AT409422B - Rotationsrheometer - Google Patents

Rotationsrheometer Download PDF

Info

Publication number
AT409422B
AT409422B AT0201099A AT201099A AT409422B AT 409422 B AT409422 B AT 409422B AT 0201099 A AT0201099 A AT 0201099A AT 201099 A AT201099 A AT 201099A AT 409422 B AT409422 B AT 409422B
Authority
AT
Austria
Prior art keywords
measuring
heat
temperature
temperature control
rheometer according
Prior art date
Application number
AT0201099A
Other languages
English (en)
Other versions
ATA201099A (de
Original Assignee
Anton Paar Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3525897&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AT409422(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anton Paar Gmbh filed Critical Anton Paar Gmbh
Priority to AT0201099A priority Critical patent/AT409422B/de
Priority to DE10058399A priority patent/DE10058399B4/de
Priority to US09/724,900 priority patent/US6571610B1/en
Priority to GB0029126A priority patent/GB2359892B/en
Publication of ATA201099A publication Critical patent/ATA201099A/de
Application granted granted Critical
Publication of AT409422B publication Critical patent/AT409422B/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft ein Rotationsrheometer gemäss dem Oberbegriff des Patentanspruches 1. 



   Der prinzipielle Aufbau von Rotationsrheometern ist beispielsweise aus dem österreichischen Patent 404 192 bekannt. 



   Aus der DE 27 33 099 B1 ist ein Rotationsviskosimeter bekannt, bei dem über eine Laufbuchse aus einem Lagermetall mit hoher Wärmeleitfähigkeit ein guter Wärmeübergang von einem Flüssig- keitsbad in die vorgesehene Temperierkammer zur Messfläche über eine dazwischen befindliche Metallmasse eines Zylinders vorgesehen ist. Des weiteren ist ein über die von einem Kegel gebil- dete obere Messplatte gestülpter Deckel vorgesehen, mit dem eine Abstrahlung von Wärme nach oben verhindert wird. Damit soll eine gute Temperierung der zu vermessenden Substanz sicherge- stellt werden. Der untere Messteil, auf dem die Substanz aufruht, wird von einem massiven Metall- block gebildet, der von der Temperierkammer mit Wärme versorgt wird und, da die zu vermessen- de Substanz auf diesem Metall aufruht, die Temperatur der Substanz bestimmt.

   Eine eigene Heiz-    einrichtung oder Kühleinrichtung für den oberen Messteil ist nicht vorgesehen ; kann somit von   aussen Wärme über die Messwelle dem oberen Messteil zugeführt oder über die Messwelle dem oberen Messteil entzogen werden. Es kann somit der Fall eintreten, dass eine unerwünschte Temperaturdifferenz zwischen dem oberen und dem unteren Messteil eintritt, auch wenn der obere Messteil innerhalb einer Ausnehmung des den unteren Messteil bildenden Metallblockes angeord- net ist und seitlich von diesem Metallblock umgeben ist. Der über die obere Messwelle stattfinden- de Wärmetransport kann die Messergebnisse verfälschen, indem ein Temperaturgradient zwischen dem oberen und dem unteren Messteil ausgebildet wird. 



   Aus der GB 1 272 522 A ist ein Rotationsviskosimeter bekannt, bei dem der untere Messteil rotiert und der obere Messteil drehfest angeordnet ist. Für die Untersuchung einer auf den unteren Messteil aufzubringenden Substanz können die beiden Messteile einander angenähert werden Der untere rotierende Messteil ist mit einer eingebauten Heizeinrichtung direkt beheizbar. Der obere Messteil ist mit einer Heizeinrichtung beheizbar und mit einer Kühleinrichtung kühlbar. Damit soll die zu untersuchende Substanz entsprechend temperiert werden können bzw. Temperaturgra- dienten innerhalb der Substanz vermieden werden. Bei dieser Anordnung werden die beiden Messteile, die von relativ aufwendigen Metallteilen gebildet sind, beheizt bzw. einer dieser Teile kann auch gekühlt werden. Die Energie für die Heizung muss über Schleifringe zugeführt werden. 



  Dies verursacht Reibungsmomente, die der Luftlagerung und der Gewinnung von genauen Mess- werten nicht zuträglich sind. 



   Ziel der Erfindung ist es, bei derartigen Rotationsrheometern, insbesondere bei solchen der eingangs genannten Art, die Temperatur der Probe rasch einstellen und während des Messvor- ganges möglichst genau auf einen gewünschten Wert halten zu können bzw. Temperaturgradien- ten in der Probe zu minimieren. Die Viskosität der Proben - im wesentlichen Flüssigkeiten, Gele, Pasten, Schmelzen, bis hin zu Festkörpern - besitzt eine hohe Temperaturabhängigkeit, welche in einer Grössenordnung von etwa 10% Viskositätsänderung pro 1 C liegt. Für die genaue Bestim- mung der Viskosität ist daher eine homogene Temperierung der Probe innerhalb des Messspaltes von Wichtigkeit.

   Da viele Proben auch eine zeitliche Abhängigkeit der Viskosität aufweisen (z.B. thermisch aushärtende Klebstoffe), sollen Temperaturveränderungen (Aufheizen und Abkühlen) exakt in möglichst kurzer Zeit ausgeführt werden können. 



   Diese Ziele werden bei einem Rotationsrheometer der eingangs genannten Art durch die im Kennzeichen des Anspruches 1 angeführten Merkmale erreicht. 



    Mit der (n) vorgesehenenWärmepumpe(n) ist es möglich, sehr rasch dem oberen Messteil Wär-   me kontaktfrei zuzuführen oder Wärme vom oberen Messteil abzuführen, je nachdem, ob die Tem- peratur des oberen Messteiles oder der zu untersuchenden Probe oder des unteren Messteiles einen gewünschten Temperaturwert über- oder unterschreitet. 



   Bei dem erfindungsgemässen Rotationsrheometer ist dem oberen rotierenden Messteil ein Temperierteil zugeordnet bzw. im Abstand von diesem Messteil angeordnet, sodass der Tempe- rierteil nicht mit dem oberen Messteil mitrotiert werden muss. Trotzdem kann über diesen Tempe- rierteil dem oberen Messteil Wärme kontaktfrei zugeführt oder entzogen werden, wobei die not- wendige zu entziehende bzw. heranzuführende Wärmemenge relativ gering ist, da der obere Messteil innerhalb einer Temperierkammer angeordnet ist und nur die über die nach aussen geführ- te Messwelle zu- bzw. abgeführte Wärmemenge auszugleichen ist. Die Heiz- bzw. Kühleinrichtung, die dem oberen Messteil zugeordnet ist, muss nicht mit diesem mitrotiert werden und kann den 

 <Desc/Clms Page number 2> 

 oberen Messteil von oben und/oder von der Seite her erwärmen oder abkühlen.

   Unabhängig von der Wärmezufuhr bzw. der Wärmeabfuhr zum oberen Messteil wird die Temperatur des unteren Messteiles eingestellt bzw. die Temperatur des oberen Messteiles und des unteren Messteiles durch entsprechende Regelvorgänge aneinander angepasst und damit ein Temperaturgradient in der zu vermessenden Substanz vermieden. Des weiteren wird bei der Erhitzung oder Abkühlung eine Kontaktierung des rotierenden Messteiles vermieden. 



   Mit den Merkmalen der Ansprüche 2 bis 7 wird eine rasche und exakte Temperatureinstellung und gleichmässige Temperaturverteilung unterstützt. 



   Bei einer bevorzugten Ausführungsform der Erfindung sind die Merkmale des Anspruches 8 er- füllt. Der vorgesehene Wärmeleitteil verbessert die Möglichkeit, mit der Wärmepumpe rasch Wär- me zum oberen Messteil zuführen bzw. aus diesem ableiten zu können. 



   Bei einer weiteren bevorzugten Ausführungsform sind die Merkmale der Ansprüche 14 und 15 verwirklicht. Damit kann zusätzlich zu der durch Wärmestrahlung und Wärmeleitung und die gerin- ge, immer vorhandene Konvektion verursachte Wärmezu- und-abfuhr gezielt durch eine entspre- chend dosierte Zufuhr von Gas die Temperatur des oberen Messteiles und/oder des Wärmeleittei- les verändert bzw. eingestellt werden. 



   Des weiteren sind die Merkmale der Ansprüche 16 und 18 von Vorteil. Die vorgesehene, ins- besondere thermisch isolierende, Haube schaltet Umgebungseinflüsse aus bzw. isoliert die Mess- teile thermisch gegenüber der Umgebung. 



   Eine vorteilhafte Regelung ergibt sich mit den Merkmalen der Patentansprüche 23 oder 24. 



   Vorteilhafte Ausführungsformen der Erfindung ergeben sich aus der folgenden Beschreibung, den Patentansprüchen und der Zeichnung. 



   Im folgenden wird die Erfindung anhand der Zeichnungen beispielsweise näher erläutert:   Es zeigen Fig. 1 und 2 Rotationsrheometer von an sich bekannter Bauart ; 3 bis 8 zeigen   Ausführungsformen erfindungsgemässer Rotationsrheometer ; Fig. 9 zeigt Ausführungsdetails. 



   Gemäss Fig. 1 und 2 umfasst ein Rotationsrheometer einen Messmotor 1 mit der speziellen Eigenschaft, dass die Beziehung zwischen dem Drehmoment an der Motorachse und der elektri- schen Versorgung bzw. den Versorgungsparametern, insbesondere der Stromaufnahme und/oder der Frequenz und/oder der Phasenlage, in einem bekannten Zusammenhang steht. Dadurch kann während eines Rotationsversuches das Moment einer Probe 12 durch Messung der Versorgungs- parameter bestimmt werden. Die Beziehungen zwischen dem Drehmoment und den Versorgungs- parametern werden durch Justieren und/oder Kalibrieren ermittelt. 



   Des weiteren umfasst das Rotationsrheometer einen Winkelencoder 2 zur Bestimmung der Drehposition und der Drehzahl der Welle 16. Die Welle 16 ist in einem Führungslager 3 gelagert. 



  Je nach Aufbau des Rotationsrheometers und der geforderten Drehmomentauflösung werden Wälzlager oder Luftlager verwendet. 



   Als Messsystem bzw. Messteile 4,5 mit bekannter Geometrie können prinzipiell drei unterschied- liche Systeme eingesetzt werden, nämlich Platte/Platte-Messsysteme, Kegel/Platte-Messsysteme oder Zylindermesssysteme. 



   Das Rotationsrheometer umfasst des weiteren ein Stativ 11 in möglichst formstabiler Ausfüh- rung. Mit einer Hubeinrichtung kann die Dicke des Messspaltes S durch Höhenverstellung zumin- dest eines der Messteile 4,5 eingestellt werden. 



   Fig. 1 zeigt schematisch ein Rotationsrheometer, bei dem die Anordnung bestehend aus Mess- motor 1, Lagerung 3, Winkelencoder 2 und den als Platten ausgebildeten Messteilen 4 und 5 mit dem Stativ 11 über eine Linearführung 31 verbunden bzw. auf dieser gelagert und relativ zum Stativ 11verschiebbar sind. Durch ein Antriebssystem bestehend aus einer Spindel 6 mit einem Drucklager 7 und einem Motor 8 und gegebenenfalls mit einem angeflanschten Winkelencoder 9 kann diese Anordnung in vertikaler Richtung relativ zum Stativ 11bewegt und die Dicke des Mess- spaltes S verändert werden. Die Verschiebung der Messplatte 18 relativ zum Stativ 11 wird mit einer Messeinrichtung 14 ermittelt, die z. B. von einem Potentiometer, einer Linearmesseinrichtung od.dgl. gebildet sein kann. 



   Die Auswertung der Messwerte erfolgt in einer Steuer- bzw Auswerteeinheit 17, die die Versor- gungsparameter des Messmotors 1 abfühlt, die Dicke des Messspaltes S einstellt und entsprechen- de Registrier- und Anzeigegeräte umfasst. 



   Fig. 2 zeigt ein Rotationsrheometer in einer gegenüber Fig. 1 abgeänderten Anordnung, wobei 

 <Desc/Clms Page number 3> 

 der Messmotor 1, das Luftlager 3 und der Winkelencoder 2 fest mit dem Stativ 11verbunden sind. 



  Der Messspalt S wird mit einem Hubtisch 15 eingestellt, welcher axial im Stativ 11 gelagert ist und über eine Spindel 6 mit einem Drucklager 7 und einem Motor 8, der gegebenenfalls einen ange- flanschten Winkelencoder 9 aufweist, höhenverstellbar angetrieben ist. 



   Anstelle des Spindelantriebes, bestehend aus den Bauteilen 6,7, 8 und 9 können auch andere Linearantriebe verwendet werden, z. B. ein Uhmg-Mutter-Antrieb (Wälzmutter), Linearmotoren, pneumatisch angetriebene Verstelleinrichtungen usw. 



   Grundsätzlich gibt es drei Versuchsarten:   a) CSR-Versuch : DieWelle 16 wird mit konstanter Drehzahl beaufschlagt und das Drehmoment   wird gemessen. b) CSS-Versuch: In diesem Fall wird ein konstantes Moment vorgegeben und die Drehzahl der 
Welle 16 wird gemessen. c) Oszillationsversuch: Bei diesem Versuch wird die Welle 16 mit sinusförmigen (oder andere 
Wellenform aufweisenden) Drehbewegungen beaufschlagt. Bei dieser Versuchsart kann neben dem viskosen Anteil auch die elastische Komponente der Probe 12 bestimmt werden. 



   Bei einem Kegel/Platte-Messsystem befindet sich die Probe 12 zwischen einem feststehenden unteren Messteil 5, der von einer Platte gebildet ist und einem rotierenden oberen Messteil 4, der von einer Platte oder von einem rotierenden Kegel mit typischen Winkeln gebildet ist. Die Winkel, gemessen zwischen der feststehenden unteren Platte und dem Kegel, betragen z.B. 0,5 , 1  oder 2 . Entsprechend der vorgegebenen Norm sitzt die Kegelspitze an der feststehenden Platte auf. 



  Um die Reibung an diesem Punkt zu verhindern, kann die Kegelspitze um 50   m   abgeflacht und die Höhe derart eingestellt werden, dass die theoretische Spitze des Kegels wiederum auf die fest- stehende Platte aufsitzt. 



   Wie bereits erwähnt, wird die Erfindung anhand eines Platte/Platte-Messsystems erläutert, bei welchem sich die Probe 12 zwischen einem als feststehende Platte ausgebildeten unteren Messteil 5 und einer als rotierende Platte ausgebildeten, oberen Messteil 4 befindet. Dabei kann der rotie- rende bzw. obere Messteil 4 kleineren Durchmesser als der feststehende, untere Messteil 5 besit- zen. Auch gleich grosse Messteile 4,5 sind einsetzbar. Der untere Messteil 5 ist in der Regel platten- förmig ausgebildet. 



   Bei bekannten Rotationsrheometern mit Probentemperiersystemen mittels Wärmepumpen (Peltier-Blöcken) wird die Probe 12 ausschliesslich über den feststehenden unteren Messteil 5 temperiert; der rotierende bzw. oszillierende obere Messteil 4 mit der Messwelle 16 befindet sich in einer Umgebung mit Raumtemperatur. Bei Probentemperaturen über oder unter der Raumtempe- ratur wird durch Wärmeleitung und Konvektion sowie durch Wärmestrahlung dem rotierenden bzw oszillierenden Messsystem 4 mit der Messwelle 16 Wärmeenergie zugeführt oder abgeführt. Da dieser Wärmestrom durch die Probe 12 verläuft, entsteht ein unerwünschter Temperaturgradient innerhalb der Probe 12 bzw. verändert sich deren Temperatur. Mit der Erfindung wird vor allem die Ausbildung unerwünschter Temperaturgradienten innerhalb der Probe verhindert. 



   Fig. 3 bis 8 zeigen schematisch verschiedene Anordnungen, welche die erfindungsgemässen Ziele erreichen lassen. Die Anordnung gemäss den Fig. 3 bis 8 unterscheiden sich untereinander in der Ausführung der Messteile 4,5 sowie in der Anordnung und Ausführung der Wärmepumpen bzw. der von jeweils einer Anzahl von Peltier-Elementen gebildeten Peltier-Blöcke 24. Die Temperier- einheit für den unteren Messteil 5 umfasst zumindest eine Wärmepumpe (Peltier-Block) 20, die (der) auf der einen Seite mit einem Wärmetauscher 21 und auf der anderen Seite mit dem unteren Messteil 5 verbunden ist. 



   Zur Vermeidung bzw. Minimierung unerwünschter Temperaturgradienten ist ein weiteres Tem- periersystem vorgesehen, umfassend einen Wärmetauscher 23, zumindest eine Wärmepumpe 24 und einen Temperierteil 25. Dieses Temperiersystem hat die Aufgabe, jene Wärmeenergie, welche dem rotierenden bzw. oszillierenden Messteil 4 über die Umgebung und/oder die Messwelle zu- oder abgeführt wird, zu kompensieren, um den Wärmestrom durch die Probe 12 zu unterbinden. Die Übertragung der Wärmeenergie auf den bzw. vom Messteil 4 erfolgt durch Strahlung, Konvektion und Gaswärmeleitung. Zur Erhöhung des Wärmetransportes kann zusätzlich Luft oder Gas oder ein Gasgemisch über einen Anschluss 27 auf den Messteil 4 eingeblasen werden. Das Gas wird in dem Temperierteil 25 vorgewärmt bzw. vorgekühlt und gleichmässig über Auslassöffnungen 28 in den Probenraum bzw. zum Messteil 4 geblasen.

   Der gesamte Probenraum ist gegebenenfalls mit 

 <Desc/Clms Page number 4> 

 einer Haube 10 abgedeckt. 



   Die Wärmetauscher 21,23 können prinzipiell als Kühlkörper, welcher Energie an die Luft ab- gibt bzw. aus der Luft entzieht, oder als flüssigkeitsdurchflossener Kühlblock, zur Aufnahme oder Abgabe von Wärme, ausgeführt sein. 



   Im unteren Messteil 5 ist ein Temperatursensor 22 angeordnet, welcher den Istwert für einen an die Steuer- bzw. Auswerteeinheit 17 angeschlossenen Temperaturregler 29 für den unteren Mess- teil 5 bildet. Der Temperatursollwert für den Messteil 5 wird von der Steuer- bzw. Auswerteeinheit 17 vorgegeben. Auch der Temperatursollwert für den Temperierteil 25 wird von der Steuer- bzw. 



  Auswerteeinheit 17 vorgegeben. Eine Strom- oder Spannungsquelle in den Einheiten 29 bzw. 30 versorgt die Wärmepumpe(n) (Peltier-Blöcke) 20 bzw. 24 mit einer geregelten Leistung. 



   Der Temperaturregler 30 für das Peltier-Element 24 erhält von der zentralen Auswerteeinheit    17 einen Temperatursollwert für den Temperierteil 25 vorgegeben ; den Temperaturregler 30 ist   ein Temperaturfühler 26 angeschlossen, der die Isttemperatur des Temperierteiles 25 abfühlt. 



  Dabei ist zweckmässig, dass der Temperaturregler 30 die Temperatur des Temperierteiles 25 auf eine knapp oberhalb oder knapp unterhalb der Temperatur des unteren Messteiles 5 liegende Temperatur einregelt. 



   Fig. 3 und 4 zeigen Rheometer, bei denen der obere Messteil 4 geringfügig kleiner gehalten ist als der untere Messteil 5. Der obere Messteil 4 wird von einer Messwelle 16 rotiert, die durch eine Haube 10 geführt ist. Die Haube 10 kann mittels einer Betätigungs- bzw. Führungseinrichtung 13, insbesondere motorisch angetrieben, angehoben werden. Die Betätigungseinrichtung 13 kann am Träger 18 oder am Stativ 11oder am Hubtisch 15 gelagert sein. 



   Die vorgesehenen Wärmepumpen bestehen jeweils aus zumindest einem Peltier-Block 24, der mit einem Wärmetauscher 23 und einem Temperierteil 25 verbunden ist. Der Temperierteil 25 liegt knapp oberhalb des oberen Messteiles 4 und erstreckt sich vorteilhafterweise von der Messwelle 16 bis zumindest zum Aussenumfang des oberen Messteiles 4. Vorteilhafterweise wird die Baueinheit, umfassend den Peltier-Block 24, den Wärmetauscher 23 und den Temperierteil 25, von der Haube 10, z. B. mit dem Rohrteil 27', getragen oder ist auf der Grundplatte 19 mit entsprechenden, nicht dargestellten, Tragteilen abgestützt, welche Grundplatte 19 auch den unteren Messteil 5 bzw. die diesem unteren Messteil 5 zugeordnete Temperiereinheit, umfassend den Peltier-Block 20 und den Wärmetauscher 21, trägt bzw. abstützt. 



   Vorteilhafterweise ist vorgesehen, dass in dem Temperierteil 25, insbesondere möglichst gleich- mässig verteilt, sich in Richtung auf den oberen Messteil 4 und/oder den Wärmeleitteil 4' öffnende Gaszufuhrkanäle 28 ausgebildet sind, mit denen durch Durchströmen des Temperierteiles 25 temperiertes Gas oder Gasgemisch zum oberen Messteil 4 und/oder zum Wärmeleitteil 4' zuführbar ist. 



   Die vorgesehene Regeleinheit 29 regelt die Temperatur des unteren Messteiles 5 auf eine von der Steuer- bzw. Auswerteeinheit 17 vorgegebene Temperatur ein; der Temperaturregler 30 regelt mit Hilfe des Temperaturfühlers 26 die Temperatur des Temperierteiles 25. 



   Bei der in Fig. 3 dargestellten Ausführungsform wird die Wärme vornehmlich über die nach un- ten weisende Fläche des Temperierteiles 25 in den Probenraum bzw. den oberen Messteil 4 bzw. in    die Probe 12 eingebracht bzw. aus dieser (m) Die Peltier-Blöcke 24 sind an den Seiten-   wänden des (r) Temperierteile(s) befestigt. Fig. 4 zeigt eine Anordnung ähnlich Fig. 3, wobei der (die) Peltier-Block (Blöcke) 24 oberhalb des Temperierteiles 25 angeordnet ist. Der Wärmetau- scher 23 ist oberhalb des Peltier-Elementes 24 angeordnet und liegt an der Innenfläche der Haube 10 an bzw. ist an dieser befestigt. Die Haube 10 könnte auch die Funktion des Wärmetauschers übernehmen.

   Die einzelnen Wärmepumpen umgeben die Messwelle 16 und regeln die Temperatur des Temperierteiles 25 und temperieren damit den oberen Messteil 4 und den unteren Endbereich der Messwelle 16. 



   Fig. 5 zeigt eine Ausführungsform, bei der vorgesehen ist, dass der zumindest eine Tempener- teil 25 und gegebenenfalls auch der zumindest eine Peltier-Block 24 und der Wärmetauscher 23 um die Messwelle 16 und/oder um einen gegebenenfalls von der Messwelle 16 oder dem oberen   Messteil 4 getragenen oder an dieser (m) befestigtenWärmeleitteil 4' herum angeordnet bzw. die-   se (n) umgebend ausgebildet sind. Dabei ist wiederum vorgesehen, dass die Oberfläche des(r) Temperierteile(s) 25 in geringem Abstand von dem oberen Messteil 4 bzw von der Oberfläche des Wärmeleitteiles 4' angeordnet ist. 

 <Desc/Clms Page number 5> 

 



   Vorteilhaft ist es, wenn der Wärmeleitteil 4' in Form eines, insbesondere dünnwandigen, Hohl- zylinders oder Hohlkegels von geringer Wärmekapazität und geringem Masseträgheitsmoment ausgeführt ist. Der Wärmeleitteil 4' ist oberhalb des oberen Messteiles 4 angeordnet. Gegebenen- falls ist der Wärmeleitteil 4' mit dem oberen Messteil 4 einstückig ausgebildet. Der obere Messteil 4 kann die Basis des Wärmeleitteiles 4' bilden bzw. diesen tragen oder kann von der unteren Endflä- che des Wärmeleitteiles 4' gebildet werden. Der Wärmeleitteil 4' kann einstückig oder mehrteilig ausgebildet sein und gegebenenfalls aus unterschiedlichen Materialien bestehen. 



   Auf diese Weise kann eine unerwünschte Wärmezufuhr oder Wärmeableitung über die Mess- welle 16 nahezu ausgeschlossen werden. Die Messwelle 16 ist vorteilhafterweise mit der oberen 
Endfläche des zylinderförmigen Wärmeleitteiles 4' verbunden, könnte aber auch bis zur Basis bzw. zum Messteil 4 durchgehen. Die Aussenflächen des Wärmeleitteiles 4' werden von dem (n)    Tempe-rierteil(en) 25 über einen beträchtlichen Höhenbereich temperiert, sodass der obere Messteil 4 an   der unteren Fläche des Wärmeleitteiles 4' als thermisch isoliert anzusehen ist. In Fig. 5 und 6 wurde der Bereich des Wärmeleitteiles 4', der als oberer Messteil wirkt bzw. ausgebildet ist, mit 4 bezeichnet. 



   Die Ausführungsformen gemäss Fig. 5 und 6 unterscheiden sich dadurch, dass in Fig. 5 die Pel- tier-Blöcke 24 und die Wärmetauscher 23 seitlich des (r) Temperierteile(s) 25 angeordnet sind, wogegen diese Bauteile bei der Ausführungsform gemäss Fig. 6 oberhalb des(r) Tempenerteile(s) 25 angeordnet sind. 



   Ganz allgemein ist zu bemerken, dass der Temperierteil 25 und gegebenenfalls auch die Pel- tier-Blöcke 24 und der (die) Wärmetauscher 23 in Form von Hohlzylindern, Hohlprismen oder Hohl- ringen oder entsprechender Segmente ausgestaltet sein können und möglichst nahe, vorzugs- weise unter Ausbildung eines gleichmässigen Abstandes, der Messwelle 16 bzw. des Wärmeleittei- les 4' angeordnet sind. 



   Prinzipiell könnte anstelle eines zylindrische Gesamtform aufweisenden Wärmeleitteiles 4' ein kegelförmiger Wärmeleitteil 4' vorgesehen werden, wie in Fig. 6 strichliert dargestellt ist. In diesem 
Fall würde die Innenfläche des (r) Temperierteile(s) 25 ebenfalls kegelförmig gestaltet sein, wie in Fig. 6 strichliert angedeutet ist. 



   In den Fig. 7 und 8 sind Ausführungsformen von Rotationsrheometern dargestellt, bei denen der obere Messteil 4 von dem Wärmeleitteil 4' getragen bzw. an diesem befestigt ist, diesen seitlich überragt und im wesentlichen eine mit dem unteren Messteil 5 vergleichbare Grösse aufweist. Der Temperierteil 25 ist relativ schmal ausgebildet und weist einen seitlich abgehenden Fortsatz 25' auf, mit dem der Peltier-Block 24 gegenüber dem oberen Messteil 4 abgeschirmt wird. Der Fortsatz 25' könnte sich auch weiter seitlich nach aussen erstrecken, um auch den Wärmetauscher 23 gegenüber den Probenbereich bzw. gegenüber den oberen Messteil 4 und den unteren Messteil 5 abzuschirmen. 



   Anstelle der Haube 10 könnte prinzipiell auch vorgesehen sein, dass nur ein kleiner Haubenteil 10' vom Temperierteil 25 (Fig. 8) oder vom Peltier-Block oder vom Wärmetauscher 23 (Fig. 7) getragen ist, um den Probenraum gegen Umwelteinflüsse, z. B. Zugluft, abzuschirmen. Es könnte ferner vorgesehen sein, den Wärmetauscher 23 und/oder den Temperierteil 25 an ihren jeweiligen seitlichen und/oder nach oben gerichteten Aussenflächen mittels einer Isolierschicht, z. B. aus Schaumstoff, thermisch zu isolieren; gleiches gilt für den Haubenbereich 10', welcher den Proben- raum, vorzugsweise allseitig, umgibt. 



   Die Temperierung des unteren Messteiles 5 kann auf verschiedene Weise erfolgen; anstelle eines Peltier-Blockes 20 könnte auch ein fluidgespeister Kühlblock vorgesehen sein. 



   Der Wärmeleitteil 4' kann ebenso wie der Messteil 4 aus Aluminium, Kunststoff, Nirosta beste- hen. Der Temperierteil 25 und der untere Messteil 5 werden aus gut wärmeleitendem Material erstellt, um die Wärmeenergie rasch verteilen zu können. Vorteilhaft ist es, wenn der Wärmeleitteil 4' in seinem dem oberen Messteil 4 nahen Bereich H aus gut wärmeleitendem Material, z. B. Alumi- nium, ausgebildet ist und in seinem der Messwelle 16 nahen Bereich aus schlecht wärmeleitendem Material, z. B. Kunststoff, ausgebildet ist. Maximal die untere Hälfte, vorzugsweise maximal das untere Drittel, des Wärmeleitteiles 4' besteht aus gut wärmeleitendem Material. Die Messwelle 16 besteht vorteilhafterweise aus Nirosta-Stahl. 



   Das durch den Temperierteil 25 eingeleitete Gas wird in einer relativ geringen Menge einge- bracht und weist eine Temperatur auf, die geringfügig höher oder geringfügig tiefer ist als die 

 <Desc/Clms Page number 6> 

 Temperatur des unteren Messteiles 5. Vorteilhafterweise erfolgt das Einblasen des Gases über die gesamte Aussenfläche des Wärmeleitteiles 4' und/oder über die Flächenbereiche des oberen Mess- teiles 4, die dem Wärmeleitteil 25 gegenüberliegen. 



   Zum Anheben und Absenken der Haube 10 und der von dem(n) Peltier-Block (Blöcken) 24,    dem Wärmetauscher 23 und der (n) 25 gebildeten Baueinheit können zumin-   dest eine gemeinsame Betätigungseinheit 13 oder getrennte Betätigungseinrichtungen vorgesehen sein. Diese Betätigungseinheiten arbeiten unabhängig von den Einstelleinheiten zur Einstellung der Dicke des Messspaltes S. 



   In Fig. 9 sind verschiedene Ausführungsformen von Temperierteilen dargestellt. Links in Fig. 9 ist ein Temperierteil 25 dargestellt, der sektorförmige Temperierteile 25' und 25" umfasst, wobei die Temperierteile 25' grossflächig und die Temperierteile 25" kleinflächig ausgebildet sind. Diese Tem- perierteile sind gegebenenfalls zusammensetzbar zu einem scheibenförmigen oder zylinderförmi- gen Temperierteil, der eine zentrale Ausnehmung 35 für den Durchtritt der Messwelle 16 aufweist. 



  Es ist durchaus möglich, dass die einzelnen Temperierteile 25' und 25" untereinander Abstände aufweisen ; im vorliegenden Fall ist es jedoch zweckmässig, wenn die Temperierteiie 25' und 25" aneinander anliegen, da lediglich den Temperierteilen 25' an deren Seitenwänden Peltier-Blöcke 24 zugeordnet sind. Prinzipiell können die Peltier-Blöcke an den Seitenflächen oder auf der oberen Fläche der Temperierteile 25 angeordnet sein. Wärmetauscher 23 bzw. die Messwelle 16 und die Messteile 4 bzw. 5 sind in Fig. 9 nicht dargestellt. 



   In Fig. 9 in der Mitte sind zwei halbkreisförmigen Querschnitt aufweisende Temperierteile 25' dargestellt, welche in ihrer Mitte eine Öffnung 35 zum Durchtritt der Messwelle 16 ausbilden. 



  Symmetrisch zu dieser Öffnung 35 sind vier Peltier-Blöcke 24 an den Umfangsflächen angeordnet ; zusätzlich oder alternativ könnten auch an der oberen Fläche der Temperierteile 25' Peltier-Blöcke 24 angeordnet sein. 



   Soferne die Temperierteile 25 nicht die Messwelle 16 umgeben sondern einen Wärmeleitteil 4' umgeben sollen, wird die Zentralöffnung 35 entsprechend grösser gestaltet. 



   In Fig. 9 rechts ist ein aus zwei Temperierteilen 25' zusammengesetzter polygonaler Tempe- rierteil 25 dargestellt, auf dessen oberer Fläche vier Peltier-Blöcke 24 angeordnet sind. 



   An sich kann die Form der seitlichen Aussenfläche bzw. der Innenumfangsfläche der Tempe- rierteile 25 beliebig gestaltet werden ; zentralsymmetrische Ausführungsformen erleichtern es je- doch, die Temperatur des oberen Messteiles 5 konstant zu halten. 



   Vorteilhafterweise übersteigt die Höhe der Temperierteile 25 die Höhe der Wärmeleitteile 4' ; damit wird erreicht, dass die Wärmeleitteile 4' über ihre gesamte Höhe temperiert werden und Wärmegradienten im unteren Bereich des Wärmeleitteiles 4', in dem dieser an den oberen Messteil 4 anschliesst bzw. in diesen übergeht, weitgehend vermieden werden. Insbesondere in diesem Fall ist es zweckmässig, wenn die Wärmeleitteile 25 den oberen Messteil 4 seitlich überragen, womit der Probenbereich zwischen dem unteren Messteil 5 und dem oberen Messteil 4 von beiden Seiten mit im wesentlichen derselben Temperatur beaufschlagt werden kann. 

**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.

Claims (24)

  1. PATENTANSPRÜCHE: 1. Rotationsrheometer mit einem Messmotor (1), der eine Messwelle (16) rotiert, an der ein oberer, insbesondere platten- oder kegelförmiger, Messteil (4) befestigt ist, wobei zwi- schen diesem ersten Messteil (4) und einem drehfesten, unteren, vorzugsweise platten- förmigen, Messteil (5) ein Messspalt (S) ausgebildet ist, in den die zu untersuchende Sub- stanz (12), insbesondere Flüssigkeit, Gel od.dgl., eingebracht wird, wobei die Dicke des Messspaltes (S) durch eine Verstellung der beiden Messteile (4,5) relativ zueinander ein- stellbar ist und wobei unterhalb des unteren Messteiles (5) eine Heiz- bzw.
    Temperierein- heit für diesen angeordnet ist, dadurch gekennzeichnet, dass zur Aufheizung oder Abküh- lung oder Tempenerung des oberen Messteiles (4) oberhalb und/oder seitlich des oberen Messteiles (4) zumindest ein Temperierteil (25) angeordnet ist, dessen Oberfläche in vor- zugsweise geringem Abstand von der oberen Fläche des oberen Messteiles (4) angeord- net ist, mit welchem Temperierteil (25), zumindest eine Wärmepumpe (24), insbesondere zumindest ein Peltier-Block, verbunden ist, mit der (m) den Temperierteil (25) dem <Desc/Clms Page number 7> oberen Messteil (4) Wärme zuführbar oder entziehbar ist.
  2. 2. Rotationsrheometer nach Anspruch 1, dadurch gekennzeichnet, dass der Peltier-Block (24) oberhalb und/oder seitlich des oberen Messteiles (4) angeordnet ist.
  3. 3. Rotationsrheometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an zumindest einer Seitenfläche und/oder der oberen Endfläche des Temperierteiles (25) zumindest ein Peltier-Block (24) befestigt ist.
  4. 4. Rotationsrheometer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der bzw. die Temperierteil(e) (25) die Messwelle (16) umgibt (umgeben) und vorzugsweise in bezug auf die Messwelle (16) zentralsymmetrisch ausgebildet sind.
  5. 5. Rotationsrheometer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die vorgesehenen Peltier-Blöcke (24) in Bezug auf die Messwelle (16) zentralsymmetrisch an- geordnet sind.
  6. 6. Rotationsrheometer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Temperierteil (25) als Metallring mit im Schnitt senkrecht zur Messwelle (16) rundem oder polygonalem Innen- und/oder Aussenumfang ausgebildet ist.
  7. 7. Rotationsrheometer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass von jedem Peltier-Block (24), insbesondere an der dem Temperierteil (25) abgewandten Seite, zumindest ein Wärmetauscher (23) getragen ist.
  8. 8. Rotationsrheometer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der (die) Temperierteil(e) (25) und gegebenenfalls auch Peltier-Blöcke (24) mit Wärmetau- scher (23) um die Messwelle (16) und/oder um einen gegebenenfalls von der Messwelle (16) getragenen oder einen an dieser befestigten oder von dem oberen Messteil (4) getra- genen oder an diesem befestigten Wärmeleitteil (4') herum angeordnet bzw. diese (n) gebend ausgebildet sind.
  9. 9. Rotationsrheometer nach Anspruch 8, dadurch gekennzeichnet, dass die Oberfläche des (r) Tempenerteile(s) (25) in geringem Abstand von der Oberfläche des Wärmeleitteiles (4') angeordnet ist.
  10. 10. Rotationsrheometer nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Wärme- leitteil (4') in Form eines, insbesondere dünnwandigen, Hohlzylinders oder Hohlkegels vor- teilhafterweise von geringer Wärmekapazität und geringem Masseträgheitsmoment ausge- führt ist.
  11. 11. Rotationsrheometer nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, - dass der Wärmeleitteil (4') oberhalb des oberen Messteiles (4) im Abstand zu diesem angeordnet und von der Messwelle (16) getragen ist oder - dass der von der Messwelle (16) getragene Wärmeleitteil (4') mit dem oberen Messteil (4) einstückig ausgebildet ist und der obere Messteil (4) vom Basisbereich des Wärme- leitteiles (4') gebildet ist und/oder - dass der obere Messteil (4) an der unteren Fläche des Wärmeleitteiles (4') befestigt bzw. angeformt ist.
  12. 12 Rotationsrheometer nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Aussendurchmesser des(r) Temperierteile(s) (25) zumindest dem Aussendurchmesser des oberen Messteiles (4) entspricht.
  13. 13. Rotationsrheometer nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass der Temperierteil (25) die Mantelfläche des vorzugsweise zylindrischen oder kegelförmi- gen Wärmeleitteiles (4') zumindest teilweise ab- bzw. überdeckt.
  14. 14. Rotationsrheometer nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass in zumindest einem Temperierteil (25), insbesondere möglichst gleichmässig verteilt, sich in Richtung auf den oberen Messteil (4) öffnende Gaszufuhrkanäle (28) ausgebildet sind, mit denen beim Durchströmen des Temperierteiles (25) temperiertes Gas oder Gasgemisch zum oberen Messteil (4) und/oder zum Wärmeleitteil (4') zuführbar ist, wobei gegebenen- falls eine Einrichtung zum Vorwärmen des zugeführten Gases bzw. Gasgemisches vorge- sehen ist.
  15. 15. Rotationsrheometer nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass in zumindest einem Temperierteil (25), insbesondere möglichst gleichmässig verteilt, sich in Richtung auf den Wärmeteil (4') öffnende Gaszufuhrkanäle (28) ausgebildet sind, mit <Desc/Clms Page number 8> denen beim Durchströmen des Temperierteiles (25) temperiertes Gas oder Gasgemisch zum oberen Messteil (4) und/oder zum Wärmeleitteil (4') zuführbar ist, wobei gegebenen- falls eine Einrichtung zum Vorwärmen des zugeführten Gases bzw. Gasgemisches vorge- sehen ist.
  16. 16. Rotationsrheometer nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der obere Messteil (4) und der untere Messteil (5) und der zumindest eine Peltier-Block (24), der zumindest eine Temperierteil (25) und gegebenenfalls der (die) Wärmetauscher (23) zumindest teilweise von zumindest einer Haube (10) umgeben und gegebenenfalls von dieser Haube (10) getragen oder an dieser befestigt oder mit dieser verbunden ist.
  17. 17. Rotationsrheometer nach einem der Ansprüche 7 bis 16, dadurch gekennzeichnet, dass zumindest eine Betätigungs- bzw. Führungseinrichtung (13) zum Anheben bzw. Absenken der von dem(n) Peltier-Block (Blöcken) (24), von dem(n) Temperierteil(en) (25) und den Wärmetauschern (23) gebildeten Baueinheit vorgesehen ist, wobei die Betätigungs- bzw.
    Führungseinheit (13) von einem Stativ (11), von einem Träger (18) oder von einem Hub- tisch (15) getragen ist.
  18. 18. Rotationsrheometer nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass zumindest eine Betätigungs- bzw. Führungseinrichtung (13) zum Anheben bzw. Absenken der Haube (10) vorgesehen ist, wobei die Betätigungs- bzw. Führungseinheit (13) von einem Stativ (11), von einem Träger (18) oder von einem Hubtisch (15) getragen ist.
  19. 19. Rotationsrheometer nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass der zumindest eine Peltier-Block (24) und/oder der zumindest eine Temperierteil (25) und gegebenenfalls der (die) Wärmetauscher (23) zumindest teilweise mit zumindest einem Isoliermantel umgeben sind, der in Betriebsstellung gegebenenfalls auch den oberen und/ oder unteren Messteil (4,5) umgibt.
  20. 20. Rotationsrheometer nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Messwelle (16) aus schlecht wärmeleitendem Material besteht.
  21. 21. Rotationsrheometer nach einem der Ansprüche 8 bis 20, dadurch gekennzeichnet, dass der Wärmeleitteil (4') aus schlecht wärmeleitendem Material besteht.
  22. 22. Rotationsrheometer nach einem der Ansprüche 8 bis 21, dadurch gekennzeichnet, dass der Wärmeleitteil (4') in seinem dem oberen Messteil (4) nahen Bereich (H) aus gut wär- meleitendem Material, z. B. Aluminium, ausgebildet ist und in seinem der Messwelle (16) nahen Bereich aus schlecht wärmeleitendem Material, z. B. Kunststoff, ausgebildet ist.
  23. 23. Rotationsrheometer nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass ein Temperaturregler (30) für den (jeden) Peltier-Block (24) vorgesehen ist, dem von einer zentralen Steuereinheit (17) ein Temperatursollwert für den Temperierteil (25) vorgegeben ist, wobei an den Temperaturregler (30) ein Temperaturfühler (26) angeschlossen ist, der die Isttemperatur des Temperierteiles (25) abfühlt und der Temperaturregler (30) die Tem- peratur des Temperierteiles (25) auf eine knapp oberhalb oder knapp unterhalb der Tem- peratur des unteren Messteiles (5) liegende Temperatur einregelt.
  24. 24. Rotationsrheometer nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die dem unteren Messteil (5) zugeordnete bzw. diesen temperierende Heiz- bzw. Tempe- riereinheit von zumindest einem an den unteren Messteil (5) anliegenden Peltier-Block (20) mit Wärmetauscher (21) gebildet ist, wobei ein Temperaturregler (29) für die Heiz- bzw.
    Temperiereinheit (20, 21) vorgesehen ist, der einen mit dem unteren Messteil (5) verbun- denen Temperaturfühler (22) aufweist und gegebenenfalls von einer zentralen Steuerein- heit (17) Temperaturvorgabewerte für die Temperatur des unteren Messteiles (5) erhält.
AT0201099A 1999-11-29 1999-11-29 Rotationsrheometer AT409422B (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT0201099A AT409422B (de) 1999-11-29 1999-11-29 Rotationsrheometer
DE10058399A DE10058399B4 (de) 1999-11-29 2000-11-24 Rotationsrheometer
US09/724,900 US6571610B1 (en) 1999-11-29 2000-11-28 Rotary rheometer
GB0029126A GB2359892B (en) 1999-11-29 2000-11-29 Rotary rheometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0201099A AT409422B (de) 1999-11-29 1999-11-29 Rotationsrheometer

Publications (2)

Publication Number Publication Date
ATA201099A ATA201099A (de) 2001-12-15
AT409422B true AT409422B (de) 2002-08-26

Family

ID=3525897

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0201099A AT409422B (de) 1999-11-29 1999-11-29 Rotationsrheometer

Country Status (4)

Country Link
US (1) US6571610B1 (de)
AT (1) AT409422B (de)
DE (1) DE10058399B4 (de)
GB (1) GB2359892B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505938B1 (de) * 2007-12-14 2009-05-15 Anton Paar Gmbh Vorrichtung für die ermittlung der tribologischen eigenschaften von schmiermitteln
DE102009017709A1 (de) 2008-04-30 2009-11-05 Anton Paar Gmbh Verfahren zum Abstreifen bzw. Trimmen von rheologisch zu untersuchenden Proben
DE112007001851B4 (de) * 2006-08-23 2011-05-05 Basf Se Dauerlast-Scherzelle für magnetorheologische Flüssigkeiten
US8132445B2 (en) 2006-08-23 2012-03-13 Basf Se Rheometer
DE102021115819A1 (de) 2020-07-07 2022-01-13 Anton Paar Gmbh Verfahren zur Bestimmung der Dichte einer zumindest zähflüssigen, insbesondere flüssigen, Probe
EP4119923A1 (de) * 2021-07-16 2023-01-18 Bareiss Prüfgerätebau GmbH Messgerät und verfahren zur bestimmung von eigenschaften eines viskoelastischen materials

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147200B4 (de) * 2001-09-25 2013-02-21 Thermo Electron (Karlsruhe) Gmbh Rotationsrheometer
AU2002950831A0 (en) * 2002-08-16 2002-09-12 Gbc Scientific Equipment Pty Ltd Rheometer
DE10260981A1 (de) 2002-12-21 2004-07-01 Thermo Electron (Karlsruhe) Gmbh Rheometer
US7472584B2 (en) * 2003-12-22 2009-01-06 Eastman Chemical Company Device to measure the solidification properties of a liquid film and method therefor
US7185530B2 (en) * 2003-12-22 2007-03-06 Eastman Chemical Company Device to measure the solidification properties of a liquid film and method therefor
US7168299B2 (en) * 2004-03-10 2007-01-30 Waters Investments Limited Heat spreader for rotary rheometer
AT500358B1 (de) * 2004-05-24 2007-09-15 Anton Paar Gmbh Rotationsrheometer bzw. -viskosimeter
DE102004050751B4 (de) * 2004-10-16 2014-07-10 Thermo Electron (Karlsruhe) Gmbh Rheometer und Verfahren zur Temperierung seiner Messkammer
DE102005026049A1 (de) * 2005-06-03 2006-12-07 Sca Schucker Gmbh & Co. Kg Verfahren zum Auftragen einer pastösen Masse
FR2902879B1 (fr) * 2006-06-22 2008-10-10 Michelin Soc Tech Rheometre orthogonal
US8342032B2 (en) 2007-06-05 2013-01-01 Cargill, Incorporated Tribology device for assessing mouthfeel attributes of foods
AT504116B1 (de) * 2007-06-06 2008-03-15 Anton Paar Gmbh Verfahren zur ermittlung der viskosität von fluiden und viskosimeter
DE102007060908A1 (de) * 2007-12-14 2009-06-18 Thermo Electron (Karlsruhe) Gmbh Rotationsrheometer und Verfahren zur Bestimmung von Materialeigenschaften mit einem Rotationsrheometer
CZ18420U1 (cs) * 2008-01-25 2008-04-07 Benedík@Jaroslav Prístroj na zjištování kvality a pevnosti cévní steny
JP5098817B2 (ja) * 2008-05-29 2012-12-12 ソニー株式会社 物性測定装置及び物性測定方法
US20100071443A1 (en) * 2008-09-25 2010-03-25 Nathan Wrench Temperature-controlled rheometer
WO2010111588A2 (en) * 2009-03-27 2010-09-30 Ofi Testing Equipment, Inc. Test sample heating apparatus and method
AT508706B1 (de) * 2009-10-30 2011-06-15 Anton Paar Gmbh Verfahren zur untersuchung von proben mit einem rheometer sowie rheometer
AT510042B1 (de) * 2010-08-02 2012-01-15 Anton Paar Gmbh Verfahren zur ermittlung von rheometrischen parametern von proben und rotationsrheometer
DE102010050973B4 (de) 2010-11-10 2019-01-24 Thermo Electron (Karlsruhe) Gmbh Rheometer oder Viskosimeter
EP2677037B1 (de) * 2012-06-21 2016-04-13 Synapse B.V. Gleichzeitige Messung der Thrombinerzeugung und Gerinnselfestigkeit in Plasma und im gesamten Blut
AT513661B1 (de) * 2012-11-27 2015-02-15 Anton Paar Gmbh Rheometerkammer
DE102014102067A1 (de) 2014-02-18 2015-08-20 Anton Paar Gmbh System und Verfahren zum Bereitstellen eines temperierten Gases
AT515081B1 (de) * 2014-02-20 2015-06-15 Anton Paar Provetec Gmbh Verfahren zur Einstellung der Temperatur und Temperierbehälter
CN104458502A (zh) * 2014-12-08 2015-03-25 重庆南方数控设备有限责任公司 激光反射测量血液粘度装置和方法
DE102015100278B3 (de) * 2015-01-09 2016-05-04 Rheotec Messtechnik Gmbh Temperieranordnung mit Kombinationswärmeübertrager zur Heizung und Kühlung einer Messplatte eines Messgerätes
DE102015100272B3 (de) * 2015-01-09 2016-05-04 Rheotec Messtechnik Gmbh Temperieranordnung für Messgeräte
CN110361298A (zh) * 2018-05-11 2019-10-22 廊坊立邦涂料有限公司 一种流变仪
DE102018129457B3 (de) 2018-11-22 2020-03-26 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung von Schmierstoffeigenschaften
NO20210861A1 (en) * 2019-01-02 2021-07-02 Schlumberger Technology Bv Rheometer systems and related methods
US11692921B2 (en) 2020-05-27 2023-07-04 Ta Instruments-Waters Llc Rheometer having resistance heater and cooling device
KR102489469B1 (ko) * 2021-05-04 2023-01-18 넥센타이어 주식회사 레오미터
AT525752B1 (de) 2022-01-28 2023-07-15 Anton Paar Gmbh Verfahren zur Messung der Viskosität einer Probe mit einem temperierbaren Rotationsrheometer und korrespondierende Vorrichtung
AT18132U1 (de) * 2022-07-13 2024-02-15 Anton Paar Gmbh Verfahren zur Ermittlung der Viskosität einer Probe mit einem Rotationsviskosimeter
AT526292A1 (de) * 2022-07-13 2024-01-15 Anton Paar Gmbh Verfahren zur Ermittlung der Viskosität einer Probe mit einem Rotationsviskosimeter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703006A (en) * 1953-04-10 1955-03-01 Socony Vacuum Oil Co Inc Rotational viscometer
GB1272522A (en) * 1969-02-07 1972-05-03 Goodrich Co B F Measuring shear strengths of materials
DE2330964B2 (de) * 1973-06-18 1975-06-05 Brabender Ohg, 4100 Duisburg Rotationsviskosimeter
DE2733099B1 (de) * 1977-07-22 1979-04-19 Brabender Ohg Rotationsviskosimeter
DD227519A1 (de) * 1984-10-09 1985-09-18 Grubenlampen U Akkumulatorenwe Vorrichtung zur temperierung rheologischer messsysteme in rotationsrheometern

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182494A (en) * 1962-10-17 1965-05-11 Goodrich Co B F Viscurometer
US3307619A (en) * 1964-12-04 1967-03-07 Exxon Research Engineering Co Temperature control system for viscosimeter
US3488992A (en) * 1967-09-25 1970-01-13 Goodrich Co B F Curometer
DE2149721A1 (de) * 1971-10-05 1973-04-12 Sommer Werner O Dipl Ing Vorrichtung zur erzeugung eines konstanten temperaturverlaufs auf den messflaechen des kegels und der platte eines kegel-platte-viskosimeters
NO130856C (de) * 1972-12-05 1975-02-26 Arthur Bratland
US4185493A (en) * 1978-06-23 1980-01-29 Nasa Viscosity measuring instrument
US4343190A (en) * 1980-06-02 1982-08-10 Monsanto Company Moving die rheometer, method of testing materials therewith, and die for use therein
GB8525662D0 (en) * 1985-10-17 1985-11-20 Deer J J Induction heating
SU1695172A1 (ru) * 1989-07-04 1991-11-30 Предприятие П/Я Р-6594 Способ контрол степени отверждени термореактивных полимерных материалов
GB9323544D0 (en) * 1993-11-15 1994-01-05 Monsanto Plc Method and instrument for viscoelastic measurements
US5710374A (en) * 1995-04-06 1998-01-20 University Of Virginia Patent Foundation Electronic viscometer
AT404192B (de) * 1996-05-02 1998-09-25 Anton Paar Gmbh Rotationsviskosimeter
DE19911441B4 (de) * 1999-03-04 2011-04-07 Anton Paar Gmbh Rheometer bzw. Rotationsviskosimeter
AT409304B (de) * 1999-09-24 2002-07-25 Anton Paar Gmbh Rotationsrheometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703006A (en) * 1953-04-10 1955-03-01 Socony Vacuum Oil Co Inc Rotational viscometer
GB1272522A (en) * 1969-02-07 1972-05-03 Goodrich Co B F Measuring shear strengths of materials
DE2330964B2 (de) * 1973-06-18 1975-06-05 Brabender Ohg, 4100 Duisburg Rotationsviskosimeter
DE2733099B1 (de) * 1977-07-22 1979-04-19 Brabender Ohg Rotationsviskosimeter
DD227519A1 (de) * 1984-10-09 1985-09-18 Grubenlampen U Akkumulatorenwe Vorrichtung zur temperierung rheologischer messsysteme in rotationsrheometern

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001851B4 (de) * 2006-08-23 2011-05-05 Basf Se Dauerlast-Scherzelle für magnetorheologische Flüssigkeiten
US8132445B2 (en) 2006-08-23 2012-03-13 Basf Se Rheometer
AT505938B1 (de) * 2007-12-14 2009-05-15 Anton Paar Gmbh Vorrichtung für die ermittlung der tribologischen eigenschaften von schmiermitteln
DE102009017709A1 (de) 2008-04-30 2009-11-05 Anton Paar Gmbh Verfahren zum Abstreifen bzw. Trimmen von rheologisch zu untersuchenden Proben
DE102021115819A1 (de) 2020-07-07 2022-01-13 Anton Paar Gmbh Verfahren zur Bestimmung der Dichte einer zumindest zähflüssigen, insbesondere flüssigen, Probe
US11921022B2 (en) 2020-07-07 2024-03-05 Anton Paar Gmbh Method and rheometer for determining the density of an at least flowable, in particular liquid, specimen
EP4119923A1 (de) * 2021-07-16 2023-01-18 Bareiss Prüfgerätebau GmbH Messgerät und verfahren zur bestimmung von eigenschaften eines viskoelastischen materials

Also Published As

Publication number Publication date
DE10058399B4 (de) 2011-02-03
GB0029126D0 (en) 2001-01-10
DE10058399A1 (de) 2001-05-31
ATA201099A (de) 2001-12-15
GB2359892A (en) 2001-09-05
US6571610B1 (en) 2003-06-03
GB2359892B (en) 2003-12-03

Similar Documents

Publication Publication Date Title
AT409422B (de) Rotationsrheometer
DE19911441B4 (de) Rheometer bzw. Rotationsviskosimeter
EP0444144B1 (de) Thermostatisiergerät
DE69129814T3 (de) Vorrichtung zum Laser-Strahlungsenergiesintern
DE2656398C3 (de) Heiz- und Kuhlkammer für Chromatographiesäulen
AT510042B1 (de) Verfahren zur ermittlung von rheometrischen parametern von proben und rotationsrheometer
DE2362249A1 (de) Heizeinrichtung fuer eine probe in einem elektronenmikroskop
DE3441179A1 (de) Temperiereinrichtung fuer mikrokuevettenanordnungen, insbesondere mikrotitrationsplatten
DE19646116A1 (de) Temperierblock mit Aufnahmen
DE102013225104B4 (de) Verfahren zum Abtrennen von Scheiben von einem Werkstück mittels einer Drahtsäge
EP3711931A1 (de) Einrichtung und verfahren zum thermischen fügen von zwei werkstücken
DE1917380C3 (de) Walze für die Wärmebehandlung langgestreckter Gebilde
DE3008061A1 (de) Verfahren und vorrichtung zum einbringen einer sonde in ein gefaess mit einem fluid
AT525752B1 (de) Verfahren zur Messung der Viskosität einer Probe mit einem temperierbaren Rotationsrheometer und korrespondierende Vorrichtung
DE8913971U1 (de) Kurbelschleifenrahmen für einen Kurbelschleifentrieb einer Brennkraftmaschine
DE19646114B4 (de) Laborthermostat mit Temperierblöcken
DE10248366B4 (de) Vorrichtung zur Regelung der Materialstärke, insbesondere während der Herstellung eines Blasfolienschlauches
DE3636872C2 (de)
DE19943076A1 (de) Verfahren und Vorrichtung zur Bestimmung der spezifischen Wärmekapazität, der Wärmeleitfähigkeit und/oder der Temperaturleitfähigkeit
DE19655141C5 (de) Gradienten-Temperierblock für Laborthermostaten
AT506869B1 (de) Rheometer
DE2137895C3 (de) Vorrichtung zur Einstellung der Temperatur einer in einem gyromagnetischen Resonanzspektrometer untersuchten Probe
DE2330964C3 (de) Rotationsviskosimeter
DE2739750B1 (de) Schieberverschluss fuer eine Giesspfanne
DE29606414U1 (de) Vorrichtung zur Aufheizung von Proben, insbesondere in einer Prüfkammer

Legal Events

Date Code Title Description
RER Ceased as to paragraph 5 lit. 3 law introducing patent treaties
MK07 Expiry

Effective date: 20191129