-05 天津市环欧半导体材料技术有限公司 一种拉制8英寸区熔硅单晶热系统及工艺
US20150044467A1 (en) * 2012-04-23 2015-02-12 Hwajin Jo Method of growing ingot and ingot
CN103114328B (zh) * 2013-02-25 2015-10-07 天津市环欧半导体材料技术有限公司 8寸<110>磁场直拉单晶的制备方法
CN109097822B (zh) * 2018-09-29 2020-11-03 包头美科硅能源有限公司 一种降低单晶晶棒中的碳含量方法
CN111223776B (zh) * 2018-11-23 2023-08-11 隆基乐叶光伏科技有限公司 一种晶硅片镀膜方法及装置
CN109468681A (zh) * 2018-11-30 2019-03-15 邢台晶龙新能源有限责任公司 一种单晶炉氩气节能供应方法
CN113355737B (zh) * 2021-06-02 2022-08-30 内蒙古和光新能源有限公司 一种方形硅芯的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329308A1 (de) * 1983-08-12 1985-02-28 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von kristallen beliebiger orientierung
JP3085146B2 (ja) * 1995-05-31 2000-09-04 住友金属工業株式会社 シリコン単結晶ウェーハおよびその製造方法
JP3841863B2 (ja) * 1995-12-13 2006-11-08 コマツ電子金属株式会社 シリコン単結晶の引き上げ方法
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法
CN1205362C (zh) * 2001-10-18 2005-06-08 北京有色金属研究总院 直拉硅单晶炉热场的气流控制方法及装置
KR100987470B1 (ko) * 2002-04-24 2010-10-13 신에쯔 한도타이 가부시키가이샤 실리콘 단결정의 제조방법 및 실리콘 단결정과 실리콘웨이퍼
CN1609286A (zh) * 2004-09-20 2005-04-27 江苏顺大半导体发展有限公司 太阳能级硅单晶生产工艺方法
CN1292101C (zh) * 2005-06-15 2006-12-27 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶制备方法
CN1325700C (zh) * 2006-04-21 2007-07-11 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶生产方法
CN1325702C (zh) * 2006-04-26 2007-07-11 天津市环欧半导体材料技术有限公司 区熔气相掺杂太阳能电池硅单晶的生产方法

Also Published As

Publication number Publication date
CN1995485A (zh) 2007-07-11
US20100307403A1 (en) 2010-12-09
WO2008067700A1 (fr) 2008-06-12

Similar Documents

Publication Publication Date Title
CN100585031C (zh) &lt;110&gt;无位错硅单晶的制造方法
Lan et al. Engineering silicon crystals for photovoltaics
CN102358951B (zh) 一种生产φ6英寸区熔气掺硅单晶的热系统及工艺
WO2014054214A1 (ja) シリコン単結晶育成装置及びシリコン単結晶育成方法
CN107130295B (zh) 一种消除硅芯棒隐裂的装置及方法
KR20110030555A (ko) 태양 전지를 제조하기 위한 게르마늄 강화 실리콘 재료
CN108277531A (zh) 锗单晶的生长方法
CN102978694A (zh) 一种蓝宝石晶体生长的改良泡生法
CN104711664B (zh) 一种提高大直径区熔硅单晶生产质量的方法
CN202090092U (zh) 带控温籽晶装置的单晶铸锭炉
CN103255477B (zh) 一种成型蓝宝石晶体的生长方法及设备
WO2011072278A3 (en) Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
CN103343385A (zh) 一种异形尺寸的直拉单晶硅及其生长方法
CN102011180A (zh) 一种单晶炉热场结构
Zhang et al. Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation
CN102925957B (zh) 长晶装置
CN2884103Y (zh) 直拉法单晶硅生产用石英坩埚
Chai et al. Growth of high quality single domain crystals of langasite family compounds
Vishnuwaran et al. Effect of titanium carbide heat exchanger block and retort on oxygen impurities in Mc-silicon: Numerical modelling
CN103320857B (zh) 一种蓝宝石晶体的生长方法及设备
CN205115667U (zh) 一种直拉单晶用加热器
CN102619863B (zh) 单晶炉传动轴及其生产方法
CN101363131B (zh) 一种助熔剂生长法中顶部籽晶重入技术
CN201545932U (zh) 制备碲铟汞单晶专用石英坩埚
CN202610385U (zh) 一种蓝宝石晶体的生长设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Inner Mongolia Zhonghuan Photovoltaic Material Co., Ltd.

Assignor: Huanou Semiconductor Material Technology Co., Ltd., Tianjin

Contract record no.: 2011120000003

Denomination of invention: Manufacturing method of [110] dislocation free silicon single crystal

Granted publication date: 20100127

License type: Exclusive License

Open date: 20070711

Record date: 20110114

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181029

Address after: 300384 Tianjin Binhai New Area high tech Zone Huayuan Industrial Area (outside the ring) Hai Tai Road 12

Patentee after: Tianjin Zhonghuan Semiconductor Co., Ltd.

Address before: 300384 Tianjin Huayuan Industrial Area (outside the ring) 12 East Hai Tai Road.

Patentee before: Huanou Semiconductor Material Technology Co., Ltd., Tianjin

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190611

Address after: 010000 No. 15 Baolier Street, Saihan District, Hohhot City, Inner Mongolia Autonomous Region

Patentee after: Inner Mongolia Central Leading Semiconductor Materials Co., Ltd.

Address before: 300384 Tianjin Binhai New Area high tech Zone Huayuan Industrial Area (outside the ring) Hai Tai Road 12

Patentee before: Tianjin Zhonghuan Semiconductor Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220413

Address after: 010000 No. 15 Baolier Street, Saihan District, Hohhot City, Inner Mongolia Autonomous Region

Patentee after: Inner Mongolia Central Leading Semiconductor Materials Co.,Ltd.

Patentee after: Central leading semiconductor materials Co., Ltd

Address before: 010000 No. 15 Baolier Street, Saihan District, Hohhot City, Inner Mongolia Autonomous Region

Patentee before: Inner Mongolia Central Leading Semiconductor Materials Co.,Ltd.