AT239946B - Verfahren zur hydrierenden Spaltung eines Kohlenwasserstofföls - Google Patents
Verfahren zur hydrierenden Spaltung eines KohlenwasserstoffölsInfo
- Publication number
- AT239946B AT239946B AT343863A AT343863A AT239946B AT 239946 B AT239946 B AT 239946B AT 343863 A AT343863 A AT 343863A AT 343863 A AT343863 A AT 343863A AT 239946 B AT239946 B AT 239946B
- Authority
- AT
- Austria
- Prior art keywords
- sep
- catalyst
- carrier
- brought
- range
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 38
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 15
- 229930195733 hydrocarbon Natural products 0.000 title claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 15
- 238000003776 cleavage reaction Methods 0.000 title claims description 11
- 230000007017 scission Effects 0.000 title claims description 11
- 239000003054 catalyst Substances 0.000 claims description 54
- 239000003921 oil Substances 0.000 claims description 27
- 239000000017 hydrogel Substances 0.000 claims description 22
- 229910052709 silver Inorganic materials 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 12
- 239000000908 ammonium hydroxide Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- 238000009835 boiling Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- -1 ammonium ions Chemical class 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000005984 hydrogenation reaction Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims description 2
- 229910052810 boron oxide Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims 6
- 235000012239 silicon dioxide Nutrition 0.000 claims 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- HHUIAYDQMNHELC-UHFFFAOYSA-N [O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O HHUIAYDQMNHELC-UHFFFAOYSA-N 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000004992 fission Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000158147 Sator Species 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical group [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
<Desc/Clms Page number 1>
Verfahren zur hydrierenden Spaltung eines Kohlenwasserstofföls
EMI1.1
<Desc/Clms Page number 2>
berlösung mit einer Ammoniumhydroxydlösung vorzubehandeln. Zum Beispiel kann ein Hydrogel, das vorher mit Ammoniumnitratlösung und Wasser zwecks Entfernung von Natriumionen gewaschen worden ist, mit einer geringen Menge konzentriertem Ammoniumhydroxyd und so viel Wasser behandelt werden, dass ein dicker Schlamm gebildet wird. Das behandelte Hydrogel wird mit Wasser gewaschen, um überschüssiges Ammoniumhydroxyd vor der Berührung mit Silbernitratlösung zu entfernen.
Es wird angenommen, dass hochaktive, sauer wirkende Teile des Hydrogels während der Behandlung mit einem starken Ammoniumhydroxyd Ammoniumionen während der Behandlung adsorbieren und so in gewisser Weise während der darauffolgenden Berührung mit Silbernitratlösung geschützt werden. Schwächere nicht geschützte saure Molekülteile werden vermutlich von Silber bedeckt oder werden in irgendeiner andern Weise während der Ionenaustauschstufe beeinflusst. Es soll genügend Ammoniumhydroxyd verwendet werden, um mindestens einen wesentlichen Teil der sauren Molekülteile zu bedecken. Es ist auch möglich, dass die starke Ammoniumhydroxydbehandlung dazu beiträgt, restliche Natriumionen aus dem Hydrogel zu entfernen.
Durch den Ionenaustausch von Silber in ein Hydrogel, das mit Ammoniumhydroxyd vorbehandelt worden ist, wird eine ausgesprochene Verbesserung in der Katalysatorstabilität erzielt.
Die in den Katalysator einverleibte Silbermenge wird im allgemeinen als Prozentsatz, berechnet auf der Basis des elementaren Metalls, des Gesamtgewichtes des Katalysators ausgedrückt. Die Silbermenge im Katalysator schwankt vorzugsweise von etwa 0, 1 bis 20 Gew.-% und besonders zweckmässig beträgt sie etwa 2 bis etwa 15 Gew. -0/0.
Während irgendwelche sauer wirkende, anorganische, hochschmelzende Oxyde, die die Fähigkeit haben, das Sprengen von Kohlenstoff-Kohlenstoff-Bindungen zu katalysieren, als Träger benutzt werden können, enthält der bevorzugte Träger Siliciumdioxyd und Aluminiumoxyd. Ein in höherem Masse bevorzugter Träger enthält überwiegend Siliciumdioxyd, d. h. in einer Menge von etwa 50 bis etwa 90% Siliciumdioxyd, während der Rest, d. h. etwa 50-10%, als Aluminiumoxyd besteht. Ein ganz besonders bevorzugter Siliciumdioxyd-Aluminiumoxyd-Katalysatorträger enthält mindestens 700/0 Siliciumdioxyd und nicht mehr als etwa 30% Aluminiumoxyd.
Gewünschtenfalls können andere hochschmelzende Oxyde, wie Zirkonoxyd, Titanoxyd, Boroxyd u. dgl., im Träger an Stelle des Aluminiumoxyds oder eines Teiles desselben verwendet werden.
Manchmal ist es vorteilhaft, dem Katalysator Fluor und bzw. oder Metalle der VI., VII. und bzw. oder VIII. Gruppe des periodischen Systems als Promotoren einzuverleiben. Das Fluor kann in der Form eines Fluorids einverleibt werden. Die Menge des Fluors kann von etwa 0, 1 bis etwa 5 Gel.-% schwanken und beträgt vorzugsweise etwa 1 bis etwa 3 Gew. -0/0, berechnet auf das Gesamtgewicht des Katalysators. Im allgemeinen kann dem Katalysator eine grössere Menge Fluor oder Fluoridverbindung einverleibt werden, wenn der Aluminiumoxydgehalt des Trägers erhöht wird.
Die Aktivität eines durch Silberionenaustausch hergestellten Katalysators ist einem Silberkatalysator, der nach andern Methoden hergestellt worden ist, wesentlich überlegen. Dies wird einem ziemlich hohen Dispergierungsgrad des Silbers durch den gesamten Träger aus hochschmelzendem Oxyd zugeschrieben. Ausserdem ist das Silber im Falle eines Siliciumdioxyd-Aluminiumoxyd-Trägers offensichtlich mit dem Siliciumdioxyd-Aluminiumoxyd unter Bildung eines Silber-Aluminium-Silikats innig verbunden und
EMI2.1
gebunden.sator durch Imprägnierungsmethoden hergestellt worden, so wird das Metallsalz in der Imprägnierungslösung stärker angereichert, wenn das Lösungsmittel, wie Wasser, verdampft wird.
Wenn so das gesamte Lösungsmittel verdampft ist, kann die Metallverbindung in ziemlich hoher Konzentration auf der Oberfläche des Trägers, entweder auf der äusseren Oberfläche oder auf der Oberfläche innerhalb der Poren des Katalysators, abgelagert werden. Anderseits ist es bei einem gefällten Katalysator möglich, dass Silberionen mit z. B. Alkaliionen im Hydrogel konkurrieren und also dem Hydrogel nicht vollständig einverleibt oder im Hydrogel während seiner Bildung abgefangen werden.
Gemäss der Erfindung ist das einer hydrierenden Spaltung zu unterwerfende Kohlenwasserstofföl zweckmässig ein Destillat, das vorzugsweise oberhalb des Siedebereiches von Benzin, und besonders bevorzugt im Bereich von etwa 232 bis 5100C siedet.
Ein geeignetes Kohlenwasserstoffdestillat-Ausgangsmaterial für das vorliegende Verfahren wird vorzugsweise erhalten, indem man einen Rückstand, der aus einer bei Atmosphärendruck durchgeführten Destillation eines rohen Erdöls oder von Erdölfraktionen stammt, einer Vakuumdestillation unterwirft.
EMI2.2
Spaltbehandlung unterworfen, wobei man ein Produkt erhält, aus welchem durch Destillation unter anderem ein Kohlenwasserstofföl mit dem Gasölsiedebereich erhalten werden kann. Dies kann sogar geeignet sein, wenn das oben erwähnte Destillat der Vakuumdestillation einer hydrierenden Spaltoperation un-
<Desc/Clms Page number 3>
ter Anwendung eines üblichen oder eines sonstigen verschiedenen Katalysators unterworfen wird.
Es ist oft erwünscht, das Kohlenwasserstofföl einer geeigneten Vorbehandlung zu unterwerfen, vorzugsweise einer verhältnismässig milden hydrierenden Behandlung, z. B. einer katalytischen hydrierenden Behandlung mit einem hydrierenden Katalysator, wie Kobalt oder Nickel und Molybdän auf Aluminiumoxyd. Durch eine solche Vorbehandlung werden Koksbestandteile, welche zur Ablagerung auf dem Katalysator neigen, aus dem Öl entfernt und der Gehalt an Verunreinigungen, wie Schwefel- und bzw. oder Stickstoffverbindungen, welche als Spaltungsverhinderer wirken und bzw. oder sich auf dem Katalysator ablagern, verringert.
Durch die Vorbehandlung wird der restliche Stickstoffgehalt des Kohlenwasserstofföls vorzugsweise auf weniger als etwa 30 Teile pro Million Teile (bezogen auf Gewicht), und besonders zweckmässig auf weniger als 10 Teile pro. Million Teile (bezogen auf Gewicht) herabgesetzt.
Die hydrierende Spaltung wird vorzugsweise bei einer Temperatur im Bereich von etwa 260 bis etwa 454 C, einem Druck von etwa 35 bis etwa 210 at, einer stündlichen Flüssig-Raumgeschwindigkeit von etwa 0, 1 bis etwa 10, vorzugsweise 0, 5 bis 5, und einem Wasserstoff-zu-Öl-Molverhältnis von etwa 5 bis etwa 50, durchgeführt.
Unter normalen Bedingungen liegt der Gesamtdruck, der bei dem hydrierenden Spaltprozess verwendet wird, vorzugsweise im Bereich von etwa 70 bis 210 at. Für einen bestimmten Wasserstoffpartialdruck in der Reaktionszone hängt der Gesamtdruck von verschiedenen Faktoren ab, wie Reinheit des Wasserstoffgases, Wasserstoff-zu-Öl-Verhältnis u. dgl. Ein zu geringer Partialdruck des Wasserstoffes führt zu einer Herabsetzung der Katalysatorlebensdauer, während bei einem zu hohen Partialdruck die Tendenz besteht, dass Aromaten gesättigt werden, was zu einem übermässigen Wasserstoffverbrauch und zu einem Verlust an Oktanqualität des Benzinproduktes führt.
Bei dem hydrierenden Spaltprozess wird das Ausgangsmaterial der Reaktionszone als Flüssigkeit, Dampf oder gemische Flüssigkeit-Dampfphase zugeführt, je nach Temperatur, Druck und bzw. oder Menge des mit dem Ausgangsmaterial vermischten Wasserstoffes und dem Siedebereich des angewendeten Ausgangsmaterials. Die Kohlenwasserstoffzufuhr, welche sowohl aus frischem als auch im Kreislauf zurückgeführtem Ausgangsmaterial bestehen kann, wird in die Reaktionszone mit einem grossen Wasserstoff- überschuss eingeleitet, da der hydrierende Spaltprozess von einem ziemlich hohen Wasserstoffverbrauch
EMI3.1
wandelten Ausgangsmaterials. Überschüssiger Wasserstoff wird im allgemeinen, mindestens zum Teil, aus dem Abfluss aus der Reaktionszone wiedergewonnen und zusammen mit zusätzlichem, frischem Wasserstoff dem Reaktor wieder zugeführt.
Reiner Wasserstoff ist nicht erforderlich, da jedes wasserstoffhaltige Gas, das überwiegend aus Wasserstoff besteht, verwendet werden kann. Besonders geeignet ist das wasserstoffhaltige Gas, das in der Grössenordnung von 70 bis 90% Wasserstoff enthält, wie es aus einem katalytischen Reformierungsprozess gewonnen wird.
Obwohl die Aktivität des Silberkatalysators während eines langen Zeitraumes aufrechterhalten bleibt, kann es doch notwendig sein, den Katalysator nach längeren Betriebsperioden zu regenerieren, um seine nutzbare Lebensdauer zu verlängern. Die Regeneration kann durch Behandeln mit Luft oder andern sauerstoffhaltigen Gasen in bekannter Weise bewirkt werden, um kohlenstoffhaltige Niederschläge auszubrennen. Im allgemeinen wird es bevorzugt, die Regenerationstemperatur so zu regeln, dass sie etwa 6500C nicht übersteigt.
Die Erfindung wird in den folgenden Beispielen noch näher erläutert.
Beispiel 1 : Eine Reihe von Katalysatoren, welche Silber und Siliciumdioxyd-Aluminiumoxyd enthielten, wurde hergestellt und in einer im Laboratoriumsmassstab arbeitenden hydrierenden Spaltanlage geprüft. Katalysator 1 wurde durch Imprägnieren eines zu Pillen geformten synthetischen Siliciumdioxyd-Aluminiumoxyds (etwa 13 Gew.-AlO)-Spaltkatalysator, der mit l% Silikonöl behandelt worden war, mit Silbernitrat hergestellt. Der imprägnierte Katalysator wurde 2 h bei 5490C kalziniert.
Katalysator 2 wurde durch Vermischen von Lösungen von Natriumsilikat, Natriumaluminat, Natriumfluorid und Silbernitrat in solchen Mengenverhältnissen. dass sich in dem Siliciumdioxyd-AluminiumoxydTräger etwa 28 Gew. -0/0 Aluminiumoxyd und 1, 51o Fluor ergaben, hergestellt. Das Gemisch wurde durch Zusatz von verdünnter Schwefelsäure auf einen PH-Wert von etwa 7 gebracht. Das gebildete Hydrogel wurde gealtert, filtriert und zur Entfernung von Natriumionen mit Ammoitiumnitratlösung und Wasser gewaschen. Nach dem Trocknen wurde das Gel in Luft 2 h bei 549 C kalziniert. Der Oberflächenbereich des Katalysators war 170 m2/g.
Katalysator 3 wurde in gleicher Weise wie Katalysator 2 mit der Abweichung hergestellt, dass bei der Herstellung des Siliciumdioxyd-Aluminiumoxyd-Trägers kein Natriumfluorid verwendet wurde, so dass
<Desc/Clms Page number 4>
EMI4.1
EMI4.2
<tb>
<tb> Katalysator <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4 <SEP> 5 <SEP> 6 <SEP> 7
<tb> Ag. <SEP> Gew.- <SEP> 4, <SEP> 1 <SEP> 2,0 <SEP> 2, <SEP> 1 <SEP> 0. <SEP> 7 <SEP> 4, <SEP> 1 <SEP> 6, <SEP> 1 <SEP> 5
<tb> Aktivität <SEP> 33 <SEP> 25 <SEP> 25 <SEP> 15 <SEP> 60 <SEP> 65 <SEP> 30
<tb> Stabilität <SEP> 75 <SEP> 75 <SEP> 67 <SEP> 70 <SEP> 75 <SEP> 80 <SEP> 65
<tb> Testdauer
<tb> Vol. <SEP> Öl/Vol. <SEP> Kat.
<SEP> 26 <SEP> 12 <SEP> 24 <SEP> 10 <SEP> 26 <SEP> 28 <SEP> 12
<tb> Kohlenwasserstoff-Ausgangsmaterial <SEP> A <SEP> A <SEP> A <SEP> A <SEP> B <SEP> B <SEP> B
<tb>
Die vorstehenden Daten zeigen, dass der Silberkatalysator bei der hydrierenden Spaltung von Schwer- ölen eine gute Aktivität und Stabilität hatte. Ausserdem ist die Aktivität wesentlich höher bei dem Katalysator, welchem Silber durch Ionenaustausch in ein feuchtes Siliciumdioxyd-Aluminiumoxyd-Hydro- gel einverleibt worden ist.
Beispiel 2 : Es wurde ein Nickelkatalysator durch Imprägnieren eines zu Pillen gepressten, synthetischen Siliciumdioxyd-Aluminiumoxyd (etwa 13 Gew. -0/0 A120) -Spaltkatalysators, der mit l% Silikonöl behandelt worden war, mit Nickelnitrat hergestellt. Der imprägnierte Katalysator wurde 2 h bei 5490C kalziniert. Menge und Konzentration der Nickelnitratlösung waren ausreichend, um etwa 5 Gew.-% Nickel im Katalysator zu liefern. Dieser Katalysator wurde in einer im Laboratoriumsmassstab arbeiten-
<Desc/Clms Page number 5>
den Hydrocrackanlage mit dem Ausgangsmaterial A und bei den oben für die Versuche in Tabelle 1 angegebenen Arbeitsbedingungen behandelt und geprüft. Flüssiges Produkt, das während der Periode nach der 1. Stunde und weiter während der 4.
Stunde des Tests gesammelt worden war, wurde analysiert, um eine Gesamtumwandlung und Produktverteilung zu bestimmen. Die Resultate sind in Tabelle 2 zusammen mit Ergebnissen aus einem ähnlichen Test mit Katalysator 1, wie in Beispiel 1 beschrieben, angegeben. Bei dem Silberkatalysator wurde ein flüssiges Produkt während der Periode nach der 1. Stunde und fortgesetzt während 6, 5 h gesammelt.
Tabelle 2
EMI5.1
<tb>
<tb> Grew.-% <SEP> Verhältnis <SEP> zwischen
<tb> Iso- <SEP> und <SEP> Normalparaffinen
<tb> Umwandlung
<tb> Gew.-% <SEP> unter <SEP> 2160C
<tb> siedend <SEP> C3 <SEP> C4 <SEP> C5 <SEP> C6 <SEP> C4 <SEP> C5 <SEP> C6
<tb> Ag <SEP> 28 <SEP> 0,1 <SEP> 1,0 <SEP> 1,7 <SEP> 1,6 <SEP> 1,5 <SEP> 10,8 <SEP> 19,7
<tb> Ni <SEP> 40 <SEP> 0, <SEP> 2 <SEP> 1, <SEP> 8 <SEP> 3, <SEP> 1 <SEP> 2, <SEP> 8 <SEP> 1, <SEP> 6 <SEP> 6, <SEP> 2 <SEP> 9, <SEP> 4 <SEP>
<tb>
Obwohl die mit Hilfe des Silberkatalysators erzielte Umwandlung niedriger ist als die mit dem Nikkelkatalysator erhaltene, ist das Verhältnis zwischen Iso- und Normalparaffinen in dem Produkt höher, wenn ein Silberkatalysator verwendet wird, als bei Anwendung eines Nickelkatalysators. Dieser Punkt ist wichtig, weil Isoparaffine sehr gute Benzinkomponenten sind.
Beispiel 3 : Ein Siliciumdioxyd-Aluminiumoxyd-Hydrogel wurde nach der oben für Katalysator 5 angegebenen Arbeitsweise hergestellt. Etwa 200 g des gewaschenen Hydrogels wurden mit etwa 4 g konzentriertem Ammoniumhydroxyd (ausreichend, um etwa 1/3 der Zahl der sauren Stellen, wie sie durch Butylamintitration einer abgetrennten kalzinierten Probe des Hydrogels bestimmt werden, abzudecken) und einer ausreichenden Wassermenge vermischt, um einen dicken Schlamm zu erzeugen. Nach der Am- moniumhydroxydbehandlung wurde das Hydrogel filtriert, zwecks Entfernung von überschüssigem Ammoniumhydroxyd mit Wasser gewaschen und in einer Silbernitratlösung aufgeschlämmt, um in das Hydrogel durch Ionenaustausch Silber einzuführen.
Man liess das Hydrogel während etwa 15 h nach dem Filtrieren in der Silbernitratlösung stehen, worauf es filtriert, mit Wasser gewaschen, getrocknet und bei etwa 5490C
EMI5.2
Zeitraumes mit hydriertem katalytisch gespaltenem Gasöl, Material B nach Beispiel 1, geprüft. Die Behandlung wurde bei stündlichen Flüssig-Raumgeschwindigkeiten von 4 bzw. 2 bzw. 11 Öl/h und pro Liter Katalysator, bei einem Wasserstoff-zu-Öl-Verhältnis von 10/1 bzw. 5/1 und einem Druck von 105 at durchgeführt. Die Temperatur wurde so eingestellt, wie zur Aufrechterhaltung einer Umwandlung von etwa 60 Gel.-% erforderlich war. Die Stabilität des Katalysators war bei den verschiedenen Arbeitsbedingungen ausgezeichnet. Die Arbeitsbedingungen und die Ergebnisse für die angegebene Dauer des Versuches sind in Tabelle 3 zusammengestellt.
Die Tabelle 3 enthält auch Resultate eines ähnlichen Versuches mit einem Katalysator, der 6 Gew.-% durch Ionenaustausch in ein mit Ammoniumhydroxyd behandeltes Siliciumdioxyd-Aluminiumoxyd-Hydrogel eingeführtes Silber enthielt.
<Desc/Clms Page number 6>
Tabelle 3
EMI6.1
<tb>
<tb> Versuchsbedingungen <SEP> : <SEP> 110/0 <SEP> Ag <SEP> 6% <SEP> Ag
<tb> Zeit, <SEP> Stunden <SEP> 221 <SEP> - <SEP> 223 <SEP> 360 <SEP> - <SEP> 362 <SEP>
<tb> Temperatur, <SEP> C <SEP> 359 <SEP> 344 <SEP>
<tb> H/Öl-Molverhältnis <SEP> 4, <SEP> 5 <SEP> 31
<tb> Stündliche <SEP> FlüssigRaumgeschwindigkeit,
<tb> 1 <SEP> Öl/h/l <SEP> Katalysator <SEP> 1 <SEP> 1
<tb> Ergebnisse <SEP> : <SEP>
<tb> Umwandlung <SEP> ;
<SEP> Gew. <SEP> -0/0 <SEP>
<tb> unter <SEP> 2160C <SEP> siedend <SEP> 58 <SEP> 66
<tb> H2 <SEP> -Verbrauch <SEP> 120 <SEP> 140
<tb> Nm3 <SEP> H2 <SEP> pro <SEP> m3 <SEP> Öl
<tb> Ausbeuten, <SEP> Gew.-%:
<tb> Gas <SEP> (C) <SEP> 1, <SEP> 0 <SEP> 1, <SEP> 4
<tb> C4 <SEP> 4, <SEP> 1 <SEP> 5, <SEP> 2 <SEP>
<tb> Cs <SEP> 4, <SEP> 5 <SEP> 4, <SEP> 9 <SEP>
<tb> C6 <SEP> 3, <SEP> 9 <SEP> 3, <SEP> 9 <SEP>
<tb> Verhältnis <SEP> zwischen <SEP> Isound <SEP> Normalparaffinen <SEP> : <SEP>
<tb> C4 <SEP> 2 <SEP> 3 <SEP>
<tb> c <SEP> 18 <SEP> 14
<tb> C6 <SEP> 20 <SEP> 24
<tb>
PATENTANSPRÜCHE :
1.
Verfahren zur hydrierenden Spaltung eines Kohlenwasserstofföls, dadurch gekennzeichnet, dass man das Öl in Anwesenheit von Wasserstoff bei erhöhter Temperatur und erhöhtem Druck mit einem Katalysator in Berührung bringt, welcher Silber in inniger Verbindung mit einem sauer wirkenden, mindestens ein hochschmelzendes Oxyd enthaltenden Träger enthält.
Claims (1)
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die innige Verbindung herbeigeführt worden ist, indem der Träger mit einer Lösung eines Silbersalzes in Berührung gebracht wurde.3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die innige Verbindung herbeigeführt worden ist, indem das hochschmelzende Oxyd (die hochschmelzenden Oxyde) in Anwesenheit einer Lösung eines Silbersalzes in Hydrogelform ausgefällt wurde (n).4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die innige Verbindung dadurch herbeigeführt worden ist, dass der Träger in Hydrogelform mit einer Lösung eines Silbersalzes in Berührung gebracht wurde.5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Träger in Hydrogelform im wesentlichen von Alkaliionen befreit worden ist, bevor er mit der Lösung des Silbersalzes in Berührung gebracht wurde.6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Träger in Hydrogelform mit der Lösung des Silbersalzes in Anwesenheit von Ammoniumionen in Berührung gebracht wird. <Desc/Clms Page number 7>7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Berührung bei einem pH-Wert von etwa 11 herbeigeführt wird.8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der Träger in Hydrogelform mit einer Ammoniumhydroxydlösung vorbehandelt worden ist, bevor die Berührung herbeigeführt wurde.9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass als Silbersalz Silbernitrat verwendet wird.10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man einen Katalysator mit etwa 0, l-20 Gew.-% Silber, berechnet auf den gesamten Katalysator, verwendet.11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man einen Katalysator verwendet, der etwa 2-15 Gew.-% Silber, berechnet auf den gesamten Katalysator, enthält.12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man einen Träger verwendet, der Siliciumdioxyd und mindestens einen Vertreter aus der Gruppe, bestehend aus Aluminiumoxyd, Titanoxyd, Zirkonoxyd und Boroxyd, enthält.13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man einen Träger verwendet, der Siliciumdioxyd und Aluminiumoxyd enthält.14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man einen Träger verwendet, der etwa 50-90 Gew.-% Siliciumdioxyd und etwa 50-10 Gew.-% Aluminiumoxyd enthält.15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man einen Träger verwendet, der mindestens etwa 70 Gew. -0/0 Siliciumdioxyd und nicht mehr als etwa 30 Gew.- & Aluminiumoxyd enthält.16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man einen Katalysator verwendet, der Fluor enthält.17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man einen Katalysator verwendet, der etwa 0, 1-5 Gew.-lo Fluor enthält.18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass man einen Katalysator verwendet, der etwa 1-3 Gew.-% Fluor enthält.19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass man einen Katalysator verwendet, der ein oder mehrere Metalle der VI., VII. und bzw. oder VIII. Gruppe des periodischen Systems als Promotoren enthält.20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass man ein Kohlenwasserstofföl spaltet, das oberhalb des Benzinsiedebereiches siedet.21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass man ein Kohlenwasserstofföl spaltet, das im Bereich von etwa 232 bis 5100C siedet.22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass man als Kohlenwasserstofföl ein Öl einsetzt, welches einer Vorbehandlung zwecks Beseitigung koksbildender Bestandteile und bzw. oder zwecks Herabsetzung des Schwefel- und bzw. oder Stickstoffgehaltes unterworfen worden ist.23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man als Vorbehandlung eine milde Hydrierung anwendet.24. Verfahren nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass man den Stickstoffgehalt des Kohlenwasserstofföls durch die Vorbehandlung auf etwas weniger als 30 Gew.-Teile je 1 Million Gew. Teile verringert.25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass man den Stickstoffgehalt des Kohlenwasserstofföls durch die Vorbehandlung auf weniger als 10 Teile auf 1 Million Gew.-Teile herabsetzt.26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass man die hydrierende Spaltung bei einer Temperatur etwa im Bereich von 260 bis 454 C, einem Druck etwa im Bereich von 35 bis 210 at, einer stündlichen Flüssig-Raumgeschwindigkeit etwa im Bereich von 0, 1 bis 10/1 ÖI/h/1 Katalysator und einem Molverhältnis von Wasserstoff zu Öl etwa im Bereich von 5 bis 50 durchführt.27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass man die hydrierende Spaltung bei einem Druck etwa im Bereich von 70 bis 140 at durchführt.28. Verfahren nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass man die hydrierende Spaltung bei einer stündlichen Flüssig-Raumgeschwindigkeit etwa im Bereich von 0, 5 bis 5 l Öl/h/l Katalysator durchführt.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US239946XA | 1962-04-30 | 1962-04-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AT239946B true AT239946B (de) | 1965-05-10 |
Family
ID=21818290
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT343863A AT239946B (de) | 1962-04-30 | 1963-04-29 | Verfahren zur hydrierenden Spaltung eines Kohlenwasserstofföls |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT239946B (de) |
-
1963
- 1963-04-29 AT AT343863A patent/AT239946B/de active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69420670T2 (de) | Katalysatoren, Verfahren unter Verwendung dieser Katalysatoren und Verfahren zur Herstellung dieser Katalysatoren | |
| DE2929412C2 (de) | Verfahren zum Entparaffinieren eines Erdöldestillats | |
| DE2546513C2 (de) | ||
| DE1442832B1 (de) | Verfahren zur Herstellung eines Hydrokrackkatalysators | |
| DE1542309A1 (de) | Verfahren zur Herstellung eines edelmetallhaltigen Katalysators | |
| DE2821308A1 (de) | Verfahren fuer das katalytische kracken von kohlenwasserstoffoelen | |
| DE1243809B (de) | Verfahren zum Hydrocracken von Kohlenwasserstoffen | |
| DE1224432B (de) | Verfahren zum hydrierenden Spalten von oberhalb 149íµ siedenden Kohlenwasserstoffen | |
| DE899843C (de) | Verfahren zur katalytischen Entschwefelung von ungesaettigte Verbindungen enthaltenden Kohlenwasserstoffgemischen | |
| DE2013923B2 (de) | Verfahren zur Herstellung eines Katalysators für die hydrierende Raffination von Kohlenwasserstoffölen | |
| DE1745931A1 (de) | Verfahren zur hydrierenden Spaltung eines Kohlenwasserstoffoels | |
| DE1645790C3 (de) | Verwendung eines aus einem leichten, katalytisch aktiven Metall der Eisengruppe und einem kristallinen Alumosilikat bestehenden Katalysators zur Umwandlung von Kohlenwasserstoffen | |
| AT239946B (de) | Verfahren zur hydrierenden Spaltung eines Kohlenwasserstofföls | |
| DE1269271B (de) | Verfahren zur katalytischen Behandlung von Kohlenwasserstofffraktionen, bei denen ein Wasserstoffverbrauch stattfindet | |
| DE2727759A1 (de) | Verfahren zur hydrodealkylierung von aromatischen alkylkohlenwasserstoffen in anwesenheit eines aus mehreren metallen bestehenden katalysators | |
| DE2513756A1 (de) | Katalysator fuer die wasserstoffbehandlung von kohlenwasserstoffen und dessen herstellung | |
| DE930889C (de) | Verfahren zur Herstellung von Benzin aus Erdoelen | |
| DE1200990C2 (de) | Verfahren zur hydrierenden spaltung eines kohlenwasserstoffoels | |
| DE1209231B (de) | Verfahren zur hydrierenden Spaltung eines Kohlenwasserstoffoels | |
| DE3416224C2 (de) | Verfahren zur Herstellung eines Kohleverflüssigungsöls | |
| DE1813543B2 (de) | Verfahren zur Herstellung eines Katalysators für hydrierende Umwandlungen | |
| DE941006C (de) | Verfahren zur Verbesserung von Motortreibstoffen oder deren Bestandteilen | |
| DE2261543C3 (de) | Verfahren zur Herstellung von Aktivkohle-Trägern für Katalysatoren | |
| AT237170B (de) | Verfahren zum hydrierenden Spalten eines Kohlenwasserstofföles | |
| DE1225327B (de) | Verfahren zur hydrierenden Spaltung eines Kohlenwasserstoffoels |